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odeword to reover anything about x. If one is only interested in reovering one or a few of thebits of x, then more eÆient shemes are possible, whih allow us to extrat small parts of enodedinformation from a orrupted odeword, while looking at (\querying") only a few positions ofthat word. Suh shemes are alled loally deodable odes (LDCs). They have found variousappliations in omplexity theory and ryptography, suh as self-orreting omputations [5, 24,17, 16, 18℄, Probabilistially Chekable Proofs [2℄, worst-ase to average-ase redutions [3, 34℄,private information retrieval [11℄, and extrators [25℄. Informally, LDCs are desribed as follows:A (q; Æ; ")-loally deodable ode enodes n-bit strings x into m-bit odewords C(x),suh that, for eah i, the bit xi an be reovered with probability 1=2 + " making onlyq queries, even if the odeword is orrupted in Æm of the bits.For example, the Hadamard ode is a loally deodable ode where two queries suÆe for preditingany bit with onstant advantage, even with a onstant fration of errors. The ode has m = 2nand C(x)j = j � x mod 2 for all j 2 f0; 1gn. Reovery from a orrupted odeword y is possibleby piking a random j 2 f0; 1gn, querying yj and yj�ei, and omputing the XOR of those twobits as our guess for xi. If neither of the two queried bits has been orrupted, then we outputyj � yj�ei = j � x � (j � ei) � x = ei � x = xi, as we should. If C(x) has been orrupted in at mostÆm positions, then a fration of at least 1 � 2Æ of all (j; j � ei) pairs of indies is unorrupted, sothe reovery probability is at least 1 � 2Æ. This is > 1=2 as long as Æ < 1=4. The main drawbakof the Hadamard ode is its exponential length.Clearly, we would like both the odeword length m and the number of queries q to be small.The main omplexity question about LDCs is how large m needs to be, as a funtion of n, q, Æ,and ". For q = polylog(n), Babai et al. [2℄ showed how to ahieve almost linear size odes, for some�xed Æ and ". Beimel et al. [8℄ reently improved the best known upper bounds for onstant q tom = 2nO(log log q=q log q) , with some more preise bounds for small q.The study of lower bounds on m was initiated by Katz and Trevisan [21℄. They proved thatfor q = 1, LDCs do not exist if n is larger than some onstant depending on Æ and ". For q � 2,they proved a bound of m = 
(n1+1=(q�1)) if the q queries are made non-adaptively; this boundwas generalized to the adaptive ase by Deshpande et al. [14℄. This establishes superlinear (but atmost quadrati) lower bounds on the length of LDCs with a onstant number of queries. Thereis still a large gap between the best known upper and lower bounds. In partiular, it is openwhether m = poly(n) is ahievable with onstant q. Goldreih et al. [20℄ examined the ase q = 2,and showed that m � 2Æ"n=8 if C is a linear ode. Obata [29℄ subsequently strengthened thedependene on " to m � 2
(Æn=(1�2")), whih is essentially optimal. Very reently, Ben-Sasson etal. [9℄ studied a relaxed notion of LDCs where the deoder is allowed to output \don't know" for aonstant fration of the indies. They onstrut relaxed LDCs with a onstant number of queriesand size m = n1+�.Katz and Trevisan, and Goldreih et al. established a lose onnetion between loally deodableodes and private information retrieval (PIR) shemes. A PIR sheme allows a user to extrat abit xi with probability 1=2+ " from an n-bit database x that is repliated over some k � 1 servers,without the server(s) learning whih i the user wants. The main omplexity measure of a PIRsheme is its ommuniation omplexity, i.e., the sum of the lengths of the queries that the usersends to eah server, and the length of the servers' answers. Roughly, the queries in an LDCorrespond to the servers in a PIR sheme. In fat, the best known LDCs for onstant q are derivedfrom PIR shemes.If there is only one server (k = 1), then privay an be maintained by letting the server sendthe whole n-bit database to the user. This takes n bits of ommuniation and is optimal. If2



the database is repliated over k � 2 servers, then there exist protools with signi�antly lessommuniation. Chor et al. [11℄ exhibited a 2-server PIR sheme with ommuniation omplexityO(n1=3) and one with O(n1=k) for k > 2. Ambainis [1℄ improved the latter to O(n1=(2k�1)). Beimelet al. [8℄ improved the ommuniation omplexity to O(n2 log log k=k log k). Their results improve theprevious best bounds for all k � 3 but not for k = 2.No general lower bounds better than 
(logn) are known for PIRs with k � 2 servers. For thease of 2 servers, the best known lower bound is 4 log n, due to Mann [26℄. A PIR sheme is linearif for every query that the user makes, the answer bits are linear ombinations of the bits of x.Goldreih et al. [20℄ proved that linear 2-server PIRs with t-bit queries and a-bit answers wherethe user looks only at k predetermined positions in eah answer require t = 
(n=ak).1.2 Results: Loally Deodable CodesThe main result of this paper is an exponential lower bound for general 2-query LDCs:Theorem 4 If C : f0; 1gn ! f0; 1gm is a (2; Æ; ")-loally deodable ode, thenm � 2n�1;for  = 3Æ"2=(98 ln 2).This is the �rst superpolynomial lower bound on general LDCs with more than one query. Ouronstant  in the exponent is somewhat worse than those of Goldreih et al. [20℄ and of Obata [29℄,but our proof establishes the exponential lower bound for all LDCs, not just linear ones.Our proof introdues one radially new ingredient: quantum omputing. We show that iftwo lassial queries an reover xi with probability 1=2 + ", then xi an also be reovered withprobability 1=2+4"=7 using only one \quantum query". In other words, a (2; Æ; ")-loally deodableode is a (1; Æ; 4"=7)-loally quantum-deodable ode. We then prove an exponential lower boundfor 1-query LQDCs by showing, roughly speaking, that a 1-query LQDC of length m indues aquantum random aess ode for x of length about logm. Suh a ode enables its user to reovereah bit xi of his hoie. Nayak's [27℄ linear lower bound on the length of suh odes �nishes o�the proof. For the sake of ompleteness, we inlude a proof of his result in Appendix B.This lower bound for lassial LDCs is one of the very few examples where tools from quantumomputing enable one to prove new results in lassial omputer siene. We know only a fewother examples of this.1 Radhakrishnan et al. [30℄ proved lower bounds for the set membershipdata struture that hold for quantum algorithms, but are in fat stronger than the previous lassiallower bounds of Buhrman et al. [10℄. Sen and Venkatesh did the same for data strutures for thepredeessor problem [32, quant-ph version℄. Klauk et al. [23℄ proved lower bounds for the k-roundquantum ommuniation omplexity of the tree-jumping problem that are somewhat stronger thanthe previous best lassial lower bounds. In ryptography, Gisin, Renner, and Wolf [19℄ used ananalogy with \quantum bound entanglement" to provide evidene against the onjeture that the\intrinsi information" in a random variable shared by Alie, Bob, and eavesdropper Eve alwaysequals the amount of seret key that Alie and Bob an extrat from this; later this onjeture wasindeed disproved [31℄, though without using quantum methods. In all these ases, the underlyingproof tehniques easily yield a lassial proof: one just replaes quantum notions like von Neumannentropy and trae distane by their lassial analogues to get a lassial proof for the lassial1The quantum lower bound on the ommuniation omplexity of the inner produt funtion of Cleve et al. [12℄provides new insight in a lassial result, but does not establish a new result for lassial omputer siene.3



