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Abstract

We show that quantum algorithms can be used to re-prove a classical theorem in approxi-
mation theory, Jackson’s Theorem, which gives a nearly-optimal quantitative version of Weier-
strass’s Theorem on uniform approximation of continuous functions by polynomials. We provide
two proofs, based respectively on quantum counting and on quantum phase estimation.

1 Introduction

In many mathematical contexts it is convenient to approximate complicated objects by simpler
ones. A typical example is the approximation of arbitrary continuous functions on a closed interval
by polynomials [14]. Weierstrass’s Theorem [16] states that this can always be done. More precisely,
the real polynomials are “dense” in the space C[0, 1] of continuous real functions on the unit interval
[0, 1]: for every g ∈ C[0, 1] and ε > 0, there exists a polynomial p(x) such that |p(x)− g(x)| ≤ ε for
all x ∈ [0, 1].

Bernstein [4] gave a simple and elegant probabilistic construction of such approximating polyno-
mials, which can be described as follows (see also [2, after Chapter 7]). Given a function g ∈ C[0, 1]
that we want to approximate, fix an n ≥ 1 and flip n independent coins, each coming up ‘1’ with
probability x. Count the Hamming weight |w| of the resulting string w ∈ {0, 1}n, and output
g(|w|/n). Note that the expected value of |w|/n is exactly x, and with high probability we’ll have
|w|/n = x ± O(1/

√
n). But then the output g(|w|/n) should usually be a good estimator of g(x).

Indeed, consider the expected value of the output of this algorithm, as a function of x:

Bg,n(x) := Ew[g(|w|/n)] =
n
∑

k=0

(

n
k

)

2n
xk(1 − x)n−kg(k/n).

This Bg,n is a polynomial in x of degree n. Since |w|/n is probably close to x, we intuitively expect
Bg,n(x) to be close to g(x), provided g does not fluctuate too much on intervals of width 1/

√
n. To

capture this fluctuation, define the modulus of continuity of g at scale δ as

ωδ(g) := sup
x,y:|x−y|≤δ

|g(x) − g(y)|.
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This is a measure of the “smoothness” of g: the lower the value ωδ(g), the more “smooth” g is
and the smaller our approximation error should be. Now an easy argument shows that for every
x ∈ [0, 1] we have

|Bg,n(x) − g(x)| = O(ω1/
√

n(g)),

confirming the above intuition.
It is possible to reduce the error of approximation much further. An improvement of Bernstein’s

result was shown by Jackson [10]. Using trigonometric ideas, he proved

Theorem 1 (Jackson). There exists a universal constant C, such that for every g ∈ C[0, 1] and

positive integer n, there is a degree-n polynomial p satisfying |p(x) − g(x)| ≤ Cω1/n(g) for all

x ∈ [0, 1].

This quality of approximation is based on the maximum fluctuation of g at a much smaller scale
than Bernstein’s (1/n instead of 1/

√
n). Up to the constant factor, Jackson’s Theorem is optimal

for approximation guarantees based on the modulus of continuity. Several different proofs of the
theorem are known, see for instance [5, 7].

In this paper we show how one can implement Bernstein’s idea with a quantum algorithm,
improving its error bound to the one in Jackson’s Theorem. Our idea is quite simple: we replace
Bernstein’s “algorithm”, which basically counts the number of ones in a bitstring of n coin flips,
with a quantum counting algorithm. It was shown by Brassard et al. [6] that quantum algorithms
can perform (approximate) counting more efficiently than classical algorithms, and this yields an
improvement over Bernstein’s approach.

Let us sketch our proof strategy in somewhat greater detail. To begin, we perform N = n2 x-
biased coin flips instead of n, yielding a string w ∈ {0, 1}N . Now we have |w|/N = x±O(1/

√
N) =

x ± O(1/n) with high probability, so |w|/N is a much more precise estimator of x than the |w|/n
of Bernstein’s proof. We then run a quantum counting algorithm making n/2 “quantum queries”
to w. This algorithm computes an estimator A of |w|/N , such that with high probability

|A − |w|/N | ≤ O(1/n).

Accordingly, with high probability A also approximates x within error O(1/n). Then intuitively
the function

Qg,N (x) := Ew,A[g(A)]

should approximate g up to error roughly ω1/n(g). The expectation in the above expression is over
both the choice of w, and over the randomness generated by the measurements in the quantum
counting algorithm that runs on w and outputs A.

