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Abstract

We present a number of results related to quantum al-
gorithms with small error probability and quantum algo-
rithms that are zero-error. First, we give a tight analysis
of the trade-offs between the number of queries of quantum
search algorithms, their error probability, the size of the
search space, and the number of solutions in this space. Us-
ing this, we deduce new lower and upper bounds for quan-
tum versions of amplification problems. Next, we establish
nearly optimal quantum-classical separations for the query
complexity of monotone functions in the zero-error model
(where our quantum zero-error model is defined so as to
be robust when the quantum gates are noisy). Also, we
present a communication complexity problem related to a
total function for which there is a quantum-classical com-
munication complexity gap in the zero-error model. Finally,
we prove separations for monotone graph properties in the
zero-error and other error models which imply that the eva-
siveness conjecture for such properties does not hold for
quantum computers.

1 Motivation and summary of results

A general goal in the design of randomized algorithms
is to obtain fast algorithms withsmall error probabilities.
Along these lines is also the goal of obtaining fast algo-
rithms that are zero-error (a.k.a. Las Vegas), as opposed
to bounded-error (a.k.a. Monte Carlo). We examine these
themes in the context ofquantumalgorithms, and present a
number of new upper and lower bounds that contrast with
those that arise in the classical case.

The error probabilities of many classical probabilistic al-
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referred to asamplification. For example, if an algorithmA that errs with probability� 13 is known, then an error
probability bounded above by an arbitrarily small" > 0
can be obtained by runningA independently�(log(1="))
times and taking the majority value of the outcomes. This
amplification procedure increases the running time of the
algorithm by a multiplicative factor of�(log(1=")) and is
optimal (assuming thatA is only used as a black-box). We
first consider the question of whether or not it is possible to
perform amplification more efficiently on aquantumcom-
puter.

A classical probabilistic algorithmA is said to(p; q)-
computea functionf : f0; 1g� ! f0; 1g ifPr[A(x) = 1] � � p if f(x) = 0� q if f(x) = 1.

Algorithm A can be regarded as adeterministicalgorithm
with an auxiliary inputr, which is uniformly distributed
over some underlying sample spaceS (usuallyS is of the
form f0; 1gl(jxj)). We will focus our attention on theone-
sided-errorcase (i.e. whenp = 0) and prove bounds on
quantum amplification by translating them to bounds on
quantum search. In this case, for anyx 2 f0; 1gn, f(x) = 1
iff (9r 2 S)(A(x; r) = 1).

Grover’s quantum search algorithm [15] (and some re-
finements of it [6, 7, 8, 29, 16]) can be cast as a quantum
amplification method that is provably more efficient than
any classical method. It amplifies a(0; q)-algorithm to a(0; 12 )-quantum-computer withO(1=pq) executions ofA,
whereas classically�(1=q) executions ofA would be re-
quired to achieve this. It is natural to consider other ampli-
fication problems, such as amplifying(0; q)-computers to(0; 1 � ")-quantum-computers (0 < q < 1 � " < 1). We
give a tight analysis of this.

Theorem 1 Let A : f0; 1gn � S ! f0; 1g be a classical
probabilistic algorithm that(0; q)-computes some functionf , and letN = jSj and " � 2�N . Then, given a black-
box forA, the number of calls toA that are necessary and
sufficient to(0; 1� ")-quantum-computef is��pN �plog(1=") + qN �pqN�� : (1)



The lower bound is proven via the polynomial
method [31, 3] and with adaptations of techniques from [32,
11]. The upper bound is obtained by a combination of ideas,
including repeated calls to an exact quantum search algo-
rithm for the special case where the exact number of solu-
tions is known [7, 8].

From Theorem 1 we deduce that amplifying(0; 12 ) clas-
sical computers to(0; 1 � ") quantum computers requires�(log(1=")) executions, and hence cannot be done more
efficiently in the quantum case than in the classical case.
These bounds also imply a remarkable algorithm for ampli-
fying a classical(0; 1N )-computerA to a (0; 1 � ") quan-
tum computer. Note that if we follow the natural approach
of composing an optimal(0; 1N ) ! (0; 12 ) amplifier with
an optimal(0; 12 ) ! (0; 1 � ") amplifier then our ampli-
fier makes�(pN log(1=")) calls toA. On the other hand,
Theorem 1 shows that, in the case whereN = jSj, there is
a more efficient(0; 1N ) ! (0; 1 � ") amplifier that makes
only�(pN log(1=")) calls toA (and this is optimal).

Next we turn our attention to thezero-error(Las Vegas)
model. A zero-error algorithm never outputs an incorrect
answer but it may claim ignorance (output ‘inconclusive’)
with probability� 1=2. Suppose we want to compute some
functionf : f0; 1gN ! f0; 1g. The inputx 2 f0; 1gN can
only be accessed by means of queries to a black-box which
returns theith bit of x when queried oni. LetD(f) denote
the number of variables that adeterministicclassical algo-
rithm needs to query (in the worst case) in order to computef , R0(f) the number of queries for azero-errorclassical
algorithm, andR2(f) for bounded-error. There is a mono-
tone functiong with R0(g) 2 O(D(g)0:753:::) [40, 37],
and it is known thatR0(f) � pD(f) for any functionf [5, 18]. It is a longstanding open question whetherR0(f) � pD(f) is tight. We solve the analogous ques-
tion for monotone functions for the quantum case.

