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Abstract. We prove new lower bounds for locally decodable codes and
private information retrieval. We show that a 2-query LDC encoding n-
bit strings over an ℓ-bit alphabet, where the decoder only uses b bits of

each queried position, needs code length m = exp

(

Ω

(

n

2b
∑

b

i=0
(ℓ

i)

))

.

Similarly, a 2-server PIR scheme with an n-bit database and t-bit queries,
where the user only needs b bits from each of the two ℓ-bit answers, un-

known to the servers, satisfies t = Ω

(

n

2b
∑

b

i=0
(ℓ

i)

)

. This implies that

several known PIR schemes are close to optimal. Our results generalize
those of Goldreich et al. [8], who proved roughly the same bounds for lin-

ear LDCs and PIRs. Like earlier work by Kerenidis and de Wolf [12], our
classical bounds are proved using quantum computational techniques. In
particular, we give a tight analysis of how well a 2-input function can be
computed from a quantum superposition of both inputs.

1 Introduction

1.1 Locally decodable codes

Error correcting codes allow reliable transmission and storage of information in
noisy environments. Such codes often have the disadvantage that one has to read
almost the entire codeword, even if one is only interested in a small part of the
encoded information. A locally decodable code C : {0, 1}n → Σm over alphabet
Σ is an error-correcting code that allows efficient decoding of individual bits of
the encoded information: given any string y that is sufficiently close to the real
codeword C(x), we can probabilistically recover any bit xi of the original input
x, while only looking at k positions of y. The code length m measures the cost of
the encoding, while k measures the efficiency of decoding individual bits. Such
codes have had a number of applications in recent computer science research,
including PCPs and worst-case to average-case reductions. One can also think
of applications encoding a large chunk of data in order to protect it from noise,
where we are only interested in extracting small pieces at a time. Imagine for
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example an encoding of all books in a library, where we would like to retrieve
only the first paragraph of this paper.

The main complexity question of interest is the tradeoff between m and
k. With k = polylog(n) queries, the code length can be made polynomially
small, even over the binary alphabet Σ = {0, 1} [3]. However, for fixed k, the
best upper bounds are superpolynomial. Except for the k = 2 case with small
alphabet Σ, no good lower bounds are known. Katz and Trevisan [10] showed
superlinear but at most quadratic lower bounds for constant k. Goldreich et al. [8]
showed an exponential lower bound for linear codes with k = 2 queries and
constant alphabet, and Kerenidis and de Wolf [12] extended this to all codes,
using techniques from quantum computing. For Σ = {0, 1}ℓ they prove m =

2Ω(n/25ℓ). They also slightly improved the polynomial bounds of [10] for k > 2.

Clearly the above lower bound becomes trivial if each position of the code-
word has ℓ ≥ log(n)/5 bits. In this paper we analyze the case where ℓ can be
much larger, but the decoder uses only b bits out of the ℓ bits of a query answer.
The b positions that he uses may depend on the index i he is interested in and on
his randomness. This setting is interesting because many existing constructions
are of this form, for quite small b. Goldreich et al. [8] also analyzed this situation,

and showed the following lower bound for linear codes:m = 2Ω(n/
∑

b

i=0
(ℓ

i)). Here

we prove a slightly weaker lower bound for all codes: m = 2Ω(n/2b
∑

b

i=0
(ℓ

i)). In
particular, if b = ℓ (so the decoder can use all bits from the query answers) we

improve the bound from [12] to m = 2Ω(n/22ℓ). We lose a factor of 2b compared
to Goldreich et al. This factor can be dispensed with if the decoder outputs the
parity of a subset of the bits he receives. All known LDCs are of this type.

Our proofs are completely different from the combinatorial approach of Gol-
dreich et al. Following [12], we proceed in two steps: (1) we reduce the two clas-
sical queries to one quantum query and (2) show a lower bound for the induced
one-quantum-query-decodable code by deriving a random access code from it.
The main novelty is a tight analysis of the following problem. Suppose we want
to compute a Boolean function f(a0, a1) on 2b bits, given a quantum superposi-
tion 1√

2
(|0, a0〉+|1, a1〉) of both halves of the input. We show that any Boolean f

can be computed with advantage 1/2b+1 from this superposition, and that this is
best-achievable for the parity function. This may be of independent interest. In
fact, Kerenidis [11] recently used it to exhibit an exponential quantum-classical
separation in multiparty communication complexity, and in an interesting new
approach to improve depth lower bounds for classical circuits.

