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ABSTRACT
We give an exponential separation between one-way quan-
tum and classical communication protocols for two partial
Boolean functions, both of which are variants of the Boolean
Hidden Matching Problem of Bar-Yossef et al. Earlier such
an exponential separation was known only for a relational
version of the Hidden Matching Problem. Our proofs use
the Fourier coefficients inequality of Kahn, Kalai, and Linial.
We give a number of applications of this separation. In par-
ticular, in the bounded-storage model of cryptography we
exhibit a scheme that is secure against adversaries with a
certain amount of classical storage, but insecure against ad-
versaries with a similar (or even much smaller) amount of
quantum storage; in the setting of privacy amplification, we
show that there are strong extractors that yield a classically
secure key, but are insecure against a quantum adversary.

Categories and Subject Descriptors
E.4 [Coding and information theory]: Formal models
of communication; F.1.3 [Computation by Abstract De-
vices]: Complexity Measures and Classes—Relations among
complexity measures
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1. INTRODUCTION
One of the main goals of quantum computing is to find

problems where quantum computers are much faster (or oth-
erwise better) than classical computers. Preferably expo-
nentially better. The most famous example, Shor’s quantum
factoring algorithm [31], is a separation only if one is willing
to believe that efficient factoring is impossible on a classi-
cal computer—proving this would, of course, imply P 6=NP.
One of the few areas where one can establish unconditional
exponential separations is communication complexity.

Communication complexity is a central model of compu-
tation, first defined by Yao [36], that has found applications
in many areas [18]. Two parties, Alice with input x and Bob
with input y, collaborate to solve a computational problem
that depends on both x and y. Their goal is to do this with
minimal communication. The problem to be solved could
be a function f(x, y) or some relational problem where for
each x and y, several outputs are valid. The protocols could
be interactive (two-way), in which case Alice and Bob take
turns sending mesages to each other; one-way, in which case
Alice sends a single message to Bob who then determines
the output; or simultaneous, where Alice and Bob each pass
one message to a third party (the referee) who determines
the output. The (bounded-error) communication complex-
ity of the problem is the worst-case communication of the
best protocol that gives (for every input x and y) a correct
output with probability at least 1−ε, for a fixed ε ∈ [0, 1/2).

Allowing the players to use quantum instead of classical
resources can reduce the communication complexity signif-
icantly. Examples of problems where quantum communi-
cation gives exponential savings were given by Buhrman,
Cleve, and Wigderson for one-way and interactive protocols
with zero error probability [5]; by Raz for bounded-error in-
teractive protocols [28]; and by Buhrman, Cleve, Watrous,
and de Wolf for bounded-error simultaneous protocols [6].
The first two problems are partial Boolean functions, while
the third one is a total Boolean function (however, that sep-
aration doesn’t hold in the presence of public coins). In fact,
whether there exists a superpolynomial separation for a to-
tal Boolean function in the presence of public coins is one
of the main open questions in the area.

Moreover, Bar-Yossef, Jayram, and Kerenidis [8] showed
an exponential separation for one-way protocols and simul-
taneous protocols with public coins, but they only achieve



this for a relational problem, called the Hidden Matching
Problem (HMP). This problem can be solved efficiently by
one quantum message of log n qubits, but classical one-way
protocols need to send nearly

√
n bits to solve it. However,

Boolean functions are much more natural objects than rela-
tions both in the model of communication complexity and
in the cryptographic settings that we consider later in this
paper. Bar-Yossef et al. stated a Boolean version of their
problem (partial function) and conjectured that the same
quantum-classical gap holds for this problem as well.

1.1 Exponential separation for NPM
We prove tight bounds for the bounded-error one-way

communication complexity of a slight variant of Boolean
Hidden Matching, which we call the Noisy Perfect Matching
problem (NPM). Precise definitions are in Section 2.

Theorem 1. The classical bounded-error one-way com-
munication complexity of the Noisy Perfect Matching prob-
lem is R1

ε(NPM) = Θ(
√
n), while the quantum bounded-

error one-way complexity is Q1
ε(NPM) = Θ(logn).

This is the first exponential separation between quantum
and classical one-way communication complexity for a par-
tial Boolean function. Our Ω(

√
n) lower bound is proved

using the Fourier coefficients inequality of Kahn, Kalai, and
Linial [16], which is a special case of the Bonami-Beckner
inequality [9, 7]. Fourier analysis was previously used in
communication complexity by Raz [27] and Klauck [17].

1.1.1 Application: streaming model
In the streaming model of computation, the input is given

as a stream of bits and the algorithm is supposed to com-
pute or approximate some function of the input, having only
space of size S available. See for instance [3, 24]. There is
a well-established connection between one-way communica-
tion complexity and the streaming model: if we view the
input as consisting of two parts x and y, then the content
of the memory after x has been processed, together with y,
contains enough information to compute f(x, y). Hence, a
space-S streaming algorithm for f implies a one-way pro-
tocol for f of communication S. The classical lower bound
for our communication problem, together with the observa-
tion that our quantum protocol can be implemented in the
streaming model, implies a separation between the quantum
and classical streaming model: there is a partial Boolean
function f that can be computed in the streaming model
with small error probability using quantum space of O(log n)
qubits, but requires Ω(

√
n) bits if the space is classical.

Le Gall [12] constructed a problem that can be solved in
the streaming model using O(log n) qubits of space, while

any classical algorithm needs Ω(n1/3) classical bits. His

log n-vs-n1/3 separation is a bit smaller than our log n-vs-√
n, but his separation is for a total Boolean function while

ours is only partial (i.e., requires some promise on the in-
put). Le Gall’s result predates ours, though we only learned
about it after finishing our paper. While Le Gall’s separa-
tion holds only in the streaming model variant where the
bits arrive in order, ours holds in the more general model,
where we allow the input bits to arrive in any order.

1.2 A variant with links to cryptography
Our next result deals with another variant of the Boolean

Hidden Matching Problem, called the α-Partial Matching

problem (αPM), which is parametrized by some value α as
defined in Section 2. The ability to vary this parameter
α will be important for some of our applications. For this
variant we can also establish an exponential gap:

Theorem 2. For α ∈ [0, O(1/
√

log n)], the classical bounded-
error one-way communication complexity of α-Partial Match-
ing is R1

ε(αPM) = Θ(
p
n/α); the quantum bounded-error

one-way complexity is Q1
ε(αPM) = O(log(n)/α).

For instance for α ≈ 1/
√

log n the separation is (log n)3/2

qubits versus
√
n(logn)1/4 classical bits. The quantum pro-

tocol for αPM is less efficient than the quantum protocol for
NPM ((log n)3/2 vs log n qubits), but the latter has bounded
error while the former can be made to run with error prob-
ability 0 with expected communication O(log(n)/α).

For the cryptographic applications below, it is crucial that
the proof of this second separation actually shows that if Al-
ice’s message was too short, then Bob has hardly any infor-
mation about a certain string z that can be computed from x
given also Bob’s input y. That is, from his perspective (given
y and Alice’s message) this string z is almost uniformly dis-
tributed. Our proof uses a result of Talagrand [32] (which is
easy to derive from, again, the KKL inequality, though Ta-
lagrand himself proves it differently) and a large deviation
inequality for martingales [23].