LetQE(f),Q0(f),Q2(f) respectively be the number of
queries that an exact, zero-error, or bounded-error quantum
algorithm must make to computef . For zero-error quan-
tum algorithms, there is an issue about the precision with
which its gates are implemented: any slight imprecisions
can reduce an implementation of a zero-error algorithm to a
bounded-error one. We address this issue by requiring our
zero-error quantum algorithms to beself-certifyingin the
sense that they produce, with constant probability, acertifi-
catefor the value off that can be verified by aclassicalal-
gorithm. As a result, the algorithms remain zero-error even
with imperfect quantum gates. The number of queries is
then counted as thesumof those of the quantum algorithm
(that searches for a certificate) and the classical algorithm
(that verifies a certificate). Our upper bounds forQ0(f)
will all be with self-certifying algorithms.

We first show thatQ0(f) �pD(f) for everymonotonef (even without the self-certifying requirement). Then we

exhibit a family of monotone functions that nearly achieves
this gap: for every" > 0we construct ag such thatQ0(g) 2O(D(g)0:5+"). In fact evenQ0(g) 2 O(R2(g)0:5+").
Theseg are so-called “AND-OR-trees”. They are the first
examples of functionsf : f0; 1gN ! f0; 1g whose quan-
tum zero-error query complexity is asymptotically less than
their classical zero-error or bounded-error query complex-
ity. It should be noted thatQ0(OR) = N [3], so the
quadratic speedup from Grover’s algorithm is lost when
zero-error performance is required.

Furthermore, we apply the idea behind the above zero-
error quantum algorithms to obtain a new result in commu-
nication complexity. We derive from the AND-OR-trees a
communication complexity problem where an asymptotic
gap occurs between the zero-error quantum communica-
tion complexity and the zero-error classical communica-
tion complexity (there was a previous example of a zero-
error gap for a function with restricted domain in [9] and
bounded-error gaps in [2, 33]). This result includes a new
lower bound in classical communication complexity. We
also state a result by Hartmut Klauck, inspired by an ear-
lier version of this paper, which gives the firsttotal function
with quantum-classical gap in the zero-error model of com-
munication complexity.

Finally, a class of black-box problems that has received
wide attention concerns the determination of monotone
graph properties [35, 22, 24, 17]. Consider a directed graph
on n vertices. It hasn(n � 1) possible edges and hence
can be represented by a black-box ofn(n� 1) binary vari-
ables, where each variable indicates whether or not a spe-
cific edge is present. Anontrivial monotone graph prop-
erty is a property of such a graph (i.e. a functionP :f0; 1gn(n�1) ! f0; 1g) that is non-constant, invariant un-
der permutations of the vertices of the graph, and mono-
tone. Clearly,n(n � 1) is an upper bound on the num-
ber of queries required to compute such properties. The
Aanderaa-Karp-Rosenbergor evasiveness conjecturestates
thatD(P ) = n(n � 1) for all P . The best known general
lower bound is
(n2) [35, 22, 24]. It has also been conjec-
tured thatR0(P ) 2 
(n2) for all P , but the current best
bound is only
(n4=3) [17]. A natural question is whether
or not quantum algorithms can determine monotone graph
properties more efficiently. We show that they can. Firstly,
in the exact model we exhibit aP with QE(P ) < n(n�1),
so the evasiveness conjecture fails in the case of quantum
computers. However, we also proveQE(P ) 2 
(n2) for
all P , so evasiveness does hold up to a constant factor for
exact quantum computers. Secondly, we give a nontrivial
monotone graph property for which the evasiveness con-
jecture is violated by a zero-error quantum algorithm: let
STAR be the property that the graph has a vertex which is
adjacent to all other vertices. Any classical (zero-error or
bounded-error)algorithm for STAR requires
(n2) queries.



We give a zero-error quantum algorithm that determines
STAR with onlyO(n3=2) queries. Finally, for bounded-
error quantum algorithms, the OR problem trivially trans-
lates into the monotone graph property “there is at least one
edge”, which can be determined with onlyO(n) queries via
Grover’s algorithm [15].

2 Basic definitions and terminology

See [4, 3] for details and references for the quantum cir-
cuit model. Forb 2 f0; 1g, a query gateO for an inputx = (x0; : : : ; xN�1) 2 f0; 1gN performs the following
mapping, which is our only way to access the bitsxj :jj; bi ! jj; b� xji:
We sometimes use the term “black-box” forx as well asO. A quantum algorithm or gate networkA with T queries
is a unitary transformationA = UTOUT�1O : : :OU1OU0.
Here theUi are unitary transformations that do not depend
on x. Without loss of generality we fix the initial state toj~0i, independent ofx. The final state is then a superpositionAj~0i which depends onx only via theT query gates. One
specific qubit of the final state (the rightmost one, say) is
designated for the output. The acceptance probability of a
quantum network on a specific black-boxx is defined to be
the probability that the output qubit is 1 (if a measurement
is performed on the final state).

We want to compute a functionf : f0; 1gN ! f0; 1g,
using as few queries as possible (on the worst-case input).
We distinguish between three different error-models. In the
case ofexactcomputation, an algorithm must always give
the correct answerf(x) for everyx. In the case ofbounded-
error computation, an algorithm must give the correct an-
swerf(x) with probability� 2=3 for everyx. In the case of
zero-errorcomputation, an algorithm is allowed to give the
answer ‘don’t know’ with probability� 1=2, but if it out-
puts an answer (0 or 1), then this must be the correct answer.
The complexity in this zero-error model is equal up to a fac-
tor of 2 to theexpectedcomplexity of an optimal algorithm
that always outputs the correct answer. LetD(f), R0(f),
andR2(f) denote the exact, zero-error and bounded-error
classical complexities, respectively, andQE(f), Q0(f),Q2(f) be the corresponding quantum complexities. Note
that N � D(f) � QE(f) � Q0(f) � Q2(f) andN � D(f) � R0(f) � R2(f) � Q2(f) for everyf .

