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Abstract Both views may be generalized to the quantum case,
yielding three possibly non-equivalent definitions of non-
It is known that the classical and quantum query com- deterministic quantum algorithms. The quantum algorithm
plexities of a total Boolean functiofiare polynomially re-  may be required to output the right answf¢r:) when given
lated to the degree of its representing polynomial, but the an appropriate certificate (which may be quantum or clas-
optimal exponents in these relations are unknown. We showsical); or the quantum algorithm may be required to have
that thenon-deterministicuantum query complexity gfis positive acceptance probability iff(z) = 1. An exam-
linearly related to the degree of a “non-deterministic” poly-  ple is given by two alternative definitions of “quantum NP”.
nomial for f. We also prove a quantum-classical gaplof  Kitaev [28] (see also [26]) defines this class as the set of
vs.n for non-deterministic query complexity for a totAl languages which are accepted by polynomial-time quantum
In the case of quantum communication complexity there is aalgorithms that are given a polynomial-size quantum cer-
(partly undetermined) relation between the complexity of tificate. On the other hand, Adleman et.al. [1] and Fenner
and the logarithm of the rank of its communication matrix. et.al. [21] define quantum NP as the set of langudgés
We show that th@on-deterministiqquantum communica-  which there is a polynomial-time quantum algorithm whose
tion complexity off is linearly related to the logarithm of  acceptance probability is positive iff € L. This quan-
the rank of a non-deterministic version of the communica- tum class was shown equal to the classical counting class
tion matrix, and that it can be exponentially smaller than its co-C-P in [21], using tools from [22].

classical counterpart. We will here adopt the latter view: a non-deterministic

guantum algorithm foif is a quantum algorithm which out-
puts 1 with positive probability iff (z) = 1 and which al-
that for non-uniform settings, this definition is at least as
) ) ~__ strong as the other possible definitions.) We will study the
There are two ways to view a classical non-deterministic complexity of such non-deterministic quantum algorithms

algorithm for some Boolean function (or languagefirst, iy two different settings: query complexity and communi-

we may think of it as a deterministic algorithfawhich re-  cation complexity. Our main results are characterizations
ceives the input and a “certificate’y. For all inputsz, if  of these complexities in algebraic terms and large gaps be-
f(z) = 1thenthereis a certificatesuch thatd(z,y) =1, tween quantum and classical non-deterministic complexity

if f(z) = 0thenA(z,y) = 0 for all y. Secondly, we in poth settings.

may view A as arandomizedalgorithm whose acceptance , . .

probability P(z) is positive if f(z) = 1 and P(z) = 0 First consider the model gfuery complexityalso known

if f(z) = 0. Itis easy to see that these two views are as decision tree complexity or black-box complexity. Most

equivalent in the case of classical computation: there is a€%iSting quantum algorithms can naturally be expressed in

view 1 algorithm forf iff there is a view 2 algorithm forf this mode! and achleve provable speed-ups there over the

of roughly the same complexity. best classical algorithms (e.g. [19, 39, 23, 7, 8, 9] and also
the order-finding problem on which Shor’s factoring algo-

*Partially supported by the EU fifth framework project QAIRT- rithm is based [38_,_15]). Le‘_Dq(f) and Qq(f) denote
1999-11234. Also affiliated with the University of Amstend4lLLC). the query complexities of optimal deterministic and quan-




tum algorithms that compute sonfe: {0,1}" — {0,1} rank of the2™ x 2 communication matrix}/; defined by
exactly! Let deg(f) denote the degree of the multilin- My (z,y) = f(z,y). The following relations are known:
ear polynomial that represenfs The following relations

are known (see [3]; the last inequality is due to Nisan and log rank(f) < Q.(f) < D.(f).
Smolensky—unpublished, but see [13]): 2 B B
The first inequality follows from work of Kremer [29] and
deg(f) < Qu(f) < Dy(f) < O(deg(f)"). Yao [42], as first noted in [10] (in [12] it is shown that
2 - B B this lower bound also holds if the quantum protocol can

