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at our disposal an algorithm Fi that omputes the bit fi with two-sided error: if fiis 1 then the algorithm outputs 1 with probability, say, at least 9=10, and if fi = 0then it outputs 0 with probability at least 9=10. Grover's algorithm is no longerappliable in this bounded-error setting, at least not diretly, beause the errorsin eah step will quikly add up to something unontrollably large. Aordingly,we need to do something di�erent to get a quantum searh algorithm that workshere. We will measure the omplexity of our quantum searh algorithms by thenumber of times they all the underlying algorithms Fi. Clearly, the 
(pn) lowerbound for the standard error-less searh problem, due to Bennett, Bernstein,Brassard, and Vazirani [4℄, also applies to our more general setting. Our aim isto give a mathing upper bound.An obvious but sub-optimal quantum searh algorithm is the following. Byrepeating Fi k = O(logn) times and outputting the majority value of the koutomes, we an ompute fi with error probability at most 1=100n. If we thenopy the answer to a safe plae and reverse the omputation to lean up (most of)the workspae, then we get something that is suÆiently \lose" to perfet oraleaess to the fi bits to just treat it as suh. Now we an apply Grover's algorithmon top of this, and beause quantum omputational errors add linearly [5℄, theoverall di�erene with perfet orale aess will be negligibly small. This solvesthe bounded-error quantum searh problem using O(pn logn) repetitions of theFi's, whih is an O(logn)-fator worse than the lower bound. Below we will referto this algorithm as \the simple searh algorithm".A relatively straightforward improvement over the simple searh algorithm isthe following. Partition the searh spae into n= log2 n bloks of size log2 n eah.Pik one suh blok at random.We an �nd a potential solution (an index j in thehosen blok suh that fj = 1, if there is suh a j) in omplexity O(logn log logn)using the simple searh algorithm, and then verify that it is indeed 1 with er-ror probability at most 1=n using another O(logn) invoations of Fj . ApplyingGrover searh on the spae of all n= log2 n bloks, we obtain an algorithm withomplexity O(qn= log2 n) � O(logn log logn+ logn) = O(pn log logn).A further improvement omes from doing the splitting reursively: we anuse the improved upper bound to do the omputation of the \inner" bloks,instead of the simple searh algorithm. Using T (n) to denote the omplexity onsearh spae of size n, this gives us the reursionT (n) � d�T (log2 n)r nlog2 n + logn�for some onstant d > 0. This reursion resolves to omplexity O(pn � log� n)for some onstant  > 0. It is similar to (and inspired by) the ommuniationomplexity protool for the disjointness problem of H�yer and de Wolf [11℄.Apart from being rather messy, this improved algorithm is still not optimal.The main result of this paper is to give a relatively lean algorithm that uses theoptimal number O(pn) of repetitions to solve the bounded-error searh problem.Our algorithm uses a kind of \arrot-and-stik" approah that may be of moregeneral interest. Roughly speaking, it starts with a uniform superposition of all



Fi. It then ampli�es all branhes of the omputation that give answer 1. Thesebranhes inlude solutions, but they also inlude \false positives": branhes or-responding to the 1=10 error probability of Fi's where fi = 0. We then \pushthese bak" by testing whether a 1-branh is a real positive or a false one (i.e.,whether fi = 1 or not) and removing most of the false ones. Interleaving theseamplify and push-bak steps properly, we an amplify the weight of the solutionsto a onstant using O(pn) repetitions. At this point we just do a measurement,see a potential solution j, and verify it lassially by running Fj a few times.As an appliation of our bounded-error quantum searh algorithm, in Se-tion 4 we give optimal quantum algorithms for onstant-depth AND-OR trees inthe query omplexity setting. For any onstant d, we need only O(pN) queriesfor the d-level AND-OR tree, improving upon the earlier O(pN(logN)d�1) algo-rithms of Buhrman, Cleve, and Widgerson [9℄. Mathing lower bounds of 