3 Tight trade-offs for quantum searching

In this section, we prove Theorem 1, stated in Section 1.
Thesearchproblem is the following: for a given black-boxx, find a j such thatxj = 1 using as few queries tox as

possible. A quantum computer can achieve error probabil-
ity � 1=3 usingT 2 �(pN) queries [15]. We address the
question of how large the number of queries should be in
order to be able to achieve a very small error". We will

prove that ifT < N , thenT 2 ��pN log(1=")� : This

result will actually be a special case of a more general the-
orem that involves a promise on the number of solutions.
Suppose we want to search a space ofN items with error", and we are promised that there are at least some numbert < N solutions. The highert is, the fewer queries we will
need. In the appendix we give the following lower bound
on" in terms ofT , using tools from [3, 32, 11].

Theorem 2 Under the promise that the number of solutions
is at leastt, every quantum search algorithm that usesT �N � t queries has error probability" 2 
�e�4bT 2=(N�t)�8TptN=(N�t)2� :

Hereb is a positive universal constant. This theorem im-
plies a lower bound onT in terms of". To give a tight
characterization of the relations betweenT , N , t and", we
need the following upper bound onT for the caset = 1:

Theorem 3 For every " > 0 there exists a quan-
tum search algorithm with error probability� " andO �pN log(1=")� queries.

Proof Sett0 = dlog(1=")e. Consider the following algo-
rithm:

1. Apply exact search fort = 1; : : : ; t0, each of which
takesO(pN=t) queries.

2. If no solution has been found, then conductt0
searches, each withO(pN=t0) queries.

3. Output a solution if one has been found, otherwise out-
put ‘no’.

The query complexity of this algorithm is bounded byt0Xt=1 O rNt !+ t0O rNt0! = O �pN log(1=")� :
If the real number of solutions was inf1; : : : ; t0g, then a
solution will be found with certainty in step 1. If the real
number of solutions was> t0, then each of the searches in
step 2 can be made to have error probability� 1=2, so we
have total error probability at most(1=2)t0 � ". 2

A more precise analysis givesT � 2:45pN log(1="). It
is interesting that we can use this to prove something about



the constantb of the Coppersmith-Rivlin theorem (see ap-
pendix): fort = 1 and" 2 o(1), the lower bound asymptot-
ically becomesT � pN log(1=")=4b. Together these two
bounds implyb � 1=4(2:45)2 � 0:042.

The main theorem of this section tightly characterizes
the various trade-offs between the size of the search spaceN , the promiset, the error probability", and the required
number of queries:

Theorem 4 Fix � 2 (0; 1), and letN > 0, " � 2�N ,
and t � �N . Let T be the optimal number of queries a
quantum computer needs to search with error� " through
an unordered list ofN items containing at leastt solutions.
Then log(1=") 2 � T 2N + Tr tN! :
Proof From Theorem 2 we obtain the upper boundlog(1=") 2 O T 2N + Tr tN! : To prove a lower bound

on log(1=") we distinguish two cases.
Case 1:T � ptN . By Theorem 3, we can achieve error� " usingTu 2 O(pN log(1=")) queries. Now (leaving

out some constant factors):log(1=") � T 2uN � 12 �T 2N + T TN � � 12  T 2N + Tr tN! :
Case 2: T < ptN . We can achieve error� 1=2 us-

ing O(pN=t) queries, and then classically amplify this
to error� 1=" usingO(log(1=")) repetitions. This takesTu 2 O(pN=t log(1=")) queries in total. Now:log(1=") � Tur tN � 12  Tr tN + Tr tN! �12  T 2N + Tr tN! : 2

Rewriting Theorem 4 (withq = t=N ) yields the general
bound of Theorem 1.

For t = 1 this becomesT 2 �(pN log(1=")). Thus no
quantum search algorithm withO(pN) queries has error
probability o(1). Also, a quantum search algorithm with" � 2�N needs
(N) queries. For the case" = 1=3 we
re-derive the bound�(pN=t) from [6].

4 Applications of Theorem 1 to amplification

In this section we apply the bounds from Theorem 1 to
examine the speedup possible for amplifying classical one-
sided error algorithms via quantum algorithms. Observe

that searching for items in a search space of sizeN and fig-
uring out whether a probabilistic one-sided error algorithmA with sample spaceS of sizeN accepts are essentially the
same thing.

Let us analyze some special cases more closely. Sup-
pose that we want to amplify an algorithmA that (0; 12 )-
computes some functionf to (0; 1� "). Then substitutingjSj = N andq = 12 into Eq. (1) in Theorem 1 yields

Theorem 5 Let A : f0; 1gn � S ! f0; 1g be a classical
probabilistic algorithm that(0; 12 )-computes some functionf , and" � 2�jSj. Then, given a black-box forA, the num-
ber of calls toA that any quantum algorithm needs to make
to (0; 1� ")-computef is
(log(1=")).

Hence amplification of one-sided error algorithms with
fixed initial success probability cannot be done more effi-
ciently in the quantum case than in the classical case. Since
one-sided error algorithms are a special case of bounded-
error algorithms, the same lower bound also holds for
amplification of bounded-error algorithms. A similar but
slightly more elaborate argument as above shows that a
quantum computer still needs
(log(1=")) applications ofA whenA is zero-error.