It is well known that the acceptance probability of an n/2-query quantum algorithm is an N -
variate multilinear polynomial (in the bits of w) of degree at most n (see [3]). Taking the expectation
over w turns this into a univariate polynomial in x of degree at most n, since the expectation of a
monomial wi1 · · ·wid is exactly xd. Working out the details (Section 3), Qg,N is indeed a degree-n
polynomial that approximates g within error bound O(ω1/n(g)). This reproves Jackson’s theorem.

As we explain in the next section, efficient quantum counting relies on a more basic procedure
called quantum phase estimation [11]. In Section 4 we give a second proof of Jackson’s Theorem
that is directly based on phase estimation. This naturally yields a proof of the trigonometric version
of Jackson’s Theorem (Theorem 2 below), but in fact the two versions are equivalent (see [14]). A
trigonometric polynomial of degree n can be defined in two equivalent ways: as a sum of the form
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p(x) =
∑n

k=−n αke
2πixk, or as a sum of the form p(x) = a0 +

∑n
k=1 (ak cos(2πkx) + bk sin(2πkx)),

where αk, ak, bk are scalars, possibly complex.1 A trigonometric polynomial is real if it maps
real numbers to real numbers, or equivalently, if the coefficients ak, bk are all real. Note that a
trigonometric polynomial is a 1-periodic continuous function. The trigonometric polynomials are
dense in the set of all such functions, and the trigonometric version of Jackson’s Theorem gives a
quantitative refinement of this fact:

Theorem 2 (Jackson, trigonometric version). There exists a universal constant C, such that for

every 1-periodic function g ∈ C[R] and positive integer n, there is a degree-n real trigonometric

polynomial p satisfying |p(x) − g(x)| ≤ Cω1/n(g) for all x ∈ R.

The best constant was determined by Korneichuk, who showed that every 1-periodic g ∈ C[R]
can be approximated by a degree-n trigonometric polynomial with error ε < ω1/2n(h), which is
essentially optimal.2

Though the ideas used in our two approaches to Jackson’s Theorem are closely related, we feel
both have merit. The one based on quantum counting (Section 3) is a quantum generalization of
Bernstein’s proof, while the one based on phase estimation (Section 4) is a more “direct” approach
since phase estimation is the basis for quantum counting. The phase estimation approach is in fact
closely related to Jackson’s original proof, as we explain in Section 5.

Finally, let us mention that this paper fits in a sequence of recent applications of quantum
computational techniques establishing or casting new light on results that have nothing to do with
quantum computing itself. We refer to [8] for a survey.

2 Preliminaries: Phase estimation and quantum counting

Here we sketch how phase estimation works and how it can be used to do approximate quantum
counting. The presentation is based on Brassard et al. [6]; the phase estimation algorithm is due
to Kitaev [11].

2.1 Phase estimation

Suppose we can apply a certain unitary U as often as we want, and we are given one of U ’s
eigenvectors, |u〉 with unknown eigenvalue e2πix for x ∈ [0, 1). We would like to learn x. Quantum
phase estimation allows us to approximate x up to any desired precision, as described below. It will
be convenient to define the following distance for approximations: d(x̃, x) := minc∈Z |c + x − x̃| ∈
[0, 1/2], so 2πd(x̃, x) is the shortest distance along the unit circle from e2πix to e2πix̃.

We start with a 2-register quantum state, where the first register contains the uniform super-
position over M basis states, and the second contains the eigenvector |u〉:

1√
M

M−1
∑

y=0

|y〉 ⊗ |u〉.

1The equivalence of the definitions follows from Euler’s formula eiθ = cos θ + i sin θ.
2By [12, Theorem 6.2.2], every 2π-periodic h ∈ C[R] can be approximated by a degree-n trigonometric polynomial

with error ε < ωπ/n(h); we have restated this here for 1-periodic functions. The error bound is essentially optimal:
for every n and α > 0, there is a 2π-periodic function h such that every degree-n polynomial differs from h by at
least (1 − 1/2n − α)ωπ/n(h) (see [12, Lemma 6.2.3]).
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Now, conditioned on the first register’s value y, apply U to the second register y times, i.e., map
|y〉 ⊗ |u〉 7→ e2πixy|y〉 ⊗ |u〉. This gives

1√
M

M−1
∑

y=0

e2πixy|y〉 ⊗ |u〉.

From now on we ignore the second register. Apply the inverse quantum Fourier transform over ZM

to get

1√
M

M−1
∑

y=0

e2πixy 1√
M

M−1
∑

z=0

e−2πiyz/M |z〉 =

M−1
∑

z=0

αz|z〉, where αz =
1

M

M−1
∑

y=0

e2πiyd(z/M,x).