1.2 Private information retrieval

There is a very close connection between LDCs and the setting of private infor-
mation retrieval. In PIR, the user wants to retrieve some item from a database
without letting the database learn anything about what item he asked for. In the
general model, the user retrieves the ith bit from an n-bit database x = x1 . . . xn

that is replicated over k ≥ 1 non-communicating servers. He communicates with



each server without revealing any information about i to individual servers, and
at the end of the day learns xi. This is a natural cryptographic problem that
has applications in systems where privacy of the user is important, for example
databases providing medical information. Much research has gone into optimiz-
ing the communication complexity of one-round PIR schemes. Here the user
sends a t-bit message (“query”) to each server, who responds with an ℓ-bit mes-
sage (“answer”), from which the user infers xi. A number of non-trivial upper
bounds have been found [7, 1, 4, 6], but, as in the LDC case, the optimality of
such schemes is wide open. In fact, the best known constructions of LDCs with
constant k come from PIR schemes with k servers. Roughly speaking, concate-
nating the servers’ answers to all possible queries gives a codeword C(x) of length
m = k2t over the alphabet Σ = {0, 1}ℓ that is decodable with k queries. The
privacy of the PIR scheme translates into the error-correcting property of the
LDC: since many different sets of k queries have to work for recovering xi, we
can afford some corrupted positions. Conversely, we can turn a k-query LDC into
a k-server PIR scheme by asking one query to each server (so t = logm). The
privacy of the resulting PIR scheme follows from the fact that an LDC can be
made to have a “smoothness” property, meaning that most positions are about
equally likely to be queried, independent of i.

Here we restrict attention to 2 servers, which is probably the most interest-
ing case. The paper by Chor et al. [7] that introduced PIR, gave a PIR scheme
where both the queries to the servers and the answers from the servers have
length Θ(n1/3) bits. Later constructions gave alternative ways of achieving the
same complexity, but have not given asymptotic improvements for the 2-server
case (in contrast to the case of 3 or more servers [6] and the case of 2 quan-
tum servers [12]). Though general lower bounds for 2-server PIRs still elude us,
reasonably good lower bounds can be proved for schemes that only use a small
number b of bits from each possibly much longer answer string. This b is some-
times called the probe complexity of the scheme. As stated in [5], small probe
complexity is a desirable property of a PIR scheme for a number of reasons: the
user needs less space; the schemes can be more easily applied recursively as in [6];
and such PIR schemes induce locally decodable codes where the codelength m is
relatively small while the codeword entries are allowed to have many bits each,
but the decoder needs only few bits from each codeword entry it read.

As was implicitly stated by Katz and Trevisan [10] and formalized by Goldre-
ich et al. [7], it is possible to translate 2-server PIRs to 2-query LDCs, where the
property of only using b bits from each ℓ-bit string carries over. Combining this
lemma with our LDC lower bounds gives the following bound for 2-server PIRs
with t-bit queries, ℓ-bit answers, and probe complexity b: t = Ω(n/2b

∑b
i=0

(
ℓ
i

)
).

In particular, for fixed b the overall communication is C = 2(t+ℓ) = Ω(n1/(b+1)).
This is tight for b = 1 (we describe an O(

√
n) scheme in Section 2) and close

to optimal for b = 3, since a small variation of the Chor et al. scheme achieves
C = O(n1/3) using only 3 bits from each answer 1, while our bound is Ω(n1/4).
Similar results were established for linear PIR schemes by Goldreich et al., but

1 A polynomial-based O(n1/3)-scheme from [4] does not have this “small b”-property.



our results apply to all PIR schemes. They imply that in improved 2-server PIR
schemes, the user needs to use more bits from the servers’ answers. For gen-
eral schemes, where b = ℓ, we obtain t = Ω(n/22ℓ). This improves the n/25ℓ

bound from [12]. It implies a lower bound of 5 logn on the total communication
C = 2(t+ ℓ). This is incredibly weak, but without any assumptions on how the
user handles the answers, and still improves what was known [13, 12].

2 Preliminaries

We use a|S to denote the string a restricted to a set of bits S ⊆ [n] = {1, . . . , n},
e.g., 11001|{1,4,5} = 101. We identify a set S ⊆ [n] with n-bit string S = S1 . . . Sn,
where i ∈ S if and only if the ith bit Si = 1. We use ei for the n-bit string
corresponding to the singleton set S = {i}. If y ∈ Σm where Σ = {0, 1}ℓ, then
yj ∈ Σ denotes its jth entry, and yj,i with i ∈ [ℓ] is the ith bit of yj . We assume
general familiarity with the quantum model [15]. Our proofs depend heavily on
the notion of a quantum query. We consider queries with ℓ-bit answers, where
ℓ ≥ 1. For Σ = {0, 1}ℓ, a quantum query to a string y ∈ Σm is the unitary map
|j〉|z〉 7→ |j〉|z ⊕ yj〉, where j ∈ [m], z ∈ {0, 1}ℓ is called the target register, and
z ⊕ yj is the string resulting from the xor of the individual bits of z and yj, i.e.
z ⊕ yj = (z1 ⊕ yj,1) . . . (zℓ ⊕ yj,ℓ). It is convenient to get the query result in the

phase of the quantum state. To this end, define |zT 〉 = 1√
2ℓ

⊗ℓ
i=1(|0〉+(−1)Ti |1〉)

where Ti is the ith bit of the ℓ-bit string T . Since |0 ⊕ yj,i〉 + (−1)Ti |1 ⊕ yj,i〉 =
(−1)Ti·yj,i(|0〉 + (−1)Ti |1〉), a query maps |j〉|zT 〉 7→ |j〉(−1)T ·yj |zT 〉.