Thusdeg(f), Q,(f) and D,(f) are all polynomially re- make use of unlimited prior entanglement between Alice
lated for all totalf (the situation is very different for partial @nd Bob). It is an open question whethBr(f) can in
119, 39)). A function is known with a near-quadratic gap turn be upper bounded by some polynomidtigrank(f).
betweenD, (f) anddeg(f) [33], but no function is known  This is known as théog-rank conjecture If this conjec-
whereQ, (f) is significantly larger thadeg(f), anditmay ~ ture holds, therD.(f) and@.(f) are polynomially related

in fact be true thaf),, () anddeg(f) are linearly related. In for all total f (which may well bt_a true). It is known that
Section 3 we show that such a linear relation holds betweenlog rank(f) and D.(f) are not linearly related [34]. In

thenon-deterministizersions ofQ,, (f) anddeg(f): Section 4 we show that theon-dgterministiwersions of
logrank(f) andQ.(f) are in fact linearly related:
ndeg(f)
<N < nd < Ny (f). 1
9 <NQy(f) < ndeg(f) < No(f) og nrank(f) < NQ.(f) < lognrank(f) < N.(f).

2

Herenrank(f) denotes the minimal rank of a matrix whose
(z,y)-entry is non-zero ifff(z,y) = 1. Thus we can
characterize the non-deterministic quantum communica-
tion complexity as the logarithm of the rank of its non-
deterministic matrix. Two other log-rank-style characteri-
zations of certain variants of communication complexity are
known: the communication complexity of quantum sam-
pling [2] and modular communication complexity [31].

We also show an exponential gap between quantum and
classical non-deterministic communication complexity: we
exhibit an f where NQ.(f) < log(n + 1) andN.(f) €
Q(n). Cleve and Massar [18] earlier found another gap:
NQ@.(NE) = 1 versusN.(NE) = logn + 1, where NE is
the non-equality function.

HereN,(f) andNQ,(f) denote the query complexities of
optimal non-deterministic classical and quantum algorithms
for f, respectively, angideg(f) is the minimal degree of a
polynomialp which is non-zero ifff (z) = 1. Thus we have

an algebraic characterization of the non-deterministic quan-
tum query complexityV Q, (f), up to a factor of 2. We also
show thatNQ,(f) may be much smaller thal,(f): we
exhibit anf whereNQ,(f) = 1 andN,(f) = n, which

is the biggest possible gap allowed by this model. Accord-
ingly, while the case of exact computation allows at most
polynomial quantum-classical gaps, the non-deterministic
case allowsinboundedjaps.

In the case oEommunication complexityhe goal is for
two distributed parties, Alice and Bob, to compute some
functionf : {0,1}" x {0,1}" — {0, 1}. Alice receives an
x € {0,1}" and Bob receives g € {0,1}", and they want L
to computef (z, y), exchanging as few bits of communica- 2 Preliminaries
tion as possible. This setting was introduced by Yao [41]
and is fairly well understood for the case where Alice and 2.1 Functions and polynomials
Bob are classical players exchanging classical bits [30].

Much less is known aboujuantumcommunication com- Forz € {0,1}" we use|z| for the Hamming weight
plexity, where Alice and Bob have a quantum computer and (number of 1s) oft, andz; for its ith bit, i € {1,...,n}.
can exchange qubits. This was first studied by Yao [42] and We uséD for a string ofn zeroes. Ifz,y € {0,1}" thenzAy
it was shown later that quantum communication complexity denotes the-bit string obtained by bitwise ANDing and
can be significantly smaller than classical communicationy. Let f : {0,1}" — {0,1} be a total Boolean function.
complexity [16, 10, 2, 35]. For example, ORr) = 1iff [z| > 1, AND(z) = 1 iff

Let D.(f) and Q.(f) denote the communication re- || = n, PARITY(z) = 1iff |z| is odd. We usgf for the
quired for optimal deterministic and quantum protocols for functionl — f.
computingf, respectively (we assume Alice and Bob do ~ Forb € {0,1}, ab-certificatefor f is an assignment
not share any prior entanglement). Letnk(f) be the C : S — {0,1} to some setS of variables, such that