ase. In ontrast, our proof seems to be more \inherently quantum" sine there is no lassialanalog of our 2-lassial-queries-to-1-quantum-query redution (2-query LDCs exist but 1-queryLDCs don't).While Setion 3 fouses only on odes over the binary alphabet, in Setion 4.1 we extend ourresult to the ase of larger alphabets, using a lassial redution due to Trevisan [35℄. In Setion 4.2we look at LDCs with q � 3 queries and improve the polynomial lower bounds of Katz and Trevisan[21℄. Our bounds are still polynomial and far from the best known upper bounds. In Setion 4.3we observe that our onstrution implies the existene of 1-query quantum-deodable odes forall n. The Hadamard ode is an example of this. Here the odewords are still lassial, but thedeoder is quantum. As mentioned before, if we only allow one lassial query, then LDCs do notexist for n larger than some onstant depending on Æ and " [21℄. For larger q, it turns out thatthe best known (2q; Æ; ")-LDCs, due to Beimel et al. [8℄, are atually (q; Æ; ")-LQDCs. Hene for�xed number of queries q, we obtain LQDCs that are signi�antly shorter than the best knownLDCs. In partiular, Beimel et al. give a 4-query LDC with length m = 2O(n3=10) whih is a 2-queryLQDC. This is signi�antly shorter than the m = 2�(n) that 2-query LDCs need. We summarizethe situation in Table 1, where our ontributions are indiated by boldfae.Queries Length of LDC Length of LQDCq = 1 don't exist 2�(n)q = 2 2�(n) 2O(n3=10)q = 3 2O(n1=2) 2O(n1=7)q = 4 2O(n3=10) 2O(n1=11)Table 1: Best known bounds on the length of LDCs and LQDCs with q queries1.3 Results: Private Information RetrievalIn the private information retrieval setting, our tehniques allow us to redue lassial 2-server PIRshemes with 1-bit answers to quantum 1-server PIRs, whih in turn an be redued to a randomaess ode [27℄. Thus in Setion 5.1 we obtain an 
(n) lower bound on the ommuniationomplexity for all lassial 2-server PIRs with 1-bit answers. In Setion 5.2 we extend our lowerbound to PIR shemes with larger answers. Previously, suh a bound was known only for linearPIRs (�rst proven in [11, Setion 5.2℄ for 1-bit answers and extended to onstant-length answersin [20℄). Furthermore, our results ombined with those of Katz and Trevisan give a 4:4 log n lowerbound for the general 2-server PIR. This is the �rst, very modest improvement on the bound ofMann [26℄. Subsequently to our work, Beigel, Fortnow, and Gasarh [7℄ found a lassial proofthat a 2-server PIR with perfet reovery (" = 1=2) and 1-bit answers needs query length � n� 2.However, their proof does not seem to extend to the ase " < 1=2, or to larger answers.Apart from giving new lower bounds for lassial PIR, we an also use our 2-to-1 redution toobtain quantum PIR shemes that beat the best known lassial PIRs. In partiular, Beimel etal. [8, Example 4.2℄ exhibit a lassial 4-server PIR sheme with 1-bit answers and ommuniationomplexity O(n3=10). We an redue this to a quantum 2-server PIR with O(n3=10) qubits ofommuniation. This beats the best known lassial 2-server PIR, whih has omplexity O(n1=3).We an similarly give quantum improvements over the best known k-server PIR shemes for k > 2.However, this does not onstitute a true lassial-quantum separation in the PIR setting yet, sineno good lower bounds are known for lassial PIR. We summarize the best known bounds forlassial and quantum PIR in Table 2. 4



Servers PIR omplexity QPIR omplexityk = 1 �(n) �(n)k = 2 O(n1=3) O(n3=10)k = 3 O(n1=5:25) O(n1=7)k = 4 O(n1=7:87) O(n1=11)Table 2: Best known bounds on the ommuniation omplexity of lassial and quantum PIR2 Preliminaries2.1 QuantumBelow we give more preise de�nitions of loally deodable odes, PIR shemes, and related notions,but we �rst explain the standard notation of quantum omputing.Let H denote a 2-dimensional omplex vetor spae, equipped with the standard inner produt.We pik an orthonormal basis for this spae, label the two basis vetors j0i and j1i, and for simpliityidentify them with the vetors � 10 � and � 01 �, respetively. A qubit is a unit length vetor inthis spae, and so an be expressed as a linear ombination of the basis states:�0j0i + �1j1i = � �0�1 � :Here �0; �1 are omplex amplitudes, and j�0j2 + j�1j2 = 1.An m-qubit system is a unit vetor in the m-fold tensor spae H
� � � 
H. The 2m basis statesof this spae are the m-fold tensor produts of the states j0i and j1i. For example, the basis statesof a 2-qubit system are the four 4-dimensional unit vetors j0i
j0i, j0i
j1i, j1i
j0i, and j1i
j1i.We abbreviate, e.g., j1i 
 j0i to j0ij1i, or j1; 0i, or j10i, or even j2i (sine 2 is 10 in binary). Withthese basis states, an m-qubit state j�i is a 2m-dimensional omplex unit vetorj�i = Xi2f0;1gm �ijii:We use h�j = j�i� to denote the onjugate transpose of the vetor j�i, and h�j i = h�j � j i for theinner produt between states j�i and j i. These two states are orthogonal if h�j i = 0. The normof j�i is k � k =ph�j�i.A mixed state fpi; j�iig is a lassial distribution over pure quantum states, where the systemis in state j�ii with probability pi. We an represent a mixed quantum state by the density matrixwhih is de�ned as � = Pi pij�iih�ij. Note that � is a positive semide�nite operator with trae(sum of diagonal entries) equal to 1. The density matrix of a pure state j�i is � = j�ih�j.A quantum system is alled bipartite if it onsists of two subsystems. We an desribe the stateof eah of these subsystems separately with the redued density matrix. For example, if a quantumstate has the form j�i =Pippijiij�ii, then the state of a system holding only the seond part ofj�i is desribed by the (redued) density matrix Pi pij�iih�ij.A quantum state an evolve by a unitary operation or by a measurement. A unitary transfor-mation is a linear mapping that preserves the `2 norm. If we apply a unitary U to a state j�i, itevolves to U j�i. A mixed state � evolves to U�U y.The most general measurement allowed by quantum mehanis is spei�ed by a family of positivesemide�nite operators Ei = M�i Mi, 1 � i � k, subjet to the ondition that PiEi = I. Given5