1.2.1 Application: the bounded storage model
Our second proof is closely related to the bounded storage

model in cryptography. It was introduced by Maurer [22]
with the aim of implementing information-theoretically se-
cure key expansion. In this setting, a large random vari-
able X is publicly but only temporarily available. Alice
and Bob use a shared secret key Y to extract an additional
key Z(X,Y ) from X. The secret key Y remains hidden
from the adversary during this extraction phase, but may
be revealed later. The adversary is assumed to have only a
bounded amount of storage and as a result his information
about Z is limited even if he learns the secret key Y after-
wards. “Limited information” means that the distribution
on Z(X, Y ) is η-close to uniform even when conditioned on
Y and on the information about X that the adversary stored
in his memory, for small security parameter η ∈ [0, 1] (the
smaller the better). Aumann, Ding, and Rabin [2] were the
first to prove a bounded-storage scheme secure, and essen-
tially tight constructions have subsequently been found [11,
21, 33]. It is an important open question whether any
of these constructions remains secure if the adversary can
store quantum information. One may even conjecture that
a bounded-storage protocol secure against classical adver-
saries with a certain amount of memory, should be roughly
as secure against quantum adversaries with roughly the same
memory bound. After all, Holevo’s theorem [14] informally
says that k qubits cannot contain more information than
k classical bits. Using the stronger statement on the uni-
formity of Z shown in our second separation we refute the
latter conjecture.

The link to one-way communication comes from viewing
Alice’s input as the temporarily available randomness X,
while Bob’s input takes the role of the secret key Y . Alice’s
message m(X) (which she sends without knowing Y ) rep-
resents the stored information of the adversary about the
string X before he learns the key Y . Our lower bound proof
for one-way communication shows that Bob cannot learn



much about a certain αn-bit string Z(X, Y ) if Alice’s mes-
sage is too short. This can be translated back to show that
an adversary cannot learn much about the extracted key Z
if his storage is too small. Our result gives the first example
of a bounded-storage protocol where the extracted key can
be made η-secure1 against a classical adversary (for any con-
stant η) but becomes completely insecure against a quantum
adversary of the same or even much smaller memory size.

Theorem 3. Let η ∈ [0, 1] and α ∈ [0, O(
p
η/ log n)].

The extracted αn-bit string in the bounded-storage protocol
derived from the αPMproblem is η-secure against a classical
adversary with memory bound O(

p
η3n/α), while for every

positive integer k ≪ αn it is at most (1−2−k)-secure against
an adversary with O(k log(n)/α) qubits.

Note that normally in cryptography one wants η-security
for exponentially small η. Our classical bounded-storage
scheme is not secure in that strong sense, but it is secure
for any constant η of our choice. In fact, by choosing α
appropriately, we can make η inverse-polynomially small.

It should be noted that the bounded-storage protocol de-
rived from αPM—though provably secure against classical
adversaries—is not terribly useful. Usually one wants the
initial key Y to be much smaller than the extracted key
Z, and this is actually achieved by the classical schemes
cited above. In our scheme the initial key Y is actually
longer than the final key Z. It can still be used for key
expansion, where one expands a secure key Y to a longer
secure key Y,Z(X,Y ). Though it would be interesting to
find a constructive example with much shorter initial key,
the main point of our result here is to givee an example of a
classically-secure scheme that is insecure against quantum.

1.2.2 Application: extractors, privacy amplification
The proof of our second separation is also closely related

to the notion of strong randomness extractors. There the
task is to extract almost uniform randomness from an im-
perfect (i.e. non-uniform) source of randomness X with the
help of an independent uniform seed Y . In other words, the
output of an extractor is a random variable Z(X,Y ), such
that the pair (Y,Z(X, Y )) is close to uniform. The main pa-
rameters of an extractor are the length of the uniformly ran-
dom string Y , and the randomness of the imperfect source,
which is measured by the min-entropy of the source.

Extractors have found numerous applications in computer
science, in particular in complexity theory and cryptogra-
phy. One important application is that of privacy ampli-
fication, which was introduced in [4, 15]. In this setting,
Alice and Bob start with a shared random variable X about
which the adversary has some partial information m(X) and
their goal is to generate a secret key Z about which the ad-
versary has very little information. They can achieve this
by communicating an independent uniform seed Y over an
insecure channel, and using a strong extractor to generate
the key Z(X, Y ). Assuming a certain upper bound on the
number of bits of m(X), the key Z(X, Y ) is secure even if
the adversary has full knowledge of Y .

1This means that the distribution on Z is η-close to uniform,
conditioned on Y . Formally, Ey [d(Z(X,Y ), U | Y = y)] ≤ η,
where d(p, q) = 1

2

P
x |p(x) − q(x)| denotes total variation

distance, U is the uniform distribution, and expectation is
taken uniformly over all possible values y of Y .

Extractors and privacy amplification can also be consid-
ered in the quantum case where the prior partial information
about the string X is a quantum state. Our communication
result implies that there exist extractors which yield a clas-
sically secure key, but that are insecure against a quantum
adversary. More specifically, one can think of Alice’s in-
put X as the shared random variable, her message m(X) as
the prior partial information of the adversary about X, and
Bob’s input Y as the independent uniform seed. Our lower
bound shows that in the classical setting, the αn-bit string
Z(X, Y ) is close to uniform even if the size of the classical
prior information m(X) is as large as O(

√
n). However, in

the quantum setting the key becomes insecure even if the
quantum prior information is of size only poly(log n).

The dependence of the security on whether the adver-
sary has quantum or classical memory is quite surprising,
particularly in light of the following two facts: first, pri-
vacy amplification based on two-universal hashing provides
exactly the same security against classical and quantum ad-
versaries. The length of the key that can be extracted is
given by the min-entropy both in the classical ([4, 15]) and
the quantum case ([30], [29, Ch. 5]). Second, König and Ter-
hal [19] have recently shown that for protocols that extract
just one bit, the level of security against a classical and a
quantum adversary (with the same information bound) is
again comparable.

1.2.3 Application: simulations of quantum protocols
Another application of our second separation is in the con-

text of simulating one-way quantum communication proto-
cols by one-way classical protocols. As noted by Aaron-
son [1, Section 5], our Theorem 2 implies that his general
simulation of bounded-error one-way quantum protocols by
deterministic one-way protocols

D1(f) = O(mQ1
ε(f) logQ1

ε(f)),

is tight up to a polylog factor. Here m is the length of
Bob’s input. This simulation works for any partial Boolean
function f . Taking f to be our αPM for α ≈ 1/

√
log n,

one can show that D1(f) ≈ n, m ≈ αn log n ≈ n
√

log n,

Q1
ε(f) ≈ (log n)3/2. It also implies that his simulation of

quantum bounded-error one-way protocols by classical ones

R1
ε(f) = O(mQ1

ε(f)),

cannot be much improved. In particular, the product on the
right cannot be replaced by the sum: if we take f = αPM
with α = 1/

√
n, then by Theorem 2 we have R1

ε(f) ≈ n3/4,
m ≈ √

n log n, and Q1
ε(f) ≈ √

n log n.