Some other special cases of Theorem 1: in order to am-
plify a (0; 1N )-computerA to a (0; 12 )-computer,�(pN)
calls toA are necessary and sufficient (and this is essen-
tially a restatement of known results of Grover and others
about quantum searching [15, 6]). Also, in order to am-
plify a (0; 1N )-computer with sample space of sizeN to a(0; 1�")-computer,�(pN log(1=")) calls toA are neces-
sary and sufficient.

Finally, consider what happens if the size of the sam-
ple space is unknown and we only know thatA is a clas-
sical one-sided error algorithm with success probabilityq.
Quantum amplitude amplification can improve the success
probability to1=2 usingO(1=pq) repetitions ofA. We can
then classically amplify the success probability further to1�" usingO(log(1=")) repetitions. In all, this method usesO(log(1=")=pq) applications ofA. Theorem 4 implies that
this is best possible in the worst case (i.e. ifA happens to
be a classical algorithm with very large sample space).

5 Zero-error quantum algorithms

In this section we consider zero-error complexity of
functions in the query (a.k.a. black-box) setting. The best
general bound that we can prove between the quantum zero-
error complexityQ0(f) and the classical deterministic com-
plexity D(f) for total functions is the following (the proof
is similar to theD(f) 2 O(QE(f)4) result given in [3] and
uses an unpublished proof technique of Nisan and Smolen-
sky):



Theorem 6 For every total functionf we haveD(f) 2O(Q0(f)4).
We will in particular look atmonotone increasingf .

Here the value off cannot flip from 1 to 0 if more variables
are set to 1. For suchf , we improve the bound to:

Theorem 7 For every total monotone Boolean functionf
we haveD(f) � Q0(f)2.
Proof Let s(f) be thesensitivityof f : the maximum, over
all x, of the number of variables that we can individually flip
in x to changef(x). Let x be an input on which the sensi-
tivity of f equalss(f). Assume without loss of generality
thatf(x) = 0. All sensitive variables must be 0 inx, and
setting one or more of them to 1 changes the value off from
0 to 1. Hence by fixing all variables inx except for thes(f)
sensitive variables, we obtain the OR function ons(f) vari-
ables. Since OR ons(f) variables hasQ0(OR) = s(f) [3,
Proposition 6.1], it follows thats(f) � Q0(f). It is known
(see for instance [30, 3]) thatD(f) � s(f)2 for monotonef , henceD(f) � Q0(f)2. 2

Important examples of monotone functions areAND-OR
trees. These can be represented as trees of depthd where
theN leaves are the variables, and thed levels of internal
nodes are alternatingly labeled with ANDs and ORs. Using
techniques from [3], it is easy to show thatQE(f) � N=2
andD(f) = N for such trees. However, we show that in
the zero-error setting quantum computers can achieve sig-
nificant speed-ups for such functions. These are in fact the
first total functions with superlinear gap between quantum
and classical zero-error complexity. Interestingly, the quan-
tum algorithms for these functions are not just zero-error:
if they output an answerb 2 f0; 1g then they also output
a b-certificatefor this answer. This is a set of indices of
variables whose values force the function to the valueb.

We prove that for sufficiently larged, quantum comput-
ers can obtain near-quadratic speed-ups ond-level AND-
OR trees which are uniform, i.e. have branching factorN1=d at each level. Using the next lemma (which is proved
in the appendix) we show that Theorem 7 is almost tight:
for every " > 0 there exists a total monotonef withQ0(f) 2 O(N1=2+").
Lemma 1 Let d � 1 and letf denote the uniformd-level
AND-OR tree onN variables that has an OR as root. There
exists a quantum algorithmA1 that finds a 1-certificate in
expected number of queriesO(N1=2+1=2d) if f(x) = 1 and
does not terminate iff(x) = 0. Similarly, there exists a
quantum algorithmA0 that finds a 0-certificate in expected
number of queriesO(N1=2+1=d) if f(x) = 0 and does not
terminate iff(x) = 1.

Theorem 8 Letd � 1 and letf denote the uniformd-level
AND-OR tree onN variables that has an OR as root. ThenQ0(f) 2 O(N1=2+1=d) andR2(f) 2 
(N).
Proof Run the algorithmsA1 andA0 of Lemma 1 side-
by-side until one of them terminates with a certificate. This
gives a certificate-finding quantum algorithm forf with ex-
pected number of queriesO(N1=2+1=d). Run this algorithm
for twice its expected number of queries and answer ‘don’t
know’ if it hasn’t terminated after that time. By Markov’s
inequality, the probability of non-termination is� 1=2,
so we obtain an algorithm for our zero-error setting withQ0(f) 2 O(N1=2+1=d) queries.

The classical lower bound follows from combining two
known results. First, an AND-OR tree of depthd onN vari-
ables hasR0(f) � N=2d [20, Theorem 2.1] (see also [37]).
Second, for such trees we haveR2(f) 2 
(R0(f)) [39].
HenceR2(f) 2 
(N). 2

This analysis is not quite optimal. It gives only trivial
bounds ford = 2, but a more refined analysis shows that
we can also get speed-ups for such 2-level trees:

Theorem 9 Let f be the AND ofN1=3 ORs ofN2=3 vari-
ables each. ThenQ0(f) 2 �(N2=3) andR2(f) 2 
(N).
Proof A similar analysis as before showsQ0(f) 2O(N2=3) andR2(f) 2 
(N).