a density matrix �, the probability of observing the ith outome under this measurement is givenby the trae pi = Tr(Ei�) = Tr(Mi�M�i ). These pi are nonnegative beause Ei and � are positivesemide�nite. They also sum to 1, as they should:kXi=1 pi = kXi=1 Tr(Ei�) = Tr( kXi=1 Ei�) = Tr(I�) = 1:If the measurement yields outome i, then the resulting quantum state is Mi�M�i =Tr(Mi�M�i ). Inpartiular, if � = j�ih�j, then pi = h�jEij�i = kMij�i k2, and the resulting state isMij�i=k Mij�i k.A speial ase is where k = 2m and B = fj iig forms an orthonormal basis of the m-qubit spae.\Measuring in the B-basis" means that we apply the measurement given by Ei = Mi = j iih ij.Applying this to a pure state j�i gives resulting state j ii with probability pi = jh�j iij2.Finally, a word about quantum queries. A query to an m-bit string y is ommonly formalizedas the following unitary transformation, where j 2 [m℄, and b 2 f0; 1g is alled the target bit :jjijbi 7! jjijb � yji:A quantum omputer may apply this to any superposition. An equivalent formalization that wewill be using here, is: jijji 7! (�1)�yj jijji:Here  is a ontrol bit that ontrols whether the phase (�1)yj is added or not. Given some extraworkspae, one query of either type an be simulated exatly by one query of the other type.We refer to Nielsen and Chuang [28℄ for more details.2.2 CodesBelow, by a `deoding algorithm' we mean an algorithm (quantum or lassial depending on ontext)with orale aess to the bits of some (possibly orrupted) odeword y for x. The algorithm getsinput i and is supposed to reover xi, making only few queries to y. We want to emphasize that wespeak of an `algorithm' merely as a onvenient way to formalize the deoding proess. Our fous isnot the algorithmis of the deoding but its information-theoreti aspets, i.e., the tradeo� betweenthe number q of queries allowed for deoding and the required odelength m.De�nition 1 C : f0; 1gn ! f0; 1gm is a (q; Æ; ")-loally deodable ode (LDC) if there is a lassialrandomized deoding algorithm A suh that1. A makes at most q queries to m-bit string y, non-adaptively.2. For all x and i, and all y 2 f0; 1gm with Hamming distane d(C(x); y) � Æm we havePr[Ay(i) = xi℄ � 1=2 + ".The LDC is alled linear if C is a linear funtion over GF (2) (i.e., C(x+ y) = C(x) + C(y)).By allowing A to be a quantum omputer and to make queries in superposition, we an similarlyde�ne (q; Æ; ")-loally quantum-deodable odes (LQDCs).It will be onvenient to work with non-adaptive queries, as used in the above de�nition, so thedistribution on the queries that A makes is independent of y. However, our main lower bound alsoholds for adaptive queries, see the �rst remark at the end of Setion 3.3.6



2.3 Private Information RetrievalNext we de�ne private information retrieval shemes.De�nition 2 A one-round, (1�Æ)-seure, k-server private information retrieval (PIR) sheme withreovery probability 1=2 + ", query size t, and answer size a, onsists of a randomized algorithm(the user), and k deterministi algorithms S1; : : : ; Sk (the servers), suh that1. On input i 2 [n℄, the user produes k t-bit queries q1; : : : ; qk and sends these to the respetiveservers. The jth server sends bak an a-bit string aj = Sj(x; qj). The user outputs a bit bdepending on i; a1; : : : ; ak; and his randomness.2. For all x and i, the probability (over the user's randomness) that b = xi is at least 1=2 + ".3. For all x and j, the distributions on qj (over the user's randomness) are Æ-lose (in totalvariation distane) for di�erent i.The sheme is alled linear if, for every j and qj, the jth server's answer Sj(x; qj) is a linearombination over GF (2) of the bits of x.We an straightforwardly generalize these de�nitions to quantum PIR for the ase where Æ = 0(the server's state after the query should be independent of i). That is the only ase we need here.All known upper bounds on PIR have one round of ommuniation, " = 1=2 (perfet reovery) andÆ = 0 (the servers get no information whatsoever about i). Below we will assume one round andÆ = 0 without mentioning this further.3 Lower Bound for 2-Query Loally Deodable CodesOur proof has two parts, eah with a lear intuition but requiring quite a few tehnialities:1. A 2-query LDC is a 1-query LQDC, beause one quantum query an ompute the sameBoolean funtions as two lassial queries (albeit with slightly worse error probability).2. The length m of a 1-query LQDC must be exponential, beause a uniform superposition overall indies ontains only logm qubits, but indues a quantum random aess ode for x, forwhih a linear lower bound is already known [27℄.3.1 From 2 Classial to 1 Quantum QueryThe key to the �rst step is the following lemma:Lemma 1 Let f : f0; 1g2 ! f0; 1g and suppose we an make queries to the bits of some inputstring a = a1a2 2 f0; 1g2. There exists a quantum algorithm that makes only one query (one that isindependent of f) and outputs f(a) with probability exatly 11=14, and outputs 1� f(a) otherwise.Proof. If we ould onstrut the statej ai = 12(j0ij1i + (�1)a1 j1ij1i + (�1)a2 j1ij2i + (�1)a1+a2 j0ij2i)with one quantum query then we ould determine a with ertainty, sine the four possible statesj bi (b 2 f0; 1g2) form an orthonormal basis. We ould also see these states as the Hadamard7



enoding of the strings b 2 f0; 1g2. Unfortunately we annot onstrut j ai perfetly with onequery. Instead, we approximate this state by making the query1p3 (j0ij1i + j1ij1i + j1ij2i) ;where the �rst bit is the ontrol bit, and the appropriate phase (�1)aj is put in front of jji if theontrol bit is 1. The result of the query is the statej�i = 1p3 (j0ij1i + (�1)a1 j1ij1i + (�1)a2 j1ij2i) :The algorithm then measures this state j�i in the orthonormal basis onsisting of the four statesj bi. The probability of getting outome a is jh�j aij2 = 3=4, and eah of the other 3 outomes hasprobability 1=12. The algorithm now determines its output based on f and on the measurementoutome b. We distinguish 3 ases for f :1. jf(1)�1j = 1 (the ase jf(1)�1j = 3 is ompletely analogous, with 0 and 1 reversed). Iff(b) = 1, then the algorithm outputs 1 with probability 1. If f(b) = 0 then it outputs 0 withprobability 6=7 and 1 with probability 1=7. Aordingly, if f(a) = 1, then the probability ofoutput 1 is Pr[f(b) = 1℄ � 1 + Pr[f(b) = 0℄ � 1=7 = 3=4 + 1=28 = 11=14: If f(a) = 0, then theprobability of output 0 is Pr[f(b) = 0℄ � 6=7 = (11=12) � (6=7) = 11=14:2. jf(1)�1j = 2. Then Pr[f(a) = f(b)℄ = 3=4 + 1=12 = 5=6. If the algorithm outputs f(b) withprobability 13=14 and outputs 1� f(b) with probability 1=14, then its probability of outputf(a) is exatly 11=14.3. f is onstant. In that ase the algorithm just outputs that value with probability 11=14.Thus we always output f(a) with probability 11=14. 2Peter H�yer (personal ommuniation) reently improved the 11=14 in the lemma to 9=10. Wedesribe his algorithm in Appendix A and show that this suess probability is best possible if wehave only one quantum query.Using our lemma we an prove:Theorem 1 A (2; Æ; ")-LDC is a (1; Æ; 4"=7)-LQDC.Proof. Consider i, x, and y suh that d(C(x); y) � Æm. The 1-query quantum deoder will usethe same randomness as the 2-query lassial deoder. The random string of the lassial deoderdetermines two indies j; k 2 [m℄ and an f : f0; 1g2 ! f0; 1g suh thatPr[f(yj; yk) = xi℄ = p � 1=2 + ";where the probability is taken over the deoder's randomness. We now use Lemma 1 to obtain a1-query quantum deoder that outputs some bit b suh thatPr[b = f(yj; yk)℄ = 11=14:
8



