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Abstract

Classical fingerprinting associates with each string a shorter string (its fin-
gerprint), such that, with high probability, any two distinct strings can be
distinguished by comparing their fingerprints alone. The fingerprints can be
exponentially smaller than the original strings if the parties preparing the
fingerprints share a random key, but not if they only have access to uncor-
related random sources. In this paper we show that fingerprints consisting
of quantum information can be made exponentially smaller than the original
strings without any correlations or entanglement between the parties. In our
scheme, the fingerprints are exponentially shorter than the original strings
and a measurement distinguishes between the fingerprints of any two distinct
strings. Our scheme implies an exponential quantum/classical gap for the
equality problem in the simultaneous message passing model of communica-

tion complexity. We optimize several aspects of our scheme.
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Fingerprinting can be a useful mechanism for determining if two strings are the same:
each string is associated with a much shorter fingerprint and comparisons between strings
are made in terms of their fingerprints alone. This can lead to savings in the communication
and storage of information.

The notion of fingerprinting arises naturally in the setting of communication complexity
(see [1] for a survey). The particular model of communication complexity that we consider
in this letter is called the simultaneous message passing model, which was introduced by
Yao [2] in his original paper on communication complexity. In this model, two parties—Alice
and Bob—receive inputs x and y, respectively, and are not permitted to communicate with
one another directly. Rather they each send a message to a third party, called the referee,
who determines the output of the protocol based solely on the messages sent by Alice and
Bob. The collective goal of the three parties is to cause the protocol to output the correct
value of some function f(z,y) while minimizing the amount of information that Alice and

Bob send to the referee. For the equality problem, the function is

lifz=y

0if x #y. (1)

f(fr,y)Z{

The problem can of course be trivially solved if Alice sends x and Bob sends y to the referee,
who can then compute f(x,y). However, the cost of this protocol is high; if z and y are n-bit
strings, then a total of 2n bits are communicated. If Alice and Bob instead send fingerprints
of x and y, which may each be considerably shorter than x and 3, the cost can be reduced
significantly. The question we are interested in is how much the size of the fingerprints can
be reduced.

If Alice and Bob share a random O(log,(n))-bit key then the fingerprints need only be of
constant length if we allow a small probability of error; a brief sketch of this follows. A binary
error-correcting code is used, which can be represented as a function E : {0,1}" — {0,1}™,
where E(z) is the codeword associated with x € {0,1}". There exist error-correcting codes
(Justesen codes, for instance) with m = cn such that the Hamming distance between any

two distinct codewords E(x) and E(y) (i.e., the number of bit positions where they differ) is



at least (1 — §)m, where ¢ and § are positive constants. For the particular case of Justesen
codes, we may choose any ¢ > 2 and we will have § < 9/10 + 1/(15¢) (for sufficiently large
n) [3]. Now, for z € {0,1}" and i € {1,2,...,m}, let E;(z) denote the i*" bit of E(z). The
shared key is a random i € {1,2,...,m} (consisting of log,(n) + O(1) bits). Alice and Bob
respectively send the bits E;(z) and F;(y) to the referee, who then outputs 1 if and only if
Ei(x) = E;(y). If x = y then E;(x) = E;(y), so then the outcome is correct. If x # y then
the probability that E;(z) = F;(y) is at most d, so the outcome is correct with probability
1 — 9. The error probability can be reduced from ¢ to any £ > 0 by having Alice and Bob
send O(log,(1/¢)) independent random bits of the codewords E(x) and E(y) to the referee.
In this case, the length of each fingerprint is O(log,(1/¢)) bits.

One disadvantage of the above scheme is that it requires overhead in creating and main-
taining a shared key. Moreover, once the key is distributed, it may be necessary to store it
securely until the inputs are obtained. This is because, for every fixed key value, there are
distinct inputs x and y on which the protocol gives the incorrect output 1. Therefore, an
adversary who uses the shared key as prior information can perform the task of fooling the
protocol into incorrectly outputting the value 1.