For the quantum lower bound: note that if we set all vari-
ables to 1 except for theN2=3 variables in the first subtree,
thenf becomes the OR ofN2=3 variables. This is known
to have zero-error complexity exactlyN2=3 [3, Proposi-
tion 6.1], henceQ0(f) 2 
(N2=3). 2

If we consider a tree with
pN subtrees of

pN variables
each, we would getQ0(f) 2 O(N3=4) andR2(f) 2 
(N).
The best lower bound we can prove here isQ0(f) 2
(pN). However, if we also require the quantum algo-
rithm to output acertificatefor f , we can prove a tight quan-
tum lower bound of
(N3=4). We do not give the proof
here, which is a technical and more elaborate version of the
proof of the classical lower bound of Theorem 10.

6 Zero-error communication complexity

The results of the previous section can be translated to
the setting of communication complexity [26]. Here there
are two parties, Alice and Bob, who want to compute some
relationR � f0; 1gN�f0; 1gN�f0; 1gM . Alice gets inputx 2 f0; 1gN and Bob gets inputy 2 f0; 1gN . Together they
want to compute somez 2 f0; 1gM such that(x; y; z) 2 R,
exchanging as few bits of communication as possible. The
often studied setting where Alice and Bob want to compute



some functionf : f0; 1gN � f0; 1gN ! f0; 1g is a spe-
cial case of this. In the case ofquantumcommunication,
Alice and Bob can exchange and process qubits, potentially
giving them more power than classical communication.

Let g : f0; 1gN ! f0; 1g be one of the AND-OR-trees
of the previous section. We can derive from this a com-
munication problemf : f0; 1gN � f0; 1gN ! f0; 1g by
definingf(x; y) = g(x ^ y), wherex ^ y 2 f0; 1gN is the
vector obtained by bitwise AND-ing Alice’sx and Bob’sy. Let us call such a problem a “distributed” AND-OR-
tree. Buhrman, Cleve, and Wigderson [9] show how to turn
a T -query quantum black-box algorithm forg into a com-
munication protocol forf with O(T logN) qubits of com-
munication. Thus, using the upper bounds of the previous
section, for every" > 0, there exists a distributed AND-
OR-treef that has aO(N1=2+")-qubit zero-error protocol.
It is conceivable that the classical zero-error communica-
tion complexity of these functions is!(N1=2+"); however,
we are not able to prove such a lower bound at this time.
Nevertheless, we are able to establish a quantum-classical
separation for a relation that is closely related to the AND-
OR-tree functions, which is explained below.

For any AND-OR tree functiong : f0; 1gN ! f0; 1g
and inputx 2 f0; 1gN , a certificate for the value ofg on
inputx is a subsetc of the indicesf0; 1; : : : ; N � 1g such
that the valuesfxi : i 2 cg determine the value ofg(x). It
is natural to denotec as an element off0; 1gN , representing
the characteristic function of the set. For example, forg(x0; x1; x2; x3) = (x0 _ x1) ^ (x2 _ x3); (2)

a certificate for the value ofg on inputx = 1011 is c =1001, which indicates thatx0 = 1 andx3 = 1 determine
the value ofg.

We can define a communication problem based on find-
ing these certificates as follows. For any AND-OR tree
function g : f0; 1gN ! f0; 1g and x; y 2 f0; 1gN , a
certificate for the value ofg on distributed inputsx andy is a subsetc of f0; 1; : : : ; N � 1g (denoted as an ele-
ment off0; 1gN) such that the valuesf(xi; yi) : i 2 cg
determine the value ofg(x ^ y). Define the relationR �f0; 1gN � f0; 1gN � f0; 1gN such that(x; y; c) 2 R iffc is a certificate for the value ofg on distributed inputsx
andy. For example, whenR is with respect to the func-
tion g of equation (2),(1011; 1111; 1001) 2 R, because,
for x = 1011 andy = 1111, an appropriate certificate isc = 1001.

The zero-error certificate-finding algorithm forg of the
previous section, together with the [9]-translation from
black-box algorithms to communication protocols, implies
a zero-error quantum communication protocol forR. Thus,
Theorem 8 implies that for every" > 0 there exists a rela-
tion R � f0; 1gN � f0; 1gN � f0; 1gN for which there
is a zero-error quantum protocol withO(N1=2+") qubits

of communication. Although we suspect that theclassical
zero-error communication complexity of these relations is
(N), we are only able to prove lower bounds for relations
derived from 2-level trees:

Theorem 10 Let g : f0; 1gN ! f0; 1g be an AND ofN1=3 ORs ofN2=3 variables each. LetR � f0; 1gN �f0; 1gN�f0; 1gN be the certificate-relation derived fromg.
Then there exists a zero-errorO(N2=3 logN)-qubit quan-
tum protocol forR, whereas, any zero-error classical pro-
tocol forR needs
(N) bits of communication.

Proof The quantum upper bound follows from Theorem 9
and the [9]-reduction.

