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aAbstra
tClassi
al �ngerprinting asso
iates with ea
h string a shorter string (its �n-gerprint), su
h that, with high probability, any two distin
t strings 
an bedistinguished by 
omparing their �ngerprints alone. The �ngerprints 
an beexponentially smaller than the original strings if the parties preparing the�ngerprints share a random key, but not if they only have a

ess to un
or-related random sour
es. In this paper we show that �ngerprints 
onsistingof quantum information 
an be made exponentially smaller than the originalstrings without any 
orrelations or entanglement between the parties. In ours
heme, the �ngerprints are exponentially shorter than the original stringsand a measurement distinguishes between the �ngerprints of any two distin
tstrings. Our s
heme implies an exponential quantum/
lassi
al gap for theequality problem in the simultaneous message passing model of 
ommuni
a-tion 
omplexity. We optimize several aspe
ts of our s
heme.
Typeset using REVTEX1



Fingerprinting 
an be a useful me
hanism for determining if two strings are the same:ea
h string is asso
iated with a mu
h shorter �ngerprint and 
omparisons between stringsare made in terms of their �ngerprints alone. This 
an lead to savings in the 
ommuni
ationand storage of information.The notion of �ngerprinting arises naturally in the setting of 
ommuni
ation 
omplexity(see [1℄ for a survey). The parti
ular model of 
ommuni
ation 
omplexity that we 
onsiderin this letter is 
alled the simultaneous message passing model, whi
h was introdu
ed byYao [2℄ in his original paper on 
ommuni
ation 
omplexity. In this model, two parties|Ali
eand Bob|re
eive inputs x and y, respe
tively, and are not permitted to 
ommuni
ate withone another dire
tly. Rather they ea
h send a message to a third party, 
alled the referee,who determines the output of the proto
ol based solely on the messages sent by Ali
e andBob. The 
olle
tive goal of the three parties is to 
ause the proto
ol to output the 
orre
tvalue of some fun
tion f(x; y) while minimizing the amount of information that Ali
e andBob send to the referee. For the equality problem, the fun
tion isf(x; y) = (1 if x = y0 if x 6= y. (1)The problem 
an of 
ourse be trivially solved if Ali
e sends x and Bob sends y to the referee,who 
an then 
ompute f(x; y). However, the 
ost of this proto
ol is high; if x and y are n-bitstrings, then a total of 2n bits are 
ommuni
ated. If Ali
e and Bob instead send �ngerprintsof x and y, whi
h may ea
h be 
onsiderably shorter than x and y, the 
ost 
an be redu
edsigni�
antly. The question we are interested in is how mu
h the size of the �ngerprints 
anbe redu
ed.If Ali
e and Bob share a random O(log2(n))-bit key then the �ngerprints need only be of
onstant length if we allow a small probability of error; a brief sket
h of this follows. A binaryerror-
orre
ting 
ode is used, whi
h 
an be represented as a fun
tion E : f0; 1gn ! f0; 1gm,where E(x) is the 
odeword asso
iated with x 2 f0; 1gn. There exist error-
orre
ting 
odes(Justesen 
odes, for instan
e) with m = 
n su
h that the Hamming distan
e between anytwo distin
t 
odewords E(x) and E(y) (i.e., the number of bit positions where they di�er) is2



