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Abstract. We prove new upper bounds on the tolerable level of noise
in a quantum circuit. Our circuits consist of unitary k-qubit gates each
of whose input wires is subject to depolarizing noise of strength p, and
arbitrary one-qubit gates that are essentially noise-free. We assume the
output of the circuit is the result of measuring some designated qubit in
the final state. Our main result is that for p > 1−Θ(1/

√
k), the output

of any such circuit of large enough depth is essentially independent of its
input, thereby making the circuit useless. For the important special case
of k = 2, our bound is p > 35.7%. Moreover, if the only gate on more
than one qubit is the CNOT, then our bound becomes 29.3%. These
bounds on p are notably better than previous bounds, yet incomparable
because of the somewhat different circuit model that we are using. Our
main technique is a Pauli basis decomposition, which we believe should
lead to further progress in deriving such bounds.

1 Introduction

The field of quantum computing faces two main tasks: to build a large-scale
quantum computer, and to figure out what it can do once it exists. In general
the first task is best left to (experimental) physicists and engineers, but there is
one crucial aspect where theorists play an important role, and that is in analyzing
the level of noise that a quantum computer can tolerate before breaking down.

The physical systems in which qubits may be implemented are typically tiny
and fragile (electrons, photons and the like). This raises the following paradox:
On the one hand we want to isolate these systems from their environment as
much as possible, in order to avoid the noise caused by unwanted interaction
with the environment—so-called “decoherence”. But on the other hand we need
to manipulate these qubits very precisely in order to carry out computational
operations. A certain level of noise and errors from the environment is therefore
unavoidable in any implementation, and in order to be able to compute one
would have to use techniques of error correction and fault tolerance.

Unfortunately, the techniques that are used in classical error correction and
fault tolerance do not work directly in the quantum case. Moreover, extending
these techniques to the quantum world seems at first sight to be nearly impossi-
ble due to the continuum of possible quantum states and error patterns. Indeed,



when the first important quantum algorithms were discovered [1–4], many dis-
missed the whole model of quantum computing as a pipe dream, because it
was expected that decoherence would quickly destroy the necessary quantum
properties of superposition and entanglement.

It thus came as a great surprise when, in the mid-1990s, quantum error cor-

recting codes were developed by Shor and Steane [5–7], and these ideas later led
to the development of schemes for fault-tolerant quantum computing [8–12]. Such
schemes take any quantum algorithm designed for an ideal noiseless quantum
computer, and turn it into an implementation that is robust against noise, as long
as the amount of noise is below a certain threshold, known as the fault-tolerance

threshold. The overhead introduced by the fault-tolerant schemes is typically
modest (a polylogarithmic factor in the running time of the algorithm).

The existence of fault-tolerant schemes turns the problem of building a quan-
tum computer into a hard engineering problem: if we just manage to store our
qubits and operate upon them with a level of noise below the fault-tolerance
threshold, then we can perform arbitrarily long quantum computations. The ac-
tual value of the fault-tolerance threshold is far from determined, but will have a
crucial influence on the future of the area—the more noise a quantum computer
can tolerate in theory, the more likely it is to be realized in practice.3

The first fault-tolerant schemes were only able to tolerate noise on the order
of 10−6, which is way below the level of accuracy that experimentalists can hope
to achieve in the foreseeable future. These initial schemes have been substantially
improved in the past decade. In particular, Knill has recently developed various
schemes which, according to numerical calculations, seem to be able to tolerate
more than 1% noise [13, 14]. If we insist on provable constructions, the best
known threshold is on the order of 0.1% [15–18].

Constructions of fault-tolerant schemes provide a lower bound on the fault-
tolerance threshold. A very interesting question, which is the topic of the current
paper, is whether one can prove upper bounds on the fault-tolerance threshold.
Such bounds give an indication on how far away we are from finding optimal
fault-tolerant schemes. They can also give hints as to how one should go about
constructing improved fault-tolerant schemes. Such upper bounds are statements
of the form “any quantum computation performed with noise level higher than p
is essentially useless”, where “essentially useless” is some strong indication that
interesting quantum computations are impossible in such a model. For instance,
Buhrman et al. [19] quantify this by giving a classical simulation of such noisy
quantum computation, and Razborov [20] shows that if the computation is too
long, the output of the circuit is essentially independent of its input.

