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Abstract. We give an exponential separation between one-way quantum and classical commu-
nication protocols for a partial Boolean function (a variant of the Boolean Hidden Matching Problem
of Bar-Yossef et al.) Earlier such an exponential separation was known only for a relational problem.
The communication problem corresponds to a strong extractor that fails against a small amount of
quantum information about its random source. Our proof uses the Fourier coefficients inequality of
Kahn, Kalai, and Linial.

We also give a number of applications of this separation. In particular, we show that there are
privacy amplification schemes that are secure against classical adversaries but not against quantum
adversaries; and we give the first example of a key-expansion scheme in the model of bounded-storage
cryptography that is secure against classical memory-bounded adversaries but not against quantum
ones.
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1. Introduction. One of the main goals of quantum computing is to exhibit
problems where quantum computers are much faster (or otherwise better) than clas-
sical computers. Preferably exponentially better. The most famous example, Shor’s
efficient quantum factoring algorithm [32], constitutes a separation only if one is will-
ing to believe that efficient factoring is impossible on a classical computer—proving
this would, of course, imply P 6= NP. One of the few areas where one can establish
unconditional exponential separations is communication complexity.

Communication complexity is a central model of computation, first defined by
Yao [36]. It has found applications in many areas [21]. In this model, two parties, Alice
with input x and Bob with input y, collaborate to solve some computational problem
that depends on both x and y. Their goal is to do this with minimal communication.
The problem to be solved could be a function f(x, y) or some relational problem
where for each x and y, several outputs are valid. The protocols could be interactive
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(two-way), in which case Alice and Bob take turns sending messages to each other;
one-way, in which case Alice sends a single message to Bob who then determines
the output; or simultaneous, where Alice and Bob each pass one message to a third
party (the referee) who determines the output. The bounded-error communication
complexity of the problem is the worst-case communication of the best protocol that
gives (for every input x and y) a correct output with probability at least 1 − ε, for
some fixed constant ε ∈ [0, 1/2), usually ε = 1/3.

Allowing the players to use quantum resources can reduce the communication
complexity significantly. Examples of problems where quantum communication gives
exponential savings were given by Buhrman, Cleve, and Wigderson for one-way and
interactive protocols with zero error probability [9]; by Raz for bounded-error interac-
tive protocols [28]; and by Buhrman, Cleve, Watrous, and de Wolf for bounded-error
simultaneous protocols [8]. The first two problems are partial Boolean functions, while
the third one is a total Boolean function. However, the latter separation does not hold
in the presence of public coins.1 Bar-Yossef, Jayram, and Kerenidis [4] showed an ex-
ponential separation for one-way protocols and simultaneous protocols with public
coins, but they only achieved this for a relational problem, called the Hidden Match-
ing Problem (HMP). This problem can be solved efficiently by one quantum message
of logn qubits, while classical one-way protocols need to send nearly

√
n bits to solve

it. However, Boolean functions are much more natural objects than relations both
in the model of communication complexity and in the cryptographic settings that we
consider later in this paper. Bar-Yossef et al. stated a Boolean version of their prob-
lem (a partial Boolean function) and conjectured that the same quantum-classical gap
holds for this problem as well.

1.1. Exponential separation for a variant of Boolean Hidden Matching.

In this paper we prove an exponential quantum-classical one-way communication gap
for a variant of the Boolean Hidden Matching Problem of [4]. Let us first state a
non-Boolean communication problem. Suppose Alice has an n-bit string x, and Bob
has a sequence M of αn disjoint pairs (i1, j1), (i2, j2), . . . , (iαn, jαn) ∈ [n] × [n], for
some parameter α ∈ (0, 1/2]. This M may be viewed as a partial matching on the
graph whose vertices are the n bits x1, . . . , xn. We call this an α-matching. Together,
x and M induce an αn-bit string z defined by the parities of the αn edges:

z = z(x,M) = (xi1 ⊕ xj1), (xi2 ⊕ xj2), . . . , (xiαn
⊕ xjαn

).

Suppose Bob wants to learn some information about z. Let x ∈ {0, 1}n be uniformly
distributed, andM be uniform over the set Mαn of all α-matchings. Note that for any
fixed M , a uniform distribution on x induces a uniform distribution on z. Hence Bob
(knowing M but not x) knows nothing about z: from his perspective it is uniformly
distributed. But now suppose Alice can send Bob a short message. How much can
Bob learn about z, given that message and M?