at least (1� Æ)m, where 
 and Æ are positive 
onstants. For the parti
ular 
ase of Justesen
odes, we may 
hoose any 
 > 2 and we will have Æ < 9=10 + 1=(15
) (for suÆ
iently largen) [3℄. Now, for x 2 f0; 1gn and i 2 f1; 2; : : : ; mg, let Ei(x) denote the ith bit of E(x). Theshared key is a random i 2 f1; 2; : : : ; mg (
onsisting of log2(n) +O(1) bits). Ali
e and Bobrespe
tively send the bits Ei(x) and Ei(y) to the referee, who then outputs 1 if and only ifEi(x) = Ei(y). If x = y then Ei(x) = Ei(y), so then the out
ome is 
orre
t. If x 6= y thenthe probability that Ei(x) = Ei(y) is at most Æ, so the out
ome is 
orre
t with probability1 � Æ. The error probability 
an be redu
ed from Æ to any " > 0 by having Ali
e and Bobsend O(log2(1=")) independent random bits of the 
odewords E(x) and E(y) to the referee.In this 
ase, the length of ea
h �ngerprint is O(log2(1=")) bits.One disadvantage of the above s
heme is that it requires overhead in 
reating and main-taining a shared key. Moreover, on
e the key is distributed, it may be ne
essary to store itse
urely until the inputs are obtained. This is be
ause, for every �xed key value, there aredistin
t inputs x and y on whi
h the proto
ol gives the in
orre
t output 1. Therefore, anadversary who uses the shared key as prior information 
an perform the task of fooling theproto
ol into in
orre
tly outputting the value 1.Yao [2, Se
tion 4.D℄ posed as an open problem the question of what happens in this modelif Ali
e and Bob do not have a shared key. Ambainis [4℄ proved that �ngerprints of O(pn)bits suÆ
e if we allow a small error probability (see also [5{7℄). Note that in this settingAli
e and Bob still have a

ess to random bits, but there are no 
orrelations between ea
hothers random bits. Subsequently, Newman and Szegedy [7℄ proved the above is optimalin that the length of the �ngerprints must s
ale at least proportionally to pn. Babai andKimmel [5℄ later showed that probabilisti
 and deterministi
 
ommuni
ation 
omplexity 
anbe at most quadrati
ally far apart for any fun
tion in the simultaneous message passingmodel, whi
h also implies the pn lower bound. Babai and Kimmel attribute a simpli�edproof of this fa
t to Jean Bourgain and Avi Wigderson.We 
onsider the problem where Ali
e and Bob's �ngerprints 
an 
onsist of quantuminformation. Ali
e and Bob are still restri
ted to have no shared key (or entanglement) be-3



tween them. We show that O(log2(n))-qubit �ngerprints are suÆ
ient to solve the equalityproblem in this setting|an exponential improvement over the pn-bound for the 
omparable
lassi
al 
ase. Our method is to set the 2n �ngerprints to quantum states whose pairwiseinner-produ
ts are bounded below 1 in absolute value and to use a measurement that identi-�es identi
al �ngerprints and distinguishes distin
t �ngerprints with good probability. Thisgives a simultaneous message passing proto
ol for equality in the obvious way: Ali
e andBob send the �ngerprints of their respe
tive inputs to the referee, who then performs themeasurement that 
he
ks if the �ngerprints are equal or distin
t.The fa
t that quantum systems 
ontain large sets of nearly-orthogonal states|sets of 2nstates that are nearly orthogonal pairwise in O(log2(n))-qubit systems|is well known. Forexample, it is noted in [8℄, where it is shown that these nearly-orthogonal sets of states 
annotbe utilized to solve 
ertain 
oding problems mu
h more eÆ
iently than possible with 
lassi
alinformation. Our results are perhaps the �rst demonstration that nearly-orthogonal sets ofquantum states 
an be used to perform a natural information pro
essing task signi�
antlymore eÆ
iently than possible with 
lassi
al information.To expli
itly 
onstru
t a large set of nearly-orthogonal quantum states, assume that for�xed 
 > 1 and 0 < Æ < 1 we have an error 
orre
ting 
ode E : f0; 1gn ! f0; 1gm for ea
hn, where m = 
n and su
h that the distan
e between distin
t 
odewords E(x) and E(y) isat least (1� Æ)m. For instan
e, we may use the 
odes dis
ussed previously in the 
lassi
alshared-key proto
ol. Now, for ea
h x 2 f0; 1gn, de�ne the (log2(m) + 1)-qubit statejhxi = 1pm mXi=1 jiijEi(x)i: (2)Sin
e two distin
t 
odewords 
an be equal in at most Æm positions, for any x 6= y we havehhxjhyi � Æm=m = Æ. Thus we have 2n di�erent (log2(n)+O(1))-qubit states, and ea
h pairof them has inner-produ
t with absolute value at most Æ.The simultaneous message passing proto
ol for the equality problem works as follows.When given n-bit inputs x and y, respe
tively, Ali
e and Bob send �ngerprints jhxi andjhyi to the referee. Then the referee must distinguish between the 
ase where the two states4