The best known upper bounds on the threshold are 50% by Razborov [20]
and 45.3% by Buhrman et al. [19]. (These bounds are incomparable because they
work in different models; see the end of this section for more details.) As one
can see, there are still about two orders of magnitude between our best upper
and lower bounds on the fault-tolerance threshold. This leaves experimentalists

3 The “fault-tolerance threshold” is actually not a universal constant, but rather de-
pends on the details of the circuit model (allowed set of gates, type of noise, etc.).



in the dark as to the level of accuracy they should try to achieve. In this paper,
we somewhat reduce this gap. So far, much more work has been spent on lower
bounds than on upper bounds. Our approach will be the less-trodden road from
above, hoping to bring new techniques to bear on this problem.

Our model. In order to state our results, we need to describe our circuit model.
We consider parallel circuits, composed of n wires and T levels of gates (see
Figure 1). We sometimes use the term time to refer to one of the T +1 “vertical
cuts” between the levels. For convenience, we assume that the number of qubits
n does not change during the computation. Each level is described by a partition
of the qubits, as well as a gate assigned to each set in the partition. Notice that
at each level, all qubits must go through some gate (possibly the identity). For
each gate the number of input qubits equals the number of output qubits.

0 1 2 3 T-2 T-1 T

Fig. 1. Parallel circuit with k = 3 and T lev-
els. Dark circles are εk-depolarizing noise, light
circles are ε1-depolarizing noise. We marked two
consistent 4-qubit sets (defined in Section 3). The
first has distance 1, the second T − 2. The upper
right qubit is the output.

We assume the circuit is
composed of k-qubit gates
that are probabilistic mix-
tures of unitary operations,
as well as arbitrary (i.e.,
all completely-positive trace-
preserving) one-qubit gates.
In particular, it is possible
to do intermediate one-qubit
measurements. We assume
the output of the circuit is
the outcome of a measure-
ment of a designated out-
put qubit in the computa-
tional basis. Finally, we as-
sume that the circuit is sub-
ject to noise as follows. Re-
call that p-depolarizing noise
on a certain qubit replaces
that qubit by the completely mixed state with probability p, and does not alter
the qubit otherwise. Formally, this is described by the superoperator E acting
on a qubit ρ as E(ρ) = (1 − p)ρ + pI/2. We assume that each one-qubit gate is
followed by at least ε1-depolarizing noise on its output qubit, where ε1 > 0 is
an arbitrarily small constant. Thus one-qubit gates can be essentially noise-free.
We also assume that each k-qubit gate is preceded by at least εk-depolarizing
noise on each of its input qubits, where εk > 1 −

√
21/k − 1 = 1 − Θ(1/

√
k).

Our results. In Section 3 we prove our main result:

Theorem 1. Fix any T -level quantum circuit as above. Then for any two states

ρ and τ , the probabilities of obtaining measurement outcome 1 at the output qubit

starting from ρ and starting from τ , respectively, differ by at most 2−Ω(T ).

In other words, for any η > 0, the probability of measuring 1 at the output qubit
of a circuit running for T = O(log(1/η)) levels is independent of the input (up



to ±η). This makes the output essentially independent of the starting state, and
renders long computations “essentially useless”.

Of special interest from an experimental point of view is the case k = 2, for
which our bound becomes about 35.7%. Furthermore, for the case in which the
only allowed two-qubit gate is the controlled-NOT (CNOT) gate, we can improve
our bound further to about 29.3%, as we show in the full version of this paper [21].
This case is interesting both theoretically and experimentally. Note also that the
CNOT gate together with all one-qubit gates forms a universal set [22]. The same
noise-bound applies if we also allow controlled-Y and controlled-Z gates.

Significance of results. First, it is known that fault-tolerant quantum computa-
tion is impossible (for any positive noise level) without a source of fresh qubits.
Our model takes care of this by allowing arbitrary one-qubit gates—in particu-
lar, this includes gates that take any input, and output a fixed one-qubit state,
for instance |0〉. This justifies our assumption that the number of qubits in the
circuit remains the same throughout the computation: all qubits can be present
from the start, since we can reset them to whatever we want whenever needed.