A locally decodable code is an error-correcting code that allows efficient de-
coding of individual bits.

Definition 1. C : {0, 1}n → Σm is a (k, δ, ε)-locally decodable code (LDC), if
there exists a classical randomized decoding algorithm A with input i ∈ [n] and
oracle access to a string y ∈ Σm such that

1. A makes k distinct queries j1, . . . , jk to y, non-adaptively, gets query answers
a1 = yj1 , . . . , ak = yjk

and outputs a bit f(a1, . . . , ak), where f depends on i
and A’s randomness.

2. For every x ∈ {0, 1}n, i ∈ [n] and y ∈ Σm with Hamming distance d(y, C(x)) ≤
δm we have Pr[f(a1, . . . , ak) = xi] ≥ 1/2 + ε.

Here probabilities are taken over A’s internal randomness. For Σ = {0, 1}ℓ,
we say the LDC uses b bits, if A only uses b predetermined bits of each query
answer: it outputs f(a1|S1

, . . . , ak|Sk
) where the sets S1, . . . , Sk are of size b each

and are determined by i and A’s randomness.

In our arguments we will use smooth codes. These are codes where the de-
coding algorithm spreads its queries “smoothly” across the codeword, meaning
it queries no code location too frequently.

Definition 2. C : {0, 1}n → Σm is a (k, c, ε)-smooth code (SC) if there is a
randomized algorithm A with input i ∈ [n] and oracle access to C(x) s.t.



1. A makes k distinct queries j1, . . . , jk to C(x), non-adaptively, gets query
answers a1 = C(x)j1 , . . . , ak = C(x)jk

and outputs a bit f(a1, . . . , ak), where
f depends on i and A’s randomness.

2. For every x ∈ {0, 1}n and i ∈ [n] we have Pr[f(a1, . . . , ak) = xi] ≥ 1/2 + ε.
3. For every x ∈ {0, 1}n, i ∈ [n] and j ∈ [m], Pr[A queries j] ≤ c/m.

The smooth code uses b bits, if A only uses b predetermined bits of each answer.

Note that the decoder of smooth codes deals only with valid codewords C(x).
The decoding algorithm of an LDC on the other hand can deal with corrupted
codewords y that are still sufficiently close to the original. Katz and Trevisan [10,
Theorem 1] showed that LDCs and smooth codes are closely related:

Theorem 1 (Katz & Trevisan). If C : {0, 1}n → Σm is a (k, δ, ε)-LDC, then
C is also a (k, k/δ, ε)-smooth code (the property of using b bits carries over).

The following definition of a one-query quantum smooth code is rather ad
hoc and not the most general possible, but sufficient for our purposes.

Definition 3. C : {0, 1}n → Σm is a (1, c, ε)-quantum smooth code (QSC), if
there is a quantum algorithm A with input i ∈ [n] and oracle access to C(x) s.t.

1. A probabilistically picks a string r, makes a query of the form

|Qir〉 =
1√
2



|j1r〉
1√
2b

∑

T⊆S1r

|zT 〉 + |j2r〉
1√
2b

∑

T⊆S2r

|zT 〉





and returns the outcome of some measurement on the resulting state.
2. For every x ∈ {0, 1}n and i ∈ [n] we have Pr[A outputs xi] ≥ 1/2 + ε.
3. For every x, i, j, Pr[A queries j with non-zero amplitude] ≤ c/m.

The QSC uses b bits, if the sets S1r, S2r have size b.

PIR allows a user to obtain the ith bit from an n-bit database x, replicated
over k ≥ 1 servers, without revealing anything about i to individual servers.

Definition 4. A one-round, (1 − η)-secure, k-server private information re-
trieval (PIR) scheme for a database x ∈ {0, 1}n with recovery probability 1/2+ε,
query size t, and answer size ℓ, consists of a randomized algorithm (user) and k
deterministic algorithms S1, . . . , Sk (servers), such that

1. On input i ∈ [n], the user produces k t-bit queries q1, . . . , qk and sends these
to the respective servers. The jth server returns ℓ-bit string aj = Sj(x, qj).
The user outputs a bit f(a1, . . . , ak) (f depends on i and his randomness).