Remark. Our results can be modified to give a sepa-
ration in the simultaneous message passing model between
classical communication with shared entanglement and clas-
sical communication with shared randomness. Earlier, such
a separation was known only for a relational problem [13].

2. THE PROBLEMS AND UPPER BOUNDS
We assume basic knowledge of quantum computation [25]

and (quantum) communication complexity [18, 34].
Before giving the definitions of our two variants of the

Boolean Hidden Matching Problem, we fix some notation.
Part of Bob’s input will be a sequence M of αn disjoint
edges e1 = (i1, j1), . . . , eαn = (iαn, jαn) from [2n], which



we call an α-matching. If α < 1, the matching is partial,
if α = 1 the matching is perfect. We can also view an α-
matching on [2n] as an (αn × 2n) matrix M over GF (2),
where each column corresponds to a number in [2n] and the
ℓ-th row corresponds to the ℓ-th edge of the matching. In
other words, if the ℓ-th edge of the matching is (iℓ, jℓ), then
the ℓ-th row of the matrix contains two 1’s at the positions
iℓ and jℓ and 0’s elsewhere. Let x ∈ {0, 1}2n. Then the
product Mx is an αn-bit string z = z1, . . . , zℓ, . . . zαn where
zℓ = xiℓ

⊕ xjℓ
. Denote by h(·, ·) the Hamming distance

function and by h(·) the Hamming weight function.
Using this notation, we introduce the two partial functions

we study, which differ only in the parameter α and in the
promise. We call them the Noisy Perfect Matching (NPM)
and the α-Partial Matching (αPM) respectively.

Alice: x ∈ {0, 1}2n

Bob: an α-matching M on [2n] and a string w ∈ {0, 1}αn

(α = 1 for NPM)
a) Promise for NPM: ∃ b such that h(Mx⊕ bn, w) ≤ n/3
b) Promise for αPM: ∃ b such that w = Mx⊕ bαn

Function value: b

We can draw an analogy with two kinds of noise in trans-
mission channels. In the Noisy Perfect Matching problem,
Bob’s input w results from the string Mx or Mx⊕ 1n after
at most a 1/3-fraction of the bits have been “corrupted”.
In the α-Partial Matching problem, Bob’s input w can be
viewed as an n-bit string resulting from a perfect matching
followed by the “erasure” of a (1−α)-fraction of the bits. For
the communication complexity separation by the α-Partial
Matching problem, we could fix α to an appropriate value,
however, the general result is useful for our applications.

Quantum upper bounds. There is an easy O(log(n)/α)
protocol for both problems. Alice sends a uniform super-
position of x = x1 . . . x2n: |ψ〉 = 1√

2n

P2n
i=1(−1)xi |i〉. Bob

completes his αn edges to a perfect matching in an arbi-
trary way, and measures with the corresponding set of n
2-dimensional projectors. With probability α he will get
one of the edges eℓ = (iℓ, jℓ) of his input. The state then
collapses to (−1)xiℓ |iℓ〉 + (−1)xjℓ |jℓ〉, from which Bob can
obtain zℓ = xiℓ

⊕ xjℓ
by an appropriate measurement.

In NPM, Bob outputs zℓ ⊕ wℓ. The protocol is correct
with probability at least 2/3, and by repeating O(log(1/ε))
times we can achieve correctness 1−ε for any constant ε > 0.

In the case of αPM, Bob can obtain the bit b = zℓ ⊕ wℓ

with certainty if he has measured one of his edges (which
happens with probability α), otherwise he claims ignorance.
Note that this protocol has so-called “zero-sided error” (Bob
knows when he didn’t learn the bit b) and the success can
be boosted to 1− ε given O(log(1/ε)/α) copies of the state.

The above protocol for αPM can be repeated k times in
parallel: if Bob is given O(k/α) copies of |ψ〉, then with high
probability (at least while k ≪ αn) he can learn k bits of z.

Classical upper bounds. We sketch an O(
p
n/α) clas-

sical upper bound for both functions. Suppose Alice uni-
formly picks a subset of d ≈

p
n/α bits of x to send to Bob.

By the birthday paradox, with high probability Bob will
have both endpoints of at least one of his αn edges and so
he can compute the function value b with good probability.
In this protocol Alice would need to send about d log n bits
to Bob, since she needs to describe the d indices as well as
their bitvalues. However, by Newman’s Theorem [26], Alice
can actually restrict her random choice to picking one out

of O(n) possible d-bit subsets, instead of one out of all
`
2n
d

´

possible subsets. Hence d+O(log n) bits suffice.
In Section 3.1 we show that for NPM the classical up-

per bound of O(
√
n) is optimal, and in Section 4 we show

for αPM that for α ≪ 1/
√

log n the classical upper bound

of O(
p
n/α) is optimal. Choosing α ≈ 1/

√
log n gives a

function that can be computed with O((log n)3/2) qubits of

one-way communication, but needs at least Ω(
√
n(log n)1/4)

classical bits of communication, which gives the exponential
quantum-classical separation for αPM.

3. LOWER BOUND FOR NPM
We prove a lower bound on classical communication with

shared randomness for the problems of the previous section
in two different ways. Let us first describe what is common
among both proofs. By the Yao principle [35], it suffices to
prove a lower bound for deterministic protocols under some
“hard” input distribution. For both problems we choose a
distribution that is uniform on the x’s, the matchings M ,
and b. In the case of αPM this fixes Bob’s second input
w = Mx⊕ bαn. For the Noisy Perfect Matching problem we
will in addition fix a distribution on the n-bit string w in the
following way: independently choose each bit wℓ such that
Pr[wℓ = (Mx)ℓ⊕b] = 3/4. In other words, we can think of w
as a noisy version ofMx⊕bn = z⊕bn where each bit of z⊕bn
is flipped with probability 1/4. Note that if (x,M, b, w) are
picked according to this distribution, then the probability
that the Hamming distance h(Mx⊕bn, w) is more than n/3,
is exponentially small. Hence, any probabilistic protocol for
NPM with error ε′ gives a deterministic protocol for this
distribution with distributional error ε′ + o(1). Therefore,
for the rest of the proof we use this distribution.

Suppose we have a classical deterministic one-way proto-
col with c bits and error probability at most ε under this
distribution for either NPM or αPM. This protocol parti-
tions the set of 22n x’s into 2c sets A1, . . . , A2c , one for each
possible message. Note that on average, these sets have size
22n−c. Moreover, at most an η-fraction of all x ∈ {0, 1}2n

can sit in sets of size ≤ 22n−c−log(1/η). In particular, at least
half of the x’s must occur in sets of size at least 22n−c−1.
Hence there must be at least one set A that contains at least
22n−c−1 x’s and has error at most 2ε, otherwise the overall
error would be larger than ε. Hereafter, we analyze this A.

3.1 Fourier analysis of NPM
Our proof for NPM directly bounds Bob’s probability to

learn b. In order to learn b, Bob needs to determine whether
his string w comes from a noisy version of Mx ⊕ 0n or of
Mx⊕ 1n. We upper bound the total variation distance be-
tween these two distributions using Fourier analysis. This
gives an upper bound on the size of A, and hence a lower
bound on the communication c. We begin by providing a
few standard definitions from Fourier analysis.