Second, our assumption that all k-qubit gates are mixtures of unitaries does
slightly restrict generality. Not every completely-positive trace-preserving map
can be written as a mixture of unitaries.4 However, we believe that it is still a
reasonable assumption. For instance, to the best of our knowledge, all known
fault-tolerant constructions can be implemented using such gates (in addition
to arbitrary one-qubit gates). Moreover, all known quantum algorithms obtain
their speed-up over classical algorithms by using only unitary gates.

Third, we only analyze depolarizing noise acting independently on each qubit.
Depolarizing noise is the “most symmetric” type of one-qubit noise and therefore
a natural choice for our analysis. Also, it is a relatively weak type of noise: it
is not adversarial and does not have correlations between the errors occurring
on different qubits. However, since we are proving an upper bound on the fault-
tolerance threshold, this weakness is actually a good thing, making our result
stronger. In principle one can extend our results to various other one-qubit noise
models, using an analysis similar to the one developed in Lemma 2. However,
not all noise models can actually yield a result like ours. For instance, if we
have Toffoli gates with only phaseflip errors, then we can do perfect classical
computation. Statements like Theorem 1 are just false in that case.

A more severe restriction is the assumption that the output consists of one
qubit. However, we believe that in many instances this is still a reasonable as-
sumption, for instance when the circuit is solving a decision problem. Moreover,
our results can easily be extended to the case where the output is obtained by a
measurement on a small number of qubits, instead of only one.

By allowing essentially noise-free one-qubit gates, our model addresses the
fact that gates on more than one qubit are generally much harder to implement
than one-qubit gates. It should also be noted that the exact value of the constant

4 One can implement an arbitrary gate by a unitary gate on the original qubits and
additional ancilla qubits in a fixed pure state. However, this increases the arity of
the gate, and the ancilla qubits will be affected by the noise before the unitary.



ε1 is inessential and can be chosen arbitrarily small, as this just affects the
constant in the Ω(·) of Theorem 1. In fact, ε1 > 0 is only necessary because
otherwise it would be possible to let ρ := |0〉〈0| ⊗ ρ′ and τ := |1〉〈1| ⊗ τ ′, do
nothing for T levels (i.e., apply noise-free identity gates on all wires) and then
measure the first qubit. The resulting difference between output probabilities
is 1. Instead of assuming ε1 > 0 noise, we could alternatively deal with this issue
by requiring that every path from the input to the output qubit goes through
enough k-qubit gates. Our proof can easily be adapted to this case.

Since our theorem applies to arbitrary starting states, it applies to the case
that the initial state is encoded in a good quantum error-correcting code, or is
some sort of “magic state” [23, 24]. Also in these case, the computation becomes
essentially independent of the input after sufficiently many levels.

Finally, it is interesting to note that our bound on the threshold behaves
like 1−Θ(1/

√
k). This matches what is known for classical circuits [25, 26], and

therefore probably represents the correct asymptotic behavior. Previous bounds
only achieved an asymptotic behavior of 1 − Θ(1/k) [20].

Techniques. We believe that a main part of our contribution is introducing a new
technique for obtaining upper bounds on the fault-tolerance threshold. Namely,
we use a Pauli basis decomposition in order to track the state of the computation.
A finer analysis of the Pauli coefficients might improve the bounds we achieve
here, and possibly obtain bounds for other computational models.

Related work. The work most closely related to ours is that of Razborov [20].
There, he proves an upper bound of εk = 1−1/k on the fault-tolerance threshold.
On one hand, his result is stronger than ours as it allows arbitrary k-qubit
gates and not just mixtures of unitaries. Razborov also has a second result,
namely the trace distance between the two states obtained by applying the
circuit to starting states ρ and τ , respectively, is upper bounded by n2−Ω(T ).
Hence even the results of arbitrary n-qubit measurement on the full final state
become essentially independent of the initial state after T = O(log n) levels.
On the other hand, the value of our bound is better for all values of k, and
we also allow essentially noise-free one-qubit gates. Hence the two results are
incomparable. Razborov’s proof is based on tracking how the trace distance
evolves during the computation. Our proof is similar in flavor, but instead of
working with the trace distance, we work with the Frobenius distance (since it
can easily be expressed in terms of the Pauli decomposition).