The suess probability of this quantum deoder is:2Pr[b = xi℄ = Pr[b = f(yj; yk)℄ � Pr[f(yj; yk) = xi℄ +Pr[b 6= f(yj; yk)℄ � Pr[f(yj; yk) 6= xi℄= 1114p+ 314(1� p)= 314 + 47p� 12 + 4"7 ;as promised. 23.2 Lower Bound for 1-Query LQDCsA quantum random aess ode is an enoding x 7! �x of n-bit strings x into m-qubit states �x,possibly mixed, suh that any bit xi an be reovered with some probability p � 1=2 + " from �x.The following lower bound is known on the length of suh quantum odes [27℄ (see Appendix B).Theorem 2 (Nayak) An enoding x 7! �x of n-bit strings into m-qubit states with reovery prob-ability at least p, has m � (1�H(p))n.This allows us to prove an exponential lower bound for 1-query LQDCs:Theorem 3 If C : f0; 1gn ! f0; 1gm is a (1; Æ; ")-LQDC, thenm � 2n�1;for  = Æ"2=(16 ln 2).Proof. Our goal below is to show that we an reover eah xi with good probability from anumber of opies of the uniform log(m) + 1-qubit statejU(x)i = 1p2m X2f0;1g;j2[m℄(�1)�C(x)j jijji:The intuitive reason for this is as follows. Sine C is an LQDC, it is able to reover xi even from aodeword that is orrupted in many (up to Æm) plaes. Therefore the \distribution" of queries of thedeoder must be \smooth", i.e., spread out over almost all the positions of the odeword|otherwisean adversary ould hoose the orrupted bits in a way that makes the reovery probability too low.The uniform distribution provides a reasonable approximation to suh a \smooth" distribution.Sine the uniform state jU(x)i is independent of i, we an atually reover any bit xi with goodprobability, so it onstitutes a quantum random aess ode for x. Applying Theorem 2 then givesthe result.2Here we use the `exatly' part of Lemma 1. To see what ould go wrong if the `exatly' were `at least', suppose thelassial deoder outputs AND(y1; y2) = xi with probability 3=5 and XOR(y3; y4) = 1�xi with probability 2=5. Thenit outputs xi with probability 3=5 > 1=2. However, if our quantum proedure omputes AND(y1; y2) with suessprobability 11=14 but XOR(y3; y4) with suess probability 1, then its reovery probability is (3=5)(11=14) < 1=2.9



Let us be more preise. The most general query that the quantum deoder ould make toreover xi, is of the form jQii = X2f0;1g;j2[m℄�jjijjij�ji;where the j�ji are pure states in the deoder's workspae and the �j are non-negative reals (anyphases ould be put in the j�ji). This workspae an also inorporate any lassial randomnessused. However, the deoder ould equivalently add these workspae states after the query, usingthe unitary map jijjij0i 7! jijjij�ji. Hene we an assume without loss of generality that theatual query is jQii = X2f0;1g;j2[m℄�jjijji;and that the deoder just measures the state resulting from this query. Let D and I � D be thetwo measurement operators that the deoder uses for this measurement, orresponding to outputs1 and 0, respetively. Its probability of giving output 1 on query-result jRi is p(R) = hRjDjRi (forlarity we don't write the j�i inside the p(�)).Inspired by the smoothing tehnique of [21℄, we split the amplitudes �j of the query jQii intosmall and large ones: A = f(; j) : �j � p1=Æmg and B = f(; j) : �j > p1=Æmg. Sine thequery does not a�et the j0ijji-states, we an assume without loss of generality that �0j is thesame for all j, so �0j � 1=pm � 1=pÆm and hene (0; j) 2 A. Let a =qP(;j)2A �2j be the normof the \small-amplitude" part. Sine P(;j)2B �2j � 1, we have jBj < Æm. De�ne non-normalizedstates jA(x)i = X(;j)2A(�1)�C(x)j�jjijjijBi = X(;j)2B �jjijji:The pure states jA(x)i + jBi and jA(x)i � jBi eah orrespond to a y 2 f0; 1gm that is orrupted(ompared to C(x)) in at most jBj � Æm positions, so the deoder an reover xi from eah ofthese states. If x has xi = 1, then we have:p(A(x) +B) � 1=2 + "p(A(x)�B) � 1=2 + ":Sine p(A�B) = p(A)+p(B)�(hAjDjBi+hBjDjAi), averaging the previous two inequalities givesp(A(x)) + p(B) � 1=2 + ":Similarly, if x0 has x0i = 0, then p(A(x0)) + p(B) � 1=2� ":Hene, for the normalized states 1a jA(x)i and 1a jA(x0)i:p�1aA(x)�� p�1aA(x0)� � 2"=a2:Sine this holds for every x; x0 with xi = 1 and x0i = 0, there are onstants q1; q0 2 [0; 1℄, q1 � q0 �2"=a2, suh that p( 1aA(x)) � q1 whenever xi = 1 and p( 1aA(x)) � q0 whenever xi = 0.10



If we had a opy of the state 1a jA(x)i, then we ould run the proedure below to reover xi.Here we assume that q1 � 1=2 + "=a2 (if not, then we must have q0 � 1=2 � "=a2 and we an usethe same argument with 0 and 1 reversed), and that q1 + q0 � 1 (if not, then q0 � 1=2 � "=a2 andwe're already done).Output 0 with probability q = 1� 1=(q1 + q0),and otherwise output the result of the deoder's 2-outome measurement on 1a jA(x)i.If xi = 1, then the probability that this proedure outputs 1 is(1� q)p�1aA(x)� � (1� q)q1 = q1q1 + q0 = 12 + q1 � q02(q1 + q0) � 12 + "2a2 :If xi = 0, then the probability that the proedure outputs 0 isq + (1� q)�1� p�1aA(x)�� � q + (1� q)(1� q0) = 1� q0q1 + q0 = q1q1 + q0 � 12 + "2a2 :Thus we an reover xi with good probability if we have the state 1a jA(x)i (whih depends on i aswell as x).It remains to show how we an obtain 1a jA(x)i from jU(x)i with reasonable probability. Thiswe do by applying a measurement with operators M yM and I �M yM to jU(x)i, where M =pÆmP(;j)2A �jj; jih; jj. Both M yM and I �M yM are positive operators (as required for ameasurement) beause 0 � pÆm�j � 1 for all (; j) 2 A. The measurement gives the �rstoutome with probability hU(x)jM yM jU(x)i = Æm2m Xj2A�2j = Æa22 :In this ase we have obtained the normalized version of M jU(x)i, whih is 1a jA(x)i. Suppose wehave r = 2=(Æa2) opies of jU(x)i and we do the measurement separately on eah of them. Thenwith probability 1� (1� Æa2=2)r � 1=2, one of those will give the �rst outome, in whih ase wean predit xi with probability 12 + "2a2 . If all measurements give the seond outome then we justoutput a fair oin ip as our guess for xi. Overall, our reovery probability is nowp � 12 �12 + "2a2�+ 12 � 12 = 12 + "4a2 :Aordingly, r opies of the (log(m) + 1)-qubit state jU(x)i form a quantum random aess odewith reovery probability p. Using Theorem 2, 1�H(1=2 + �) � 2�2= ln 2, and a2 � 1, givesr(log(m) + 1) � (1�H(p))n � "2n8a4 ln 2 � "2n8a2 ln 2 ;hene logm � Æ"2n16 ln 2 � 1: 2
11