For functions f, g : {0, 1}n → R we define their inner prod-
uct and the ℓ1, ℓ2 norms by 〈f, g〉 = 1

2n

P
x∈{0,1}n f(x)g(x),

||f ||1 = 1
2n

P
x∈{0,1}n |f(x)|, ||f ||22 = 1

2n

P
x∈{0,1}n |f(x)|2.

Note that ||f ||2 ≥ ||f ||1 by Cauchy-Schwarz. The Fourier

transform of f is a function f̂ : {0, 1}n → R with f̂(s) =
〈f, χs〉 = 1

2n

P
y∈{0,1}n f(y)χs(y), where χs : {0, 1}n → R

is the character χs(y) = (−1)y·s with “·” being the scalar

product; f̂(s) is the Fourier coefficient of f corresponding



to s. We have the following relation between f and f̂ : f =P
s∈{0,1}n f̂(s)χs. The convolution f ∗ g : {0, 1}n → R for

f, g : {0, 1}n → R is f ∗ g(w) = 1
2n

P
y∈{0,1}n f(y ⊕ w)g(y).

Note that with this definition we have (f̂ ∗ g)(s) = f̂(s)·ĝ(s).
We also use Parseval’s identity and the KKL lemma.

Lemma 4 (Parseval’s Identity). For every function

f : {0, 1}n → R, ||f ||22 =
P

s∈{0,1}n(f̂(s))2.

Lemma 5 ([16]). Let f be a function f : {0, 1}n →
{−1, 0, 1}. Let t = |{x | f(x) 6= 0}|/2n be the uniform
probability that f 6= 0. Then for every δ ∈ [0, 1] we have

X

s∈{0,1}n

δh(s)(f̂(s))2 ≤ t
2

1+δ .

Proof of Theorem 1. Following the lead of Section 3,
we can assume that Bob can determine b with probability 1−
2ε for x drawn uniformly from the set A, which is of size at
least 22n−c−1. This means that he can distinguish whether
his string w comes from a “noisy” Mx or from a “noisy”
Mx ⊕ 1n. Recall that our hard distribution is uniform on
the x’s, the matchings M , and the bit b, and we pick w
by independently choosing each bit wℓ such that Pr[wℓ =
(Mx)ℓ ⊕ b] = 3/4. Call D0M the distribution on the strings
w induced by our hard distribution when we condition on
b = 0, on fixed matching M , and x is uniformly picked from
A. Denote the corresponding distribution when b = 1 by
D1M . The probability to distinguish two distributions of
total variation distance d is at most (1 + d)/2. Hence, since
Bob has success probability at least 1−2ε, the distributions
D0M and D1M must be far apart on average:

1

|M|
X

M∈M
d(D0M ,D1M ) ≥ 1 − 4ε, (1)

where M is the set of all perfect matchings. Below, we
upper bound the average d(D0M ,D1M ), which implies an
upper bound on |A| (and hence a lower bound on c).

To express d(D0M ,D1M ), we define the following proba-
bility distributions. Let µ be the distribution on a bit such
that µ(0) = 3/4 and µ(1) = 1/4. For b ∈ {0, 1} define the
product distributions on {0, 1}n as fb(y) =

Qn
i=1 µ(yi ⊕ b).

In other words, f0 is the distribution on n-bit strings where
each bit is independently 0 with probability 3/4 and 1 with
probability 1/4 and f1 is the same distribution with bits
flipped. They represent the “noise” added to z. Let

gM (z) =
|{x ∈ A |Mx = z}|

|A| .

The distribution D0M can be viewed as first picking a string
z according to gM and then adding noise according to f0.
This can be expressed as the convolution of f0 and gM , i.e.

Pr
D0M

[w] =
X

z∈{0,1}n

f0(z ⊕ w) · gM (z) = 2n · f0 ∗ gM (w),

and similarly for D1M . This gives

d(D0M ,D1M ) =
1

2

X

w∈{0,1}n

˛̨
˛̨ Pr
D0M

[w] − Pr
D1M

[w]

˛̨
˛̨ =

2n−1
X

w∈{0,1}n

|(f0 − f1) ∗ gM (w)| = 22n||f0 − f1
2

∗ gM ||1. (2)

To get an upper bound on d(D0M ,D1M ), we upper bound
the ℓ1 norm by the ℓ2 norm and use Parseval’s identity
(Lemma 4) to go to the Fourier domain:

||f0 − f1
2

∗ gM ||21 ≤

|| f0−f1

2
∗ gM ||22 =

P
s∈{0,1}n

„
f̂0−f1

2
(s)

«2

· (cgM (s))2 . (3)

It is easy to see that the Fourier coefficients of f0−f1

2
are

f̂0 − f1
2

(s) =


1

2n+k for s with h(s) = k , k odd
0 otherwise

(4)

Note that the parameter k denotes Hamming weight and
takes integer values between 0 and 2n. We now relate the
uniform distribution on A to the Fourier coefficients of gM ,
i.e. the distribution on the strings z = Mx ∈ {0, 1}n induced
by the matching M and by picking a uniform x ∈ A. Let
g : {0, 1}2n → R be the uniform distribution over the set A

g(x) =


1

|A| for x ∈ A

0 for x 6∈ A

Note that for x ∈ {0, 1}2n and s ∈ {0, 1}n we have (Mx)·s =
(xMT ) · s = x · (MT s). By the definition of gM ,

cgM (s) =
1

2n

X

y∈{0,1}n

gM (y)(−1)y·s

=
1

2n|A|
“
|{x ∈ A | (Mx) · s = 0}| − |{x ∈ A | (Mx) · s = 1}|

”

=
1

2n|A|
“
|{x ∈ A | x · (MT s) = 0}| − |{x ∈ A | x · (MT s) = 1}|

”

=
1

2n

X

x∈{0,1}2n

g(x)(−1)x·(MT s) = 2n · ĝ(MT s). (5)

Combining inequalities (1)- (5):

(1 − 4ε)2≤ 1

|M|
X

M∈M
d(D0M ,D1M )2 =

24n

|M|
X

M∈M
||f0 − f1

2
∗ gM ||21

≤ 24n

|M|
X

M∈M

X

s∈{0,1}n

 
f̂0 − f1

2
(s)

!2

· (cgM (s))2

=
24n

|M|
X

M∈M

X

s:h(s)=k

k odd

1

22k
·
“
ĝ(MT s)

”2

. (6)

Note that h(MT s) = 2h(s) and hence if h(s) is odd, then
h(MT s) = 2 mod 4. For k = 2 mod 4 we define γk as
follows: Let v ∈ {0, 1}2n be a string of Hamming weight k
and M be a random matching. Then γk = PrM [∃s s.t. v =
MT s]. This probability depends only on k and we have

X

s:h(s)=k

k odd

1

22k

1

|M|
X

M∈M

“
ĝ(MT s)

”2

(7)

=
X

v:h(v)=2k

k odd

1

22k
γ2k (ĝ(v))2 =

X

v:h(v)=k

k=2(mod4)

1

2k
γk (ĝ(v))2.