LUnfortunately, the notatio® ( f) is used for deterministic complexity f(a:) -0 Whenev-e-m s ConSiStent withC'. The Si.260f
in both the field o’f decision tree complexity and in commutitracom- Cis ‘S| The certificate complexnﬁx (f) of J on input

plexity. To avoid confusion, we will consistently add sufists ‘g’ for T is th_e minimal sizc_e of a'f(x)'cer_ti_ﬁcate that is (fonSis'
query complexity ande” for communication complexity. tent with z. We define the 1-certificate complexity ¢f




as CM(f) = max,.(z)=1 Co(f). Similarly we define
CO(f). For exampleC'") (OR) = 1 andC(®) (OR) = n.

An n-variate multilinear polynomialis a functionp :
R™ — R which can be written as

>

SC{1,...,n}

p(x) asXs.

Here S ranges over all sets of indices of variables, is a
real number, and the monomialg is the productl;csz;

of all variables inS. Thedegreedeg(p) of p is the degree
of a largest monomial with non-zero coefficient. It is well
known that every total Booleafihas a unique polynomial
p such thatp(z) = f(z) forall z € {0,1}". Letdeg(f)
be the degree of this polynomial, which is at mastFor
example, ORz;,z2) = x1 + z2 — 122, Which has degree
2. Every multilinear polynomiap = "¢ asXgs can also
be written out uniquely in the so-callé@urier basis

plx) = es(=1)"%.
S

AgainS ranges over all sets of indices of variables (we often
identify a setS with its characteristia:-bit vector),cgs is a
real number, and - .S denotes the inner product of thebit
stringse andsS, equivalently:-S = [zAS| = ), ¢ %;. Itis
easy to see thaktg(p) = max{|S| | cs # 0}. For example,
OR(zy,@2) = 2 — 2(=1)" — $(=1)*2 — 2(=1)"'T*2in
the Fourier basis. We refer to [4, 33, 13] for more details
about polynomial representations of Boolean functions.
We introduce the notion of aon-deterministic polyno-
mial for f. This is a polynomialp such thatp(z) # 0
iff f(z) = 1. Let thenon-deterministic degreef f, de-
notedndeg(f), be the minimum degree among all non-
deterministic polynomialg for f. Without loss of gener-
ality we can assumg(z) € [-1,1] forall z € {0,1}" (if
not, just divide bymax, |p(z)|).
We mention some upper and lower boundsifdeg( f).
For examplep(z) = >, z;/n is a non-deterministic poly-
nomial for OR, hencexdeg(OR) = 1. More generally, let
f be a non-constant symmetric function (if¢z) only de-
pends onz|). Supposef achieves value 0 on Hamming
weights,k1,..., k.. Since|z| = ), z;, it is easy to see
that(|z| — k1) (|z| — k2) - - - (Jz| — k) is @ non-deterministic
polynomial for f, hencendeg(f) < z. This upper bound
is tight for AND (see below) but not for PARITY. For ex-
amplep(z1,z2) = z1 — x2 is a degree-1 non-deterministic
polynomial for PARITY on 2 variables: it assumes value
0 on z-weights 0 and 2, andt1 on weight 1. Using

Finally, we mention a general lower bound odeg( f).
LetPr[p # 0] = [{z € {0,1}" | p(x) # 0}|/2" denote the
probability that a random Boolean inputmakes a func-
tion p non-zero. A lemma of Schwartz [37] (see also [33,
Section 2.2]) states that jf is a non-constant multilinear
polynomial of degreel, thenPr[p # 0] > 2~¢, hence
d > log(1/Pr[p # 0]). Since a non-deterministic poly-
nomialp for f is non-zero ifff () = 1, it follows that

ndeg(f) > log(1/ Pr(f # 0]) = log(1/ Prf = 1]).

Accordingly, functions with a very small fraction of 1-
inputs will have high non-deterministic degree. For in-
stancePr[AND = 1] = 27", sondeg(AND) = n.