(pN)were already shown for suh AND-OR trees, using Ambainis' quantum adversarymethod [1, 2℄. Finally, in Setion 5 we indiate how the ideas presented here anbe ast more generally in terms of amplitude ampli�ation.2 PreliminariesHere we briey sketh the basis and notation of quantum omputation, referringto the book by Nielsen and Chuang [12℄ for more detail. An m-qubit state is alinear ombination of all lassial m-bit statesj�i = Xi2f0;1gm �ijii;where jii denotes the basis state i (a lassial m-bit string), the amplitude �i isa omplex number, and Pi j�ij2 = 1. We view j�i as a 2m-dimensional olumnvetor. A measurement of state j�i will give jii with probability j�ij2, and thestate will then ollapse to the observed jii. A non-measuring quantum operationorresponds to applying a unitary (= linear and norm-preserving) transformationU to the vetor of amplitudes. If j�i and j i are quantum states on m and m0qubits, respetively, then the two-register state j�i 
 j i = j�ij i orrespondsto the 2m+m0-dimensional vetor that is the tensor produt of j�i and j i.The setting of query omplexity is as follows. For input x 2 f0; 1gn, a queryorresponds to the unitary transformation O that maps ji; b; zi ! ji; b � xi; zi.Here i 2 [n℄ and b 2 f0; 1g; the z-part orresponds to the workspae, whihis not a�eted by the query. A T -query quantum algorithm has the form A =UTOUT�1 � � �OU1OU0, where the Uk are unitary transformations, independentof x. This A depends on x only via the T appliations of O. The algorithmstarts in initial all-zero state j0i and its output (whih is a random variable) isobtained from observing some dediated part of the �nal superposition Aj0i.



3 Optimal Quantum Algorithm for Bounded-Error SearhIn this setion we desribe our quantum algorithm for bounded-error searh.The following two fats generalize, respetively, the Grover searh and the error-redution used in the algorithms we skethed in the introdution.Fat 1 (Amplitude ampliation [8℄) Let S0 be the unitary that puts a `-' infront of the all-zero state j0i, and S1 be the unitary that puts a `-' in front ofall basis states whose last qubit is j1i. Let Aj0i = sin(�)j�1ij1i + os(�)j�0ij0iwhere angle � is suh that 0 � � � �=2 and sin2(�) equals the probability that ameasurement of the last register of state Aj0i yields a '1'. Set G = �AS0A�1S1.Then GAj0i = sin(3�)j�1ij1i+ os(3�)j�0ij0i.Amplitude ampli�ation is a proess that is used in many quantum algo-rithms to inrease the suess probability. Amplitude ampli�ation e�etivelyimplements a rotation by an angle 2� in a two-dimensional spae (a spae di�er-ent from the Hilbert spae ated upon) spanned by j�1ij1i and j�0ij0i. Note thatwe an always apply amplitude ampli�ation regardless of whether the angle �is known to us or not.Fat 2 (Error-redution) Suppose Aj0i = ppj�bijbi + p1� pj�1�bij1 � bi,where b 2 f0; 1g and p � 9=10. Then using O(log(1=")) appliations of Aand majority-voting, we an build a unitary E suh that Ej0i = pqj bijbi +p1� qj 1�bij1 � bi with q � 1 � ", and j b=1�bi possibly of larger dimensionthan j�b=1�bi (beause of extra workspae).We will reursively interleave these two fats to get a quantum searh algo-rithm that searhes the spae f1; : : : ; fn 2 f0; 1g. We assume eah fi is omputedby unitary Fi with suess probability at least 9=10. Let � = fj : fj = 1g be theset of solutions, and t = j� j its size (whih is unknown to our algorithm). Thegoal is to �nd an element in � if t � 1, and to output `no solutions' if t = 0.We will build an algorithm that has a superposition of all j 2 [n℄ in its �rstregister, a growing seond register that ontains workspae and other junk, anda 1-qubit