re
eived|
all them j�i and j i|are identi
al or have inner-produ
t at most Æ in absolutevalue. This is a

omplished with one-sided error probability by the pro
edure that measuresand outputs the �rst qubit of the state(H 
 I)(
-SWAP)(H 
 I)j0ij�ij i: (3)Here H is the Hadamard transform, whi
h maps jbi ! 1p2(j0i + (�1)bj1i), SWAP is theoperation j�ij i ! j ij�i and 
-SWAP is the 
ontrolled-SWAP (
ontrolled by the �rstqubit). Figure 1 illustrates this. FIG. 1 hereTra
ing through the exe
ution of this 
ir
uit, the �nal state before the measurement is12 j0i(j�ij i+ j ij�i) + 12 j1i(j�ij i � j ij�i): (4)Measuring the �rst qubit of this state produ
es out
ome 1 with probability (1�jh�j ij2)=2.This probability is 0 if x = y and is at least (1�Æ2)=2 > 0 if x 6= y. Thus, the test determineswhi
h 
ase holds with one-sided error probability (1 + Æ2)=2.The error probability of the test 
an be redu
ed to any " > 0 by setting the �ngerprintof x 2 f0; 1gn to jhxi
k for a suitable k 2 O(log2(1=")). From su
h �ngerprints, the referee
an independently perform the test in Figure 1 k times, resulting in an error probabilitybelow ". In this 
ase, the length of ea
h �ngerprint is O(log2(n) log2(1=")). In summary, wehave shown:Theorem 1 There exists a quantum simultaneous message passing proto
ol for the equalityproblem with small error probability and O(log2(n)) qubits of 
ommuni
ation (
ontrastingwith �(pn) bits 
lassi
ally).It is worth 
onsidering what goes wrong if one tries to simulate the above quantum pro-to
ol using 
lassi
al mixtures in pla
e of quantum superpositions. In su
h a proto
ol, Ali
eand Bob send (i; Ei(x)) and (j; Ej(y)) respe
tively to the referee for independent randomuniformly distributed i; j 2 f1; 2; : : : ; mg. If it should happen that i = j then the referee 
an5



make a statisti
al inferen
e about whether or not x = y. But i = j o

urs with probabilityonly O(1=n), and in the 
ase where i 6= j, the referee will not be able to determine whetherx = y with good probability, as shown by the pn lower bound of [7℄. The distinguish-ing test in Figure 1 
an be viewed as a quantum operation that has no analogous 
lassi
alprobabilisti
 