2.2 Query complexity

We assume familiarity with classical computation and
briefly sketch the setting of quantum computation (see
e.g. [5, 27, 14] for more details). Am-qubit stateis a
linear combination of all classicab-bit states

6= 3 i,

ie{0,1}m

where|i) denotes the basis statéa classicain-bit string),
andq; is a complex number which is called thenplitude
of [i). We required_, |o;|* = 1. Viewing |¢) as a2™-
dimensional column vector, we uge| for the row vector
which is the conjugate transpose|¢§. Note that the inner
product(i||7) is 1if i = j and is O otherwise. When we ob-
serve|¢) we will see|i) with probability | (i||#)|*> = ||?,
and the state will collapse to the observéd A quan-
tum operation which is not an observation, corresponds to
a unitary(=norm-preservingtransformatior{/ on the2™-
dimensional vector of amplitudes.

For some inputz € {0,1}", a query corresponds
to the unitary transformatio® which maps|i, b, z) —
li,b & x;,2z). Hereb € {0,1}; the z-part corresponds
to the workspace, which is not affected by the query.
We assume that the input can only be accessed via such
gueries. AT-query quantum algorithm has the form =
UrOUr—_, ...0U,OUy, Where theUy, are fixed unitary
transformations, independent of the input This A de-
pends onz via the T' applications of0. We sometimes
write A, to emphasize this. The algorithm starts in initial
state|0) and itsoutputis the bit obtained from observing
the leftmost qubit of the final superpositiot(). Theac-
ceptance probabilitypf A (on inputz) is its probability of

standard symmetrization techniques (as used for instanceoutputting 1 (on).

in [32, 33, 3]) we can also show the general lower bound

ndeg(f) > z/2 for symmetricf. Furthermore, it is easy to
show thatrdeg(f) < C(f) for every f (take a polyno-
mial which is the “sum” over all 1-certificates fgh).

We will consider classical and quantum algorithms, and
will only count the number of queries these algorithms
make on the worst-case input (see [3, 13] for more details).
Let D,(f) andQ,(f) be the query complexities of optimal



deterministic classical and quantum algorithms for comput-
ing f, respectivelyD,( f) is also known as the decision tree
complexity of f. A non-deterministic algorithrfor f is an

M is called anon-deterministic communication matfiar
f if it has the property thab/ (x,y) # 0 iff f(z,y) = 1.
Thus M is any matrix obtainable by replacing 1-entries in

algorithm that has positive acceptance probability on input M; by non-zero reals. Let theon-deterministic ranlof

ziff f(z) = 1. Let N,(f) andNQ,(f) be the query com-
plexities of optimal non-deterministic classical and quan-
tum algorithms forf, respectively (in the appendix we show
that this definition ofVQ,(f) is at least as powerful as the
other possible definitions).

The 1-certificate complexity characterizes the classical
non-deterministic complexity of :

Proposition 1 N,(f) = C((f).

Proof

N4(f) < C(f): a classical algorithm that guesses
a 1-certificate, queries its variables, and outputs 1 iff the
certificate holds, is a non-deterministic algorithm for

N4 (f) > C(f): a non-deterministic algorithm fof

can only output 1 if the outcomes of the queries that it has

made force the function to 1. Henceifis an input where
all 1-certificates have size at least!) (f), then the algo-
rithm will have to query at leagt(!) () variables before it
can output 1 (which it must do on some runs). |

In Section 3 we will characteriz& Q,(f) in terms of
ndeg(f), using the following result from [3].

Lemma 1 (BBCMW) The amplitudes of the basis states in
the final superposition of @-query quantum algorithm can
be written as multilinear complex-valued polynomials of de-
gree< T in then z;-variables. Therefore the acceptance
probability of the algorithm (which is the sum of squares of
some of those amplitudes) can be written asnavariate
multilinear polynomialP (z) of degree< 27T

2.3 Communication complexity

Below we sketch the setting of communication complex-
ity. For more details and results we refer to the book of
Kushilevitz and Nisan [30].