If we measure this, we get a random variable Z ∈ {0, . . . ,M − 1} with distribution

Pr[Z = z] = |αz|2 =

{

1 if d(z/M, x) = 0
sin(Md(z/M,x)π)2

M2 sin(d(z/M,x)π)2 otherwise
(1)

where we used the identities
∑M−1

y=0 ry = (1 − rM )/(1 − r) and |1 − eiφ| = 2| sin(φ/2)|. The

distribution Pr[Z = z] is peaked at values of z where d(z/M, x) is small, so we can use X̃ := Z/M
as our estimate of x. The probability of outcome X̃ = x̃ falls off quadratically with its distance
from x: if x̃ 6= x then (using sin(φ) ≥ 2φ/π for φ ∈ [0, π/2])

Pr[X̃ = x̃] = Pr[Z = x̃M ] ≤ 1

4M2d(x̃, x)2
. (2)

For convenience, we let 1/0 = ∞ and consider Eq. (2) to hold vacuously when d(x̃, x) = 0.

2.2 Quantum counting

Suppose we have an input w ∈ {0, 1}N whose Hamming weight |w| we want to estimate, using
a quantum query algorithm that can access w by means of the query operator Ow, which maps
|i〉 7→ (−1)wi |i〉. Then we can perform approximate counting using phase estimation as follows.

For simplicity assume N = 2n. Define a unitary U = −H⊗nO0H
⊗nOw, where O0 is the unitary

that puts a ‘−’ in front of the all-0 state, and H is the Hadamard transform. This U is known
as the Grover iterate, and is the crucial ingredient in the quantum search algorithm [9, 6]. Let
|Ψ1〉 = 1√

|w|
∑

i:wi=1 |i〉 and |Ψ0〉 = 1√
N−|w|

∑

i:wi=0 |i〉 be the uniform superpositions over the 1-

bits and the 0-bits of w, respectively. One can show [6] that U has the following two orthogonal
eigenvectors, with corresponding eigenvalues:

|Ψ+〉 =
1√
2

(|Ψ1〉 + i|Ψ0〉) with λ+ = e2iθ,

|Ψ−〉 =
1√
2

(|Ψ1〉 − i|Ψ0〉) with λ− = e−2iθ,

where θ = arcsin(
√

|w|/N ) ∈ [0, π/2].
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Note that |w|/N = sin(θ)2. We want to estimate θ by means of phase estimation on U . For this
we would need an eigenvector of U with eigenvalue related to θ. We cannot easily construct one of
the two eigenvectors |Ψ+〉 and |Ψ−〉. However, the uniform superposition

|u〉 =
1√
N

N
∑

i=1

|i〉 =

√

|w|
N

|Ψ1〉 +

√

N − |w|
N

|Ψ0〉

is a linear combination of |Ψ+〉 and |Ψ−〉. This |u〉 is independent of w and easy to construct.
We can analyze this as if the second register contains a mixture of the two eigenvectors. Thus,
doing phase estimation on U with starting vector |u〉, we will be estimating either θ or −θ. Since
sin(θ)2 = sin(−θ)2, we don’t care whether we estimate θ or −θ (assume the first one for simplicity).
Phase estimation with |u〉 as starting vector produces a random variable Z ∈ {0, . . . ,M − 1}, such
that the distribution of Z/M is peaked around θ/π. Accordingly, we use θ̃ := πZ/M as our estimate
of θ, and A := sin(θ̃)2 as our estimator of |w|/N = sin(θ)2. Note that the number of queries of this
procedure is the number of applications of U , which is M − 1. Eq. (2) gives a tradeoff between the
number of queries and the error in our approximation of θ, which translates into an error in our
approximation of |w|/N . Brassard et al. [6] work out various points on this tradeoff in detail.

3 Jackson’s Theorem by quantum counting

In this section we provide the details of the idea sketched in the Introduction, combining Bernstein’s
probabilistic approach with a quantum counting algorithm. We first present a direct approach that
does not quite work; we then explain how a simple modification allows the proof to go through.