Call δk = γ
1/k
k . Combining (6) and (7) we get

(1 − 4ε)2 ≤ 24n
X

k=2(mod4)

1

2k

X

v:h(v)=k

(δk)h(v)(ĝ(v))2

≤ 24n
X

k=2(mod4)

1

2k

X

v∈{0,1}2n

(δk)h(v)(ĝ(v))2 (8)

We can upper bound γk: for any even number t ≥ 2, let N(t)
be the number of perfect matchings on [t]. Then, N(2) =
1, N(t) = (t − 1)N(t − 2). It is not hard to see that the
expression for γk is

γk =
N(k)N(2n− k)

N(2n)
≤
„
k

2n

«k/2

.

Then 0 ≤ δk ≤
q

k
2n

≤ 1 for k ∈ [2, 2n]. We now apply

the KKL inequality (Lemma 5) to the function g · |A| (hence
t = |A|/22n) and use |A| ≥ 22n−c−1

X

v∈{0,1}2n

(δk)h(v)(ĝ(v))2 ≤ 1

|A|2
„
|A|
22n

« 2
1+δk

≤ 2−4n

„
22n

|A|

«2δk

≤ 2−4n+(c+1)
q

2k
n .

Finally, combining with inequality (8) implies (1 − 4ε)2 ≤
X

k=2(mod4)

2−k+(c+1)
q

2k
n =

X

k=2(mod4)

2−k/2

„
2−k/2+(c+1)

q

2k
n

«
.

Since
P

k∈[0,2n],k=2(mod4) 2−k/2 =
P

k∈[0,n],k odd 2−k ≤ 2
3

there is a k such that 3
2
(1 − 4ε)2 ≤ 2−k/2+(c+1)

q

2k
n . Hence

c ≥
√

n
2

− 1 for sufficiently small ε.

4. LOWER BOUND FOR αPM
In our proof for αPM, we look again at the set A that

contains at least 22n−c−1 x’s and has error at most 2ε. Now
we prove a stronger statement. From Bob’s point of view
the following happens when he receives the message corre-
sponding to the set A: a uniformly picked matchingM of αn
disjoint edges (iℓ, jℓ), ℓ ∈ [αn], is given, and an unknown x
is picked uniformly from A. As before, define zℓ = xiℓ

⊕ xjℓ

and z = z1 . . . zαn. Note that z is a function of x and M .
Here Bob knows M and he knows that x is a uniformly cho-
sen element from the known set A. Bob needs to figure out
whether his second input w equals z ⊕ 0αn or z ⊕ 1αn. We
will use capital letters to denote the corresponding random
variables. In Theorem 11, we show that Z is close to uni-
formly distributed when the edges are known but x is not:
if the communication c is “small”, then the total variation
distance (conditioned on M) between Z and the uniform
distribution Uαn on αn bits is EM [d(Z,Uαn |M)] =

= EM

2
41

2

X

z∈{0,1}αn

˛̨
Pr[Z = z |M ] − 2−αn

˛̨
3
5 ≤ η

for some small η; the expectation is taken over uniform M .
Then also EM [d(Z ⊕ 0αn, Uαn | M)] ≤ η and EM [d(Z ⊕
1αn, Uαn |M)] ≤ η, and hence EM [d(Z⊕0αn, Z⊕1αn |M)]
≤ EM [d(Z⊕0αn, Uαn |M)]+EM [d(Z⊕1αn, Uαn |M)] ≤ 2η.
Distinguishing between the two distributions Z ⊕ 0αn and

Z ⊕ 1αn is exactly what Bob needs to do to determine b. It
is well known that distinguishing between two distributions
with variation distance 2η can be done with probability at
most 1/2 + η. Accordingly, if c is “small” then the success
probability will be close to 1/2. Since Bob’s success proba-
bility on the set A is at least 1 − 2ε, c must be large.

In what follows we analyze the distribution of the αn-
bit string Z and prove Theorem 11. The random variable
Z depends on the known matching M with edges e1 =
(i1, j1), . . . , eαn = (iαn, jαn) as well as on the unknown x,
which is uniformly drawn from set A. The typical case is
where |A| ≈ 22n−c. Intuitively, if c is small (i.e. A is large),
then for most M and strings z ∈ {0, 1}αn we should have
Pr[Z = z | M ] ≈ 2−αn. Hence d(Z,Uαn | M) should be
small for most M , and EM [d(Z,Uαn | M)] should be small
as well. Proving this will be quite technical.

We view the edges of M as being picked one by one. Since
A is quite large, for most (i, j)-pairs roughly equally many
x’s should have xi ⊕ xj = 1 as have xi ⊕ xj = 0. Thus we
expect the first bit Z1 to be close to uniformly distributed
when x is picked uniformly from A. Similarly, we would like
the later bits Zℓ to be more or less uniform when conditioned
on values Z1 = z1, . . . , Zℓ−1 = zℓ−1 for the earlier edges.
More formally, once (i1, j1), . . . , (iℓ−1, jℓ−1) and z1, . . . , zℓ−1

have been fixed, we define the “ℓ-th bias” by

βℓ = Pr
x∈A

[Zℓ = 1 | Z1 = z1, . . . , Zℓ−1 = zℓ−1,M ] − 1/2.

This is a function of the first ℓ edges of M and of the first
ℓ− 1 bits of Z. Though we write ‘M ’ in the conditional for
brevity, βℓ is actually independent of the last αn − ℓ edges
of M . It is positive if Zℓ is biased towards 1, and negative
if Zℓ is biased towards 0. Note that a fixed M, z pair fully
determines all biases β1, . . . , βαn and Prx∈A[Z = z |M ] =

αnY

ℓ=1

Pr
x∈A

[Zℓ = zℓ|Z1 = z1, ., Zℓ−1 = zℓ−1,M ] =
αnY

ℓ=1

„
1

2
− (−1)zℓβℓ

«

Fixing the first ℓ− 1 edges of M and conditioning on their
bitvalues Z1 = z1, . . . , Zℓ−1 = zℓ−1 will shrink the set of
possible x’s. Let Aℓ be the subset of A that is still consistent.
Initially we have |A1| = |A| ≥ 22n−c−1. When we pick the
next edge (iℓ, jℓ) and its value zℓ, the new set Aℓ+1 will be
smaller by a factor 1/2+βℓ if zℓ = 1 and by a factor 1/2−βℓ

if zℓ = 0. We have |Aℓ| =

|A|· Pr
x∈A

[Z1 = z1, .., Zℓ−1 = zℓ−1|M ] = |A|·
ℓ−1Y

i=1

„
1

2
− (−1)ziβi

«

Hence we expect the set to shrink by about two for each new
edge and bitvalue for that edge (|Aℓ| ≥ 22n−c−ℓ).

We use a result of Talagrand [32] to relate the expected
squared bias β2

ℓ to the size of the set Aℓ. Talagrand himself
derived this using a large deviation inequality from [20], but
Oded Regev showed us how it can be obtained in a simple
way from the KKL inequality.

Lemma 6 ([32], Eq. (2.9)). For every A ⊆ {0, 1}2n,
with βij = Prx∈A[xi ⊕ xj = 1] − 1/2, we have

X

i,j∈[2n],i6=j

β2
ij ≤

„
log

„
22n

|A|

««2

.