Let f : {0,1}" x {0,1}" — {0,1}. For example,
EQ(z,y) Liff 2 = y, NE(z,y) Liff z # y,
DIS)z,y) = 1iff |z Ay| = 0. A rectangleis a subset
R = S x T of the domain off. R is al-rectangle(for f)
if f(x,y)=1forall (z,y) € R. A 1-coverfor f is a set of
1-rectangles which covers all 1-inputs 6f C! (f) denotes
the minimal size (i.e. minimal number of rectangles) of a 1-
cover for f. Similarly we define O-rectangles, O-covers, and
C°(f). (TheseC'(f) andCP(f) should not be confused
with the certificate complexitie§ ") (f) andC(©)(f).)

The communication matrix\/; of f is the2” x 2"
Boolean matrix whose,y entry is f(z,y), andrank(f)
denotes the rank a¥/; over the reals. A" x 2" matrix

f, denotednrank(f), be the minimum rank over all non-
deterministic matriced/ for f. Without loss of generality
we can assume al/-entries are if—1, 1].

We consider classical and quantum communication pro-
tocols, and only count the amount of communication (bits
or qubits) these protocols make on the worst-case input. For
classical randomized protocols we assume Alice and Bob
each have their own private coin flips. LBt(f) and@.(f)
be the communication complexities of optimal determinis-
tic classical and quantum protocols for computifigre-
spectively. Anon-deterministic protocdbr f is a protocol
that has positive acceptance probabilityfiffz, y) = 1. Let
N.(f) andNQ.(f) be the communication complexities of
optimal non-deterministic classical and quantum protocols
for f, respectivelyN,(f) is calledN'(f) in [30].

Itis not hard to show thaV,(f) = [log C*(f)]. In Sec-
tion 4 we will characterizeVQ.(f) in terms ofnrank(f).

As noticed in [10], the following very useful lemma is im-
plied by results in [42, 29]:

Lemma 2 (Kremer/Yao) The acceptance probabilities of
an /-qubit quantum communication protocol can be written
as a2” x 2" matrix P(xz,y) of rank < 22¢.

3 Non-deterministic quantum query com-
plexity

Here we show a tight relation between non-deterministic
quantum query complexitiW @, (f) and non-deterministic
degreendeg(f). The upperbound uses a trick similar to the
one used in [21] to show co-GP C quantum-NP.

deg(f)
2

Theorem 1 n

< NQqy(f) < ndeg(f).

Proof  Suppose we have anVQ,(f)-query non-
deterministic quantum algorithi for f. By Lemma 1, its
acceptance probability can be written as a polynotiial)
of degree< 2N Q,(f). Becaused is a non-deterministic
algorithm for f, P(z) is a non-deterministic polynomial for
f. Hencendeg(f) < 2NQ,(f).

For the upper bound: let(xz) be a non-deterministic
polynomial for f of degreed = ndeg(f). Recall that: - S
denotegz A S|, identifying S C {1,...,n} with its char-
acteristicn-bit vector. We writep in the Fourier basis:

pa) = es(-1)"5.
S

Sincedeg(p) = max{|S| | ¢s # 0}, we have thatgs # 0
onlyif |S| < d.



We can make a unitary transformatidhwhich usesd
queries and mapsS) — (—1)7°|S) whenever S| < d.
Informally, this transformation does a controlled parity-
computation: it computege - S| (mod 2) using|S|/2

queries [3, 20] and then reverses the computation to clean

up the workspace (at the cost of anoth®l/2 queries). By

a standard trick, the answer - S| (mod 2) can then be

turned into a phase fact¢e1)/'SI (mod2) — (_1):5,
Now consider the following quantum algorithm:

1. Start withe )" ¢ cs[S) (an n-qubit state, where
1/4/>_ g c% is a normalizing constant)

2. Apply F to the state

3. Apply a Hadamard transforif to each qubit

It is easy to see tha,(f) = CW(f) = CO(f) =
n. On the other hand, the following is a degree-1 non-
deterministic polynomial foyf:

. Zixi—l

n—1

(1)

Thusndeg(f) = 1 and by Theorem 1 we hav€Q,(f) =

1. For the complement gf, we can easily sho @, (f) >

n/2 using Lemma 1, since the acceptance probability of a
non-deterministic algorithm fof must be 0 om Hamming
weights and hence have degree at leaghis NQ,(f) >
n/2is tight forn = 2, witnessp(x) = 1 — x2). In sum:
Theorem 2 For the abovef we have NQ,(f) = 1,

NQqo(f) 2 n/2andN,(f) = Ny(f) = n.