Buhrman et al. [19] show that classical circuits can efficiently simulate any
quantum circuit that consists of perfect, noise-free stabilizer operations (meaning
Clifford gates (Hadamard, phase gate, CNOT), preparations of states in the com-
putational basis, and measurements in the computational basis) and arbitrary
one-qubit unitary gates that are followed by 45.3% depolarizing noise. Hence
such circuits are not significantly more powerful than classical circuits.5 This

5 The 45.3%-bound of [19] is in fact tight if one additionally allows perfect classical
control (i.e., the ability to condition future gates on earlier classical measurement
outcomes): circuits with perfect stabilizer operations and arbitrary one-qubits gates
suffering from less than 45.3% noise, can simulate perfect quantum circuits. See [27]



result is incomparable to ours: the noise models and the set of allowed gates are
different (and we feel ours is more realistic). In particular, in our case noise hits
the qubits going into the k-qubit gates but barely affects the one-qubit gates,
while in their case the noise only hits the non-Clifford one-qubit unitaries.

Another related result is by Virmani et al. [28]. Instead of depolarizing noise,
they consider “dephasing noise”. This models phase-errors: rather than replacing
a qubit by the completely mixed state with some probability p, dephasing noise
applies the Z-gate with probability p/2. Virmani et al. [28] show, among other
results, that we can efficiently classically simulate any quantum circuit consisting
of perfect stabilizer operations, and one-qubit unitary gates that are diagonal in
the computational basis and are followed by more than 29.3% dephasing noise.
Their result is incomparable to ours for essentially the same reasons as why the
Buhrman et al. result is incomparable: a different noise model and a different
statement about the resulting power of their noisy quantum circuits.

Finally, it is known that it is impossible to transmit quantum information
through a p-depolarizing channel for p > 1/3 [29]. As Razborov [20] noticed,
this seems to suggest that quantum computation is impossible with depolarizing
noise of strength greater than 1/3, but there is no proof that this is the case.

2 Preliminaries

Let P = {I, X, Y, Z} be the set of one-qubit Pauli matrices,

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

and let P∗ = {X, Y, Z}. We use Pn to denote the set of all tensor products of
n one-qubit Pauli matrices. For a Pauli matrix S ∈ Pn we define its support,
denoted supp(S), to be the qubits on which S is not identity. We sometimes
use superscripts to indicate the qubits on which certain operators act. Thus IA

denotes the identity operator applied to the qubits in set A.
The set of all 2n × 2n Hermitian matrices forms a 4n-dimensional real vector

space. On this space we consider the Hilbert-Schmidt inner product, given by
〈A, B〉 := Tr(A†B) = Tr(AB). Note that for any S, S′ ∈ Pn, Tr(SS′) = 2n if
S = S′ and 0 otherwise, and hence Pn is an orthogonal basis of this space. It
follows that we can uniquely express any Hermitian matrix δ in this basis as

δ =
1

2n

∑

S∈Pn

δ̂(S)S

where δ̂(S) := Tr(δS) are the (real) coefficients.
We now state some observations. By the orthogonality of Pn, for any δ,

Tr(δ2) =
1

2n

∑

S∈Pn

δ̂(S)2.

and [19, Section 5]. These assumptions are not very realistic: in particular, assuming
perfect, noise-free CNOTs is a far cry from experimental practice.



Observation 2 (Unitary preserves sum of squares) For any unitary ma-

trix U and any Hermitian matrix δ, if we denote δ′ = UδU †, then

∑

S∈Pn

δ̂′(S)2 = 2nTr(δ′2) = 2nTr(UδU †UδU †) = 2nTr(δ2) =
∑

S∈Pn

δ̂(S)2.

This also shows that conjugating by a unitary matrix, when viewed as a linear
operation on the vector of Pauli coefficients, is an orthogonal transformation.