ounterpart.Our quantum proto
ol for equality in the simultaneous message model uses O(log2(n))-qubit �ngerprints for any 
onstant error probability. Is it possible to use fewer qubits? Infa
t, without a shared key, logarithmi
-length �ngerprints are ne
essary. This is be
ause anyk-qubit quantum state 
an be spe
i�ed within exponential pre
ision with O(k2k) 
lassi
albits. Therefore the existen
e of a k-qubit quantum proto
ol implies the existen
e of anO(k2k)-bit (deterministi
) 
lassi
al proto
ol. From this we 
an infer that k � log2(n) �log2(log2(n)).We next 
onsider some eÆ
ien
y improvements to our �ngerprinting s
heme. It 
an beshown that the aforementioned method uses k(log2(n) + O(1)) qubit �ngerprints to attainan error probability slightly more than (9=10)k. First we note that the 
onstru
tion ofnearly-orthogonal states 
an be improved by using a better error-
orre
ting 
ode. Using aprobabilisti
 argument (see, e.g., [9℄), it 
an be shown that, for an arbitrarily small Æ > 0,there exists an error-
orre
ting 
ode E : f0; 1gn ! f0; 1gm withm � n=Æ
 (for some 
onstant
) su
h that the Hamming distan
e between any two distin
t 
odewords E(x) and E(y) isbetween (1� Æ)m=2 and (1+ Æ)m=2. If a set S of 2n m-bit strings is 
hosen at random thenthe probability that there is a pair of strings in S whose Hamming distan
e deviates fromm=2 by more than Æm is less than 1. This shows that there exists a set S with the rightproperties. Note that this existen
e proof does not yield an expli
it 
onstru
tion of the 
ode;however, Guruswami and Smith [10℄ re
ently pointed out to us that expli
it 
onstru
tionsof su
h 
odes 
an be obtained from results in [11,12℄. Given su
h a 
ode, the log2(m)-qubit�ngerprint of x 2 f0; 1gn 
an be set tojhxi = 1pm mXi=1(�1)Ei(x)jii (5)6



to yield the following theorem:Theorem 2 For every n and Æ > 0 one 
an 
onstru
t a set fjhxi : x 2 f0; 1gng of states oflog2(n) +O(log2(1=Æ)) qubits, su
h that jhhxjhyij � Æ whenever x 6= y.The above 
onstru
tion yields �ngerprints that are arbitrarily 
lose to orthogonal|theirpairwise inner-produ
ts are within any Æ > 0 of 0. This results in a distinguishing measure-ment (Figure 1) that errs with probability (1 + Æ2)=2|slightly more than 1=2. To redu
ethe error probability to an arbitrarily small " > 0, re
all that the method we proposed is to
onstru
t k 
opies of ea
h �ngerprint, whi
h 
an then be measured in pairs independently.The result is an error probability of ((1 + Æ2)=2)k, whi
h is approximately 1=2k when Æ issmall. We now show that an alternate measurement results in an error probability 
loseto p�k((1 + Æ)=2)2k, whi
h is approximately p�k=4k when Æ is small. This is a near-quadrati
 redu
tion in the error probability resulting from a k-
opy �ngerprint 
onsisting ofk(log2(n) +O(1)) qubits.The improved measurement works as follows. Let R1; : : : ; R2k be registers that initially
ontain j�i; : : : ; j�i; j i; : : : ; j i (k 
opies of ea
h). Let s = (2k)! and �0; �1; : : : ; �s�1 be anenumeration of all the permutations on 2k items, where �0 is the identity permutation. LetP be an s-dimensional register initialized to j0i. Let F be any transformation satisfyingF : j0i 7! 1ps s�1Xi=0 jii; (6)su
h as the s-dimensional quantum Fourier transform. Sin
e s is a smooth number (i.e., itsprime fa
tors are all O(log2(s))), the 
onstru
tion in [13℄ implies that F 
an be 
omputedexa
tly with a polynomial number of basi
 operations. The distinguishing pro
edure is asfollows:1. Apply F to register P .2. Apply permutation �i to registers R1; : : : ; R2k, 
onditioned on the value of P being jii.7



3. Apply F y to P and measure the �nal state. If P 
ontains 0 then answer equal, otherwisenot equal.This pro
edure 
orresponds to a proje
tion onto the symmetri
 subspa
e for registersR1; : : : ; R2k, as explained in [14℄. The state after Step 2 is1ps s�1Xi=0 jii�i(j�i � � � j�ij i � � � j i); (7)where �i(j�i � � � j�ij i � � � j i) means we permute the 
ontents of the 2k registers a

ordingto �i.Case 1: j�i = j i. In this 
ase the permutation of the registers does absolutely nothing, sothe pro
edure answers equal with 
ertainty.Case 2: jh�j ij < Æ. The probability of answering equal is the squared norm of the ve
torobtained by applying the proje
tion j0ih0j 
 I to the �nal state:




 1ps s�1Xi=0h0jF yjii�i(j�i � � � j�ij i � � � j i)




2 (8)= 




1s s�1Xi=0 �i(j�i � � � j�ij i � � � j i)




2 (9)= (k!)2(2k)! kXj=0 kj !2 Æ2j (10)� (k!)2(2k)! (1 + Æ)2k � p�k  1 + Æ2 !2k : (11)In summary:Theorem 3 The above pro
edure, on input j�i
k and j i
k su
h that either j�i = j i orjh�j ij � Æ, de
ides whi
h of the two is the 
ase with error O(pk �1+Æ2 �2k).The above pro
edure 
an be viewed as a solution to a more general state distinguishingproblem de�ned as follows. The input is k 
opies of ea
h of two quantum states j�i and j ithat are arbitrary subje
t to the 
ondition that the two states are either identi
al or haveinner produ
t bounded in absolute value by some given Æ < 1. The goal is to distinguish8



between the two 
ases with as high probability as possible. The above pro
edure solves thestate distinguishing problem with error probability p�k((1 + Æ)=2)2k and it 
an be shownthat, in general, the error probability 
annot be less than (1=4)((1 + Æ)=2)2k. The ideabehind this lower bound is to 
onsider the pairs of states j�1i = j 1i = j0i and j�2i =
os(�=2)j0i+ sin(�=2)j1i and j 2i = 
os(�=2)j0i � sin(�=2)j1i, where � = 
os�1(Æ). Clearly,j�1i = j 1i and h�2j 2i = Æ. A state distinguishing pro
edure must distinguish betweenjai = j�1i
k 
 j 1i
k and jbi = j�2i
k 
 j 2i
k. Sin
e h�1j�2i = h 1j 2i = 
os(�=2), itfollows that hajbi = 
os2k(�=2) = ((1+
os �)=2)k = ((1+Æ)=2)k. It is known that the optimalpro
edure distinguishing between two states with inner produ
t 
os� has error probability(1 � sin�)=2 � (1=4) 
os2 � [15℄. Therefore any state distinguisher has error probabilityat least (1=4)((1 + Æ)=2)2k. Note that this lower bound for state distinguishing 
on
ernsa problem that is more general than the problem of distinguishing between �ngerprints,be
ause, in the 
ase of �ngerprints, the states are from a known set of only 2n possibilities.Finally, returning to the �ngerprinting s
enario, we 
onsider the 
ase where Ali
e andBob have a shared quantum key, 
onsisting of O(log2(n)) Bell states, but are required tooutput 
lassi
al strings as �ngerprints. Is there any sense in whi
h a quantum key 
an resultin improved performan
e over the 
ase of a 
lassi
al key? We observe that results in [16℄imply an improvement in the parti
ular setting where the �ngerprinting s
heme must beexa
t (i.e., the error probability is 0) and where there is a restri
tion on the inputs thateither x = y or the Hamming distan
e between x and y is n=2. Under this restri
tion, any
lassi
al s
heme with a shared key would still require �ngerprints of length linear in n. Onthe other hand, there is a s
heme with a shared quantum key of O(log2(n)) Bell states thatrequires �ngerprints of length only O(log2(n)) bits. See [16℄ (whose results are partly basedon results in [17,18℄) for details. It should be noted that if the exa
tness 
ondition is relaxedto one where the error probability must be O(1=n
) (for a 
onstant 
) then there exists alsoa 
lassi
al s
heme with 
lassi
al keys and �ngerprints of length O(log2(n)).A
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FIGURESj0ij�ij i
measureH HsSWAPFIG. 1. Quantum 
ir
uit to test if j�i = j i or jh�j ij � Æ.
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