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Abstra
t. We study nondeterministi
 quantum algorithms for Boolean fun
tions f . Su
halgorithms have positive a

eptan
e probability on input x i� f(x) = 1. In the setting of query
omplexity, we show that the nondeterministi
 quantum 
omplexity of a Boolean fun
tion is equalto its \nondeterministi
 polynomial" degree. We also prove a quantum-vs.-
lassi
al gap of 1 vs. n fornondeterministi
 query 
omplexity for a total fun
tion. In the setting of 
ommuni
ation 
omplexity,we show that the nondeterministi
 quantum 
omplexity of a two-party fun
tion is equal to thelogarithm of the rank of a nondeterministi
 version of the 
ommuni
ation matrix. This implies thatthe quantum 
ommuni
ation 
omplexities of the equality and disjointness fun
tions are n + 1 if wedo not allow any error probability. We also exhibit a total fun
tion in whi
h the nondeterministi
quantum 
ommuni
ation 
omplexity is exponentially smaller than its 
lassi
al 
ounterpart.Key words. quantum 
omputing, query 
omplexity, 
ommuni
ation 
omplexity, nondetermin-ismAMS subje
t 
lassi�
ation. 68Q10PII. S00975397024073451. Introdu
tion.1.1. Motivation. In 
lassi
al 
omputing, nondeterministi
 
omputation has aprominent pla
e in many di�erent models and for many good reasons. For example, inTuring ma
hine 
omplexity, the study of nondeterminism leads naturally to the 
lassof NP-
omplete problems, whi
h 
ontains some of the most important and pra
ti
allyrelevant 
omputer s
ien
e problems|as well as some of the hardest theoreti
al openquestions. In �elds like query 
omplexity and 
ommuni
ation 
omplexity, there is atight relation between deterministi
 
omplexity and nondeterministi
 
omplexity, butit is often mu
h easier to analyze upper and lower bounds for the latter than for theformer.Suppose we want to 
ompute a Boolean fun
tion f in some algorithmi
 setting,su
h as that of Turing ma
hines, de
ision trees, or 
ommuni
ation proto
ols. Considerthe following two ways of viewing a nondeterministi
 algorithm. The �rst and most
ommon way is to think of it as a \
erti�
ate veri�er": a deterministi
 algorithm Athat re
eives, apart from the input x, a \
erti�
ate" y whose validity it needs toverify. For all inputs x, if f(x) = 1, then there is a 
erti�
ate y su
h that A(x; y) = 1;if f(x) = 0, then A(x; y) = 0 for all y. Se
ond, we may view A as a randomizedalgorithm whose a

eptan
e probability is positive if f(x) = 1 and whose a

eptan
eprobability is zero if f(x) = 0. It is easy to see that these two views are equivalentin the 
lassi
al 
ase. To turn an algorithm A of the �rst kind into one of the se
ondkind, we 
an just guess a 
erti�
ate y at random and output A(x; y). This will havepositive a

eptan
e probability i� f(x) = 1. For the other dire
tion, we 
an 
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682 RONALD DE WOLFthe sequen
e of 
oin 
ips used by an algorithm of the se
ond kind as a 
erti�
ate.Clearly, there will be a 
erti�
ate leading to output 1 i� f(x) = 1, whi
h gives us analgorithm of the �rst kind.Both views may be generalized to the quantum 
ase, yielding three potentialde�nitions of nondeterministi
 quantum algorithms, possibly nonequivalent. Thequantum algorithm may be required to output the right answer f(x) when givenan appropriate 
erti�
ate, whi
h we 
an take to be either quantum or 
lassi
al. Or,third, the quantum algorithm may be required to have positive a

eptan
e proba-bility i� f(x) = 1. An example is given by two alternative de�nitions of quantumnondeterminism in the 
ase of quantum Turing ma
hine 
omplexity. Kitaev de�nesthe 
lass \bounded-error quantum-NP" (BNQP) as the set of languages a