Observation 3 (Tracing out qubits) Let δ be some Hermitian matrix on a

set of qubits W . For V ⊆ W , let δV = TrW\V (δ). Then,

δ̂(SIW\V ) = Tr(δ · SIW\V ) = Tr(δV · S) = δ̂V (S).

Observation 4 (Noise in the Pauli basis) Applying a p-depolarizing noise

E to the j-th qubit of Hermitian matrix δ changes the coefficients as follows:

Ê(δ)(S) =

{
δ̂(S) if Sj = I

(1 − p)δ̂(S) if Sj 6= I

In other words, E “shrinks” by a factor 1 − p all coefficients that have support
on the j-th coordinate.

Observation 5 Let ρ and τ be two one-qubit states and let δ = ρ− τ . Consider

the two probability distributions obtained by performing a measurement in the

computational basis on ρ and τ , respectively. Then the variation distance between

these two distributions is 1
2 |δ̂(Z)|.

Proof: Since there are only two possible outcomes for the measurements, the
variation distance between the two distributions is exactly the difference in the
probabilities of obtaining the outcome 0, which (using Tr(δ) = 0) is given by

|Tr((ρ − τ) · |0〉〈0|)| =

∣∣∣∣Tr

(
δ · I + Z

2

)∣∣∣∣ =
1

2
|Tr(δ · Z)| =

1

2
|δ̂(Z)|.

Our final observation follows immediately from the convexity of the function x2.

Observation 6 (Convexity) Let pi be any probability distribution, and δi a set

of Hermitian matrices. Let δ =
∑

i piδi. Then
∑

S∈Pn

δ̂(S)2 ≤
∑

i

pi

∑

S∈Pn

δ̂i(S)2.

3 Proof of Theorem 1

In this section we prove Theorem 1. The idea is the following. Fix two arbitrary
initial states ρ and τ . Our goal is to show that after applying the noisy cir-
cuit, the state of the output qubit is nearly the same with both starting states.
Equivalently, we can define δ = ρ − τ and show that after applying the noisy
circuit to δ, the “state” of the output qubit is essentially 0 (the noisy circuit is a



linear operation, and hence there is no problem in applying it to δ, which is the
difference of two density matrices). In order to show this, we will examine how
the coefficients of δ in the Pauli basis develop through the circuit. Initially we
might have many large coefficients. Our goal is to show that the coefficients of
the output qubit are essentially 0. This is established by analyzing the balance
between two opposing forces: noise, which shrinks coefficients by a constant fac-
tor (as in Observation 4), and gates, which can increase coefficients. As we saw
in Observation 2, unitary gates preserve the sum of squares of coefficients. They
can, however, “concentrate” several small coefficients into one large coefficient.
One-qubit operations need not preserve the sum of squares (a good example is
the gate that resets a qubit to the |0〉 state), but we can still deal with them
by using a known characterization of one-qubit gates. This allows us to bound
the amount by which one-qubit gates can increase the Pauli coefficients, and
(roughly) shows that the gate that resets a qubit to |0〉 is “as bad as it gets”.

We introduce some terminology. From now on we use the term qubit to mean
a wire at a specific time, so there are (T +1)n qubits (although during the proof
we will also consider qubits that are located between a gate and its associated
noise). We say that a set of qubits V is consistent if we can meaningfully talk
about a “state of the qubits of V ” (see Figure 1). More formally, we define a
consistent set as follows. The set of all qubits at time 0 and all its subsets are
consistent. If V is some consistent set of qubits, which contains all input qubits
IN of some gate (possibly a one-qubit identity gate), then also (V \ IN)∪OUT
and all its subsets are consistent, where OUT denotes the gate’s output qubits.
Note that here we think of the noise as being part of the gate. For a consistent
set V and a state (or more generally, a Hermitian matrix) ρ, we denote the state
of V when the circuit is applied with the initial state ρ, by ρV . In other words,
ρV is the state one obtains by applying some initial part of the circuit to ρ, and
then tracing out from the resulting state all qubits that are not in V .