Proof. Let f : {0, 1}2n → {0, 1} be the characteristic
function of our set A, and t = |A|/22n . Let sij ∈ {0, 1}2n



be the string having a 1 only at positions i and j. Then

f̂(sij) =
1

22n

X

y∈{0,1}2n

f(y)(−1)y·sij

=
|A|
22n

· |{y ∈ A|y · sij = 0}| − |{y ∈ A|y · sij = 1}|
|A| = 2tβij .

Applying KKL (Lemma 5) to f , for every δ ∈ [0, 1] we have:

X

i,j∈[2n],i6=j

δ2f̂(sij)
2 ≤

X

s∈{0,1}2n

δh(s)f̂(s)2 ≤ t2/(1+δ).

Hence

X

i,j∈[2n],i6=j

β2
ij =

1

4t2
· 1

δ2

X

i,j∈[2n],i6=j

δ2f̂(sij)
2 ≤ 1

4δ2
· t−2δ.

Picking δ = 1/ log(1/t) = 1/ log(22n/|A|) gives the lemma.

This will allow us to show that βℓ is probably quite small
if the set Aℓ hasn’t shrunk too fast. We allow some more
shrinking than we expect: note the ‘3c’ instead of ‘c’ in
the exponent below. The way to read this corollary is as
follows: the first ℓ − 1 edges of M and the first ℓ − 1 bits
of z have already been fixed. This determines the set Aℓ,
and we assume this set is large enough. Choosing the ℓ-
th edge of M will now determine the value of the ℓ-th bias
βℓ. The corollary bounds the expectation of β2

ℓ , where the
expectation is taken over all choices for the ℓ-th edge of M .

Corollary 7. There is an absolute constant γ > 0 such
that if |Aℓ| ≥ 22n−3c−ℓ, then
(1) E[β2

ℓ ] ≤ γ(c/n)2 and (2) Pr[|βℓ| ≥ ε] ≤ γ( c
nε

)2.

Proof. Note that fixing a bitvalue for the parity of an
edge means that the two bits in that edge behave as one bit.
Accordingly, we can view the set Aℓ as a set of strings of
length m = 2n−(ℓ−1) bits. We can upper bound the sum of
biases over all possible new edges (excluding ones touching
earlier edges) by the sum over all possible edges (including
ones touching earlier edges):

X

iℓ,jℓ∈[m]\{i1,...,iℓ−1,j1,...,jℓ−1},i6=j

β2
iℓ,jℓ

≤
X

i,j∈[m],i6=j

β2
ij ≤ O(c2),

where the last inequality is by applying Lemma 6 to Aℓ. Di-
viding by the number

`
2n−2(ℓ−1)

2

´
= Θ(n2) of possible new

edges proves part (1). Part (2) now follows from Cheby-
shev’s inequality.

Note that on the one hand we need to assume that the
sets Aℓ are not too small in order to show that the biases
βℓ are probably not too large (via Corollary 7). But on the
other hand we need to show that the earlier biases are not
too large in order to be able to conclude that Aℓ is not too
small. To deal with this problem, below we give a proof
in two “passes”. The first pass is quite coarse-grained and
shows that (with high probability) the sets Aℓ won’t shrink
by a factor of 2−2c more than what we expect. Thus we will
have |Aℓ| ≥ 22n−3c−ℓ for each ℓ, which allows us to apply
Corollary 7 to each of the αn biases during the second pass.
In this second, more fine-grained pass we actually show that
Z is close to uniformly distributed, conditioned on M .

4.1 First pass: Aℓ probably don’t shrink much
We can only use Corollary 7 if the condition |Aℓ| ≥ 22n−3c−ℓ

is satisfied. We now show that with high probability (over
the uniform distribution on M, z) this is indeed the case for
all ℓ simultaneously. The proof uses the following concen-
tration result from [23].

Lemma 8 ([23], Thm. 3.7). Let S1, . . . , Sk be bounded
random variables with E[Sj |S1 = s1, . . . , Sj−1 = sj−1] = 0
for all 1 ≤ j ≤ k and all s1, . . . , sk. Then for all t, v ≥ 0

Pr

"
kX

j=1

Sj ≥ t

#
≤ e−t2/2v + Pr

"
kX

j=1

S2
j ≥ v

#
.

Lemma 9. Let η ∈ [0, 1] and α ≤
p
η/256γ log n. Sup-

pose x is uniformly drawn from a set A of size at least
22n−c−1, where c ≤

p
ηn/64αγ. Then with probability at

least 1−η (over uniformly chosen M, z) the following holds:
for each ℓ ∈ [αn] we have |Aℓ| ≥ 22n−3c−ℓ and |βℓ| ≤ 1/4.

Proof. Assume c =
p
ηn/64αγ for simplicity. Defining

Si = −(−1)zi2βi, we have

|Aℓ| == |A| ·
ℓ−1Y

i=1

(1/2 − (−1)ziβi) ≥ 22n−c−ℓ
ℓ−1Y

i=1

(1 + Si) .

To lower bound |Aℓ| it thus suffices to lower bound
Qℓ−1

i=1 (1+
Si) by 2−2c under distribution P , which is uniform on the
matching M and on z. Taking natural logarithms, we need
to show for any ℓ

ln

 
ℓ−1Y

i=1

(1 + Si)

!
=

ℓ−1X

i=1

ln(1 + Si) ≥ −c2 ln(2). (9)

Let us divide the αn ℓ’s into blocks of size c each: for 1 ≤
k ≤ αn/c define the k-th block Bk = {(k − 1)c+ 1, . . . , kc}
(assume for simplicity that αn/c is an integer). Let Ek be
the following event:

(a) |βi| ≤ 1/4 for each i ∈ Bk and
(b)

P
i∈Bk

ln(1 + Si) ≥ −c2 ln(2)/αn.

We will show below in Claim 10 that for all k ∈ [αn/c],

Pr
P

[¬Ek | E1, . . . , Ek−1] ≤
c

αn
η. This implies

Pr
P

[¬(E1, . . . , Eαn/c)] ≤
αn/cX

k=1

Pr
P

[¬Ek | E1, . . . , Ek−1] ≤ η.

If E1, . . . , Eαn/c all hold, then from (b) for all k we have

k·cX

i=1

ln(1 + Si) ≥ −k · c2 ln(2)/αn ≥ −c ln(2)

and in particular Eq. (9) holds (even with righthand side of
−c ln(2) instead of −c2 ln(2)) whenever ℓ−1 is a multiple of
c. For the other ℓ, pick k such that ℓ − 1 ∈ Bk+1 and note
that thanks to (a) we have ln(1 + Si) ≥ − ln(2) and hence

ℓ−1X

i=1

ln(1 + Si) =
kcX

i=1

ln(1 + Si) +
ℓ−1X

i=kc+1

ln(1 + Si)

≥ −c ln(2) +
ℓ−1X

i=kc+1

− ln(2) ≥ −c2 ln(2).



It thus remains to prove

Claim 10. Pr
P

[¬Ek | E1, . . . , Ek−1] ≤
c

αn
η for all k.