The answer is very different depending on whether the message is quantum or
classical. To state this difference, we need to introduce some terminology. For prob-
ability distributions p and q whose supports are subsets of a set S, define their total
variation distance as

‖ p− q ‖tvd =
∑

i∈S

|p(i) − q(i)|. (1.1)

1In fact, whether there exists a superpolynomial separation for a total Boolean function in the
presence of public coins is one of the main open questions in the area of quantum communication
complexity.
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This distance is 0 if and only if p = q; it is 2 if and only if p and q have disjoint supports;
and the value lies between 0 and 2 otherwise. Suppose we want to distinguish p from q,
given a sample from one of the two. The best probability with which we can succeed

is 1
2 + ||p−q||tvd

4 . This well-known fact gives a clear intuitive meaning to the notion of
total variation distance. Modifying the protocol of [4], it is easy to show that a short
quantum message of about log(n)/2α qubits allows Bob to learn a bit at a random
position in the string z. This already puts a lower bound of 1 on the total variation
distance between Bob’s distribution on z and the uniform αn-bit distribution.

What about a short classical message? Using the Birthday Paradox, one can
show that if Alice sends Bob about

√
n/α bits of x, then with constant probability

there will be one edge (iℓ, jℓ) for which Bob receives both bits xiℓ
and xjℓ

. Since
zℓ = xiℓ

⊕ xjℓ
, this gives Bob a bit of information about z. Our key theorem says

that this classical upper bound is essentially optimal: if Alice sends much fewer bits,
then from Bob’s perspective the string z will be close (in total variation distance) to
uniformly distributed, so he does not even know one bit of z.

In order to be able to state this precisely, suppose Alice is deterministic and sends
c bits of communication. Then her message partitions the set of 2n x’s into 2c sets,
one for each message. A typical message will correspond to a set A of about 2n−c

x’s. Given this message, Bob knows the random variable X is drawn uniformly from
this set A and he knows M , which is his input. Hence his knowledge of the random
variable Z = z(X,M) is fully described by the distribution

pM (z) = Pr[Z = z | given M and Alice’s message] =
|{x ∈ A | z(x,M) = z}|

|A| .

Our main technical result says that if the communication c is much less than
√
n/α

bits, then for a typical message and averaged over all matchings M , this distribution
is very close to uniform in total variation distance. In other words, most of the time
Bob knows essentially nothing about z.

Theorem 1.1. Let x be uniformly distributed over a set A ⊆ {0, 1}n of size
|A| ≥ 2n−c for some c ≥ 1, and let M be uniformly distributed over the set Mαn

of all α-matchings, for some α ∈ (0, 1/4]. There exists a universal constant γ > 0
(independent of n, c, and α), such that for all ε ∈ (0, 2]: if c ≤ γε

√
n/α then

EM [‖ pM − U ‖tvd] ≤ ε.

Note that the ε in this theorem is not the error probability of a protocol for a
Boolean function, but an upper bound on the expected distance between Bob’s dis-
tribution pM and the uniform distribution. We prove Theorem 1.1 using the Fourier
coefficients inequality of Kahn, Kalai, and Linial [17], which is a special case of the
Bonami-Beckner inequality [7, 5]. We remark that Fourier analysis has been previ-
ously used in communication complexity by Raz [27] and Klauck [18].

This result allows us to turn the above communication problem into a partial
Boolean function, as follows. Again we give Alice input x ∈ {0, 1}n, while Bob now
receives two inputs: a partial matching M as before, and an αn-bit string w. The
promise on the input is that w is either equal to z = z(x,M), or to its complement z
(i.e. z with all bits flipped). The goal is to find out which of these two possibilities is
the case. We call this communication problem αPM, for “α-Partial Matching”. As
mentioned before, Alice can allow Bob to learn a random bit of z with high probability
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by sending him an O(log(n)/α)-qubit message. Knowing one bit zℓ of z suffices to
compute the Boolean function: just compare zℓ with wℓ. In contrast, if Alice sends
Bob much less than

√
n/α classical bits, then Bob still knows essentially nothing

about z. In particular, he cannot decide whether w = z or w = z ! This gives
the following separation result for the classical and quantum one-way communication
complexities (with error probability fixed to 1/3, say):

Theorem 1.2. Let α ∈ (0, 1/4]. The classical bounded-error one-way communi-
cation complexity of the α-Partial Matching problem is R1(αPM) = Θ(

√
n/α), while

the quantum bounded-error one-way complexity is Q1(αPM) = O(log(n)/α)
Fixing α to 1/4, we obtain the promised exponential quantum-classical separation

for one-way communication complexity of O(log n) qubits vs Ω(
√
n) classical bits.