We want to construct an approximating polynomial of degree n for a given continuous function
g ∈ C[0, 1]. We start by setting N := n2 and letting w ∈ {0, 1}N be a string obtained by flipping N
coins, each with probability x of ‘1’. Since its Hamming weight |w| is binomially distributed with
expectation xN and variance x(1−x)N , we have E[|x−|w|/N |] ≤

√

Var[|w|/N ] =
√

x(1 − x)/N =
O(1/n). We now want to estimate |w|/N using quantum counting. As explained in Section 2, we
define θ := arcsin(

√

|w|/N ), so that sin(θ)2 = |w|/N . Letting M > 1 be an integer to be fixed
later, quantum counting with M − 1 queries produces a random variable Z ∈ {0, . . . ,M − 1}, such
that by Eq. (2),

Pr[Z = z] ≤ 1

4M2d(z/M, θ/π)2
,

where d(·, ·) is as defined in Section 2.1. Since Z/M is concentrated (with respect to the distance
d(·, ·)) around θ/π, we can use θ̃ := πZ/M as our estimate of θ, and A := sin(θ̃)2 as our estimate
of |w|/N . We claim that the angles θ̃, θ are likely to be close “modulo π”. To see this, consider the
quantity ξ := E[π · d(θ̃/π, θ/π)]:

ξ =

M−1
∑

z=0

Pr[Z = z] · π · d(z/M, θ/π) ≤ 2π

M
+

∑

z∈{0,...,M−1},
|z−Mθ/π|≥1

π

4M2d(z/M, θ/π)

= O

(

1

M
+

1

M

M
∑

t=1

1

t

)

= O

(

log M

M

)

. (3)
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The function f(t) = sin(t)2 is π-periodic and its derivative satisfies |f ′(t)| = | sin(2t)| ≤ 1. Thus

| sin(θ̃)2 − sin(θ)2| ≤ π · d(θ̃/π, θ/π),

and hence also

E[|A − |w|/N |] = E[| sin(θ̃)2 − sin(θ)2|] ≤ E[π · d(θ̃/π, θ/π)] = ξ = O((log M)/M).

Define a function p : [0, 1] → R by

p(x) := Ew,A[g(A)] =
∑

a

Ew[Pr[A = a | w]] · g(a), (4)

where Pr[w] = x|w|(1 − x)N−|w| depends on x, and Pr[A = a | w] is the probability that quantum
counting on input w yields estimate a for |w|/N . The following lemma from [3] implies that for
any fixed value a, Pr[A = a | w] is a low-degree polynomial in the N variables of w:

Lemma 1 (BBCMW). Consider a quantum algorithm that makes at most T queries to w ∈ {0, 1}N

and outputs the result of a measurement on the final state. Then the probability Pr[A = a | w] of

any specific output a is an N -variate multilinear real polynomial in w of degree at most 2T .

Each polynomial Pr[A = a | w] is a linear combination of monomials in w1, . . . , wN , of degree
at most 2T . A degree-d monomial wi1 · · ·wid has expectation Ew[wi1 · · ·wid ] =

∏d
j=1 Ew[wij ] = xd,

which is a polynomial in x of degree d. Hence each expression Ew[Pr[A = a | w]] in Eq. (4) is a
polynomial in x of degree at most 2M − 2. Then the function p defined in Eq. (4) is itself also a
polynomial in x of degree at most 2M − 2. Choosing M := n/2 + 1, p has degree at most n.

Next we argue that p approximates g fairly well. First, recall the definition of ωδ(g) from the
Introduction; we have the elementary property ωδ+δ′(g) ≤ ωδ(g) + ωδ′(g), and therefore ωcδ(g) ≤
⌈c⌉ · ωδ(g). Now, for every x ∈ [0, 1] we bound

|p(x) − g(x)| ≤ Ew,A[|g(A) − g(x)|]
≤ Ew,A[ω|A−x|(g)]

≤ Ew,A[ω|A−|w|/N |(g) + ω|x−|w|/N |(g)]

≤ Ew,A

[

⌈|A − |w|/N | · (ξ)−1⌉
]

ωξ(g) + Ew

[

⌈|x − |w|/N | · n⌉
]

ω1/n(g)

≤ O(ωξ(g) + ω1/n(g)) (5)

≤ O(ωlog n/n(g)).

This is already substantially better than Bernstein’s error bound of O(ω1/
√

n(g)), but worse than
Jackson’s optimal error bound O(ω1/n(g)) by a logarithmic factor. To get rid of this factor, we
need to obtain an estimate of |w|/N with expected error O(1/n) instead of O((log n)/n).