For the classical lower bound, suppose we have a clas-
sical zero-error protocolP for R with T bits of commu-
nication. We will show how we can use this to solve the
Disjointness problem onk = N1=3(N2=3 � 1) variables.
(Given Alice’s inputx 2 f0; 1gk and Bob’sy 2 f0; 1gk,
the Disjointness problem is to determine ifx andy have a
1 at the same position somewhere.) LetQ be the following
classical protocol. Alice and Bob view theirk-bit input as
made up ofN1=3 subtrees ofN2=3�1 variables each. They
add a dummy variable with value 1 to each subtree and ap-
ply a random permutation to each subtree (Alice and Bob
have to apply thesamepermutation to a subtree, so we as-
sume a public coin). Call theN -bit strings they now havex0
andy0. Then they applyP tox0 andy0. Sincef(x0; y0) = 1,
after an expected number ofO(T ) bits of communicationP
will deliver a certificate which is a common 1 in each sub-
tree. If one of these common 1s is non-dummy then Alice
and Bob output 1, otherwise they output 0. It is easy to see
that this protocol solves Disjointness with success probabil-
ity 1 if x ^ y = ~0 and with success probability� 1=2 ifx ^ y 6= ~0. It assumes a public coin and usesO(T ) bits
of communication. Now the well-known
(k) bound for
classical bounded-error Disjointness onk variables [23, 34]
impliesT 2 
(k) = 
(N). 2

The relation of Theorem 10 is “total”, in the sense
that, for everyx; y 2 f0; 1gN , there exists ac such that(x; y; c) 2 R. It should be noted that one can trivially con-
struct a total relation from any partial function by allowing
any output for inputs that are outside the domain of the func-
tion. In this manner, a total relation with an exponential
quantum-classical zero-error gap can be immediately ob-
tained from the distributed Deutsch-Jozsa problem of [9].
The total relation of Theorem 10 is different from this in
that it is not a trivial extension of a partial function.

After reading a first version of this paper, Hartmut
Klauck proved a separation which is the first example of
a totalfunctionwith superlinear gap between quantum and
classical zero-error communication complexity [25]. Con-
sider the iterated non-disjointness function: Alice and Bob



each receives sets of sizen from a size-poly(n) universe
(so the input length isN 2 �(sn logn) bits), and they have
to output 1 iff alls pairs of sets intersect. Klauck’s functionf is an intricate subset of this iterated non-disjointness func-
tion, but still an explicit and total function. Results of [21]
about limited non-deterministic communication complexity
imply a lower bound for classical zero-error protocols forf . On the other hand, becausef can be written as a 2-level
AND-OR-tree, the methods of this paper imply a more ef-
ficient quantum zero-error protocol. Choosings = n5=6,
Klauck obtains a polynomial gap:

Theorem 11 (Klauck [25]) For N 2 �(n11=6 logn) there
exists a total functionf : f0; 1gN � f0; 1gN ! f0; 1g,
such that there is a quantum zero-error protocol forf withO(N10=11+") qubits of communication (for all" > 0),
whereas every classical zero-error protocol forf needs
(N= logN) bits of communication.

7 Quantum complexity of graph properties

Graph propertiesform an interesting subset of the set of
all Boolean functions. Here an input ofN = n(n� 1) bits
represents the edges of a directed graph onn vertices. (Our
results hold for properties ofdirectedas well asundirected
graphs.) Agraph propertyP is a subset of the set of all
graphs that is closed under permutation of the nodes (so ifX;Y represent isomorphic graphs, thenX 2 P iff Y 2P ). We are interested in the number of queries of the form
“is there an edge from nodei to nodej?” that we need to
determine for a given graph whether it has a certain propertyP . Since we can viewP as a total function onN variables,
we can use the notationsD(P ), etc. A propertyP is evasive
if D(P ) = n(n�1), so if in the worst case allN edges have
to be examined.

The complexity of graph properties has been well-
studied classically, especially formonotonegraph proper-
ties (a property is monotone if adding edges cannot destroy
the property). In the sequel, letP stand for a (non-constant)
monotone graph property. Much research revolved around
the so-called Aanderaa-Karp-Rosenberg conjecture oreva-
siveness conjecture, which states that everyP is evasive.
This conjecture is still open; see [27] for an overview. It
has been proved forn equals a prime power [22], but for
othern the best known general bound isD(P ) 2 
(n2)
[35, 22, 24]. (Evasiveness has also been proved forbipar-
tite graphs [41].) For the classical zero-error complexity,
the best known general result isR0(P ) 2 
(n4=3) [17], but
it has been conjectured thatR0(P ) 2 �(n2). To the best of
our knowledge, noP is known to haveR2(P ) 2 o(n2).

In this section we examine the complexity of monotone
graph properties on a quantum computer. First we show that
if we replace exact classical algorithms by exact quantum

algorithms, then the evasiveness conjecture fails. However,
the conjecture does hold up to a constant factor.

Theorem 12 For all P , QE(P ) 2 
(n2). There is aP
such thatQE(P ) < n(n� 1) for everyn > 2.

Proof For the lower bound, letdeg(f) denote the degree of
the unique multilinear multivariate polynomialp that rep-
resents a functionf (i.e. p(X) = f(X) for all X). [3]
proves thatQE(f) � deg(f)=2 for every f . Dodis and
Khanna [12, Theorem 5.1] prove thatdeg(P ) 2 
(n2)
for all monotone graph propertiesP . Combining these two
facts gives the lower bound.

Let P be the property “the graph contains more thann(n�1)=2 edges”. This is just a special case of the Majority
function. Letf be Majority onN variables. It is known thatQE(f) � N+1�e(N), wheree(N) is the number of 1s in
the binary expansion ofN . This was first noted by Hayes,
Kutin and Van Melkebeek [19]. It also follows immediately
from classical results [38, 1] that show that an item with
the Majority value can be identified classically determinis-
tically with N � e(N) comparisonsbetween bits (a com-
parison between two black-box-bits is the XOR of two bits,
which can be computed with 1 quantum query [10]). One
further query to this item suffices to determine the Majority
value. ForN = n(n � 1) andn > 2 we havee(N) � 2
and henceQE(f) � N � e(N) + 1 < N . 2

In the zero-error case, we can show polynomial gaps be-
tween quantum and classical complexities, so here the eva-
siveness conjecture fails even if we ignore constant factors.