3.3 Lower Bound for 2-Query LDCsTheorem 4 If C : f0; 1gn ! f0; 1gm is a (2; Æ; ")-loally deodable ode, thenm � 2n�1;for  = 3Æ"2=(98 ln 2).Proof. The theorem ombines Theorem 1 and 3. Straightforwardly, this would give a onstantof Æ"2=(49 ln 2). We get the better onstant laimed here by observing that the 1-query LQDCderived from the 2-query LDC atually has 1=3 of the overall squared amplitude on queries wherethe ontrol bit  is zero (and all those �0j are in A). Hene in the proof of Theorem 3, we anrede�ne \small amplitude" to �j �p2=(3Æm), and still B will have at most Æm elements beauseP(;j)2B �2j � 2=3. This in turns allows us to make M a fator p3=2 larger, whih improves theprobability of getting 1a jA(x)i from jU(x)i to 3Æa2=4 and allows us to derease r to 4=(3Æa2). Thistranslates to a lower bound logm � 3Æ"2n=(32 ln 2) � 1. Combining that with Theorem 1 (whihmakes " a fator 4=7 smaller) gives  = 3Æ"2=(98 ln 2), as laimed. 2Remarks:(1) Note that a (2; Æ; ")-LDC with adaptive queries gives a (2; Æ; "=2)-LDC with non-adaptivequeries: if query q1 would be followed by query q02 or q12 depending on the outome of q1, then wean just guess in advane whether to query q1 and q02 , or q1 and q12. With probability 1/2, theseond query will be the one we would have made in the adaptive ase and we're �ne, in the otherase we just ip a oin, giving overall reovery probability 1=2(1=2 + ") + 1=2(1=2) = 1=2 + "=2.Thus we also get slightly weaker but still exponential lower bounds for adaptive 2-query LDCs.(2) The onstant 3=(98 ln 2) an be optimized a bit further by hoosing the number r of opiesa bit larger in the proof of Theorem 3 and by using Peter H�yer's 9/10-algorithm (Appendix A)instead of our 11/14-algorithm from Lemma 1. More interesting, however, is the question whetherthe quadrati dependene on " an be improved.(3) For a (2; Æ; ")-LDC where the deoder's output is the XOR of its two queries, we an givea better redution than in Theorem 1. Now the quantum deoder an query 1p2 (j1ij1i + j1ij2i) ;giving 1p2 ((�1)a1 j1ij1i + (�1)a2 j1ij2i) = (�1)a1 1p2 �j1ij1i + (�1)a1�a2 j1ij2i� ;and extrat a1�a2 from this with ertainty. Thus the reovery probability remains 1=2+ " insteadof going down to 1=2+4"=7. Aordingly, we also get better lower bounds for 2-query LDCs wherethe output is the XOR of the two queries, with  = Æ"2=(16 ln 2) in the exponent.(4) The seond part of our proof is a redution from a Loally Quantum-Deodable Code to a\smooth" quantum ode and then to a ode where the distribution of the queries is uniform. Thisredution is known for lassial odes as well (see the next setion). Hene, an alternative way toget the exponential lower bound on m would be �rst to invoke the result by Katz and Trevisanthat redues an LDC to a ode with a uniform query distribution. We an redue further to thease where the deoder outputs the XOR of the q queried bits. Starting with suh a uniformlysmooth ode, we an then use our redution from 2 lassial queries to 1 quantum query withoutany loss in reovery probability (see Remark 3). After this redution we immediately end up witha quantum random aess ode of logm qubits and we are done. However, this proof would give aworse dependene on Æ and " than our urrent result.12



4 ExtensionsIn this setion we give various extensions and variations of the lower bound of the previous setion.4.1 Non-Binary AlphabetsHere we extend our lower bounds for binary 2-query LDCs to the ase of 2-query LDCs over largeralphabets. For simpliity we assume the alphabet is � = f0; 1g`, so a query to position j now returnsan `-bit string C(x)j. The de�nition of (q; Æ; ")-LDC from Setion 2.2 arries over immediately, withd(C(x); y) now measuring the Hamming distane between C(x) 2 �m and y 2 �m.We will need the notion of smooth odes and their onnetion to LDCs as stated in [21℄.De�nition 3 C : f0; 1gn ! �m is a (q; ; ")-smooth ode if there is a lassial randomized deodingalgorithm A suh that1. A makes at most q queries, non-adaptively.2. For all x and i we have Pr[AC(x)(i) = xi℄ � 1=2 + ".3. For all x, i, and j, the probability that on input i mahine A queries index j is at most =m.Note that smooth odes only require good deoding on odewords C(x), not on y that are loseto C(x). Katz and Trevisan [21, Theorem 1℄ established the following onnetion:Theorem 5 (Katz & Trevisan) A (q; Æ; ")-LDC C : f0; 1gn ! �m is a (q; q=Æ; ")-smooth ode.A onverse to Theorem 5 also holds: a (q; ; ")-smooth ode is a (q; Æ; " � Æ)-LDC, beausethe probability that the deoder queries one of Æm orrupted positions is at most (=m)(Æm) = Æ.Hene LDCs and smooth odes are essentially equivalent, for appropriate hoies of the parameters.To prove the exponential lower bound for LDCs over non-binary alphabet �, we will redue asmooth ode over � to a somewhat longer binary smooth ode that works well averaged over x.Then, we will show a lower bound on suh average-ase binary smooth odes in a way very similarto the proof of Theorem 4. The following key lemma was suggested to us by Lua Trevisan [35℄.Lemma 2 (Trevisan) Let C : f0; 1gn ! �m be a (2; ; ")-smooth ode. Then there exists a(2;  �2`; "=22`)-smooth ode C 0 : f0; 1gn ! f0; 1gm�2` that is good on average, i.e., there is a deoderA suh that for all i 2 [n℄ 12n Xx2f0;1gn Pr[AC0(x)(i) = xi℄ � 12 + "22` :Proof. We form the new binary ode C 0 by replaing eah symbol C(x)j 2 � of the old ode byits Hadamard ode, whih onsists of 2` bits. The length of C 0(x) is m � 2` bits. The new deodingalgorithm uses the same randomness as the old one. Let us �x the two queries j; k 2 [m℄ and theoutput funtion f : �2 ! f0; 1g of the old deoder. We will desribe a new deoding algorithmthat is good for an average x and looks only at one bit of the Hadamard odes of eah of a = C(x)jand b = C(x)k.First, if for this spei� j; k; f we have Prx[f(a; b) = xi℄ � 1=2, then the new deoder just outputsa random bit, so in this ase it is at least as good as the old one for an average x. Now onsiderthe ase Prx[f(a; b) = xi℄ = 1=2 + � for some � > 0. Swithing from the f0; 1g-notation to the13