third register indiating whether something is deemed a solution ornot. The algorithm will suessively inrease the weight of the basis states thatsimultaneously have a solution in the �rst register and a 1 in the third.Consider an algorithm A that runs all Fi one in superposition, produingthe state Aj0i, whih we rewrite as1pn nXi=1 jii�ppij i;1ij1i+p1� pij i;0ij0i� = sin(�)j�1ij1i+ os(�)j�0ij0i;where pi is the probability that Fi outputs 1, the states j i;bi desribe theworkspae of the Fi, and sin(�)2 =Pni=1 pi � 9t=10n.The idea is to apply a round of amplitude ampli�ation to A to amplify thej1i-part from sin(�) to sin(3�). This will amplify both the good states jjij1i forj 2 � and the \false positives" jjij1i for j 62 � by a fator of sin(3�)= sin(�) � 3



(here we didn't write the seond register). We then apply an error-redution stepto redue the amplitude of the false positives, setting \most" of its third registerto 0. These two steps together form a new algorithm that puts almost 3 timesas muh amplitude on the solutions as A does, and that puts less amplitude onthe false positives than A. We then repeat the amplify-redue steps on this newalgorithm to get an even better algorithm, and so on.Let us be more preise. Our algorithm will onsist of a number of rounds. Inround k we will have a unitary Ak that produesAkj0i = �kj�kij1i+ �kj� kij1i+q1� �2k � �2kjHkij0i;where �k; �k are non-negative reals, j�ki is a unit vetor whose �rst register onlyontains j 2 � , j� ki is a unit vetor whose �rst register only ontains j 62 � ,and jHki is a unit vetor. If we measure the �rst register of the above state, wewill see a solution (i.e. some j 2 � ) with probability at least �2k. A1 is the abovealgorithm A, whih runs the Fi in superposition. Initially, �21 � 9t=10n sineeah solution ontributes at least 9=10n. We want to make the good amplitude�k grow by a fator of almost 3 in eah round.Amplitude ampli�ation step. For eah round k, de�ne �k 2 [0; �=2℄ bysin(�k)2 = �2k + �2k. Applying amplitude ampli�ation (Gk = �AkS0A�1k S1)gives us the state GkAk j0i, whih we may write assin(3�k)sin(�k) �kj�kij1i+ sin(3�k)sin(�k) �kj� kij1i+s1�� sin(3�k)sin(�k) �2 (�2k + �2k)jHkij0i:We applied Ak twie and A�1k one, so the omplexity goes up by a fator of 3.Error-redution step. Conditional on the qubit in the third register being1, the error-redution step Ek now does majority voting on O(k) runs of the Fj(for all j in superposition) to deide with error at most 1=2k+5 whether fj = 1.It adds one 0-qubit as the new third register and maps (ignoring its workspae,whih is added to the seond register)Ekjjij1ij0i = ajk jjij1ij1i+q1� a2jk jjij1ij0iEkjjij0ij0i = jjij0ij0iwhere a2jk � 1 � 1=2k+5 if fj = 1 and a2jk � 1=2k+5 if fj = 0. This way, Ekremoves most of the false positives.Putting Ak+1 = EkGkAk and de�ning �k+1, �k+1, j�k+1i, j� k+1i, and jHk+1iappropriately, we now haveAk+1j0i = �k+1j�k+1ij1i+ �k+1j� k+1ij1i+q1� �2k+1 � �2k+1jHk+1ij0i:



Here the seond register has grown by the workspae used in the error-redutionstep Ek, as well as by the qubit that previously was the third register. The goodamplitude has grown in the proess:�k+1 � �k sin(3�k)sin(�k) q1� 1=2k+5:Sine x� x3=6 � sin(x) � x, we havesin(3�k)sin(�k) � 3� 9�2k=2:Aordingly, as long as �k is small, �k will grow by a fator of almost 3 in eahround. On the other hand, the weight of the false positives goes down rapidly:�k+1 � �k sin(3�k)sin(�k) 1p2k+5 :We now analyze the number m of rounds that we need to make the good am-plitude large. In general, we have sin(�k)2 = �2k + �2k , hene �2k � 2(�2k + �2k) forthe domain we are interested in. Here �2k � 9k�1�21 and �2k � 110 (9=26)k�1. Notem�1Xk=1 �2k � 2m�1Xk=1 �2k + �2k� 2m�1Xk=1 9k�1�21 + 2m�1Xk=1 110(9=26)k�1� 2 � 9m�1�21 + 1=4:Therefore, m rounds of the above proess ampli�es the good amplitude �k to�m � �1 m�1Yk=1 sin(3�k)sin(�k) q1� 1=2k+5� �1 m�1Yk=1 �3� 9�2k=2� �1� 1=2k+5�= �13m�1 m�1Yk=1 �1� 3�2k=2� �1� 1=2k+5�� �13m�1 1� 32 m�1Xk=1 �2k � m�1Xk=1 12k+5!� �13m�1�1� 32(2 � 9m�1�21 + 1=4)� 1=16�� �13m�1 �1=2� 3 � 9m�1�21� :