2. For every x ∈ {0, 1}n and i ∈ [n] we have Pr[f(a1, . . . , ak) = xi] ≥ 1/2 + ε.
3. For all x ∈ {0, 1}n, j ∈ [k], and any two indices i1, i2 ∈ [n], the two distri-

butions on qj (over the user’s randomness) induced by i1 and i2 are η-close
in total variation distance.

The scheme uses b bits if the user only uses b predetermined bits from each ai.



If η = 0, then the server gets no information at all about i. All known non-
trivial PIR schemes have η = 0, perfect recovery (ε = 1/2), and one round of
communication. We give two well-known 2-server examples from [7].

Square scheme. Arrange x = x1 . . . xn in a
√
n × √

n square, then index i is
given by two coordinates (i1, i2). The user picks a random string A ∈ {0, 1}

√
n,

and sends
√
n-bit queries q1 = A and q2 = A⊕ei1 to the servers. The first returns√

n-bit answer a1 = q1 ·C1, . . . , q1 ·C√
n, where q1 ·Cc denotes the inner product

mod 2 of q1 with the cth column of x. The second server sends a2 analogously.
The user selects the bit q1 · Ci2 from a1 and q2 · Ci2 from a2 and computes
(A · Ci2) ⊕ ((A⊕ ei1) · Ci2) = ei1 · Ci2 = xi. Here t = ℓ =

√
n and b = 1.

Cube scheme. A more efficient scheme arranges x in a cube, so i = (i1, i2, i3).
The user picks 3 random strings T1, T2, T3 of n1/3 bits each, and sends queries
q1 = T1, T2, T3 and q2 = (T1⊕ei1), (T2⊕ei2), (T3⊕ei3). The first server computes
the bit a = bT1T2T3 =

⊕

j1∈T1,j2∈T2,j3∈T3
xj1,j2,j3 . Its answer a1 is the n1/3 bits

bT ′

1
T2T3

⊕ a for all T ′
1 differing from T1 in exactly one place, and similarly all

bT1T ′

2T3
⊕ b and bT1T2T ′

3
⊕ a. The second server does the same with its query q2.

The user now selects those 3 bits of each answer that correspond to T ′
1 = T1⊕ei1 ,

T ′
2 = T2⊕ei2 , T

′
3 = T3⊕ei3 respectively, and xors those 6 bits. Since every other

xj1,j2,j3 occurs exactly twice in that sum, what is left is xi1,i2,i3 = xi. Here
t, ℓ = O(n1/3) and b = 3.

3 Computing f(a0, a1) from Superposed Input

To prove the lower bound on LDCs and PIRs, we first construct the following
quantum tool. Consider a state |Ψa0a1〉 = 1√

2
(|0, a0〉 + |1, a1〉) with a0, a1 both

b-bit strings. We show that we can compute any Boolean function f(a0, a1) with
bias 1/2b+1 given one copy of this state. After that we show that bias is optimal
if f is the 2b-bit parity function. The key to the algorithm is the following:

Lemma 1. For every f : {0, 1}2b → {0, 1} there exist non-normalized states
|ϕa〉 such that U : |a〉|0〉 → 1

2b

∑

w∈{0,1}b(−1)f(w,a)|w〉|0〉 + |ϕa〉|1〉 is unitary.

Proof. Let |ψa〉 = (1/2b)
∑

w∈{0,1}b(−1)f(w,a)|w〉|0〉 + |ϕa〉|1〉. It is easy to see

that U can be extended to be unitary if and only if 〈ψa|ψa′〉 = δaa′ for all a, a′. We
will choose |ϕa〉 to achieve this. First, since 〈w|w′〉 = δww′ and 〈w, 0|ϕa, 1〉 = 0:

〈ψa|ψa′〉 =
1

22b

∑

w∈{0,1}b

(−1)f(w,a)+f(w,a′) + 〈ϕa|ϕa′〉.

Let C be the 2b×2b matrix with entries Caa′ = (1/22b)
∑

w∈{0,1}b(−1)f(w,a)+f(w,a′)

where the indices a and a′ are b-bit strings. From the definition of Caa′ we have
|Caa′ | ≤ 1/2b. By [9, Corollary 6.1.5], the largest eigenvalue is

λmax(C) ≤ min






max

a

∑

a′∈{0,1}b

|Caa′ |,max
a′

∑

a∈{0,1}b

|Caa′ |






≤

∑

a∈{0,1}b

1

2b
= 1.



However, λmax(C) ≤ 1 implies that I − C is positive semidefinite and hence,
by [9, Corollary 7.2.11], I −C = A†A for some matrix A. Now define |ϕa〉 to be
the ath column of A. Since the matrix C + A†A = I is composed of all inner
products 〈ψa|ψa′〉, we have 〈ψa|ψa′〉 = δaa′ and it follows that U is unitary. ⊓⊔

Theorem 2. Suppose f : {0, 1}2b → {0, 1} is a Boolean function. There exists
a quantum algorithm to compute f(a0, a1) with success probability exactly 1/2+
1/2b+1 using one copy of |Ψa0a1〉 = 1√

2
(|0, a0〉 + |1, a1〉), with a0, a1 ∈ {0, 1}b.