f�1; 1g-notation enables us to say that Ex[f(a; b)�xi℄ = 2�. Viewing a and b as two `-bit strings, wean represent f by its Fourier representation (see e.g. [6℄): f(a; b) =PS;T�[`℄ f̂S;T Qs2S asQt2T btand heneXS;T f̂S;TEx "Ys2S asYt2T bt � xi# = Ex 240�XS;T f̂S;T Ys2S asYt2T bt1A � xi35 = Ex[f(a; b) � xi℄ = 2�:Averaging and using that jf̂S0;T0 j � 1, it follows that there exist subsets S0; T0 suh that������Ex 24Ys2S0 as Yt2T0 bt � xi35������ � f̂S0;T0Ex 24Ys2S0 as Yt2T0 bt � xi35 � 2�22` :Returning to the f0; 1g-notation, we must have eitherPrx [(S0 � a� T0 � b) = xi℄ � 1=2 + �=22`or Prx [(S0 � a� T0 � b) = xi℄ � 1=2 � �=22`;where S0 �a and T0 � b denote inner produts mod 2 of `-bit strings. Aordingly, either the XOR ofthe two bits S0 �a and T0 �b, or its negation, predits xi with average probability� 1=2+�=22`. Bothof these bits are in the binary ode C 0(x). The -smoothness of C translates into  � 2`-smoothnessof C 0. Averaging over the lassial randomness (i.e. the hoie of j; k, and f) gives the lemma. 2This lemma enables us to modify our proof of Theorem 4 so that it works for non-binaryalphabets �:Theorem 6 If C : f0; 1gn ! �m = (f0; 1g`)m is a (2; Æ; ")-loally deodable ode, thenm � 2n�`;for  = �(Æ"2=25`).Proof. Using Theorem 5 and Lemma 2, we turn C into a binary (2; 2`+1=Æ; "=22`)-smooth odeC 0 that has average reovery probability 1=2 + "=22` and length m0 = m � 2` bits. Sine its deoderXORs its two binary queries, we an redue this to one quantum query without any loss in theaverage reovery probability (see the third remark following Theorem 4).We now redue this quantum smooth ode to a quantum random aess ode, by a modi�edversion of the proof of Theorem 4. The smoothness of C 0 implies that all amplitudes �j (whihdepend on i) in the one quantum query satisfy �j � p2`+1=Æm0. Hene there is no need to splitthe set of j's into A and B. Also, the ontrol bit  will always be 1, so we an ignore it.Consider the states jU(x)i = 1pm0 Pm0j=1(�1)C(x)0j jji and jA(x)i =Pm0j=1 �j(�1)C(x)0j jji, and the2-outome measurement with operators M =pÆm0=2`+1Pj �jjjihjj and I �M . The probabilitythat the measurement takes us from jU(x)i to the renormalized M jU(x)i (= jA(x)i) is equal tohU(x)jM�M jU(x)i = Æ=2`+1. Hene r = 2`+1=Æ opies of jU(x)i forms a quantum random aessode with average suess probabilityp � 12 �12 + "22`�+ 12 � 12 = 12 + "22`+1 :14



The (1�H(p))n lower bound for a quantum random aess ode holds even if the reovery proba-bility p is only an average over x, whih givesr � log(m0) � (1�H(p))n;whih implies the statement of the theorem. 24.2 Bounds for More Than 2 QueriesHere we address the ase of LDCs over the binary alphabet where the deoder asks more than 2queries. There is no obvious way to extend our 2-to-1 redution to more than 2 lassial queries,sine a quantum omputer needs dq=2e queries to ompute the parity of q bits with any advantage [4,15℄. In partiular, it needs 2 quantum queries to ompute the parity of 3 bits, and we don't haveany lower bounds for 2-query LQDCs. Still, for LDCs with q � 3 queries we were able to improvethe polynomial lower bounds m = 
(n1+1=(q�1)) of Katz and Trevisan [21℄ somewhat:Theorem 7 If C : f0; 1gn ! f0; 1gm is a (q; Æ; ")-loally deodable ode, thenm = 
 � nlogn�1+1=(dq=2e�1)! ;where the onstant under the 
(�) depends on q, Æ and ".Proof. Suppose for simpliity that q is even and m is a multiple of q. By Theorem 5, it suÆesto prove a bound for a (q; ; ")-smooth ode, with  = q=Æ. We will use the following result to makethe smooth ode uniform.Fat (Katz & Trevisan [21, disussion in Setion 4℄): A (q; ; ")-smooth ode is a (q; q; "2=2)-smooth ode that is good on average. For every i, the new q-query deoder has a �xed partitionMi of [m℄ into m=q q-tuples; it just piks a random q-tuple (j1; : : : ; jq) 2Mi and outputs a Booleanfuntion of the q bits C(x)j1 ; : : : ; C(x)jq . For every i, the deoding of xi will be orret withprobability at least 1=2 + "2=2 averaged over all x.By a proof analogous to Lemma 2, we an ensure that the deoder atually omputes the XORof the q queried bits (or its negation). The average orretness probability will still be at least1=2+ "2=2q+1. We will derive a quantum random aess ode from this uniform smooth ode. LetPij = jiihij + jjihjj be the projetor on the states jii and jji. Suppose (i1; j1); : : : ; (im=2; jm=2) is apartition of all the q-tuples in Mi into pairs. By measuring the uniform statejU(x)i = 1pm mXj=1(�1)C(x)j jjiwith operators Pi1j1 ; : : : ; Pim=2jm=2 , we get1p2 �(�1)C(x)i` ji`i+ (�1)C(x)j` jj`i� ;for random 1 � ` � m=2. From this we an obtain C(x)i` � C(x)j` , so we an generate the XORof a random pair from the partition. In order to reover xi we need to �nd q=2 di�erent pairs thatome from the same q-tuple. 15