Yao [2, Section 4.D] posed as an open problem the question of what happens in this model
if Alice and Bob do not have a shared key. Ambainis [4] proved that fingerprints of O(y/n)
bits suffice if we allow a small error probability (see also [5-7]). Note that in this setting
Alice and Bob still have access to random bits, but there are no correlations between each
others random bits. Subsequently, Newman and Szegedy [7| proved the above is optimal
in that the length of the fingerprints must scale at least proportionally to y/n. Babai and
Kimmel [5] later showed that probabilistic and deterministic communication complexity can
be at most quadratically far apart for any function in the simultaneous message passing
model, which also implies the /n lower bound. Babai and Kimmel attribute a simplified
proof of this fact to Jean Bourgain and Avi Wigderson.

We consider the problem where Alice and Bob’s fingerprints can consist of quantum

information. Alice and Bob are still restricted to have no shared key (or entanglement) be-
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tween them. We show that O(log,(n))-qubit fingerprints are sufficient to solve the equality
problem in this setting—an exponential improvement over the \/n-bound for the comparable
classical case. Our method is to set the 2" fingerprints to quantum states whose pairwise
inner-products are bounded below 1 in absolute value and to use a measurement that identi-
fies identical fingerprints and distinguishes distinct fingerprints with good probability. This
gives a simultaneous message passing protocol for equality in the obvious way: Alice and
Bob send the fingerprints of their respective inputs to the referee, who then performs the
measurement that checks if the fingerprints are equal or distinct.

The fact that quantum systems contain large sets of nearly-orthogonal states—sets of 2"
states that are nearly orthogonal pairwise in O(log,(n))-qubit systems—is well known. For
example, it is noted in [8], where it is shown that these nearly-orthogonal sets of states cannot
be utilized to solve certain coding problems much more efficiently than possible with classical
information. Our results are perhaps the first demonstration that nearly-orthogonal sets of
quantum states can be used to perform a natural information processing task significantly
more efficiently than possible with classical information.

To explicitly construct a large set of nearly-orthogonal quantum states, assume that for
fixed ¢ > 1 and 0 < § < 1 we have an error correcting code E : {0,1}" — {0,1}™ for each
n, where m = cn and such that the distance between distinct codewords E(z) and E(y) is
at least (1 — 0)m. For instance, we may use the codes discussed previously in the classical

shared-key protocol. Now, for each z € {0,1}", define the (log,(m) + 1)-qubit state

h) = %ﬁ;wm(z». 2)

Since two distinct codewords can be equal in at most dm positions, for any x # y we have
(hy|hy) < dm/m = 6. Thus we have 2" different (log,(n)+ O(1))-qubit states, and each pair
of them has inner-product with absolute value at most 9.

The simultaneous message passing protocol for the equality problem works as follows.
When given n-bit inputs = and y, respectively, Alice and Bob send fingerprints |h,) and

|hy) to the referee. Then the referee must distinguish between the case where the two states
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received—call them |¢) and |¢))—are identical or have inner-product at most § in absolute
value. This is accomplished with one-sided error probability by the procedure that measures

and outputs the first qubit of the state
(H ® I)(c-SWAP) (H & I)|0)|9)|¢)). (3)

Here H is the Hadamard transform, which maps [b) — %(\0) + (=1)°/1)), SWAP is the
operation [¢)|t)) — [1¥)|¢) and c-SWAP is the controlled-SWAP (controlled by the first
qubit). Figure 1 illustrates this.

Tracing through the execution of this circuit, the final state before the measurement is

210)(16)[¥) + 19)16)) + 511 (19) [¥) — [¥) ). (4)

Measuring the first qubit of this state produces outcome 1 with probability (1 — [{¢|y)[?)/2.
This probability is 0 if z = y and is at least (1—6%)/2 > 0 if x # y. Thus, the test determines
which case holds with one-sided error probability (1 + §2)/2.