epted bypolynomial-time bounded-error quantum algorithms that are given a polynomial-sizequantum 
erti�
ate (e.g., [32, 31℄ and [30, Chapter 14℄). On the other hand, Adleman,Demarrais, and Huang [2℄ and Fenner et al. [24℄ de�ne quantum-NP as the set of lan-guages L for whi
h there is a polynomial-time quantum algorithm whose a

eptan
eprobability is positive i� x 2 L. This quantum 
lass was shown to be equal to the
lassi
al 
ounting 
lass 
o-C=P [24, 52℄ using tools from Fortnow and Rogers [25℄.In this paper, we adopt the latter view: a nondeterministi
 quantum algorithmfor f is de�ned to be a quantum algorithm that outputs 1 with positive probabilityif f(x) = 1 and that always outputs 0 if f(x) = 0. This de�nition 
ontrasts withthe more traditional view of 
lassi
al determinism as \
erti�
ate veri�
ation." Themotivation for our 
hoi
e of de�nition of quantum nondeterminism is twofold. First,in the appendix, we show that this de�nition is stri
tly more powerful than the othertwo possible de�nitions in the sense of being able to simulate the other de�nitionseÆ
iently, while the reverse is not true. Se
ond, it turns out that this de�nition lendsitself to very 
risp results. Rather than in the quantum Turing ma
hine setting ofKitaev, Adleman, et
., we study the 
omplexity of nondeterministi
 algorithms inthe query 
omplexity and 
ommuni
ation 
omplexity settings. Our main results areexa
t 
hara
terizations of these nondeterministi
 quantum 
omplexities in algebrai
terms and large gaps between quantum and 
lassi
al 
omplexities in both settings.Our algebrai
 
hara
terizations 
an be extended to nontotal fun
tions in the obviousway, but we will sti
k to total fun
tions in our presentation.1.2. Query 
omplexity. We �rst 
onsider the model of query 
omplexity, alsoknown as de
ision tree 
omplexity or bla
k box 
omplexity. Here the goal is to 
om-pute some fun
tion f : f0; 1gn ! f0; 1g, making as few queries to input bits aspossible. Most existing quantum algorithms 
an naturally be expressed in this modeland a
hieve provable speed-ups over the best 
lassi
al algorithms. Examples 
an befound, e.g., in [22, 48, 26, 12, 13, 14℄ and also in
lude the order-�nding problem onwhi
h Shor's 
elebrated fa
toring algorithm is based [47℄.Let D(f) and QE(f) denote the query 
omplexities of optimal deterministi
 andquantum algorithms that 
ompute f exa
tly. Let deg(f) denote the minimal degreeamong all multilinear polynomials that represent f . (A polynomial p represents fif f(x) = p(x) for all x 2 f0; 1gn.) The following relations are known. The �rstinequality is due to Beals et al. [6℄, the se
ond inequality is obvious, and the last isdue to Nisan and Smolensky|unpublished, but des
ribed in the survey paper [20℄.deg(f)2 � QE(f) � D(f) � O(deg(f)4):Thus deg(f), QE(f), and D(f) are polynomially related for all total f . (The situation



NONDETERMINISTIC QUANTUM COMPLEXITY 683is very di�erent for partial f [22, 48, 47, 7℄.) Nisan and Szegedy [42℄ exhibit a fun
tionwith a large gap between D(f) = n and deg(f) = n0:6:::, but no fun
tion is knownwhere QE(f) is signi�
antly larger than deg(f), and it may in fa
t be true that QE(f)and deg(f) are linearly related. In se
tion 2, we show that the nondeterministi
versions of QE(f) and deg(f) are in fa
t equal :NQ(f) = ndeg(f):Here NQ(f) denotes the query 
omplexity of an optimal nondeterministi
 quantumalgorithm for f , whi
h has nonzero a

eptan
e probability i� f(x) = 1. The non-deterministi
 degree ndeg(f) is the minimal degree of a so-
alled nondeterministi
polynomial for f , whi
h is required to be nonzero i� f(x) = 1. A note on termi-nology: the name \nondeterministi
 polynomial" is based only on analogy with thea