Proof. First we extend the state |Ψa0a1〉 by a |0〉-qubit. Let U be as in Lemma 1.
Applying the unitary transform |0〉〈0| ⊗ I⊗b+1 + |1〉〈1| ⊗ U to |Ψa0a1〉|0〉 gives

1√
2



|0〉|a0〉|0〉 + |1〉




1

2b

∑

w∈{0,1}b

(−1)f(w,a1)|w〉|0〉 + |ϕa1〉|1〉







 .

Define |Γ 〉 = |a0〉|0〉 and |Λ〉 = 1
2b

∑

w (−1)f(w,a1)|w〉|0〉+|ϕa1〉|1〉. Then 〈Γ |Λ〉 =
1
2b (−1)f(a0,a1) and the above state is 1√

2
(|0〉|Γ 〉+ |1〉|Λ〉). We apply a Hadamard

transform to the first qubit to get 1
2 (|0〉(|Γ 〉 + |Λ〉) + |1〉(|Γ 〉 − |Λ〉)) . The prob-

ability that a measurement of the first qubit yields a 0 is 1
4 〈Γ + Λ|Γ + Λ〉 =

1
2 + 1

2 〈Γ |Λ〉 = 1
2 + (−1)f(a0,a1)

2b+1 . Thus by measuring the first qubit we obtain

f(a0, a1) with bias 1/2b+1. ⊓⊔

To prove that this algorithm is optimal for the parity function, we need to
consider how well we can distinguish two density matrices ρ0 and ρ1, i.e., given
an unknown state determine whether it is ρ0 or ρ1. Let ‖ A ‖tr denote the trace
norm of matrix A, which equals the sum of its singular values.

Lemma 2. Two density matrices ρ0 and ρ1 cannot be distinguished with prob-
ability better than 1/2 + ‖ ρ0 − ρ1 ‖tr/4.

Proof. The most general way of distinguishing ρ0 and ρ1 is a POVM [15] with
two operatorsE0 and E1, such that p0 = tr(ρ0E0) ≥ 1/2+ε and q0 = tr(ρ1E0) ≤
1/2− ε. Then |p0 − q0| ≥ 2ε and likewise, |p1 − q1| ≥ 2ε, for similarly defined p1

and q1. By [15, Theorem 9.1], ‖ ρ0 − ρ1 ‖tr = max{E0,E1}(|p0 − q0| + |p1 − q1|)
and thus ‖ ρ0 − ρ1 ‖tr ≥ 4ε. Hence ε ≤ ‖ ρ0 − ρ1 ‖tr/4. ⊓⊔

Theorem 3. Suppose that f is the parity of a0a1. Then any quantum algorithm
for computing f from one copy of |Ψa0a1〉 has success probability ≤ 1/2+1/2b+1.

Proof. Define ρ0 and ρ1 by ρc = 1
22b−1

∑

a0a1∈f−1(c) |Ψa0a1〉〈Ψa0a1 |, with c ∈
{0, 1}. A quantum algorithm that computes parity of a0a1 with probability 1/2+
ε can be used to distinguish ρ0 and ρ1. Hence by Lemma 2: ε ≤ ‖ ρ0 − ρ1 ‖tr/4.
Let A = ρ0−ρ1. It is easy to see that the |0, a0〉〈0, a0|-entries are the same in ρ0

and in ρ1, so these entries are 0 in A. Similarly, the |1, a1〉〈1, a1|-entries in A are
0. In the off-diagonal blocks, the |0, a0〉〈1, a1|-entry of A is (−1)|a0|+|a1|/22b. For
|φ〉 = 1√

2b

∑

w∈{0,1}b(−1)|w||w〉 we have |φ〉〈φ| = 1
2b

∑

a0,a1
(−1)|a0|+|a1||a0〉〈a1|



and A = 1
2b (|0, φ〉〈1, φ| + |1, φ〉〈0, φ|). Let U and V be unitary transforms such

that U |0, φ〉 = |0, 0b〉, U |1, φ〉 = |1, 0b〉 and V |0, φ〉 = |1, 0b〉, V |1, φ〉 = |0, 0b〉,
then UAV † = 1

2b (U |0, φ〉〈1, φ|V †+U |1, φ〉〈0, φ|V †) = 1
2b (|0, 0b〉〈0, 0b|+|1, 0b〉〈1, 0b|).