The error probability of the test can be reduced to any € > 0 by setting the fingerprint
of z € {0,1}" to |h,)** for a suitable k € O(logy(1/¢)). From such fingerprints, the referee
can independently perform the test in Figure 1 k£ times, resulting in an error probability
below €. In this case, the length of each fingerprint is O(log,(n)log,(1/£)). In summary, we

have shown:

Theorem 1 There exists a quantum simultaneous message passing protocol for the equality

problem with small error probability and O(logy(n)) qubits of communication (contrasting

with ©(y/n) bits classically).

It is worth considering what goes wrong if one tries to simulate the above quantum pro-
tocol using classical mixtures in place of quantum superpositions. In such a protocol, Alice
and Bob send (i, F;(z)) and (j, Ej(y)) respectively to the referee for independent random

uniformly distributed i, j € {1,2, ..., m}. If it should happen that i = j then the referee can
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make a statistical inference about whether or not x = y. But ¢ = j occurs with probability
only O(1/n), and in the case where i # j, the referee will not be able to determine whether
x = y with good probability, as shown by the y/n lower bound of [7]. The distinguish-
ing test in Figure 1 can be viewed as a quantum operation that has no analogous classical
probabilistic counterpart.

Our quantum protocol for equality in the simultaneous message model uses O(log,(n))-
qubit fingerprints for any constant error probability. Is it possible to use fewer qubits? In
fact, without a shared key, logarithmic-length fingerprints are necessary. This is because any
k-qubit quantum state can be specified within exponential precision with O(k2*) classical
bits. Therefore the existence of a k-qubit quantum protocol implies the existence of an
O(k2%)-bit (deterministic) classical protocol. From this we can infer that k& > log,(n) —
log, (logy(n)).

We next consider some efficiency improvements to our fingerprinting scheme. It can be
shown that the aforementioned method uses k(log,(n) + O(1)) qubit fingerprints to attain
an error probability slightly more than (9/10)*. First we note that the construction of
nearly-orthogonal states can be improved by using a better error-correcting code. Using a
probabilistic argument (see, e.g., [9]), it can be shown that, for an arbitrarily small § > 0,
there exists an error-correcting code E : {0,1}" — {0, 1}™ with m < n/§° (for some constant
¢) such that the Hamming distance between any two distinct codewords E(z) and E(y) is
between (1 —d)m/2 and (1+0)m/2. If a set S of 2" m-bit strings is chosen at random then
the probability that there is a pair of strings in S whose Hamming distance deviates from
m/2 by more than dm is less than 1. This shows that there exists a set S with the right
properties. Note that this existence proof does not yield an explicit construction of the code;
however, Guruswami and Smith [10] recently pointed out to us that explicit constructions
of such codes can be obtained from results in [11,12]. Given such a code, the log,(m)-qubit
fingerprint of x € {0,1}" can be set to

(1)) iy (5)

=1

|h:c> =
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to yield the following theorem:

Theorem 2 For every n and § > 0 one can construct a set {|h,) : x € {0,1}"} of states of

log,(n) + O(logy(1/6)) qubits, such that |(hy|h,)| < 6 whenever x # y.

The above construction yields fingerprints that are arbitrarily close to orthogonal—their
pairwise inner-products are within any 6 > 0 of 0. This results in a distinguishing measure-
ment (Figure 1) that errs with probability (1 + §?)/2—slightly more than 1/2. To reduce
the error probability to an arbitrarily small € > 0, recall that the method we proposed is to
construct k copies of each fingerprint, which can then be measured in pairs independently.
The result is an error probability of ((1 + §%)/2)*, which is approximately 1/2% when ¢ is
small. We now show that an alternate measurement results in an error probability close
to VTk((1 4+ 6)/2)%, which is approximately v/7k/4* when ¢ is small. This is a near-
quadratic reduction in the error probability resulting from a k-copy fingerprint consisting of
k(logy(n) + O(1)) qubits.