eptan
e probability of a nondeterministi
 algorithm. This name is less than ideal,sin
e su
h polynomials have little to do with the traditional view of nondeterminismas 
erti�
ate veri�
ation. Nevertheless, we use this name be
ause any alternativesthat we 
ould think of were worse (too verbose or 
onfusing).Apart from the algebrai
 
hara
terization of the nondeterministi
 quantum query
omplexity NQ(f), we also show that NQ(f) may be mu
h smaller than its 
lassi
alanalogue N(f): we exhibit an f where NQ(f) = 1 and N(f) = n, whi
h is thebiggest possible gap allowed by this model. A

ordingly, while the 
ase of exa
t (or,for that matter, bounded-error) 
omputation allows at most polynomial quantum-
lassi
al query 
omplexity gaps for total fun
tions, the nondeterministi
 
ase allowsunbounded gaps.1.3. Communi
ation 
omplexity. In the 
ase of 
ommuni
ation 
omplexity,the goal is for two distributed parties, Ali
e and Bob, to 
ompute some fun
tionf : f0; 1gn � f0; 1gn ! f0; 1g. Ali
e re
eives an x 2 f0; 1gn, and Bob re
eives ay 2 f0; 1gn, and they want to 
ompute f(x; y), ex
hanging as few bits of 
ommuni
a-tion as possible. This model was introdu
ed by Yao [53℄ and is fairly well understoodfor the 
ase in whi
h Ali
e and Bob are 
lassi
al players ex
hanging 
lassi
al bits [36℄.Mu
h less is known about quantum 
ommuni
ation 
omplexity, where Ali
e and Bobhave a quantum 
omputer and 
an ex
hange qubits. This was �rst studied by Yao [54℄,and it was shown later that quantum 
ommuni
ation 
omplexity 
an be signi�
antlysmaller than 
lassi
al 
ommuni
ation 
omplexity [21, 17, 5, 44, 16℄.Let D

(f) and Q

E(f) denote the 
ommuni
ation required for optimal deter-ministi
 
lassi
al and exa
t quantum proto
ols for 
omputing f , respe
tively.1 Herewe assume Ali
e and Bob do not share any randomness or prior entanglement. Letrank(f) be the rank of the 2n � 2n 
ommuni
ation matrix Mf , whi
h is de�ned byMf (x; y) = f(x; y). The following relations are known:log rank(f)2 � Q

E(f) � D

(f):The �rst inequality follows from work of Kremer [35℄ and Yao [54℄, as �rst noted byBuhrman, Cleve, and Wigderson [17℄. (In [19℄ it is shown that this lower bound alsoholds if the quantum proto
ol 
an make use of unlimited prior entanglement betweenAli
e and Bob.) It is an open question whether D

(f) 
an in turn be upper bounded1The notation D(f) is used for deterministi
 
omplexity in de
ision tree 
omplexity as wellas in 
ommuni
ation 
omplexity. To avoid 
onfusion, we will 
onsistently add \

" to indi
ate
ommuni
ation 
omplexity.



684 RONALD DE WOLFby some polynomial in log rank(f). The 
onje
ture that it 
an is known as the log-rank
onje
ture. If this 
onje
ture holds, then D

(f) andQ

E(f) are polynomially relatedfor all total f (whi
h may well be true). It is known that log rank(f) and D

(f) arenot linearly related [43℄. In se
tion 3, we show that the nondeterministi
 version oflog rank(f) in fa
t fully determines the nondeterministi
 version of Q