In partiular, whenever the (unknown) number t of solutions lies in the interval[n=9m+1; n=9m℄, equivalently 9m 2 [n=9t; n=t℄, then we have13mp10 �r 9t10n � �1 �r tn � 13m :This implies �m � 0:04;so the probability of seeing a solution after m rounds is at least 0:0016. Byrepeating this lassially a onstant number of times, say 1000 times, we anbring the suess probability lose to 1 (note to avoid onfusion: these 1000repetitions are not part of the de�nition of Am itself).The omplexity Ck of the operation Ak, in terms of number of repetitions ofthe Fi algorithms, is given by the reursionC1 = 1 and Ck+1 = 3Ck +O(k);where the 3Ck is the ost of amplitude ampli�ation and O(k) is the ost oferror-redution. This implies Cm = O(Pm�1k=1 k � 3m�k�1) = O(3m):We now give the full algorithm when the number of solutions is unknown:Algorithm: Quantum searh on bounded-error inputs1. for m = 0 to dlog9(n)e � 1 do:(a) run Am 1000 times(b) verify the 1000 measurement results, eah by O(logn) runs of the orre-sponding Fj() if a solution has been found, then output a solution and stop2. Output `no solutions'This �nds a solution with high probability if one exists. The omplexity isdlog9(n)e�1Xm=0 1000 �O(3m) + 1000 � O(logn) = O(3log9(n)) = O(pn):If we know that there is at least one solution but we don't know how many thereare, then, using a modi�ation of our algorithm as in [7℄, we an �nd a solutionusing an expeted number of repetitions in O(pN=t), where t is the (unknown)number of solutions. This is quadratially faster than lassially, and optimal forany quantum algorithm.4 Optimal Upper Bounds for AND-OR TreesA d-level AND-OR tree on N Boolean variables is a Boolean funtion that isdesribed by a depth-d�1 tree with interleaved ORs and ANDs on the nodes and



the N input variables as leaves. More preisely, a 0-level AND-OR tree is just aninput variable, and if f1; : : : ; fn all are d-level AND-OR trees onm variables, eahwith an AND (resp. OR) as root, then OR(f1; : : : ; fn) (resp. AND) is a (d+1)-level AND-OR tree onN = nm variables. AND-OR trees an be onverted easilyinto OR-AND trees and vie versa using De Morgan's laws, if we allow negationsto be added to the tree.Consider the two-level tree on N = n2 variables with an OR as root, ANDsas its hildren, and fanout n in both levels. Eah AND-subtree an be quantumomputed by Grover's algorithm with one-sided error using O(pn) queries (welet Grover searh for a `0', and output 1 if we don't �nd any), and the value ofthe OR-AND tree is just the OR of those n values. Aordingly, the onstrutionof the previous setion gives an O(pn � pn) = O(pN) algorithm with two-sidederror. This is optimal up to a onstant fator [1℄.More generally, for d-level AND-OR trees we an apply the above algorithmreursively to obtain an algorithm with O(d�1pN) queries. Here  is the on-stant hidden in the O(�) of the result of the previous setion. For eah �xedd, this omplexity is O(pN), whih is optimal up to a onstant fator [2℄. Itimproves upon the O(pN(logN)d�1) algorithm given in [9℄.Our query omplexity upper bound also implies that the minimal degreeamong N -variate polynomials approximating AND-OR is O(pN) [3℄. Whetherthis upper bound on the degree is optimal remains open. The best known lowerbound for the 2-level ase is 