As noted by Aaronson [1, Section 5], Theorem 1.2 implies that his general simula-
tion of bounded-error one-way quantum protocols by deterministic one-way protocols

D1(f) = O(mQ1(f) logQ1(f)),

is tight up to a polylogarithmic factor. Here m is the length of Bob’s input. This
simulation works for any partial Boolean function f . Taking f to be our αPM for
α = 1/4, one can show that D1(f) = Θ(n), m = Θ(n logn), and Q1(f) = O(log n).
It also implies that his simulation of quantum bounded-error one-way protocols by
classical bounded-error one-way protocols

R1(f) = O(mQ1(f)),

cannot be considerably improved. In particular, the product on the right cannot be
replaced by the sum: if we take f = αPM with α = 1/

√
n, then by Theorem 1.2 we

have R1(f) ≈ n3/4, m ≈ √
n logn, and Q1(f) = O(

√
n logn).

Remarks. The earlier conference version of this paper [13] had two different
communication problems, establishing an exponential one-way separation for both
of them in quite different ways. The present paper unifies these two approaches to
something substantially simpler.

The original Boolean Hidden Matching Problem stated in [4] is our αPM with
α = 1/2 (i.e. M is a perfect matching). Theorem 1.2, on the other hand, assumes
α ≤ 1/4 for technical reasons. By doing the analysis in Section 3 a bit more carefully,
we can prove Theorem 1.2 for every α that is bounded away from 1/2. Note that if
α = 1/2, then the parity of z = z(x,M) equals the parity of x, so by communicating
the parity of x in one bit, Alice can give Bob one bit of information about z. The
conference version of this paper showed that one can prove a separation for the case
whereM is a perfect matching if the promise is that w is “close” to z or its complement
(instead of being equal to z or its complement). One can think of w in this case as a
“noisy” version of z = z(x,M) (or its complement), while the w of our current version
can be thought of as starting from a perfect matching M ′, and then “erasing” some
of the n/2 bits of the string z(x,M ′) to get the αn-bit string z (or its complement).

The separation given here can be modified to a separation in the simultaneous
message passing model, between the models of classical communication with shared
entanglement and classical communication with shared randomness. Earlier, such a
separation was known only for a relational problem [4, 14], not for a Boolean function.

1.2. Application: privacy amplification. Randomness extractors extract al-
most uniform randomness from an imperfect (i.e. non-uniform) source of randomness
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X with the help of an independent uniform seed Y . With a bit of extra work (see Sec-
tion 4), Theorem 1.1 actually implies that our function z : {0, 1}n ×Mαn → {0, 1}αn

is an extractor:
If X ∈ {0, 1}n is a random variable with min-entropy at least n −
γε
√
n/α (i.e. maxx Pr[X = x] ≤ 2−(n−γε

√
n/α)) and Y is a random

variable uniformly distributed over Mαn, then the random variable
Z := z(X,Y ) is ε-close to the uniform distribution on {0, 1}αn.

It is in fact a strong extractor: the pair (Y, Z) is ε-close to the uniform distribution
on Mαn × {0, 1}αn.2 Informally, this says that if there is a lot of uncertainty about
X , then Z will be close to uniform even if Y is known.3

Extractors have found numerous applications in computer science, in particular
in complexity theory (see e.g. [31] and the references therein) and cryptography. One
important cryptographic application is that of privacy amplification, introduced in
[6, 16]. In this setting two parties called Alice and Bob start with a shared random
variable X , about which an adversary has partial knowledge. The parties’ goal is to
generate a secret key Z, about which the adversary would have very little information.

They can achieve this by communicating an independent uniform seed Y over
a public channel, and using a strong extractor to generate the key Z(X,Y ). Our
extractor guarantees that if the shared variable X , conditioned upon the adversary’s
knowledge, has min-entropy at least n− γε

√
n/α, then the generated αn-bit key Z,

conditioned upon adversary’s knowledge, is ε-close to uniform. On the other hand,
we show that this scheme is insecure against a quantum adversary who uses only
O(log n) qubits of storage. This is the first example of a privacy amplification scheme
that is safe against classical adversaries with up to Θ(

√
n) bits of storage (with some

small constant in the Θ(·)), but not against quantum adversaries with exponentially
less quantum storage.

This dependence on whether the adversary has quantum or classical memory is
quite surprising, particularly in light of the following two facts. First, privacy am-
plification based on two-universal hashing provides exactly the same security against
classical and quantum adversaries. The length of the key that can be extracted is given
by the min-entropy both in the classical ([6, 16]) and the quantum case ([19, 30], [29,
Ch. 5]). Second, König and Terhal [20] have shown that for protocols that extract
just one bit, the level of security against a classical and a quantum adversary (with
the same information bound) is comparable.