E(f):NQ

(f) = dlognrank(f)e+ 1:Here nrank(f) denotes the minimal rank of a matrix whose (x; y)-entry is nonzero i�f(x; y) = 1. Thus we 
an 
hara
terize the nondeterministi
 quantum 
ommuni
ation
omplexity fully by the logarithm of the rank of its nondeterministi
 matrix. As far aswe know, only two other log-rank-style 
hara
terizations of 
ertain variants of 
ommu-ni
ation 
omplexity are known: the 
ommuni
ation 
omplexity of quantum samplingdue to Ambainis et al. [5℄ and the so-
alled modular 
ommuni
ation 
omplexity dueto Meinel and Waa
k [38℄.Equality and disjointness both have nondeterministi
 rank 2n, so their nondeter-ministi
 
omplexities are maximal: NQ

(EQ) = NQ

(DISJ) = n+1. Sin
e NQ

(f)lower bounds Q

E(f), we also obtain optimal bounds for the exa
t quantum 
om-muni
ation 
omplexity of equality and disjointness. In parti
ular, for the equalityfun
tion, we get Q

E(EQ) = n+ 1, whi
h answers a question posed by Gilles Bras-sard in a personal 
ommuni
ation [10℄. Surprisingly, no proof of this fa
t seems to beknown that avoids our detour via nondeterministi
 
omputation. Thus our methodsalso give new lower bounds for regular quantum 
ommuni
ation 
omplexity.Finally, analogous to the query 
omplexity 
ase, we also show an exponentialgap between quantum and 
lassi
al nondeterministi
 
ommuni
ation 
omplexity: weexhibit an f where NQ

(f) � log(n+ 1) + 1 and N

(f) 2 
(n). Massar et al. [37℄earlier found another gap that is unbounded, yet in some sense smaller: NQ

(NE) = 2versus N

(NE) = logn+ 1, where NE is the nonequality fun
tion.2. Nondeterministi
 quantum query 
omplexity.2.1. Fun
tions and polynomials. For x 2 f0; 1gn, we use jxj for the Hammingweight (number of 1's) of x, and xi for its ith bit, i 2 [n℄ = f1; : : : ; ng. We use ~0 for astring of n zeros. If B � [n℄ is a set of (indi
es of) variables, then xB denotes the inputobtained from x by 
omplementing all variables in B. If x; y 2 f0; 1gn, then x ^ ydenotes the n-bit string obtained by bitwise ANDing x and y. Let f : f0; 1gn ! f0; 1gbe a total Boolean fun
tion. For example, OR(x) = 1 i� jxj � 1, AND(x) = 1 i�jxj = n, PARITY(x) = 1 i� jxj is odd. We use f for the fun
tion 1� f .For b 2 f0; 1g, a b-
erti�
ate for f is an assignment C : S ! f0; 1g to someset S of variables, su
h that f(x) = b whenever x is 
onsistent with C. The sizeof C is jSj. The 
erti�
ate 
omplexity Cx(f) of f on input x is the minimal size ofan f(x)-
erti�
ate that is 
onsistent with x. We de�ne the 1-
erti�
ate 
omplexityof f as C(1)(f) = maxx:f(x)=1Cx(f). We de�ne C(0)(f) similarly. For example,C(1)(OR) = 1 and C(0)(OR) = n, but C(1)(OR) = n and C(0)(OR) = 1.An n-variate multilinear polynomial is a fun
tion p : C n ! C that 
an be writtenp(x) = XS�[n℄aSXS :Here S ranges over all sets of indi
es of variables, aS is a 
omplex number, andthe monomial XS is the produ
t �i2Sxi of all variables in S. The degree deg(p)