The improved measurement works as follows. Let Ry, ..., Ry be registers that initially
contain |@), ..., @), 1), ...,|¢) (k copies of each). Let s = (2k)! and o9, 04,...,0, 1 be an
enumeration of all the permutations on 2k items, where oy is the identity permutation. Let

P be an s-dimensional register initialized to |0). Let F' be any transformation satisfying

1 s—1

I \U>H$i§|i>, (6)

such as the s-dimensional quantum Fourier transform. Since s is a smooth number (i.e., its
prime factors are all O(log,(s))), the construction in [13] implies that F' can be computed
exactly with a polynomial number of basic operations. The distinguishing procedure is as

follows:

1. Apply F to register P.

2. Apply permutation o; to registers Ry, ..., Ro, conditioned on the value of P being |i).



3. Apply F' to P and measure the final state. If P contains 0 then answer equal, otherwise

not equal.

This procedure corresponds to a projection onto the symmetric subspace for registers

Ry, ..., Ry, as explained in [14]. The state after Step 2 is

|
—

1 S

—= 2_10oi([6) -9} ) - - [¥)), (7)

s i

I
=)

where o;(|¢) - - - [@)|¢) - - - |1)) means we permute the contents of the 2k registers according
to o;.
Case 1: |¢) = [¢). In this case the permutation of the registers does absolutely nothing, so

the procedure answers equal with certainty.

Case 2: [(¢|¢))| < d. The probability of answering equal is the squared norm of the vector

obtained by applying the projection [0)(0| ® I to the final state:

2
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In summary:

Theorem 3 The above procedure, on input |¢)** and [)®*F such that either |¢) = |¢) or

(oY) < 8, decides which of the two is the case with error O(Vk (%5)%)

The above procedure can be viewed as a solution to a more general state distinguishing
problem defined as follows. The input is k copies of each of two quantum states |¢) and |¢)
that are arbitrary subject to the condition that the two states are either identical or have

inner product bounded in absolute value by some given § < 1. The goal is to distinguish



between the two cases with as high probability as possible. The above procedure solves the
state distinguishing problem with error probability v/7k((1 + 6)/2)?* and it can be shown
that, in general, the error probability cannot be less than (1/4)((1 + §)/2)%*. The idea
behind this lower bound is to consider the pairs of states |¢1) = [¢1) = |0) and |¢q) =
cos(0/2)]0) + sin(6/2)[1) and |th,) = cos(/2)|0) — sin(8/2)|1), where § = cos™'(§). Clearly,
|p1) = |11) and (da|the) = 6. A state distinguishing procedure must distinguish between
a) = |¢1)** @ [1)®* and [b) = |¢2)®* @ [1h9)*F. Since (¢1|¢2) = (Y1lths) = cos(6/2), it
follows that (a|b) = cos?*(0/2) = ((1+cosf)/2)* = ((1+5)/2)k. Tt is known that the optimal

procedure distinguishing between two states with inner product cos « has error probability
(1 —sina)/2 > (1/4) cos’ a [15]. Therefore any state distinguisher has error probability
at least (1/4)((1 + §)/2)%*. Note that this lower bound for state distinguishing concerns
a problem that is more general than the problem of distinguishing between fingerprints,
because, in the case of fingerprints, the states are from a known set of only 2" possibilities.

Finally, returning to the fingerprinting scenario, we consider the case where Alice and
Bob have a shared quantum key, consisting of O(log,(n)) Bell states, but are required to
output classical strings as fingerprints. Is there any sense in which a quantum key can result
in improved performance over the case of a classical key? We observe that results in [16]
imply an improvement in the particular setting where the fingerprinting scheme must be
exact (i.e., the error probability is 0) and where there is a restriction on the inputs that
either z = y or the Hamming distance between x and y is n/2. Under this restriction, any
classical scheme with a shared key would still require fingerprints of length linear in n. On
the other hand, there is a scheme with a shared quantum key of O(log,(n)) Bell states that
requires fingerprints of length only O(log,(n)) bits. See [16] (whose results are partly based
on results in [17,18]) for details. It should be noted that if the exactness condition is relaxed
to one where the error probability must be O(1/n¢) (for a constant ¢) then there exists also

a classical scheme with classical keys and fingerprints of length O(log,(n)).
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FIGURES
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FIG. 1. Quantum circuit to test if |¢) = |¢) or [(¢|)] < 0.
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