Theorem 13 For all P , Q0(P ) 2 
(n). There is aP such
thatQ0(P ) 2 O(n3=2) andR2(P ) 2 
(n2).
Proof The quantum lower bound follows fromD(P ) �Q0(P )2 (Theorem 7) andD(P ) 2 
(n2).

Consider the property “the graph contains a star”, where
a star is a node that has edges to all other nodes. This prop-
erty corresponds to a 2-level tree, where the first level is an
OR ofn subtrees, and each subtree is an AND ofn�1 vari-
ables. Then � 1 variables in theith subtree correspond to
then�1 edges(i; j) for j 6= i. Theith subtree is 1 iff theith
node is the center of a star, so the root of the tree is 1 iff the
graph contains a star. Now we can showQ0(P ) 2 O(n3=2)
andR2(P ) 2 
(n2) analogously to Theorem 9. 2

Combined with the translation of a quantum algorithm
to a polynomial [3], this theorem shows that a “zero-error
polynomial” for the STAR-graph property can have degreeO(n3=2). Thus proving a general lower bound on zero-error
polynomials for graph properties will not improve Hajnal’s
randomized lower bound ofn4=3 further thenn3=2. In par-
ticular, a proof thatR0(P ) 2 
(n2) cannot be obtained



via a lower bound on degrees of polynomials. This con-
trasts with the case of exact computation, where the
(n2)
lower bound ondeg(P ) implies bothD(P ) 2 
(n2) andQE(P ) 2 
(n2).

Finally, for the bounded-error case we have quadratic
gaps between quantum and classical: the property “the
graph has at least one edge” hasQ2(P ) 2 O(n) by Grover’s
quantum search algorithm. Combining thatD(P ) 2 
(n2)
for all P andD(f) 2 O(Q2(f)4) for all monotonef [3],
we also obtain a general lower bound:

Theorem 14 For all P , we haveQ2(P ) 2 
(pn). There
is aP such thatQ2(P ) 2 O(n).
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A Proof of Theorem 2

Here we prove a lower bound on small-error quantum
search. The key lemma of [3] gives the following relation
between aT -query network and a polynomial that expresses
its acceptance probability as a function of the inputX (such
a relation is also implicit in some of the proofs of [14, 13]):

Lemma 2 The acceptance probability of a quantum net-
work that makesT queries to a black-boxX , can be written
as a real-valued multilinearN -variate polynomialP (X) of
degree at most2T .

An N -variate polynomialP of degreed can be reduced
to a single-variate one in the following way (due to [28]).
Let thesymmetrizationP sym be the average ofP over all
permutations of its input:P sym(X) = P�2SN P (�(X))N ! :

P sym is anN -variate polynomial of degree at mostd. It
can be shown that there is a single-variate polynomialQ of
degree at mostd, such thatP sym(X) = Q(jX j) for all X 2f0; 1gN . HerejX j denotes the Hamming weight (number
of 1s) ofX .

Note that a quantum search algorithmA can be used to
compute the OR-function ofX (i.e. decide whetherX con-
tains at least one 1): we letA return somej and then we
output the bitxj . If OR(X) = 0, then we give the cor-
rect answer with certainty; if OR(X) = 1 then the proba-
bility of error " is the same as forA. Rather than proving a
lower bound on search directly, we will prove a lower bound
on computing the OR-function; this clearly implies a lower
bound for search. The main idea of the proof is the follow-
ing. By Lemma 2, the acceptance probability of a quantum
computer withT queries that computes the OR with error
probability� " (under the promise that there are either 0 or
at leastt solutions) can be written as a multivariate polyno-
mialP of degree� 2T of theN bits ofX . This polynomial
has the properties thatP (~0) = 0 11� " � P (X) � 1 wheneverjX j 2 [t;N ]
By symmetrizing,P can be reduced to a single-variate poly-
nomials of degreed � 2T with the following properties:s(0) = 01� " � s(x) � 1 for all integersx 2 [t;N ]
We will prove a lower bound on" in terms ofd. Sinced � 2T , this will imply a lower bound on" in terms ofT .
Our proof uses three results about polynomials. The first
gives a general bound for polynomials that are bounded by
1 at integer points [11, p. 980]:

Theorem 15 (Coppersmith & Rivlin) For every polyno-
mial p of degreed that has absolute valuejp(x)j � 1 for all integersx 2 [0; n];
we have jp(x)j < aebd2=n for all real x 2 [0; n];
wherea; b > 0 are universal constants. (No explicit values
for a andb are given in [11].)

The second two tools concern the Chebyshev polynomi-
alsTd, defined as [36]:Td(x) = 12 ��x+px2 � 1�d + �x�px2 � 1�d� :1Since we can always test whether we actually found a solutionat the
expense of one more query, we can assume the algorithm alwaysgives the
right answer ‘no’ if the input contains only 0s. Hences(0) = 0. However,
our results remain unaffected up to constant factors if we also allow a small
error here (i.e.0 � s(0) � ").