NONDETERMINISTIC QUANTUM COMPLEXITY 685of p is the degree of a largest monomial with nonzero 
oeÆ
ient. It is well knownthat every total Boolean f has a unique polynomial p su
h that p(x) = f(x) forall x 2 f0; 1gn. Let deg(f) be the degree of this polynomial, whi
h is at most n.For example, OR(x1; x2) = x1 + x2 � x1x2, whi
h has degree 2. Every multilinearpolynomial p = PS aSXS 
an also be written out uniquely in the so-
alled Fourierbasis : p(x) =XS 
S(�1)x�S:Again S ranges over all sets of indi
es of variables (we often identify a set S withits 
hara
teristi
 n-bit ve
tor), 
S is a 
omplex number, and x � S denotes the innerprodu
t of the n-bit strings x and S, or, equivalently, x � S = jx ^ Sj = Pi2S xi.It is easy to see that deg(p) = maxfjSj j 
S 6= 0g. For example, OR(x1; x2) =34 � 14 (�1)x1 � 14 (�1)x2 � 14 (�1)x1+x2 in the Fourier basis. We refer to [8, 42, 20℄ formore details about polynomial representations of Boolean fun
tions.We introdu
e the notion of a nondeterministi
 polynomial for f . This is a poly-nomial p su
h that p(x) 6= 0 i� f(x) = 1. Let the nondeterministi
 degree of f ,denoted ndeg(f), be the minimum degree among all nondeterministi
 polynomials pfor f . For example, p(x) = Pni=1 xi is a nondeterministi
 polynomial for OR; hen
endeg(OR) = 1.We mention some upper and lower bounds for ndeg(f). Let f be a non
onstantsymmetri
 fun
tion (i.e., f(x) depends only on jxj). Suppose f a
hieves value 0on the z Hamming weights, k1; : : : ; kz. Sin
e jxj = Pi xi, it is easy to see that(jxj�k1)(jxj�k2) � � � (jxj�kz) is a nondeterministi
 polynomial for f ; hen
e ndeg(f) �z. This upper bound is tight for AND (see below) but not for PARITY. For example,p(x1; x2) = x1 � x2 is a degree-1 nondeterministi
 polynomial for PARITY on twovariables: it assumes value 0 on x-weights 0 and 2 and �1 on weight 1. By squar-ing p(x) and then using standard symmetrization te
hniques (as used, for instan
e,in [39, 42, 6℄), we 
an also show the general lower bound ndeg(f) � z=2 for symmet-ri
 f . Furthermore, it is easy to show that ndeg(f) � C(1)(f) for every f . (Take apolynomial that is the \sum" over all 1-
erti�
ates for f .)Finally, we mention a general lower bound on ndeg(f). Let Pr[p 6= 0℄ =jfx 2 f0; 1gn j p(x) 6= 0gj=2n denote the probability that a random Boolean input xmakes a fun
tion p nonzero. A lemma of S
hwartz [46℄ (see also [42, se
tion 2.2℄) statesthat if p is a non
onstant multilinear polynomial of degree d, then Pr[p 6= 0℄ � 2�d,and hen
e d � log(1=Pr[p 6= 0℄). Sin
e a nondeterministi
 polynomial p for f isnonzero i� f(x) = 1, it follows thatndeg(f) � log(1=Pr[f 6= 0℄) = log(1=Pr[f = 1℄):A

ordingly, fun
tions with a very small fra
tion of 1-inputs will have high nondeter-ministi
 degree. For instan
e, Pr[AND = 1℄ = 2�n, so ndeg(AND) = n.2.2. Quantum 
omputing. We assume familiarity with 
lassi
al 
omputationand brie
y sket
h the setting of quantum 
omputation (see, e.g., [40℄ for more details).An m-qubit state is a linear 
ombination of all 
lassi
al m-bit statesj�i = Xi2f0;1gm �ijii;where jii denotes the basis state i (a 
lassi
al m-bit string) and �i is a 
omplexnumber that is 
alled the amplitude of jii. We require Pi j�ij2 = 1. Viewing j�i as



686 RONALD DE WOLFa 2m-dimensional 
olumn ve
tor, we use h�j for the row ve
tor that is the 
onjugatetranspose of j�i. Note that the inner produ
t hijjji = hijji is 1 if i = j and 0 ifi 6= j. When we observe j�i, we will see jii with probability jhij�ij2 = j�ij2, andthe state will 
ollapse to the observed jii. A quantum operation whi
h is not anobservation 
orresponds to a unitary (i.e., norm-preserving) transformation U on the2m-dimensional ve
tor of amplitudes.2.3. Query 
omplexity. Suppose we want to 
ompute some fun
tion f :f0; 1gn ! f0; 1g. For input x 2 f0; 1gn, a query 
orresponds to the unitary transfor-mation O that maps ji; b; zi ! ji; b � xi; zi. Here i 2 [n℄ and b 2 f0; 1g; the z-part
orresponds to the workspa
e, whi
h is not a�e
ted by the query. We assume thatthe input 
an be a