1.3. Application: key-expansion in the bounded-storage model. In pri-
vacy amplification, we can ensure that the adversary has much uncertainty about the
random variable X by assuming that he has only bounded storage. The idea of basing
cryptography on storage-limitations of the adversary was introduced by Maurer [23]
with the aim of implementing information-theoretically secure key-expansion. In this
setting, a large random variable X is publicly but only temporarily available. Alice
and Bob use a shared secret key Y to extract an additional key Z = Z(X,Y ) from X ,

2Note that EM

ˆ

‖ pM − U ‖tvd

˜

= ‖ (Y, Z) − U ‖tvd, where ‘U ’ on left and right is uniform over
different domains.

3It should be noted that the parameters of our extractor are quite bad, as far as these things go.
First, the uniform input seed Y takes about αn log n bits to describe, which is more than the αn bits
that the extractor outputs; in a good extractor, we want the seed length to be much shorter than
the output length. Second, our assumed lower bound on the initial min-entropy is quite stringent.
Finally, the distance from uniform can be made polynomially small in n (by putting an n − n1/2−η

lower bound on the min-entropy of X) but not exponentially small, which is definitely a drawback
in cryptographic contexts. Still, this extractor suffices for our purposes here.
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in such a way that the adversary has only limited information about the pair (Y, Z).
“Limited information” means that the distribution on (Y, Z) is ε-close to uniform even
when conditioned on the information about X that the adversary stored. Thus Alice
and Bob have expanded their shared secret key from Y to (Y, Z). Aumann, Ding,
and Rabin [3] were the first to prove a bounded-storage scheme secure, and essentially
tight constructions have subsequently been found [11, 22, 33].

It is an important open question whether any of these constructions remain secure
if the adversary is allowed to store quantum information. One may even conjecture
that a bounded-storage protocol secure against classical adversaries with a certain
amount of memory, should be roughly as secure against quantum adversaries with
roughly the same memory bound. After all, Holevo’s theorem [15] tells us that k qubits
cannot contain more information than k classical bits. However, a key-expansion
scheme based on our extractor refutes this conjecture. The scheme is essentially the
same as the above privacy amplification scheme, but we describe it separately because
the context is a bit different. Alice and Bob will compute Z := z(X,Y ) by applying
our extractor to X and Y . If the adversary’s memory is bounded by γε

√
n/α bits,

then Z will be ε-close to uniform from the adversary’s perspective. On the other hand,
O(log n) qubits of storage suffice to learn one or more bits of information about Z,
given Y , which shows that (Y, Z) is not good as a key against a quantum adversary.
Thus we have an example of a key-expansion scheme that is secure against classical
adversaries with nearly

√
n bits of storage, but insecure against quantum adversaries

even with exponentially less quantum storage.

1.4. Application: a separation in the streaming model. In the streaming
model of computation, the input is given as a stream of bits and the algorithm is
supposed to compute or approximate some function of the input, having only space
of size S available. See for instance [2, 24].

There is a well-established connection between one-way communication complex-
ity and the streaming model: if we view the input as consisting of two consecutive
parts x and y, then the content of the memory after x has been processed, together
with y, contains enough information to compute f(x, y). Hence, a space-S stream-
ing algorithm for f implies a one-way protocol for f of communication S with the
same success probability. The classical lower bound for our Boolean communication
complexity problem, together with the observation that our quantum protocol can be
implemented in the streaming model, implies a separation between the quantum and
classical streaming model. Namely, there is a partial Boolean function f that can be
computed in the streaming model with small error probability using quantum space
of O(log n) qubits, but requires Ω(

√
n) bits if the space is classical.

Le Gall [12] constructed a problem that can be solved in the streaming model using
O(log n) qubits of space, while any classical algorithm needs Ω(n1/3) classical bits. His
logn-vs-n1/3 separation is a bit smaller than our logn-vs-

√
n, but his separation is for

a total Boolean function while ours is only partial (i.e. requires some promise on the
input). Le Gall’s result predates ours, though we only learned about it after finishing
the conference version of our paper. We remark also that Le Gall’s separation holds
only in the streaming model variant where the bits arrive in order, while ours holds
in the more general model where we allow the different pieces of the input to arrive
in any order.

The algorithm for solving our problem in the streaming model starts out with a
logn-qubit superposition 1√

n

∑n
i=1 |i〉. Whenever a bit xi streams by in the input,

the algorithm unitarily multiplies basis state |i〉 with a phase (−1)xi. Whenever an
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edge (iℓ, jℓ) streams by, the algorithm measures with operators E1 = |iℓ〉〈iℓ|+ |jℓ〉〈jℓ|
and E0 = I − E1; in case of outcome E1, the algorithm records the values iℓ and jℓ
(note that E1 can be obtained at most once, as the edges are pairwise disjoint). And
whenever a bit (iℓ, jℓ, wℓ) streams by, the algorithm unitarily multiplies basis state
|min(iℓ, jℓ)〉 with a phase (−1)wℓ . At the end, with probability 2α the algorithm
is left with a classical record of (iℓ, jℓ) ∈ M and the corresponding quantum state
1√
2
((−1)xiℓ

⊕wℓ |iℓ〉 + (−1)xjℓ |jℓ〉). The algorithm can learn the function value xiℓ
⊕

xjℓ
⊕ wℓ from this by a final measurement.