A slightly smaller gap holds for the function defined by
Delddz) = 1iff |z| # n/2. This is a total version of the

p(z)

4. Measure the final state and output 1 if the outcome iswell known Deutsch-Jozsa promise problem [19]. The al-

the all-zero stat¢l)) and output 0 otherwise.

gorithm of [19] (in its 1-query version [17]) turns out to be a
non-deterministic algorithm for DeJo, $6Q),(DeJg = 1.

The acceptance probability (i.e. the probability of observing |n contrast,N, (DeJg = ) (Dedg =n/2+1.

0) at the end) is

P(z) (O1H"Fe Y es|S) 2
S

IS es(-1=SIS)?
S’ S

c? o 2p(z)?
2_n|ZCS(_1)x S|2: p( )
S

277.

Sincep(z) is non-zero ifff(x) = 1, P(x) will be positive
iff f(z) = 1. Hence we have a non-deterministic quantum
algorithm for f with d = ndeg(f) queries. O

The upper bound in this theorem is tight: by a proof
similar to [3, Proposition 6.1] we can shaWQ,(AND) =
ndeg(AND) = n. We do not know if the factor of 2 in the

4 Non-deterministic quantum communica-
tion complexity

Here we characterize the non-deterministic quantum
communication complexityVQ.(f) in terms of the non-
deterministic rankerank(f):

Theorem 3 M < NQ(f) < [lognrank(f)].

Proof Consider anV@Q.(f)-qubit non-deterministic quan-
tum protocol forf. By Lemma 2, its acceptance probability
P(z,y) determines a matrix of rank 22N%-(/)_ |tis easy
to see that this is a non-deterministic matrix forhence
nrank(f) < 22N@(f) and the first inequality follows.

For the upperbound, let= nrank(f) andM be a rank-
r non-deterministic matrix foif. Let M” = UXV be the
singular value decomposition af” (see [25, Chapter 3]),

lower bound can be dispensed with. If we were to changesg 7 andVv are unitary, andt is a diagonal matrix whose
the output requirement of the quantum algorithm a little bit, first diagonal entries are positive real numbers and whose
by saying that the algorithm accepts iff measuring the final gther diagonal entries are 0. Below we describe a 1-round
superposition gives basis staft, then the required number  non-deterministic protocol fof, using[log r] qubits. First

of queries is exactlydeg(f). The upperbound ofdeg(f) Alice prepares the vectdp,) = c, SV |z), wherec, > 0is
queries in this changed model is the same as above. The normalizing real number that dependsioBecause only

lower bound ofndeg(f) queries follows since the ampli-
tude of the basis stat®) in the final superposition must
now be non-zero ifff () = 1, and this polynomial has de-

the firstr diagonal entries of are non-zero, only the first
amplitudes of¢, ) are non-zero, s@, ) can be compressed
into [logr] qubits. Alice sends these qubits to Bob. Bob

gree at most the number of queries (Lemma 1). then applied/ to |¢,) and measures the resulting state. If
What is the biggest possible gap between quantum anche observeg)) then he outputs 1, otherwise he outputs 0.
classical non-deterministic query complexity? Consider the The acceptance probability of this protocol is

Boolean functionf defined b
v Y Pley) = (6062 = 2lUSV )
M (y,z)]* = 3| M (z,y)]>.

flz) =1iff |z| # 1.



SinceM (z,y) is non-zero iff f (z,y) = 1, P(z,y) will be
positive iff f(z,y) = 1. Thus we have a non-deterministic
protocol for f with [log r] qubits. |

Thus classically we havéV.(f) [log C'(f)] and
quantumly we haveVQ.(f) =~ lognrank(f). We now
give an f with an exponential gap betweeN.(f) and
NQ.(f). Forn > 1, definef by

flz,y) = 1iff [z Ayl # 1.
We first show that the quantum complexit{@..(f) is low:

Theorem 4 For the above f we have NQ.(f)
[log(n + 1)].