Eah state jU(x)i gives us a random pair out of the possible m=2. By the Birthday Paradox, ifwe have O(m1�2=q) opies of the logm-qubit state jU(x)i, then with high probability we will �ndq=2 di�erent pairs that ome from the same q-tuple and hene be able to reover xi. In other words,O(m1�2=q) opies of the logm-qubit state jU(x)i onstitute an (average) random aess ode. Therandom aess ode lower bound (Appendix B) now givesm1�2=q � logm = 
(n);whih implies m = 
((n= log n)1+2=(q�2)). 2For example, for q = 4 queries our lower bound is m = 
((n= log n)2) while Katz and Trevisanhave m = 
(n4=3).4.3 Loally Quantum-Deodable Codes with Few QueriesThe third remark of Setion 3.3 immediately generalizes to:Theorem 8 A (2q; Æ; ")-LDC where the deoder's output is the XOR of the 2q queried bits, is a(q; Æ; ")-LQDC.LDCs with q queries an be obtained from q-server PIR shemes with 1-bit answers by on-atenating the answers that the servers give to all possible queries of the user. Beimel et al. [8,Corollary 4.3℄ reently improved the best known upper bounds on q-query LDCs, based on theirimproved PIR onstrution. They give a general upper bound m = 2nO(log log q=q log q) for q-queryLDCs, for some onstant depending on Æ and ", as well as more preise estimates for small q. Inpartiular, for q = 4 they onstrut an LDC of length m = 2O(n3=10). All their LDCs are of theXOR-type, so we an redue the number of queries by half when allowing quantum deoding. Forinstane, their 4-query LDC is a 2-query LQDC with lengthm = 2O(n3=10). In ontrast, any 2-queryLDC needs length m = 2
(n) as proved above.For general LDCs we an do something nearly as good, using van Dam's result that a q-bitorale an be reovered with probability nearly 1 using q=2 +O(pq) quantum queries [13℄:Theorem 9 A (q; Æ; ")-LDC is a (q=2 +O(pq); Æ; "=2)-LQDC.4.4 Loally Deodable Erasure CodesReently, the notion of a Loally Deodable Erasure Code (LDEC) was used in the onstrution ofextrators [25, Setion 3.1℄. This is a ode where, even if (1� ")m of all positions of the odewordare erased, we an still reover eah xi using only q queries to the remaining positions.De�nition 4 Consider a map C : f0; 1gn ! �m. We say that message position i is deodablefrom odeword positions j1; : : : ; jq if there exists a funtion f suh that f(C(x)j1 ; : : : ; C(x)jq ) = xifor all x. C is a (q; ")-LDEC, if for every i, in every "-fration of the positions of the odeword,there exists a q-tuple of positions from whih i is deodable.Here we show that LDECs are equivalent to smooth odes, as de�ned in Setion 4.1, and heneto LDCs. Consider some LDEC with odewords of length m. This equivalene shows that ourlower bounds also hold for LDECs. In partiular, (2; ")-LDECs need exponential length.16



First onsider some LDEC. Take S to be the set of an "-fration of positions of the odeword. Byde�nition, there exists a \good" q-tuple in S, i.e., one from whih we an deode message positioni. Remove these q positions of the odeword from S and replae them by some other q positions.Now in this new set S0 of positions there should still be a \good" q-tuple. Remove it and go on.You an repeat this substitution (1�")m=q times, where m is the size of the ode. Therefore, thereare 
(m) disjoint q-tuples that are \good" for xi and so the ode is a smooth ode: the smoothdeoder just piks one of these tuples at random and queries it positions.The onverse is also true. A smooth ode ontains 
(m) disjoint q-tuples, say �m of them, thatare \good" for xi. Hene, in any subset of the positions of the odeword of size (1��)m+1, thereexists a \good" q-tuple and therefore the ode is an LDEC with " � 1� �.5 Private Information RetrievalAs mentioned, there is a lose onnetion between loally deodable odes and private informationretrieval. In this setion we use a variant of our 2-to-1 redution to prove new lower bounds forPIR and new upper bounds for QPIR.5.1 Lower Bounds for Binary 2-Server PIRTo get lower bounds for 2-server PIRs with 1-bit answers, we again give a 2-step proof: a redutionof 2 lassial servers to 1 quantum server, ombined with a lower bound for 1-server quantum PIR.Theorem 10 If there exists a lassial 2-server PIR sheme with t-bit queries, 1-bit answers, andreovery probability 1=2 + ", then there exists a quantum 1-server PIR sheme with (t + 2)-qubitqueries, (t+ 2)-qubit answers, and reovery probability 1=2 + 4"=7.Proof. The proof is analogous to the proof for loally deodable odes (Theorem 1). If we letthe quantum user employ the same randomness as the lassial one, the problem boils down toomputing some f(a1; a2), where a1 is the �rst server's 1-bit answer to query q1, and a2 is theseond server's 1-bit answer to query q2. However, in addition we now have to hide i from thequantum server. This we do by making the quantum user set up the (4 + t)-qubit state1p3 �j0ij0; 0ti+ j1ij1; q1i+ j2ij2; q2i� ;where `0t' is a string of t 0s. The user sends everything but the �rst register to the server. Thestate of the server is now a uniform mixture of j0; 0ti, j1; q1i, and j2; q2i. By the seurity of thelassial protool, j1; q1i ontains no information about i (averaged over the user's randomness),and the same holds for j2; q2i. Hene the server gets no information about i.The quantum server then puts (�1)aj in front of jj; qji (j 2 f1; 2g), leaves j0; 0ti alone, andsends everything bak. Note that we need to supply the name of the lassial server j 2 f1; 2g totell the server in superposition whether it should play the role of server 1 or 2. The user now has1p3 �j0ij0; 0ti+ (�1)a1 j1ij1; q1i+ (�1)a2 j2ij2; q2i� :From this we an ompute f(a1; a2) with suess probability exatly 11=14, giving overall reoveryprobability 1=2 + 4"=7 as in Theorem 1. 2Combining the above redution with the quantum random aess ode lower bound, we obtainthe �rst 
(n) lower bound that holds for all 1-bit-answer 2-server PIRs, not just for linear ones.17



Theorem 11 A lassial 2-server PIR sheme with t-bit queries, 1-bit answers, and reovery prob-ability 1=2 + ", has t � (1�H(1=2 + 4"=7))n � 2.Proof. We �rst redue the 2 lassial servers to 1 quantum server in the way of Theorem 10.Now onsider the state of the quantum PIR sheme after the user sends his (t+ 2)-qubit messagej�ii: Xr rpr3 jri �j0ij0; 0ti+ j1ij1; q1(r; i)i + j2ij2; q2(r; i)i� :Here the pr are the lassial probabilities of the user (these depend on i) and qj(r; i) is the t-bitquery that the user sends to server j in the lassial 2-server sheme, if he wants xi and has randomstring r. Letting B = f0t+1g [ f1; 2g � f0; 1gt be the server's basis states, we an write j�ii as:j�ii =Xb2B �bjaibijbi:Here the jaibi are pure states that do not depend on x. The oeÆients �b are non-negative realsthat do not depend on i, for otherwise a measurement of b would give the server information abouti, ontraditing privay. The server then tags on the appropriate phase sbx, whih is 1 for b = 0t+1and (�1)Sj(x;qj) for b = jqj , j 2 f1; 2g. This givesj�ixi =Xb2B �bjaibisbxjbi:Now the following pure state will be a random aess ode for xj xi =Xb2B �bsbxjbi;beause a user an unitarily map j0ijbi 7! jaibijbi to map j0ij xi 7! j�ixi, from whih he an getxi with probability p = 1=2 + 4"=7 by ompleting the quantum PIR protool. The state j xi hast+ 2 qubits, hene from Theorem 2 we obtain t � (1�H(p))n� 2. 2For the speial ase where the lassial PIR outputs the XOR of the two answer bits, we animprove our lower bound to t � (1 �H(1=2 + "))n � 1. In partiular, t � n� 1 in ase of perfetreovery (" = 1=2), whih is tight.5.2 Lower Bounds for 2-Server PIR with Larger AnswersWe an also extend our linear lower bound on 2-server PIR shemes with answer length a = 1(Theorem 11) to the ase of 2-server PIR larger answer length. We use the translation from PIRto smooth odes given by Lemma 7.1 of Goldreih et al. [20℄:Lemma 3 (GKST) If there is a lassial 2-server PIR sheme with query length t, answer lengtha, and reovery probability 1=2 + ", then there is a (2; 3; ")-smooth ode C : f0; 1gn ! �m for� = f0; 1ga and m � 6 � 2t.Going through roughly the same steps as for the proof of Theorem 6, we obtain:Theorem 12 A lassial 2-server PIR sheme with t-bit queries, a-bit answers, and reovery prob-ability 1=2 + ", has t � 
(n"2=25a). 18