essed only via su
h queries. A T -query quantum algorithm hasthe form A = UTOUT�1 � � �OU1OU0, where the Uk are �xed unitary transforma-tions, independent of the input x. This A depends on x via the T appli
ations of O.We sometimes write Ax to emphasize this. The algorithm starts in initial state j~0i,and its output is the bit obtained from observing the leftmost qubit of the �nal su-perposition Aj~0i. The a

eptan
e probability of A (on input x) is its probability ofoutputting 1 (on x).We will 
onsider 
lassi
al and quantum algorithms and will 
ount only the numberof queries these algorithms make on a worst-
ase input. Let D(f) and QE(f) be thequery 
omplexities of optimal deterministi
 
lassi
al and exa
t quantum algorithmsfor 
omputing f , respe
tively. D(f) is also known as the de
ision tree 
omplexityof f . Similarly we 
an de�ne R2(f) and Q2(f) to be the query 
omplexity of ffor bounded-error 
lassi
al and quantum algorithms, respe
tively. Quantum query
omplexity and its relation to 
lassi
al 
omplexity has been well studied in re
entyears; see, for example, [6, 4, 20℄.We de�ne a nondeterministi
 algorithm for f to be an algorithm that has positivea

eptan
e probability on input x i� f(x) = 1. Let N(f) and NQ(f) be the query
omplexities of optimal nondeterministi
 
lassi
al and quantum algorithms for f , re-spe
tively. It is easy to show that the 1-
erti�
ate 
omplexity fully 
hara
terizes the
lassi
al nondeterministi
 
omplexity of f .Proposition 2.1. N(f) = C(1)(f).Proof. A 
lassi
al algorithm that guesses a 1-
erti�
ate, queries its variables,and outputs 1 i� the 
erti�
ate holds is a nondeterministi
 algorithm for f . Hen
eN(f) � C(1)(f).A nondeterministi
 algorithm for f 
an only output 1 if the out
omes of thequeries that it has made for
e the fun
tion to 1. Hen
e, if x is an input where all1-
erti�
ates have size at least C(1)(f), then the algorithm will have to query at leastC(1)(f) variables before it 
an output 1 (whi
h it must do on some runs). Hen
eN(f) � C(1)(f).2.4. Algebrai
 
hara
terization. Here we show that NQ(f) is equal to ndeg(f),using the following result from [6℄.Lemma 2.2 (see [6℄). The amplitudes of the basis states in the �nal superpositionof a T -query quantum algorithm 
an be written as multilinear 
omplex-valued polyno-mials of degree � T in the n xi-variables. Therefore, the a

eptan
e probability of thealgorithm (whi
h is the sum of squares of some of those amplitudes) 
an be written asan n-variate multilinear polynomial P (x) of degree � 2T .Note that the a

eptan
e probability of a nondeterministi
 quantum algorithmis a
tually a nondeterministi
 polynomial for f , sin
e it is positive i� f(x) = 1. ByLemma 2.2, this polynomial will have degree at most twi
e the number of queries
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h immediately implies ndeg(f)=2 � NQ(f). Below we willshow how we 
an get rid of the fa
tor 1=2 in this lower bound, improving it tondeg(f) � NQ