<

Proof By Theorem 3, it suffices to proverank(f) <n +

1. We will derive a low-rank non-deterministic matrix from
the polynomiap of equation 1, using a technique from [34].
Let M; be the matrix defined by/;(z,y) = 1if z; = y;
1, andM;(z,y) = 0 otherwise. Notice thal/; has rank 1.
Now define &™ x 2™ matrix M by

n—1 '

M(z,y)

Note that M(z,y) = p(z A y). Sincep is a non-
deterministic polynomial for the function which is 1 iff its
input does not have weight 1, it can be seen Mdt a non-
deterministic matrix forf. BecauséV/ is the sum ofy + 1
rank-1 matrices)M itself has rank at most + 1. O

Now we show that the classical.(f) is high (both for
f and its complement):

Theorem 5 For the abovef we haveN,.(f) € Q(n) and

Nc(f)zn_l

Proof Let Ry,..., Ry be a minimal 1-cover forf. We
use the following result from [30, Example 3.22 and Sec-
tion 4.6], which is essentially due to Razborov [36].

There exist setsl, B C {0,1}" x {0,1}" and a
probability distributiony : {0,1}" x {0,1}" —
[0,1] such that al(z,y) € A havelz Ay| = 0,
all (z,y) € BhavelzAy| =1, u(A) = 3/4,and
there aren, § > 0 such that for all rectangleB,
wW(RNB)>a - u(RNA) —27%7,

ThereforeN.(f) = [logk] > dn + log(3a/4).

For the lower bound orV,(f), consider the sef =
{(z,y) | 1 = y1 = 1,z; = g; fori > 1}. ThisS contains
2n—1 elements, all of which are 1-inputs fgr Note that if
(z,y) and(z',y") are two elements frorfi then|zAy'| > 1
or |z’ Ay| > 1, so a 1-rectangle fof can contain at most
one element of. This shows that a minimal 1-cover fgr
requires at least” ' rectangles an@.(f) >n —1. O

Another quantum-classical separation was obtained ear-
lier by Richard Cleve and Serge Massar [18]:

Theorem 6 (Cleve & Massar) For the non-equality prob-
lem onn bits, we haveVQ.(NE) = 1 versusN,.(NE) =
logn + 1.

Proof N.(NE) = logn + 1 is well known (see [30, Ex-
ample 2.5]). Below we give Cleve and Massar's 1-qubit
non-deterministic protocol for NE.

Viewing her inputz as a numbee [0,2" — 1], Alice
rotates g0)-qubit over an angler /2", obtaining a qubit
cos(xm/2™)|0) + sin(zm/2™)|1) which she sends to Bob.
Bob rotates the qubit back over an angte/2", obtaining
cos((z—y)m/2™)|0) +sin((z—y)n/2")|1). Bob now mea-
sures the qubit and outputs the observed bit: # y then
sin((z — y)7/2") = 0, so Bob will always output 0. If
x # y thensin((z — y)x/2™) # 0, so Bob will output 1
with positive probability. |

Note thatnrank(EQ) = 2", since any non-deterministic
matrix for equality will be a diagonaR™ x 2" ma-
trix with non-zero diagonal entries. ThusQ.(EQ) >
(lognrank(EQ))/2 = n/2, which contrasts sharply with
the non-deterministic quantum complexi#Q.(NE) = 1
of its complement.

5 Future work

One of the main reasons for the usefulness of non-
deterministic query and communication complexities in the
classical case, is the tight relation of these complexities with
deterministic complexity. In the query complexity (decision
tree) setting we have

max{Ny(f), Ng(F)} < Dy(f) < No(f)No()-

This was independently shown in [6, 24, 40]. We conjecture

Since theR; are 1-rectangles, they cannot contain elementsthat something similar holds in the quantum case:

from B. Henceu(R; N B) = 0 andu(R; N A) < 279" /a.
But since all elements of are covered by th&; we have

3 k k 9—dn
1= nA) = (U(Ri N A)) <> u(RinNA) < k-=—.

. : (0]
i=1 i=1

ndeg(f) ndeg(f)
2 0 2

deg(f)

g )

< O(NQ,(INQ,(F)) = Olndeg(f)ndeg(F)).