5.3 Lower Bounds for General 2-Server PIRThe previous lower bounds on the query length of 2-server PIR shemes were signi�ant only forprotools with short answer length. Here we slightly improve the best known bound of 4 log n [26℄on the overall ommuniation omplexity of 2-server PIR shemes, by ombining our Theorem 12and Theorem 6 of Katz and Trevisan [21℄. We restate their theorem here for the PIR setting. Forthe remainder of this setion, we assume " to be some �xed positive onstant.Theorem 13 (Katz & Trevisan) Every 2-server PIR sheme with t-bit queries and a-bit an-swers has t � 2 log na �O(1):We now prove the following lower bound on the total ommuniation C = 2(t + a) of any2-server PIR sheme with t-bit queries and a-bit answers:Theorem 14 Every 2-server PIR sheme has total ommuniationC � (4:4� o(1)) logn:Proof. We distinguish three ases, depending on the answer length of the sheme. Let Æ =log logn= log n.ase 1: a � (0:2 � Æ) log n. Then from Theorem 12 we get that C � t = 
(n5Æ) = 
((log n)5).ase 2: (0:2 � Æ) log n < a < 2:2 log n. Then from Theorem 13 we haveC = 2(t+ a) > 2 (2 log(n=(2:2 log n))�O(1) + (0:2� Æ) log n) = (4:4� o(1)) logn:ase 3: a � 2:2 log n. Then obviously C = 2(t+ a) � 4:4 log n. 25.4 Upper Bounds for Quantum PIRThe best known LDCs are derived from lassial PIR shemes with 1-bit answers where the outputis the XOR of the 1-bit answers that the user reeives. By allowing quantum queries, we anredue the number of queries by half to obtain more eÆient LQDCs. Similarly, we an also turnthe underlying lassial k-server PIRs diretly into quantum PIRs with k=2 servers.Most interestingly, there exists a 4-server PIR with 1-bit answers and ommuniation om-plexity O(n3=10) [8, Example 4.2℄. This gives us a quantum 2-server PIR sheme with O(n3=10)ommuniation, improving upon the ommuniation required by the best known lassial 2-serverPIR sheme, whih has been O(n1=3) ever sine the introdution of PIR by Chor et al. [11℄. In theintrodution we mentioned also some quantum upper bounds for k > 2 servers, whih are obtainedsimilarly.
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and OR.3 If f is onstant or depends on only one of its 2 input bits x1 and x2, then we an obviouslyompute it with one query. If f is PARITY or its negation, then it is well known that f an beomputed exatly with one quantum query. The only remaining ase is where f is an imbalanedfuntion, i.e. has one 1-input and three 0-inputs, or vie versa. These 8 possible funtions are allequivalent, so we will restrit attention to the NOR-funtion, whih is 1 i� x = 00.Peter H�yer disovered the following algorithm for doing the 2-bit NOR with 1 quantum queryand error probability " = 1=10. Using one quantum query we an obtain the state1p3 (j0i + (�1)x1 j1i+ (�1)x2 j2i) :We now use a 2-outome measurement where the �rst operator is the projetion on the uniformsuperposition. We output 1 i� the measurement gives the �rst outome. This has error probability0 on the x = 00 input (where NOR = 1), and error probability 1=9 on eah of the three otherinputs. We an balane this to an algorithm with 2-sided error 1=10, by produing output 0 withprobability 1=10, and running the above 1-query algorithm with probability 9=10.We will now prove that his error " = 1=10 is optimal. By the analysis of [4℄, the amplitudes ofthe �nal state of a 1-query quantum algorithm are degree-1 polynomials in the input variables, sothe aeptane probability of the algorithm is a polynomialp(x1; x2) =Xj jaj + bj(�1)x1 + j(�1)x2 j2 ;where j ranges over all basis states that would yield a 1 as output, and the aj; bj ; j are omplexnumbers that are independent of the input. Let a = (aj) be the vetor of ajs, k a k = phajai itsEulidean norm, and similarly for b and . If the algorithm has error probability � ", then we havethe following four onditions, one for eah of the possible inputs:(A) 1� " � p(0; 0) = k a+ b+  k2(B) p(0; 1) = k a+ b�  k2 � "(C) p(1; 0) = k a� b+  k2 � "(D) p(1; 1) = k a� b�  k2 � "Averaging (B) and (C) givesk a k2 + k b�  k2 � "; hene k a k � p":Triangle inequality and (D) givesk b+  k � k a k � k a� b�  k � p"; hene k b+  k � k a k+p" � 2p":Subtrating (D) from (A), and using Cauhy-Shwarz, gives1� 2" � 4jhajb+ ij � 4k a k � k b+  k � 4 � p" � 2p" = 8";hene " � 1=10.3Unlike our 11=14 solution in Lemma 1, the query of the optimal 9=10 algorithm will depend on f . This meansthat we annot diretly use this algorithm in the PIR-ontext, as the query ould leak information about f (andhene possibly about i) to the server. 23



B Lower Bound for Quantum Random Aess CodesAs de�ned in Setion 3.2, a quantum random aess ode is an enoding x 7! �x, suh that anybit xi an be reovered with some probability p � 1=2 + " from �x. Below we reprove Nayak's [27℄linear lower bound on the length m of suh enodings.We assume familiarity with the following notions from quantum information theory, see [28,Chapters 11 and 12℄ for details. Very briey, if we have a bipartite quantum system AB (given bysome density matrix), then we use A and B to denote the states (redued density matries) of theindividual systems. S(A) = �Tr(A logA) is the (Von Neumann) entropy of A, whih is the Shannonentropy of the probability distribution given by the eigenvalues of A. S(AjB) = S(AB) � S(B) isthe onditional entropy of A given B; and S(A : B) = S(A) + S(B)� S(AB) = S(A) � S(AjB) isthe mutual information between A and B.We de�ne an n+m-qubit state XM as follows:12n Xx2f0;1gn jxihxj 
 �x:We use X to denote the �rst subsystem, Xi for its individual bits, andM for the seond subsystem.By [28, Theorem 11.8.4℄ we haveS(XM) = n+ 12n Xx S(�x) � n = S(X):Sine M has m qubits we have S(M) � m, heneS(X :M) = S(X) + S(M)� S(XM) � S(M) � m:Using a hain rule for relative entropy, and the (highly non-trivial) subadditivity of Von Neumannentropy we get S(XjM) = nXi=1 S(XijX1 : : : Xi�1M) � nXi=1 S(XijM):Sine we an predit Xi from M with suess probability p, Fano's inequality impliesH(p) � S(XijM):In fat, Fano's inequality even applies under the weaker assumption that the suess probability inprediting xi is p only when averaged over all x. Putting the above equations together we obtain(1�H(p))n � S(X) � nXi=1 S(XijM) � S(X)� S(XjM) = S(X :M) � m:
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