(f). We show that this lower bound is in fa
t optimal by deriving anondeterministi
 algorithm from a nondeterministi
 polynomial. This derivation usesa tri
k similar to the one used in [24℄ to show that 
o-C=P � quantum-NP.Theorem 2.3. NQ(f) = ndeg(f).Proof. Upper bound. Let p(x) be a nondeterministi
 polynomial for f of degreed = ndeg(f). Re
all that x�S denotes jx^Sj, identifying S � [n℄ with its 
hara
teristi
n-bit ve
tor. We write p in the Fourier basis:p(x) =XS 
S(�1)x�S:Sin
e deg(p) = maxfjSj j 
S 6= 0g, we have that 
S 6= 0 only if jSj � d.We 
an 
onstru
t a unitary transformation F that uses d queries to x and mapsjSi ! (�1)x�SjSi whenever jSj � d. Informally, this transformation does a 
ontrolledparity-
omputation: it 
omputes jx �Sj (mod 2) using jSj=2 queries [6, 23℄, then addsa phase \�1" if that answer is 1, and then reverses the 
omputation to 
lean up theworkspa
e and the answer at the 
ost of another jSj=2 queries. (If jSj is odd, thenone variable is treated separately, still using jSj queries in total.)Now 
onsider the following quantum algorithm:1. Start with 
PS 
S jSi (an n-qubit state, where 
 = 1=pPS j
S j2 is a nor-malizing 
onstant).2. Apply F to the state.3. Apply a Hadamard transform H to ea
h qubit.4. Measure the �nal state, and output 1 if the out
ome is the all-zero state j~0i,and output 0 otherwise.The state after step 2 is 
PS 
S(�1)x�SjSi. Note that the sum of the amplitudes inthis state is 
 �p(x), whi
h is nonzero i� f(x) = 1. The Hadamard transform in step 3gives us this sum as amplitude of the j~0i-state, with a normalizing fa
tor of 1=p2n.A

ordingly, the probability of observing j~0i at the end isP (x) = �����h~0jH
nF
XS 
S jSi�����2= 
22n �����XS0 hS0jXS 
S(�1)x�SjSi�����2= 
22n �����XS 
S(�1)x�S�����2= 
2p(x)22n :Sin
e p(x) is nonzero i� f(x) = 1, P (x) will be positive i� f(x) = 1. Hen
e we havea nondeterministi
 quantum algorithm for f with d = ndeg(f) queries.Lower bound. Let T = NQ(f), and 
onsider a T -query nondeterministi
 quantumalgorithm for f . By Lemma 2.2, the amplitudes �i in the �nal state,j�xi =Xi �i(x)jii;