< Qq(f) < Dq(f)



Here the?-part is open.

This conjecture would imply

D,(f) € O(Qo(f)?) (Qo(f) is zero-error quantum query
complexity; the quadratic relation would be close to opti- [13]

mal [11]). It would also implyD,(f) € O(deg(f)?*), which
is again close to optimal [33]. The currently best known re-
lations have a fourth power instead of a square.

Similarly, for communication complexity the following
is known [30, Section 2.11]:

max{Ne(f). Ne(f)} < De(f) < O(Ne(f)Ne(f)).

An analogous result might be true for quantum, but we have [17)
been unable to prove it.
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A Comparison with alternative definitions

As mentioned in the introduction, three different defi-
nitions of non-deterministic quantum complexity are pos-
sible. We may consider the complexity of quantum algo-
rithms which either:

1. output 1 iff given an appropriateassical certificate

(such certificates must exist iff(z) = 1)

output 1 iff given an appropriatguantumcertificate
(such certificates must exist iff(z) = 1)
3. output 1 with positive probability iff (z) = 1

The third definition is the one we adopted for this paper.

Exponential separation of quantum and clakssica

together with a set of m-qubit states, such that for all
x € {0,1}" we have: (1) iff(z) 1 then there is a
|p.) € C such thatV,|¢,) has acceptance probability 1,
and (2) if f(z) = 0 thenV,|¢) has acceptance probabil-
ity O for every|¢) € C. Informally: the setC contains all
possible certificates, (1) for every 1-input there is a verifi-
able 1-certificate i€, and (2) for O-inputs there aren’t any.
We do not put any constraints ¢h However, note that the
definition implies that iff (z) = 0 for somez, thenC can-
not containall m-qubit states: otherwisg,) = V,~'|10)
would be a 1-certificate i even forz with f(z) = 0.

We now prove that &'-query quantum verifier can be
turned into al'-query non-deterministic quantum algorithm
according to our third definition. This shows that the third
definition is at least as powerful as the second (in fact, this
even holds if we replace the acceptance probability 1 in
clause (1) of the definition of a quantum verifier by just pos-
itive acceptance probability — in this case both definitions
are equivalent).

Theorem 7 Suppose there existslaquery quantum veri-
fierV for f. ThenNQ,(f) <T.

Proof The verifierV and the associated s&satisfy:

1. if f(z) = 1thenthereis &p,) € C such thatl;|¢,)
has acceptance probability 1

2. if f(z) = 0thenV,|¢) has acceptance probability O
forall |¢) € C

Let X; = {z | f(2) = 1}. For eachz € X; choose one
specific 1-certificatep,.) € C. Now let us consider some
inputz and see what happens if we rilp ® I (wherel is
the2” x 2™ identity operation) on the: + n-qubit state

1
2)Z).
¢) m; [¢:)]2)
V. only acts on the firsin qubits of|¢), the |z)-part re-
mains unaffected. Therefore runnilig® I on|¢) gives the
same acceptance probabilities as when we first randomly
choose some € X; and then apply/, to |¢.). In case
f(z) = 0, thisV,|¢.) will have acceptance probability O,
so (V, & I)|¢) will have acceptance probability O as well.
In case the input is such thaff (z) = 1, the specific certifi-

Clearly the second definition is at least as strong as thecate|¢. ) that we chose for this will satisfy thatV,|¢, ) has

first. Here we will show that the third definition is at least

acceptance probability 1. But thél, & I)|¢) has accep-

as strong as the second. (We give the proof for the querytance probability at leadt/| X |. Accordingly,(V,, & I)|¢)

complexity setting, but the same proof works for communi-
cation complexity and other non-uniform settings as well.)
Thus ourNQ,(f) is in fact the most powerful definition of
non-deterministic quantum query complexity.

We formalize the second definition as followsI'equery
qguantum verifiefor f is aT-query quantum algorithriy

has positive acceptance probability fifx) = 1. By pre-
fixing V, ® I with a unitary transformation which maps
0) (of m + n qubits) to|¢), we have constructed a non-
deterministic quantum algorithm fgrwith 7" queries. O