Td has degreed and its absolute valuejTd(x)j is bounded
by 1 if x 2 [�1; 1]. Among all polynomials with those
two properties,Td grows fastest on the interval[1;1) ([36,
p.108] and [32, Fact 2]):

Theorem 16 If q is a polynomial of degreed such thatjq(x)j � 1 for all x 2 [�1; 1] then jq(x)j � jTd(x)j for
all x � 1.

Paturi ([32, before Fact 2] and personal communication)
proved

Lemma 3 (Paturi) Td(1+�) � e2dp2�+�2 for all � � 0.

Proof For x = 1 + �: Td(x) � (x + px2 � 1)d =(1+�+p2�+ �2)d � (1+2p2�+ �2)d � e2dp2�+�2 .2
Now we can prove:

Theorem 17 Let 1 � t < N be an integer. Every poly-
nomial s of degreed � N � t such thats(0) = 0 and1� " � s(x) � 1 for all integersx 2 [t;N ] has" � 1ae�bd2=(N�t)�4dptN=(N�t)2 ;
wherea; b are as in Theorem 15.

Proof A polynomialp with p(0) = 0 andp(x) = 1 for all
integersx 2 [t;N ] must have degree> N � t. Sinced �N � t for ours, we have" > 0. Nowp(x) = 1� s(N �x)
has degreed and0 � p(x) � " for all integersx 2 [0; N � t]p(N) = 1
Applying Theorem 15 top=" (which is bounded by 1 at
integer points) withn = N � t we obtain:jp(x)j < "aebd2=(N�t) for all realx 2 [0; N � t]:
Now we rescalep to q(x) = p((x + 1)(N � t)=2) (i.e. the
domain[0; N � t] is transformed to[�1; 1]), which has the
following properties:jq(x)j < "aebd2=(N�t) for all realx 2 [�1; 1]q(1 + �) = p(N) = 1 for � = 2t=(N � t).
Thusq is “small” on all x 2 [�1; 1] and “big” somewhere
outside this interval (q(1 + �) = 1). Linking this with The-
orem 16 and Lemma 3 we obtain1 = q(1 + �)� "aebd2=(N�t)jTd(1 + �)j� "aebd2=(N�t)e2dp2�+�2= "aebd2=(N�t)+2dp4t=(N�t)+4t2=(N�t)2= "aebd2=(N�t)+4dptN=(N�t)2 :

Rearranging gives the bound. 2
Since a quantum search algorithm withT queries in-

duces a polynomials with the properties mentioned in The-
orem 17 andd � 2T , we obtain the following bound for
quantum search under the promise (ifT � N � t, then" > 0):

Theorem 2Under the promise that the number of solutions
is at leastt, every quantum search algorithm that usesT �N � t queries has error probability" 2 
�e�4bT 2=(N�t)�8TptN=(N�t)2� :
B Proof of Lemma 1

Lemma 1 Let d � 1 and letf denote the uniformd-level
AND-OR tree onN variables that has an OR as root. There
exists a quantum algorithmA1 that finds a 1-certificate in
expected number of queriesO(N1=2+1=2d) if f(X) = 1
and does not terminate iff(X) = 0. Similarly, there ex-
ists a quantum algorithmA0 that finds a 0-certificate in ex-
pected number of queriesO(N1=2+1=d) if f(X) = 0 and
does not terminate iff(X) = 1.

Proof By induction ond.
Base step.Ford = 1 the bounds are trivial.
Induction step (assume the lemma ford � 1). Let f

be the uniformd-level AND-OR tree onN variables. The
root is an OR ofN1=d subtrees, each of which hasN (d�1)=d
variables.

We constructA1 as follows. First use multi-level
Grover-search as in [9, Theorem 1.15] to find a subtree
of the root whose value is 1, if there is one. This takesO(N1=2(logN)d�1) queries and works with bounded-
error. By the induction hypothesis there exists an algorithmA00 with expected number ofO((N (d�1)=d)1=2+1=(d�1)) =O(N1=2+1=2d) queries that finds a 1-certificate for this sub-
tree (note that the subtree has an AND as root, so the
roles of 0 and 1 are reversed). IfA00 has not termi-
nated after, say, 10 times its expected number of queries,
then terminate it and start all over with the multi-level
Grover search. The expected number of queries for one
such run isO(N1=2(logN)d�1) + 10 � O(N1=2+1=2d) =O(N1=2+1=2d). If f(X) = 1, then the expected num-
ber of runs before success isO(1) andA1 will find a 1-
certificate after a total expected number ofO(N1=2+1=2d)
queries. Iff(X) = 0, then the subtree found by the multi-
level Grover-search will have value 0, so thenA00 will never
terminate by itself andA1 will start over again and again
but never terminates.

We constructA0 as follows. By the induction hypoth-
esis there exists an algorithmA01 with expected number



of O((N (d�1)=d)1=2+1=2(d�1)) = O(N1=2) queries that
finds a 0-certificate for a subtree whose value is 0, and
that runs forever if the subtree has value 1.A0 first runsA01 on the first subtree until it terminates, then on the sec-
ond subtree, etc. Iff(X) = 0, then each run ofA01 will
eventually terminate with a 0-certificate for a subtree, and
the 0-certificates of theN1=d subtrees together form a 0-
certificate forf . The total expected number of queries is
the sum of the expectations over allN1=d subtrees, which isN1=d � O(N1=2) = O(N1=2+1=d). If f(X) = 1, then one
of the subtrees has value 1 and the run ofA01 on that subtree
will not terminate, so thenA0 will not terminate. 2