(N1=4plogN) [13℄.5 Amplitude Ampli�ation with Imperfet Veri�erIn this setion we view our onstrution in a more general light.Suppose we are given some lassial randomized algorithm A that sueedsin solving some problem with probability p. In addition, we are given a Booleanfuntion � that takes as input an output from algorithm A, and outputs whetherit is a solution or not. Then, we may �nd a solution to our problem by repetition.We �rst apply algorithm A, obtaining some andidate solution, whih we thengive as input to the veri�er �. If � outputs that the andidate indeed is a solution,we output it and stop, and otherwise we repeat the proess by reapplying A.The probability that this proess terminates by outputting a solution within the�rst �( 1p ) iterations of the loop, is lower bounded by a onstant.A quantum analogue of boosting the probability of suess is to boost theamplitude of being in a ertain subspae of a Hilbert spae. Thus far, amplitudeampli�ation [6℄ has assumed that we are given a perfet veri�er �: whenever aandidate solution is found, we an determine with ertainty whether it is a solu-tion or not. Formally, we model this by letting � be omputed by a deterministilassial subroutine or an exat quantum subroutine.The main result of this paper may be viewed as an adaptation of amplitudeampli�ation to the situation where the veri�er is not perfet, but sometimesmakes mistakes. Instead of a deterministi subroutine for omputing �, we are



given a bounded-error randomized subroutine, and instead of an exat quan-tum subroutine, we are given a bounded-error quantum subroutine. Previously,the only known tehnique for handling suh ases has been by straightforwardsimulation of a perfet veri�er: onstrut a subroutine for omputing � with er-ror 12k by repeating a given bounded-error subroutine of order �(k) times andthen use majority voting. Using suh diret simulations, we may onstrut goodbut sub-optimal quantum algorithms, like the O(pn logn) query algorithm forquantum searh of the introdution. Here, we have introdued a modi�ation ofthe amplitude ampli�ation proess that allows us to eÆiently deal with im-perfet veri�ers. Essentially, our result says that imperfet veri�ers are as goodas perfet veri�ers (up to a onstant multipliative fator in the omplexity).AknowledgmentsWe thank Rihard Cleve for useful disussions, as well as for hosting MM andRdW at the University of Calgary, where most of this work was done.Referenes1. A. Ambainis. Quantum lower bounds by quantum arguments. In Proeedings of32nd ACM STOC, pages 636{643, 2000.2. H. Barnum and M. Saks. A lower bound on the quantum query omplexity ofread-one funtions. quant-ph/0201007, 3 Jan 2002.3. R. Beals, H. Buhrman, R. Cleve, M. Mosa, and R. de Wolf. Quantum lowerbounds by polynomials. In Proeedings of 39th IEEE FOCS, pages 352{361, 1998.4. C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknessesof quantum omputing. SIAM Journal on Computing, 26(5):1510{1523, 1997.5. E. Bernstein and U. Vazirani. Quantum omplexity theory. SIAM Journal onComputing, 26(5):1411{1473, 1997.6. G. Brassard and P. H�yer. An exat quantum polynomial-time algorithm for Si-mon's problem. In Proeedings of Fifth Israeli Symposium on Theory of Computingand Systems (ISTCS'97), pages 12{23, 1997.7. M. Boyer, G. Brassard, P. H�yer, and A. Tapp. Tight bounds on quantum searh-ing. Fortshritte der Physik, 46(4{5):493{505, 1998.8. G. Brassard, P. H�yer, M. Mosa, and A. Tapp. Quantum amplitude ampli�ationand estimation. In Lomonao, S. J., Jr. and Brandt, H. E. (eds.): Quantum Com-putation and Quantum Information: A Millennium Volume. AMS ContemporaryMathematis Series, 305:53{74, 2002.9. H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. lassial ommuniationand omputation. In Proeedings of 30th ACM STOC, pages 63{68, 1998.10. L. K. Grover. A fast quantum mehanial algorithm for database searh. InProeedings of 28th ACM STOC, pages 212{219, 1996.11. P. H�yer and R. deWolf. Improved quantum ommuniation omplexity bounds fordisjointness and equality. In Proeedings of 19th Annual Symposium on TheoretialAspets of Computer Siene (STACS'2002), Leture Notes in Computer Siene,Vol. 2285, pages 299{310. Springer-Verlag, 2002.12. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.Cambridge University Press, 2000.



13. Y. Shi. Approximating linear restritions of Boolean funtions. Unpublishedmanusript, 2002.