The two nonzero singular values of UAV † are both 1/2b, hence ‖ ρ0 − ρ1 ‖tr =
‖ A ‖tr = ‖ UAV † ‖tr = 2/2b. Therefore ε ≤ ‖ ρ0 − ρ1 ‖tr/4 = 1/2b+1. ⊓⊔

4 Lower Bounds for LDCs that Use Few Bits

We now make use of the technique developed above to prove new lower bounds for
2-query LDCs over non-binary alphabets. First we construct a 1-query quantum
smooth code (QSC) from a 2-query smooth code (SC), and then prove lower
bounds for QSCs. In the sequel, we will index the two queries by 0 and 1 instead
of 1 and 2, to conform to the two basis states |0〉 and |1〉 of a qubit.

Theorem 4. If C : {0, 1}n → ({0, 1}ℓ)m is a (2, c, ε)-smooth code that uses b
bits, then C is a (1, c, ε/2b)-quantum smooth code that uses b bits.

Proof. Fix index i ∈ [n] and encoding y = C(x). The 1-query quantum decoder
will pick a random string r with the same probability as the 2-query classical
decoder. This r determines two indices j0, j1 ∈ [m], two b-element sets S0, S1 ⊆
[ℓ], and a function f : {0, 1}2b → {0, 1} such that Pr[f(yj0|S0

, yj1|S1
) = xi] = p ≥

1
2 + ε, where the probability is taken over the decoder’s randomness. Assume for
simplicity that j0 = 0 and j1 = 1, and define a0 = yj0|S0

and a1 = yj1|S1
. We now

construct a 1-query quantum decoder that outputs f(a0, a1) with probability
1/2 + 1/2b+1, as follows. The result of a quantum query to j0 and j1 is

1√
2




 |0〉

︸︷︷︸

j0

1√
2b

∑

T⊆S0

(−1)a0·T |zT 〉 + |1〉
︸︷︷︸

j1

1√
2b

∑

T⊆S1

(−1)a1·T |zT 〉




 .

Note that we write a0 · T instead of yj0 · T , since T ⊆ S0 and therefore the
inner product will be the same. We can unitarily transform this to 1√

2
(|0〉|a0〉+

|1〉|a1〉). By Theorem 2, we can compute an output bit o from this such that
Pr[o = f(a0, a1)] = 1/2 + 1/2b+1. The probability of success is then given by
Pr[o = xi] = Pr[o = f(a0, a1)] Pr[xi = f(a0, a1)] + Pr[o 6= f(a0, a1)] Pr[xi 6=
f(a0, a1)] = (1/2 + 1/2b+1)p + (1/2 − 1/2b+1)(1 − p) ≥ 1/2 + ε/2b. Since no j
is queried with probability more than c/m by the classical decoder, the same is
true for the quantum decoder. ⊓⊔

Our lower bound for 2-query LDCs uses the following notion, due to [2].

Definition 5. A quantum random access code is a mapping x 7→ ρx of the n-bit
strings x into m-qubit states ρx, such that any bit xi can be recovered with some
probability p ≥ 1/2 + ε from ρx

Note that we need not be able to recover all xi’s simultaneously from ρx, just
any one xi of our choice. Nayak [14] proved a tight bound on m:



Theorem 5 (Nayak). Every quantum random access code has m ≥ (1−H(p))n.

The main idea of our proof is to show how the following state |U(x)〉 induces

a quantum random access code. For u =
∑b

i=0

(
ℓ
i

)
define the pure states

|U(x)j〉 =
1√
u

∑

|T |≤b

(−1)T ·C(x)j |zT 〉 and |U(x)〉 =
1√
m

m∑

j=1

|j〉|U(x)j〉.

Lemma 3. Suppose C : {0, 1}n → ({0, 1}ℓ)m is a (1, c, ε)-quantum smooth code
that uses b bits. Then given one copy of |U(x)〉, there is a quantum algorithm

that outputs ‘fail’ with probability 1 − 2b+1/(cu) with u =
∑b

i=0

(
ℓ
i

)
, but if it

succeeds it outputs xi with probability at least 1/2 + ε.

Proof. Let us fix i ∈ [n]. Suppose the quantum decoder of C makes query |Qir〉
to indices j0r and j1r with probability pr. Consider the following state

|Vi(x)〉 =
∑

r

√
pr|r〉

1√
2

(|j0r〉|U(x)j0r
〉 + |j1r〉|U(x)j1r

〉) .