If v is a qubit, we use dist(v) to denote its distance from the input, i.e., the
level of the gate just preceding it. The qubits of the starting state have dist(v) =
0. For a nonempty set V of qubits we define dist(V ) = min{dist(v) | v ∈ V }, and
extend it to the empty set by dist(∅) = ∞. Note that dist(V ) does not increase
if we add qubits to V . In the rest of this section we prove the following lemma,
showing that a certain invariant holds for all consistent sets V .

Lemma 1. For all ε1 > 0 and εk > 1 −
√

21/k − 1 there is a θ < 1 such that

the following holds. For any T -level circuit in our model, initial states ρ and τ ,

δ = ρ − τ , and any consistent V , we have Tr(δ2
V ) ≤ 2 · θdist(V ). Equivalently:

∑

S∈PV

δ̂V (S)2 ≤ 2 · 2|V | · θdist(V ). (1)

If we consider the consistent set V containing the output qubit at time T , then

we get that δ̂V (Z)2 ≤ 4θT . By Observation 5, this implies Theorem 1.



3.1 Proof of Lemma 1

The proof of the invariant is by induction on the sets V . At the base are all sets
V contained entirely within time 0. All other sets are handled in the induction
step. To justify the inductive proof, we need an ordering on the consistent sets
V such that for each V , the proof for V uses the inductive hypothesis only on
sets V ′ that appear before V . As will become apparent from the proof, if we
denote by latest(V ) the maximum time at which V contains a qubit, then each
V ′ for which we use the induction hypothesis has strictly less qubits than V at
time latest(V ). Therefore, we can order the sets V first in increasing order of
latest(V ) and then in increasing order of the number of qubits at time latest(V ).

Base case. Here V is fully contained within time 0. If V = ∅ then both sides
of the invariant are zero, so from now on assume V is nonempty. In this case
dist(V ) = 0. The matrix δV is the difference of two density matrices ρV and τV .
Hence Tr(δ2

V ) = Tr(ρ2
V )+Tr(τ2

V )−2Tr(ρV τV ) ≤ 2, and the invariant is satisfied.

Induction step. Let V ′′ be any consistent set containing at least one qubit at
time greater than zero. Our goal in this section is to prove the invariant for
V ′′. Consider any of the qubits of V ′′ located at time latest(V ′′) and let G
be the gate that has this qubit as one of its output qubits. We now consider
two cases, depending on whether G is a k-qubit gate or a one-qubit gate.

G

A1

A2

A1

A2

'

'

'

'

'

'

A1

A2

Fig. 2. An example showing the sets V , V ′,
and V ′′ for a two-qubit gate G.

Case 1: G is a k-qubit gate. Here
G is a probabilistic mixture of k-
qubit unitaries. First, by Observa-
tion 6 it suffices to prove the in-
variant for k-qubit unitaries. So as-
sume G is a k-qubit unitary acting
on the qubits A = {A1, . . . , Ak}.
Let A′ = {A′

1, . . . , A
′
k} be the

qubits after the εk-noise but before
the gate G and A′′ = {A′′

1 , . . . , A′′
k}

the qubits after G (see Figure 2).
By our choice of G, A′′ ∩ V ′′ 6= ∅.
Define V ′ = (V ′′ \ A′′) ∪ A′ and
V = (V ′′ \ A′′) ∪ A. Note that V
and its subsets are consistent sets with strictly fewer qubits than V ′′ at time
latest(V ′′), hence we can apply the induction hypothesis to them. Our goal is to
prove the invariant Eq. (1) for V ′′. First, by Observation 3,

∑

S∈PV ′′

δ̂V ′′(S)2 ≤
∑

S∈PV ′′∪A′′

̂δV ′′∪A′′(S)2. (2)

Because G (which maps δV ′ to δV ′′∪A′′) is unitary, it preserves the sum of squares

of δ̂-coefficients (see Observation 2), so the right hand side of (2) is equal to
∑

S∈PV ′

δ̂V ′(S)2 =
∑

S∈PV ′\A′

∑

R∈PA′

δ̂V ′(RS)2.