2. The problem and its quantum and classical upper bounds. We as-
sume basic knowledge of quantum computation [26] and (quantum) communication
complexity [21, 34].

Before giving the definition of our variant of the Boolean Hidden Matching Prob-
lem, we fix some notation. Part of Bob’s input will be a sequence M of αn disjoint
edges (i1, j1), . . . , (iαn, jαn) over [n], which we call an α-matching. We use Mαn to
denote the set of all such matchings. If α = 1/2 then the matching is perfect, if
α < 1/2 then the matching is partial. We can view M as an αn × n matrix over
GF (2), where the ℓ-th row has exactly two 1s, at positions iℓ and jℓ. Let x ∈ {0, 1}n.
Then the matrix-vector product Mx is an αn-bit string z = z1, . . . , zℓ, . . . zαn where
zℓ = xiℓ

⊕xjℓ
. Using this notation, we define the following α-Partial Matching (αPM)

problem, whose one-way communication complexity we will study.

Alice: x ∈ {0, 1}n

Bob: an α-matching M and a string w ∈ {0, 1}αn

Promise on the input: there is a bit b such that w = Mx ⊕ bαn (equivalently,
w = z or w = z)
Function value: b

Actually, most of our analysis will not be concerned with Bob’s second input
w. Rather, we will show that given only a short message about x, Bob will know
essentially nothing about z = Mx. Note that to compute b, it suffices that Bob learns
one bit zℓ of the string z, since b = zℓ ⊕ wℓ. We will first give quantum and classical
upper bounds on the message length needed for this.

Quantum upper bound:. Suppose Alice sends a uniform superposition of her
bits to Bob:

|ψ〉 =
1√
n

n∑

i=1

(−1)xi|i〉.

Bob completes his αn edges to a perfect matching in an arbitrary way, and measures
with the corresponding set of n/2 2-dimensional projectors. With probability 2α he
will get one of the edges (iℓ, jℓ) of his input M . The state then collapses to

1√
2

((−1)xiℓ |iℓ〉 + (−1)xjℓ |jℓ〉) ,

from which Bob can obtain the bit zℓ = xiℓ
⊕ xjℓ

by measuring in the corresponding
|±〉-basis. Note that this protocol has so-called “zero-sided error”: Bob knows when
he didn’t learn any bit zℓ. If Bob is given O(k/α) copies of |ψ〉, then with high
probability (at least while k ≪ αn) he can learn k distinct bits of z.

Remark. This protocol can be modified to a protocol in the simultaneous mes-
sage passing model in a standard way, first suggested by Buhrman (see [14]). Alice
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and Bob share the maximally entangled state 1√
n

∑
i |i, i〉. Alice implements the

transformation |i〉 → (−1)xi|i〉 on her half. Bob performs the measurement with his
projectors on his half. If he gets one of the edges of his input, he sends the resulting
(iℓ, jℓ) and wℓ to the referee. Now Alice and Bob perform a Hadamard transform on
their halves, measure and send the result to the referee, who has enough information
to reconstruct zℓ.

Classical upper bound:. We sketch an O(
√
n/α) classical upper bound. Sup-

pose Alice uniformly picks a subset of d ≈
√
n/α bits of x to send to Bob. By the

Birthday Paradox, with high probability Bob will have both endpoints of at least one
of his αn edges and so he can compute a bit of z (and hence the function value b)
with good probability. In this protocol Alice would need to send about d logn bits
to Bob, since she needs to describe the d indices as well as their bit values. However,
by Newman’s Theorem [25], Alice can actually restrict her random choice to picking
one out of O(n) possible d-bit subsets, instead of one out of all

(
n
d

)
possible subsets.

Hence d+ O(log n) bits of communication suffice. This matches our lower bound up
to constant factors.

3. Main proof. In this section we prove our main technical result (Theorem 1.1),
which shows that Bob knows hardly anything about the string z = Mx unless Alice
sends him a long message.