We first show how to obtain |Vi(x)〉 from |U(x)〉 with some probability. Rewrite
|Vi(x)〉 =

∑m
j=1 αj |φj〉|j〉|U(x)j〉, where the αj are nonnegative reals, and α2

j ≤
c/(2m) because C is a QSC (the 1/2 comes from the amplitude 1/

√
2). Us-

ing the unitary map |0〉|j〉 7→ |φj〉|j〉, we can obtain |Vi(x)〉 from the state
|V ′

i (x)〉 =
∑m

j=1 αj |j〉|U(x)j〉. We thus have to show that we can obtain |V ′
i (x)〉

from |U(x)〉. Define operator M =
√

2m/c
∑m

j=1 αj |j〉〈j| ⊗ I and consider a

POVM with operatorsM †M and I−M †M . These operators are positive because
α2

j ≤ c/2m. Up to normalization, M |U(x)〉 = |V ′
i (x)〉. The probability that the

measurement succeeds (takes us from |U(x)〉 to |V ′
i (x)〉) is 〈U(x)|M †M |U(x)〉 =

2m
c 〈U(x)|

(
∑

j α
2
j |j〉〈j| ⊗ I

)

|U(x)〉 = 2
c

∑

j α
2
j = 2

c . Now given |Vi(x)〉 we can

measure r, and then project the last register onto the sets S0r and S1r that we
need for |Qir〉, by means of the measurement operator |j0r〉〈j0r |⊗

∑

T⊆S0r
|T 〉〈T |+

|j1r〉〈j1r | ⊗
∑

T⊆S1r
|T 〉〈T |. This measurement succeeds with probability 2b/u,

but if it succeeds we have the state corresponding to the answer to query |Qir〉,
from which we can predict xi. Thus, we succeed with probability (2b/u) · (2/c),
and if we succeed, we output xi with probability 1/2 + ε. ⊓⊔
We can avoid failures by taking many copies of |U(x)〉:
Lemma 4. If C : {0, 1}n → ({0, 1}ℓ)m is a (1, c, ε)-quantum smooth code, then

|W (x)〉 = |U(x)〉⊗cu/2b+1

is a cu(log(m)+log(u))/2b+1-qubit random access code

for x with recovery probability 1/2 + ε/2 where u =
∑b

i=0

(
ℓ
i

)
.

Proof. We do the experiment of the previous lemma on each copy of |U(x)〉
independently. The probability that all experiments fail simultaneously is (1 −
2b+1/(cu))cu/2b+1 ≤ 1/2. In that case we output a fair coin flip. If at least one
experiment succeeds, we can predict xi with probability 1/2+ε. This gives overall
success probability at least 1/2(1/2 + ε) + (1/2)2 = 1/2 + ε/2. ⊓⊔



The lower bound for 2-query SCs and LDCs over non-binary alphabets is then:

Theorem 6. If C : {0, 1}n → Σm = ({0, 1}ℓ)m is a (2, c, ε)-smooth code where
the decoder uses only b bits of each answer, then m ≥ 2dn−log(u) for d = (1 −
H(1/2 + ε/2b+1))2b+1/(cu) = Θ(ε2/(2bcu)) and u =

∑b
i=0

(
ℓ
i

)
. Hence m =

2Ω(ε2n/(22ℓc)) if b = ℓ.

Proof. Theorem 4 implies thatC is a (1, c, ε/2b)-quantum smooth code. Lemma 4
gives us a random access code of cu(log(m) + log(u))/2b+1 qubits with recovery
probability p = 1/2 + ε/2b+1. Finally, the random access code lower bound,
Theorem 5, implies cu(log(m) + log(u))/2b+1 ≥ (1 − H(p))n. Rearranging and
using that 1 −H(1/2 + η) = Θ(η2) gives the result. ⊓⊔

Since a (2, δ, ε)-LDC is a (2, 2/δ, ε)-smooth code (Theorem 1), we obtain:

Corollary 1. If C : {0, 1}n → Σm = ({0, 1}ℓ)m is a (2, δ, ε)-locally decodable
code, then m ≥ 2dn−log(u) for d = (1 −H(1/2 + ε/2b+1))δ2b/u = Θ(δε2/(2bu))

and u =
∑b

i=0

(
ℓ
i

)
. Hence m = 2Ω(δε2n/22ℓ) if b = ℓ.

In all known non-trivial constructions of LDCs and SCs, the decoder outputs
the parity of the bits that he is interested in. Then, we can prove:

Theorem 7. If C : {0, 1}n → Σm = ({0, 1}ℓ)m is a (2, c, ε)-smooth code where
the decoder outputs f(g(a0|S0

), g(a1|S1
)), with f, g : {0, 1}2 → {0, 1} fixed func-

tions, then m ≥ 2dn−log(ℓ′) for d = Ω(ε2/(cℓ′)) and ℓ′ =
(

ℓ
b

)
.