Taking an algorithmic perspective, it is easy to see how to get better, more concentrated es-
timates: run the quantum counting procedure three times, and take the median Y of the three
estimates Z1, Z2, Z3. In order to keep the total number of queries below n/2 (and hence the degree
below n), we will now spend M := n/6 queries for each of the three runs of quantum counting,
assuming for simplicity that 6 divides n. It is not hard to show that we indeed get tighter estimates.
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First consider some value y satisfying y/M ≥ θ/π. For Y = y to hold, at least one of the three
values Z1, Z2, Z3 has to equal y, and another of the three has to be at least y. We compute

Pr[Y = y] ≤
(

3

2

)

· Pr[Z1 = y] · Pr[Z2 ≥ y]

≤ 6
1

4M2d(y/M, θ/π)2

∑

y′≥y

1

4M2d(y′/M, θ/π)2

= O

(

1

M4d(y/M, θ/π)3

)

. (6)

Similar reasoning gives the same bound when y/M < θ/π.
Now let θ̃′ := πY/M , and let ξ′ := E[π · d(θ̃′/π, θ/π)]. By following the steps of Eq. (3) with

Y in place of Z, and using the improved concentration bound for Y given by Eq. (6), we find
ξ′ = O(1/M) = O(1/n). We redefine p(x) using the new estimator θ̃′ in place of θ̃. Following
Eq. (5), we have |p(x) − g(x)| = O(ωξ′(g) + ω1/n(g)) = O(ω1/n(g)). This proves Theorem 1.

4 Jackson’s Theorem by phase estimation

As explained in Section 2, quantum counting is based on quantum phase estimation. In this section
we describe an alternative way to prove (the trigonometric version of) Jackson’s theorem. We will
no longer estimate the weight of a string of x-biased coin flips, but instead apply quantum phase
estimation directly to a unitary which “encodes” x.

Suppose we apply phase estimation to the 1 × 1 unitary U = [e2πix] to estimate x. Since U is
1-dimensional, every vector |u〉 is an eigenvector with eigenvalue e2πix. As explained in Section 2,
using up to M − 1 applications of U , phase estimation produces a Z ∈ {0, . . . ,M − 1}, distributed
as in Eq. (1), so that Z/M is concentrated around x (with respect to the distance d(·, ·)). Let
M := n/3 + 1, assuming for simplicity that 3 divides n. Suppose we apply phase estimation three
times, getting outcomes Z1, Z2, Z3 ∈ {0, . . . ,M − 1}, and we define Y as the median of these 3
outcomes. Call the corresponding random variable Y .

In order to approximate the continuous 1-periodic function g ∈ C[R], consider the expected
value of a quantum algorithm that produces an estimate Y as above, and outputs g(Y/M):

p(x) := EY [g(Y/M)] =
M−1
∑

y=0

Pr[Y = y] · g(y/M).

The amplitudes of the final state of our quantum algorithm are linear combinations of e2πixk for
k ∈ {0, . . . , 3(M − 1)}. Hence the final probabilities Pr[Y = y] are trigonometric polynomials in
x of degree3 3(M − 1) = n. Accordingly, p is such a polynomial as well. Since the distribution of
Y/M is concentrated around x (with respect to d(·, ·)) and g is 1-periodic, we expect p(x) to be
close to g(x). We make this precise below. First, following the steps of Eq. (6), we find

Pr[Y = y] = O

(

1

M4d(y/M, x)3

)

.

3While the amplitudes αy are linear combinations of e2πixk for k ∈ {0, . . . , 3(M − 1)}, the probabilities are sums
of squared amplitudes αyαy , and hence are linear combinations of e2πixk with k ∈ {−3(M − 1), . . . , 3(M − 1)}.
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Let ξ′′ := EY [d(Y/M,x)]. Similarly to ξ′ in the previous section, we have ξ′′ = O(1/M) = O(1/n).
Finally, we bound

|p(x) − g(x)| ≤ EY [|g(Y/M) − g(x)|]
≤ EY [ωd(Y/M,x)(g)] (since g is 1-periodic)

≤ EY

[

⌈d(Y/M,x) · (ξ′′)−1⌉
]

ωξ′′(g)

≤ O(ωξ′′(g))

≤ O(ω1/n(g)).

This proves Theorem 2, the trigonometric version of Jackson’s Theorem.

5 Relation to classical proofs

Our approach to Jackson’s Theorem in both sections bears strong similarities with classical proofs.
The first approach, using quantum counting, was modelled on the probabilistic interpretation of
Bernstein’s polynomial approximation. The second approach, using phase-estimation, also has a
very close relation to a classical technique in approximation theory, the method of convolution with

an approximation kernel [15]. This method was employed by Jackson in his original proof [10]. We
explain this method and its relation to our proof next.