3.1. Preliminaries. We begin by providing a few standard definitions from
Fourier analysis on the Boolean cube. For functions f, g : {0, 1}n → R we define
their inner product and ℓ2-norm by

〈f, g〉 =
1

2n

∑

x∈{0,1}n

f(x)g(x) , ‖ f ‖2
2 = 〈f, f〉 =

1

2n

∑

x∈{0,1}n

|f(x)|2. (3.1)

The Fourier transform of f is a function f̂ : {0, 1}n → R defined by

f̂(s) = 〈f, χs〉 =
1

2n

∑

y∈{0,1}n

f(y)χs(y),

where χs : {0, 1}n → R is the character χs(y) = (−1)y·s with “·” being the scalar

product; f̂(s) is the Fourier coefficient of f corresponding to s. We have the following

relation between f and f̂ :

f =
∑

s∈{0,1}n

f̂(s)χs.

We will use two tools in our analysis, Parseval’s identity and the KKL lemma.
Lemma 3.1 (Parseval). For every function f : {0, 1}n → R we have ‖ f ‖2

2 =∑

s∈{0,1}n

f̂(s)2.

Note in particular that if f is an arbitrary probability distribution on {0, 1}n and

U is the uniform distribution on {0, 1}n, then f̂(0n) = Û(0n) = 1/2n and Û(s) = 0
for nonzero s, hence

‖ f − U ‖2
2 =

∑

s∈{0,1}n

(f̂(s) − Û(s))2 =
∑

s∈{0,1}n\{0n}
f̂(s)2. (3.2)
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Lemma 3.2 ([17]). Let f be a function f : {0, 1}n → {−1, 0, 1}. Let A = {x |
f(x) 6= 0}, and let |s| denote the Hamming weight of s ∈ {0, 1}n. Then for every
δ ∈ [0, 1] we have

∑

s∈{0,1}n

δ|s|f̂(s)2 ≤
( |A|

2n

) 2
1+δ

.

We also need the following combinatorial lemma about uniformly chosen match-
ings.4

Lemma 3.3. Let v ∈ {0, 1}n. If |v| = k for even k, then

Pr
M

[∃ s ∈ {0, 1}αns.t. MT s = v] =

(
αn
k/2

)
(
n
k

) ,

where the probability is taken uniformly over all α-matchings M .

Proof. We can assume without loss of generality that v = 1k0n−k. We will
compute the fraction of matchings M for which there exists such an s. The total
number of matchings M of αn edges is n!/(2αn(αn)!(n − 2αn)!). This can be seen
as follows: pick a permutation of n, view the first αn pairs as αn edges, and ignore
the ordering within each edge, the ordering of the αn edges, and the ordering of the
last n − 2αn vertices. Note that ∃ s s.t. MT s = v if and only if M has exactly k/2
edges in [k] and αn − k/2 edges in [n]\[k]. The number of ways to pick k/2 edges in
[k] (i.e. a perfect matching) is k!/(2k/2(k/2)!). The number of ways to pick αn− k/2
edges in [n] − [k] is (n− k)!/(2αn−k/2(αn − k/2)!(n− 2αn)!). Hence the probability
in the lemma equals

k!/(2k/2(k/2)!) · (n− k)!/(2αn−k/2(αn− k/2)!(n− 2αn)!)

n!/(2αn(αn)!(n− 2αn)!)
=

(
αn
k/2

)
(

n
k

) .

This probability is exponentially small in k if α < 1/2, but it equals 1 if α = 1/2
and v = 1n.

3.2. Proof of Theorem 1.1. In order to prove Theorem 1.1, consider any set
A ⊆ {0, 1}n with |A| ≥ 2n−c and let f : {0, 1}n → {0, 1} be its characteristic function
(i.e. f(x) = 1 if and only if x ∈ A). Let ε ∈ (0, 2], α ∈ (0, 1/4], and 1 ≤ c ≤ γε

√
n/α

for some γ to be determined later.

With x uniformly distributed over A, we can write down Bob’s induced distribu-
tion on z as

pM (z) =
|{x ∈ A |Mx = z}|

|A| .

We want to show that pM is close to uniform, for most M . By Eq. (3.2), we can
achieve this by bounding the Fourier coefficients of pM . These are closely related to

4We use the standard convention
`a

b

´

= 0 whenever b > a.
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the Fourier coefficients of f :

p̂M (s) =
1

2αn

∑

z∈{0,1}αn

pM (z)(−1)z·s

=
1

|A|2αn
(|{x ∈ A | (Mx) · s = 0}| − |{x ∈ A | (Mx) · s = 1}|)

=
1

|A|2αn

(
|{x ∈ A | x · (MT s) = 0}| − |{x ∈ A | x · (MT s) = 1}|

)

=
1

|A|2αn

∑

x∈{0,1}n

f(x)(−1)x·(MT s)

=
2n

|A|2αn
· f̂(MT s). (3.3)

Note that the Hamming weight of v = MT s ∈ {0, 1}n is twice the Hamming weight
of s ∈ {0, 1}αn.