Proof. Transform C into a smooth code C′ : {0, 1}n → ({0, 1}ℓ′)m with ℓ′ =
(
ℓ
b

)

by defining C′(x)j to be the value of g on all
(

ℓ
b

)
possible b-subsets of the original

ℓ bits of C(x)j . We need only 1 bit of each C′(x)j , and can apply Theorem 6. ⊓⊔

5 Lower Bounds for Private Information Retrieval

Here we derive improved lower bounds for 2-server PIRs from our LDC bounds.
We use the following [8, Lemma 7.1] to translate PIR schemes to smooth codes:

Lemma 5 (GKST). Suppose there is a one-round, (1− η)-secure PIR scheme
with two servers, database size n, query size t, answer size ℓ, and recovery prob-
ability at least 1/2 + ε. Then there is a (2, 3, ε− η)-smooth code C : {0, 1}n →
({0, 1}ℓ)m, where m ≤ 6 · 2t. If the PIR scheme uses only b bits of each server
answer, then the resulting smooth code uses only b bits of each query answer.

We now combine this with Theorem 6 to slightly improve the lower bound given
in [12] and to extend it to the case where we only use b bits of each server reply.

Theorem 8. A classical 2-server (1− η)-secure PIR scheme with t-bit queries,
ℓ-bit answers that uses b bits and has recovery probability 1/2 + ε satisfies t =

Ω
(

n(ε−η)2

2bu

)

with u =
∑b

i=0

(
ℓ
i

)
. In particular, if b = ℓ, then t = Ω(n(ε−η)2/22ℓ).



Proof. Using Lemma 5 we turn the PIR scheme into a (2, 3, ε− η)-smooth code
C : {0, 1}n → ({0, 1}ℓ)m that uses b bits of ℓ where m ≤ 6 · 2t. From Theorem 6
we have m ≥ 2dn−log(u) with d = Θ((ε− η)2/(2bu)). ⊓⊔

If b is fixed, ε = 1/2 and η = 0, this bound simplifies to t = Ω(n/ℓb), hence

Corollary 2. A 2-server PIR scheme with t-bit queries and ℓ-bit answers has
communication C = 2(t+ ℓ) = Ω

(
n1/(b+1)

)
.

For b = 1 this gives C = Ω(
√
n), which is achieved by the square scheme of

Section 2. For b = 3 we get C = Ω(n1/4), which is close to the C = O(n1/3) of the
cube scheme. As in Theorem 7, we can get the better bound t = Ω(n(ε−η)2/

(
ℓ
b

)
)

for PIR schemes where the user just outputs the parity of b bits from each answer.
All known non-trivial PIR schemes have this property.

The previous lower bounds on the query length of 2-server PIR schemes were
significant only for protocols that use few bits from each answer. Here we slightly
improve the best known bound of 4.4 logn [12] on the overall communication
complexity of 2-server PIR schemes, by combining our Theorem 8 and Theorem 6
of Katz and Trevisan [10]. We restate their theorem for the PIR setting, assuming
for simplicity that ε = 1/2 and η = 0.

Theorem 9 (Katz & Trevisan). Every 2-server PIR with t-bit queries and
ℓ-bit answers has t ≥ 2 log(n/ℓ) −O(1).

We now prove the following lower bound on the total communication C =
2(t+ ℓ) of any 2-server PIR scheme with t-bit queries and ℓ-bit answers:

Theorem 10. Every 2-server PIR scheme has C ≥ (5 − o(1)) logn.

Proof. We distinguish three cases, depending on the answer length. Let δ =
log logn/ logn.
case 1: ℓ ≤ (0.5 − δ) logn. Theorem 8 implies C ≥ t = Ω(n2δ) = Ω((log n)2).
case 2: (0.5 − δ) logn < ℓ < 2.5 logn. Then from Theorem 9 we have
C = 2(t+ ℓ) > 2 (2 log(n/(2.5 logn)) −O(1) + (0.5 − δ) logn) = (5 − o(1)) logn.
case 3: ℓ ≥ 2.5 logn. Then C = 2(t+ ℓ) ≥ 5 logn. ⊓⊔

6 Conclusion and Future Work

Here we improved the best known lower bounds on the length of 2-query locally
decodable codes and the communication complexity of 2-server private informa-
tion retrieval schemes. Our bounds are significant whenever the decoder uses only
few bits from the two query answers, even if the alphabet (LDC case) or answer
length (PIR case) is large. This contrasts with the earlier results of Kerenidis
and de Wolf [12], which become trivial for logarithmic alphabet or answer length,
and those of Goldreich et al. [8], which only apply to linear schemes.

Still, general lower bounds without constraints on alphabet or answer size
completely elude us. Clearly, this is one of the main open questions in this area.



Barring that, we could at least improve the dependence on b of our current
bounds. For example, a PIR lower bound like t = Ω(n/ℓ⌈b/2⌉) might be feasible
using some additional quantum tricks. Such a bound for instance implies that
the total communication is Ω(n1/3) for b = 3, which would show that the cube
scheme of [7] is optimal among all schemes of probe complexity 3. Another
question is to obtain strong lower bounds for the case of k ≥ 3 queries or servers.
For this case, no superpolynomial lower bounds are known even if the alphabet
or answer size is only one bit.
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