Proof. We have Pr
P

[¬Ek | E1, . . . , Ek−1] ≤
Pr
P

[¬(a) | E1, . . . , Ek−1] + Pr
P

[¬(b) | E1, . . . , Ek−1, (a)].

We bound the two terms on the righthand side separately,
starting with the first.

Let ℓ1 = (k − 1)c be the last index in Bk−1. Condi-
tioning on E1, . . . , Ek−1 means that |Aℓ1+1| ≥ 22n−2c−ℓ1−1.
For each i ∈ Bk, if |βℓ1+1|, . . . , |βi−1| ≤ 1/4 then as beforePi−1

j=ℓ1+1 ln(1 + Sj) ≥ −c ln(2) and hence |Ai| ≥ |Aℓ1+1| ·
2−(i−ℓ1−1)−c ≥ 22n−3c−i. By Corollary 7 (part 2) we have

Pr
P

[|βi| > 1/4] ≤ γ

„
4c

n

«2

=
η

4αn

and hence (a) fails to hold for block k with probability

Pr
P

[¬(a) | E1, . . . , Ek−1] ≤
ηc

4αn

Next, conditioning on (a) and E1, . . . , Ek−1 we show that (b)
holds for Bk with probability at least 1 − 3ηc/4αn, which
implies the claim. Let P ′ be the distribution on the edges
and the string z when we condition on (a). We make some
observations about P ′. First, like P , we can view P ′ as
picking edges and bits zi sequentially: select the i-th edge
uniformly at random among all edges that are disjoint from
those already chosen and that have bias ≤ 1/4; then pick
zi uniformly at random. The difference with P is that the
i-th edge is not picked arbitrarily, but is restricted to edges
having bias ≤ 1/4. Second, the condition of Lemma 8 holds
for each Si = −(−1)zi2βi: the conditional expectations are
all 0, because we first determine βi and then give Si the sign
+ or − with equal probability.

Since |Si| = 2|βi| ≤ 1/2 for i ∈ Bk, we have ln(1 + Si) ≥
Si − S2

i , and hence

X

i∈Bk

ln(1 + Si) ≥
X

i∈Bk

Si −
X

i∈Bk

S2
i .

Let v = c2 ln(2)/2αn; this is half of what (b) allows us to lose
(note that v ≥ 2 lnn by our choice of parameters). Then,

Pr
P′

[¬(b) | E1, . . . , Ek−1] = Pr
P′

2
4X

i∈Bk

ln(1 + Si) < −2v

3
5

≤ Pr
P′

2
4X

i∈Bk

Si −
X

i∈Bk

S2
i < −2v

3
5

≤ Pr
P′

2
4X

i∈Bk

Si < −v

3
5+ Pr

P′

2
4X

i∈Bk

S2
i > v

3
5 . (10)

First we bound the second term of the righthand side of
Eq. (10). Corollary 7 implies, both under P and P ′:

E

2
4X

i∈Bk

S2
i

3
5 =

X

i∈Bk

4E
ˆ
β2

i

˜
≤ c · 4γ

“ c
n

”2

=
4γc3

n2
,

By Markov’s inequality

Pr
P′

2
4X

i∈Bk

S2
i > v

3
5 ≤ 4γc3

vn2
=

8αγ

ln 2

c

n
≤ ηc

4αn
,

where the equality follows from our value of c, and the last
inequality follows easily from our upper bound on α.

Now we bound the first term on the right of Eq. (10). By
Lemma 8 (with t = v ≥ 2 lnn),

Pr
P′

2
4X

i∈Bk

Si < −v

3
5 ≤ e−v/2 + Pr

P′

2
4X

i∈Bk

S2
i ≥ v

3
5 ≤ ηc

2αn
.

Putting everything together:

Pr
P

[¬Ek | E1, . . . , Ek−1]

≤ Pr
P

[¬(a) | E1, . . . , Ek−1] + Pr
P

[¬(b) | E1, . . . , Ek−1, (a)]

= Pr
P

[¬(a) | E1, . . . , Ek−1] + Pr
P′

[¬(b) | E1, . . . , Ek−1]

≤ ηc

4αn
+ Pr

P′

2
4X

i∈Bk

Si < −v

3
5+ Pr

P′

2
4X

i∈Bk

S2
i > v

3
5

≤ ηc

4αn
+

ηc

2αn
+

ηc

4αn
=

ηc

αn
.

This concludes the proof of Claim 10.

This concludes the proof of Lemma 9.

4.2 Second pass: Z is close to uniform
We now prove the main result about αPM.

Theorem 11. Let η ∈ [0, 1] and α ≤
p
η/256γ log n.

Suppose x is uniformly drawn from a set A of size at least

22n−c−1, where ≤
p
η3n/214 ln(64/η)αγ = O(

p
η3n/α),

then EM [d(Z,Uαn |M)] ≤ η.

Proof. Let Sℓ = −(−1)zℓ2βℓ and v = η2/32 ln(64/η).
Call a pair M, z “good” if the following three things hold
for it: (1) |Sℓ| ≤ 1/2 for all ℓ, (2)

Pαn
ℓ=1 S

2
ℓ ≤ v, and (3)

|
Pαn

ℓ=1 Sℓ| ≤ η/4. Call the pair M, z “bad” otherwise.
Letting #M be the number of α-matchings M , we rewrite

the expected total variation distance as:

EM [d(Z,Uαn|M)] =
1

2#M

X

M,z

˛̨
˛̨ Pr
x∈A

[Z = z |M ] − 2−αn

˛̨
˛̨

=
1

2#M

X

goodM,z

˛̨
˛̨ Pr
x∈A

[Z = z |M ] − 2−αn

˛̨
˛̨

+
1

2#M

X

badM,z

˛̨
˛̨ Pr
x∈A

[Z = z |M ] − 2−αn

˛̨
˛̨ .

Let P be the uniform distribution on M, z. We start by
bounding the probability (over P) that M, z is a bad pair.

Since c ≤
p
η3n/214 ln(64/η)αγ ≤

p
(η/128)n/64αγ , we

can apply Lemma 9 with value η/128 for η. Let B denote
the bad event that at least one Aℓ is too small and C the bad
event that at least one Sℓ has absolute value larger than 1/2.
Then by Lemma 9 PrP [B] ≤ η/128 and PrP [C] ≤ η/128.
From Corollary 7 we have

EP

"
αnX

ℓ=1

S2
ℓ

˛̨
˛̨
˛¬B

#
≤ 4αnγ(c/n)2 ≤ ηv/128.



By Markov, PrP
ˆPαn

ℓ=1 S
2
ℓ ≥ v

˛̨
¬B
˜
≤ η/128, hence

Pr
P

"
αnX

ℓ=1

S2
ℓ ≥ v

#
≤ Pr

P
[B] + Pr

P

"
αnX

ℓ=1

S2
ℓ ≥ v

˛̨
˛̨
˛¬B

#
≤ η/64.

We now apply Lemma 8 with t = η/4 and our v = η2/32 ln(64/η)
to show

Pαn
ℓ=1 Sℓ is usually small (note t2/2v = ln(64/η)):

Pr
P

"˛̨
˛̨
˛

αnX

ℓ=1

Sℓ

˛̨
˛̨
˛ > η/4

#
≤ 2

 
e−t2/2v + Pr

P

"
αnX

ℓ=1

S2
ℓ ≥ v

#!