Using KKL, we get the following bound on the level sets of the Fourier transform
of f :

Lemma 3.4. For every k ∈ {1, . . . , 4c} we have
22n

|A|2
∑

v:|v|=k

f̂(v)2 ≤
(

4
√

2c

k

)k

.

Proof. By the KKL inequality (Lemma 3.2), for every δ ∈ [0, 1] we have

22n

|A|2
∑

v:|v|=k

f̂(v)2 ≤ 22n

|A|2
1

δk

( |A|
2n

)2/(1+δ)

=
1

δk

(
2n

|A|

)2δ/(1+δ)

≤ 1

δk

(
2n

|A|

)2δ

≤ 22δc

δk
.

Plugging in δ = k/4c (which is in [0, 1] by our assumption on the value of k) gives the
lemma.

We bound the expected squared total variation distance between pM and U as
follows:

EM [‖ pM − U ‖2
tvd] ≤ 22αn

EM

[
‖ pM − U ‖2

2

]

= 22αn
EM




∑

s∈{0,1}αn\{0αn}
p̂M (s)2





=
22n

|A|2 EM




∑

s∈{0,1}αn\{0αn}
f̂(MT s)2





where we used, respectively, the Cauchy-Schwarz inequality (recall that our definition

of ‖ · ‖2
2 in Eq. (3.1) already includes a factor 1/2αn), Eq. (3.2), and Eq. (3.3). Note

that for each v ∈ {0, 1}n, there is at most one s ∈ {0, 1}αn for which MT s = v
(and the only s that makes MT s = 0n, is s = 0αn). This allows us to change the
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expectation over M into a probability and use Lemma 3.3:

=
22n

|A|2 EM




∑

v∈{0,1}n\{0n}
|{s ∈ {0, 1}αn |MT s = v}| · f̂(v)2





=
22n

|A|2
∑

v∈{0,1}n\{0n}
Pr
M

[
∃ s ∈ {0, 1}αns.t. MT s = v

]
· f̂(v)2

=
22n

|A|2
2αn∑

evenk=2

(
αn
k/2

)
(
n
k

)
∑

v:|v|=k

f̂(v)2.

We first upper bound the part of this sum with k < 4c. Applying Lemma 3.4 for
each k, using the standard estimates (n/k)k ≤

(
n
k

)
≤ (en/k)k, and our upper bound

c ≤ γε
√
n/α, we get:

22n

|A|2
4c−2∑

even k=2

(
αn
k/2

)
(

n
k

)
∑

v:|v|=k

f̂(v)2 ≤
4c−2∑

even k=2

(2eαn/k)k/2

(n/k)k

(
4
√

2c

k

)k

≤
4c−2∑

evenk=2

(
64eγ2ε2

k

)k/2

.

Picking γ a sufficiently small constant, this is at most ε2/2 (note that the sum starts
at k = 2).

In order to bound the part of the sum with k ≥ 4c, note that the function
g(k) :=

(
αn
k/2

)
/
(
n
k

)
is decreasing for the range of even k up to 2αn (which is ≤ n/2

because α ≤ 1/4):

g(k − 2)

g(k)
=

(
αn

k/2−1

)
/
(

n
k−2

)
(

αn
k/2

)
/
(
n
k

)

=
(n− k + 2)(n− k + 1)k/2

(αn− k/2 + 1)(k − 1)k

=
(n− k + 2)(n− k + 1)

(2αn− k + 2)(k − 1)

≥ n− k + 1

k − 1
≥ 1.

We also have
∑

v∈{0,1}n

f̂(v)2 =
|A|
2n

by Parseval (Lemma 3.1), and
2n

|A| ≤ 2c by assump-

tion. Hence

22n

|A|2
2αn∑

even k=4c

g(k)
∑

v:|v|=k

f̂(v)2 ≤ 2cg(4c) ≤
(

8
√

2eαc

n

)2c

≤
(

8
√

2eγε

√
α

n

)2c

≤ ε2/2,

where in the last step we used α/n ≤ 1 and c ≥ 1, and picked γ a sufficiently small
constant.

Hence we have shown EM [‖ pM − U ‖2
tvd] ≤ ε2. By Jensen’s inequality we have

EM [‖ pM − U ‖tvd] ≤
√

EM [‖ pM − U ‖2
tvd] ≤ ε.