Suppose K(t) ∈ C(R), the “approximation kernel,” is a nonnegative, 1-periodic function con-
centrated around zero (mod 1), and such that

∫ 1
0 K(t)dt = 1. Then for any x ∈ R, the function

Kx(t) := K(t − x) is concentrated around x (mod 1). This suggests that, for a 1-periodic function
h(t) ∈ C(R), the convolution of h with K, i.e.,

(h ∗ K)(x) :=

∫ 1

0
h(s)K(s − x)ds,

should give a good approximation to h(x). As for degree considerations, a key fact is that, if K
is a degree-n trigonometric polynomial, then so is (h ∗ K) (see, e.g., [15, Chap. 3]). Finally, note
that the expression defining (h ∗ K)(x) is exactly E[h(x̃)], when x̃ ∈ [0, 1) is an approximation
to x drawn according to the density function Kx. Thus the convolution approach resembles the
phase-estimation approach, except that a continuous distribution is used.4

In fact, even the distribution of the estimates we derive from phase estimation is intimately
related to the approximation kernels used in Jackson’s original proof [10, 13, 7]. A classical ap-
proximation kernel is the Fejér kernel Fn : R → R (n > 0 is an integer parameter), given by

Fn(t) =
1

n

(

sin(πnt)

sin(πt)

)2

,

with Fn(0) = n for continuity. Note that Fn as defined here is 1-periodic (it is usually defined in
a 2π-periodic form). Also, Fn can be re-expressed as a trigonometric polynomial of degree n − 1.
Now we compare this to our analysis of phase estimation in Section 2. Consulting Eq. (1), if the

4Alternatively, the phase-estimation approach can also be reinterpreted as using a discrete convolution, once this
notion is made formal.
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unknown eigenvalue e2πix (x ∈ [0, 1)) satisfies Mx /∈ Z, then the estimate ỹ = Z/M to x produced
by phase estimation (z ∈ {0, . . . ,M − 1}) is distributed as

Pr[ỹ = z/M ] =
1

M2

(

sin(πM(z/M − x))

sin(π(z/M − x))

)2

=
1

M
FM (z/M − x).

We used the properties of the sine function and the definition of d(·, ·) to get this equivalent form
from Eq. (1). Hence ỹ is distributed as a discretized, renormalized Fejér kernel re-centered at x.
(If Mx ∈ Z, then Pr[ỹ = x] = 1.)

Recall that our proof required a sharper estimate than that given by plain phase estimation.
Similarly, the convolution g ∗ Fn of g with the Fejér kernel fails to give a sufficiently close approx-
imation to g to prove Jackson’s Theorem. A sharper approximation is provided by the so-called
Jackson kernel, obtained by squaring and renormalizing the Fejér kernel:

Jn(t) = cF 2
n(t), (7)

where c > 0 is chosen so that
∫ 1
0 Jn(t)dt = 1. Jackson showed that |(g∗Jn)(x)−g(x)| = O(ω1/n(g))

for all x ∈ [0, 1]. This (g∗Jn) is a trigonometric polynomial of degree 2(n−1), which can be reduced
to degree ≤ n by using J⌊n/2⌋ in place of Jn. Note how squaring and renormalizing the Fejér kernel
has the effect of sharpening its concentration; this is somewhat analogous to the sharpening we
achieve by taking medians-of-three in our quantum algorithms above.5
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[10] D. Jackson. Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale

Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung. PhD thesis,
University of Göttingen, 1911.

[11] A. Yu. Kitaev. Quantum measurements and the Abelian stabilizer problem. quant-ph/9511026,
12 Nov 1995.

[12] N. Korneichuk. Exact constants in approximation theory. Cambridge University Press, 1991.
Translated from the Russian by K. Ivanov.

[13] G. Lorentz. Approximation of Functions. Holt, Rinehart and Winston, 1966.

[14] T. Rivlin. An Introduction to the Approximation of Functions. Blaisdell Publishing Company,
1969.

[15] E. Stein and R. Shakarchi. Fourier Analysis: An Introduction. Princeton University Press,
2003.

[16] K. Weierstrass. Über die analytische Darstellbarkeit sogenannter willkürlicher Funktio-
nen reeller Argumente. In Sitzungsberichte der Königlich Preussischen Akademie der Wis-

senschaften zu Berlin, II, volume 3. 1885.

10