≤ 2(η/64 + η/128) = 6η/128.

Applying the union bound, we see that the probability that
M, z is a bad pair is at most (η/128+η/64+6η/128) < η/12.

For any pair M, z we have

˛̨
˛̨ Pr
x∈A

[Z = z |M ] − 2−αn

˛̨
˛̨ =

˛̨
˛̨
˛

αnY

ℓ=1

(1/2 − (−1)zℓβℓ) − 2−αn

˛̨
˛̨
˛ = 2−αn

˛̨
˛̨
˛

αnY

ℓ=1

(1 + Sℓ) − 1

˛̨
˛̨
˛ .

Next, we show that
˛̨Qαn

ℓ=1(1 + Sℓ) − 1
˛̨
≤ η/2 for good pairs

M, z. First,
αnY

ℓ=1

(1 + Sℓ) ≤ e
Pαn

ℓ=1 Sℓ ≤ eη/4 ≤ 1 + η/2.

Second, since |Sℓ| ≤ 1/2 for all ℓ, we have
αnX

ℓ=1

ln(1 + Sℓ) ≥
αnX

ℓ=1

Sℓ −
αnX

ℓ=1

S2
ℓ ≥ −η/4 − v

and
αnY

ℓ=1

(1 + Sℓ) ≥ e−η/4−v ≥ 1 − η/4 − v ≥ 1 − η/2.

Hence, for good pairs M, z

1

#M

X

goodM,z

˛̨
˛̨ Pr
x∈A

[Z = z|M ] − 2−αn

˛̨
˛̨ ≤ 1

#M

X

goodM,z

η

2
·2−αn ≤ η

2
.

Moreover, using also that the probability that M, z is a good
pair is at least 1 − η/12, we have

1

#M

X

goodM,z

Pr
x∈A

[Z = z |M ] ≥ (1−η/12)(1−η/2) ≥ 1−7η/12

and therefore
1

#M

X

badM,z

˛̨
˛̨ Pr
x∈A

[Z = z |M ] − 2−αn

˛̨
˛̨

≤ 1

#M

X

badM,z

„
Pr

x∈A
[Z = z |M ] + 2−αn

«
≤ 7η

12
+

η

12
=

2η

3
.

Now we can finally bound the expected total variation dis-
tance over all matchings: EM [d(Z,Uαn |M)] =

1

2#M

X

M,z

˛̨
˛̨ Pr
x∈A

[Z = z |M ] − 2−αn

˛̨
˛̨ ≤ 1

2

„
η

2
+

2η

3

«
≤ η.

Note that the above theorem works for α = O(
p
η/ log n).

We would like to make it work also for constant α. Re-
cently, we learned of a simplified proof of the lower bound
on αPM by Oded Regev, who used the Fourier methods
from our proof of the lower bound on NPM together with
the Bonami-Beckner inequality, which may resolve this.

4.3 Consequences
As we explained in Section 3, a one-way protocol with c

bits of communication and error probability ε implies the
existence of a set A ⊆ {0, 1}2n of size at least 22n−c−1, such
that the protocol’s error for a uniformly chosen x ∈ A and
matching M is at most 2ε. But then EM [d(Z, Uαn | M)]

must have been large. Hence applying Theorem 11 with
small constant η gives the lower bound on the classical com-
munication c required to compute αPM. Combining that
classical lower bound with the bounds mentioned in Sec-
tion 2, we obtain the separation stated in the introduction:

Theorem 2. For α ∈ [0, O(1/
√

log n)], the classical bounded-
error one-way communication complexity of α-Partial Match-
ing is R1

ε(αPM) = Θ(
p
n/α); the quantum bounded-error

one-way complexity is Q1
ε(αPM) = O(log(n)/α).

The link with the bounded-storage model should be clear.
Alice’s input plays the role of the uniformly distributed bit-
string X that is temporarily publicly available. The message
plays the role of the adversary’s memory, where he stores c
classical bits that depend on X. Bob’s matching plays the
role of the initial shared secret key Y . Knowing Y , the two
parties can compute the αn-bit string Z(X, Y ) from X, even
in an online fashion. The fact that from Bob’s perspective
the string Z is close to uniform if Alice’s message is too short,
corresponds to the fact that the memory-bounded adversary
in the cryptographic protocol knows hardly anything about
Z(X, Y )—even if the adversary learns Y after X ceases to
be public.

More precisely, assume w.l.o.g that the classical adversary
is deterministic and stores some c-bit function m(X) of uni-

formly distributed 2n-bit stringX, where c = σ
p
η3n/α (for

sufficiently small σ). As before, this partitions the set of all
x into 2c sets. Almost all x sit in “large” sets: at most an
η/2-fraction of the x sit in sets of size at most 22n−c−log(2/η).
Hence whenever the adversary has stored a c-bit string cor-
responding to a large set (which happens with probability
1 − η/2), we can apply Theorem 11 to guarantee that the
αn-bit string Z(X, Y ) is η/2-close to uniform, where Y is
the uniformly chosen matching. Overall, Z(X, Y ) is η-close
to uniform (even if Y is leaked afterwards).

In contrast, the quantum upper bound from Section 2
shows that storing O(log(n)/α) qubits about X gives the
adversary one bit of the string Z(X,Y ), when later Y is
revealed. Hence the distance between Z and the uniform
distribution is at least 1/2. Using k times as much memory
gives the adversary roughly k bits of Z(X,Y ), and the re-
sulting distribution will be 1 − 2−k far from uniform. This
gives the theorem stated in the introduction:

Theorem 3. Let η ∈ [0, 1] and α ∈ [0, O(
p
η/ log n)].

The extracted αn-bit string in the bounded-storage proto-
col derived from the α-Partial Matching problem is η-secure
against a classical adversary with memory bound O(

p
η3n/α),

while for every positive integer k ≪ αn it is at most (1 −
2−k)-secure against an adversary with O(k log(n)/α) qubits.

So far, we have proved that if the 2n-bit string X is uni-
formly distributed over a set A with |A| ≥ 22n−c−1 (i.e.,
a flat distribution on A), then Z(X, Y ) is close to uniform
even knowing Y , where Y is the uniformly chosen matching.
By a result of Chor and Goldreich [10, Lemma 5] based on
the fact that any distribution can be thought of as a convex
combination of flat distributions, we can conclude that the
same result is true in the more general situation when X
has min-entropy greater than 2n− c− 1 and hence conclude
the result about extractors mentioned in Section 1.2.2.

Similarly, in the setting of privacy amplification, Alice’s
input plays the role of the shared random variable X, the



message in the communication protocol plays the role of the
prior partial information that the adversary has about X
(which is upper bounded by the communication c) and Bob’s
matching plays the role of the independent uniform seed Y .
The fact that Bob’s view about the string Z (which is the
new secret key) is close to uniform when Alice’s message is
short, means that any adversary that has full knowledge of
Y and partial information about X bounded by c, knows
hardly anything about the string Z(X,Y ).
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