This concludes the proof of
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Theorem 1.1. Let x be uniformly distributed over a set A ⊆ {0, 1}n of size |A| ≥ 2n−c

for some c ≥ 1, and let M be uniformly distributed over the set Mαn of all α-
matchings, for some α ∈ (0, 1/4]. There exists a universal constant γ > 0 (indepen-
dent of n, c, and α), such that for all ε ∈ (0, 2]: if c ≤ γε

√
n/α then

EM [‖ pM − U ‖tvd] ≤ ε.

The ε2 upper bound on EM [‖ pM − U ‖2
tvd] is essentially tight. This can be seen

in the communication setting as follows. With probability Ω(ε2) over the choice of
M , at least one edge of M will have both endpoints in the first c = ε

√
n/α bits. Then

if Alice just sends the first c bits of x to Bob, she gives him a bit of z. This makes
‖ pM − U ‖tvd at least 1, hence EM [‖ pM − U ‖2

tvd] = Ω(ε2).

3.3. Proof of Theorem 1.2. Our Theorem 1.2, stated in the introduction,
easily follows from Theorem 1.1. By the Yao principle [35], it suffices to analyze de-
terministic protocols under some “hard” input distribution. Our input distribution
will be uniform over x ∈ {0, 1}n and M ∈ Mαn. The inputs x and M together deter-
mine the αn-bit string z = Mx. To complete the input distribution, with probability
1/2 we set w = z and with probability 1/2 we set w to z’s complement z.

Fix ε > 0 to a small constant, say 1/1000. Let c = γε
√
n/α, and consider

any classical deterministic protocol that communicates at most C = c − log(1/ε)
bits. This protocol partitions the set of 2n x’s into 2C sets A1, . . . , A2C , one for each
possible message. On average, these sets have size 2n−C . Moreover, by a simple
counting argument, at most a 2−ℓ-fraction of all x ∈ {0, 1}n can sit in sets of size
≤ 2n−C−ℓ. Hence with probability at least 1 − ε, the message that Alice sends
corresponds to a set A ⊆ {0, 1}n of size at least 2n−C−log(1/ε) = 2n−c. In that case,
by Theorem 1.1 and Markov’s inequality, for at least a (1 − √

ε)-fraction of all M ,
the random variable Z = MX (with X uniformly distributed over A) is

√
ε-close

to the uniform distribution U . Given w, Bob needs to decide whether w = Z or
w = Z. In other words, he is given one sample w, and needs to decide whether it
came from distribution Z or Z. As we mentioned after Eq. (1.1), he can only do this
if the distributions of Z and Z have large total variation distance. But by the triangle
inequality

‖ Z − Z ‖tvd ≤ ‖ Z − U ‖tvd + ‖ Z − U ‖tvd = 2‖ Z − U ‖tvd ≤ 2
√
ε.

Hence Bob’s advantage over randomly guessing the function value will be at most ε
(for the unlikely event that A is very small) plus

√
ε (for the unlikely event that M

is such that MX is more than
√
ε away from uniform) plus

√
ε/2 (for the advantage

over random guessing when ‖ Z − U ‖ ≤ √
ε). To sum up: if the communication is

much less than
√
n/α bits, then Bob cannot decide the function value with probability

significantly better than 1/2.

4. Viewing our construction as an extractor. So far, we have proved that
if the n-bit string X is uniformly distributed over a set A with |A| ≥ 2n−c (i.e., a
flat distribution on A), and Y is uniformly distributed over all α-matchings, then
(Y, Z(X,Y )) is close to uniform. In order to conclude the result about extractors
mentioned in Section 1.2, we need to prove the same result in the more general
situation when X has min-entropy at least n−c (instead of just being uniform on a set
of size at least 2n−c). However, a result by Chor and Goldreich [10, Lemma 5] based
on the fact that any distribution can be thought of as a convex combination of flat
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distributions, shows that the second statement follows from the first: flat distributions
are the “worst distributions” for extractors.

5. Conclusion. In this paper we presented an extractor that is reasonably good
when some small amount of classical information is known about the random source
X (technically: Hmin(X) ≥ n − O(

√
n/α)), but that fails miserably if even a very

small (logarithmic) amount of quantum information is known about X . We gave the
following applications of this:

1. An exponential quantum-classical separation for one-way communication com-
plexity for a Boolean function (which, in particular, implies near-optimality
of Aaronson’s classical simulations of quantum one-way protocols).

2. A classically-secure privacy amplification scheme that is insecure against a
quantum adversary.

3. A key-expansion scheme that is secure against memory-bounded classical ad-
versaries, but not against memory-bounded quantum adversaries.

4. An exponential quantum-classical separation in the streaming model of com-
putation.

They all can be viewed as examples where quantum memory is much more power-
ful than classical. This contrasts, for instance, with the results about privacy am-
plification based on two-universal hashing [19, 30], where quantum memory is not
significantly more powerful than classical memory.
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