Since the only difference between δV and δV ′ is noise on the qubits A1, . . . , Ak,
using Observation 4 and denoting µ = 1 − εk, we get that the above is at most

∑

S∈PV \A

∑

R∈PA

µ2|supp(R)|δ̂V (RS)2

=
∑

S∈PV \A

∑

a⊆A

µ2|a|(1 − µ2)k−|a|
∑

R∈Pa⊗IA\a

δ̂V (RS)2,

where the equality is because for any fixed S and any R ∈ PA, the term δ̂V (RS)2,
which appears with coefficient µ2|supp(R)| on the left, appears with the same co-
efficient

∑
a⊇supp(R) µ2|a|(1− µ2)k−|a| = µ2|supp(R)| on the right. By rearranging

and using Observation 3 we get that the above is equal to

∑

a⊆A

µ2|a|(1 − µ2)k−|a|
∑

S∈P(V \A)∪a

̂δ(V \A)∪a(S)2

≤
∑

a⊆A

µ2|a|(1 − µ2)k−|a|2 · 2|(V \A)∪a| · θdist((V \A)∪a)

where we used the inductive hypothesis. Note that dist((V \ A) ∪ a) ≥ dist(V ),
so the above is

≤ 2 · 2|V \A| · θdist(V )
∑

a⊆A

2|a|µ2|a|(1 − µ2)k−|a|

= 2 · 2|V \A| · θdist(V )((1 − µ2) + 2µ2)k = 2 · 2|V \A| · θdist(V )(1 + µ2)k. (3)

Note that |V \ A| ≤ |V ′′| − 1 and dist(V ′′)− 1 ≤ dist(V ), so the right hand side
is bounded by

≤ 2 · 2|V ′′|−1 · θdist(V ′′)−1(1 + µ2)k.

Since εk > 1 −
√

21/k − 1, we have that (1 + µ2)k ≤ 2θ if θ is close enough to 1,
so we can finally bound the last expression to prove the invariant for V ′′

≤ 2 · 2|V ′′| · θdist(V ′′).

Case 2: G is a one-qubit gate. Before proving the invariant, we need to prove
the following property of completely-positive trace-preserving (CPTP) maps on
one qubit. The proof appears in the full version of this paper [21].

Lemma 2. For any CPTP map G on one qubit there exists a β ∈ [0, 1] such

that the following holds. For any Hermitian matrix δ, if we let δ′ denote the

result of applying G to δ, then we have

δ̂′(X)2 + δ̂′(Y )2 + δ̂′(Z)2 ≤ (1 − β) · δ̂(I)2 + β · (δ̂(X)2 + δ̂(Y )2 + δ̂(Z)2).

Let A be the qubit G is acting on, and recall that our goal is to prove the
invariant for the set V ′′. Denote by A′ the qubit of G after the gate but before the
ε1 noise, and by A′′ the qubit after the noise. As before, by our choice of G, we



have A′′ ∈ V ′′. Let A = {A}, A′ = {A′}, A′′ = {A′′}. Define V ′ = (V ′′\A′′)∪A′

and V = (V ′′ \ A′′) ∪ A and notice that |V | = |V ′| = |V ′′|. By using Lemma 2,
we obtain a β ∈ [0, 1] such that

∑

S∈PV ′′

δ̂V ′′(S)2 ≤
∑

S∈PV ′\A′

(
δ̂V ′(IS)2 + (1 − ε1)

2
∑

R∈PA′
∗

δ̂V ′(RS)2

)

≤
∑

S∈PV \A

(
(1+(1−ε1)

2(1−2β))δ̂V (IS)2+(1−ε1)
2β

∑

R∈PA

δ̂V (RS)2

)
.

By applying the induction hypothesis to both V \A and V , we can upper bound
the above by

(1 + (1 − ε1)
2(1 − 2β)) · 2 · 2|V |−1 · θdist(V \A) + (1 − ε1)

2β · 2 · 2|V | · θdist(V )

≤ 1 + (1 − ε1)
2

2θ
· 2 · 2|V ′′| · θdist(V ′′)

where we used that |V | = |V ′′|, and dist(V ′′)−1 ≤ dist(V ) ≤ dist(V \A). Hence
the invariant remains valid if we choose θ < 1 such that 1 + (1 − ε1)

2 ≤ 2θ.
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