688 RONALD DE WOLFon input x are n-variate polynomials of x of degree � T . We use the probabilisti
method [3℄ to show that some linear 
ombination of these polynomials is a nonde-terministi
 polynomial for f , thus avoiding losing the fa
tor 1=2 mentioned afterLemma 2.2.Let S be the set of basis states having a 1 as leftmost bit (observing su
h a statewill lead the algorithm to output 1). Sin
e the algorithm is nondeterministi
, we havethe following properties:If f(x) = 0, then �i(x) = 0 for all i 2 S.If f(x) = 1, then �i(x) 6= 0 for at least one i 2 S.Let I be an arbitrary set of more than 2n numbers. For ea
h i 2 S, pi
k a 
oeÆ
ient 
iuniformly at random from I , and de�ne p(x) =Pi2S 
i�i(x). By the �rst property,we have p(x) = 0 whenever f(x) = 0. Now 
onsider an x for whi
h f(x) = 1, and letk 2 S satisfy a = �k(x) 6= 0. Su
h a k must exist by the se
ond property. We want toshow that the event p(x) = 0 happens only with very small probability (probabilitytaken over the random 
hoi
es of the 
i). In order to do this, we �x the random
hoi
es 
i for all i 6= k and view p(x) = a
k + b as a linear fun
tion in the onlynot-yet-
hosen 
oeÆ
ient 
k. Sin
e a 6= 0, at most one out of jI j > 2n many possible
hoi
es of 
k 
an make p(x) = 0, soPr[p(x) = 0℄ < 2�n:However, then, by the union bound we havePr �there is an x 2 f�1(1) for whi
h p(x) = 0�� Xx2f�1(1)Pr[p(x) = 0℄ < 2n � 2�n = 1:This probability is stri
tly less than 1, whi
h shows that there exists a way of settingthe 
oeÆ
ients 
i that satis�es p(x) 6= 0 for all x 2 f�1(1), thus making p a nondeter-ministi
 polynomial for f . Sin
e p is a sum of polynomials of degree � T , it followsthat ndeg(f) � deg(p) � T = NQ(f).2.5. Quantum-
lassi
al separation. What is the biggest possible gap betweenquantum and 
lassi
al nondeterministi
 query 
omplexity? Consider the total Booleanfun
tion f : f0; 1gn ! f0; 1g de�ned byf(x) = 1 i� jxj 6= 1:It is easy to see that N(f) = C(1)(f) = C(0)(f) = n. On the other hand, the followingis a degree-1 nondeterministi
 polynomial for f :(2.1) p(x) =  nXi=1 xi!� 1 = n2 � 1� 12 nXi=1(�1)xi :Thus we have that NQ(f) = ndeg(f) = 1. Expli
itly, the 1-query algorithm that weget from the proof is as follows:1. Start with 
 ((n=2 � 1)j~0i � (1=2)Pi jeii), where 
 = 1=pn2=4� 3n=4+ 1and jeii has a 1 only at the ith bit.2. Using one query, we 
an map jeii ! (�1)xi jeii.3. Applying a Hadamard transform turns the amplitude of j~0i into �~0 =
p2n ((n=2� 1)�Pi(�1)xi=2) = 
p(x)=p2n.
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e the probability of observing j~0i at the end is �2~0 = 
2p(x)2=2n.For the 
omplement of f , we 
an easily show NQ(f) = ndeg(f) � n� 1 (the \�1" istight for n = 2; witness p(x) = x1 � x2). In sum, we have the following theorem.Theorem 2.4. For the above f , we have NQ(f) = 1, NQ(f) � n � 1, andN(f) = N(f) = n.2.6. Relation to some other 
omplexity measures. Many relations areknown between all sorts of 
omplexity measures of Boolean fun
tions, su
h as polyno-mial degree, 
erti�
ate 
omplexity, various 
lassi
al and quantum de
ision tree 
om-plexities, et
. A survey may be found in [20℄. In this subse
tion, we will similarlyembed ndeg(f) (= NQ(f)) in this web of relations and give upper bounds on D(f)in terms of ndeg(f), C(f), and the blo
k sensitivity bs(f), whi
h is de�ned as fol-lows. A set of (indi
es of) variables B � [n℄ is 
alled a sensitive blo
k for f oninput x if f(x) 6= f(xB); B is minimal if no B0 � B is sensitive. The blo
k sensi-tivity bsx(f) is the maximal number of disjoint minimal sensitive blo
ks in x, andbs(b)(f) = maxx2f�1(b) bsx(f).Lemma 2.5. If f(x) = 0 and B is a minimal sensitive blo
k for f on x, thenjBj � ndeg(f).Proof. Assume without loss of generality that x = ~0. Be
ause B is minimal, forevery proper subset B0 of B, we have f(x) = f(xB0) = 0, but on the other handf(xB) = 1. A

ordingly, if we �x all variables outside of B to zero, then we obtainthe AND-fun
tion of jBj variables, whi
h requires nondeterministi
 degree jBj. Hen
ejBj � ndeg(f).Lemma 2.6. C(0)(f) � bs(0)(f)ndeg(f).Proof. Consider any input x. As Nisan [41℄ proved, the union of a maximal setof sensitive blo
ks forms a 
erti�
ate for that input (for otherwise there would be onemore sensitive blo
k). If f(x) = 0, then there 
an be at most bs(0)(f) disjoint sensitiveblo
ks, and by the previous lemma ea
h blo
k 
ontains at most ndeg(f) variables.Hen
e ea
h 0-input 
ontains a 
erti�
ate of at most bs(0)(f)ndeg(f) variables.The following theorem improves upon an argument of Nisan and Smolensky, de-s
ribed in [20℄.Theorem 2.7. D(f) � C(0)(f)ndeg(f).Proof. Let p be a nondeterministi
 polynomial for f of degree d = ndeg(f). Notethat if we take a 0-
erti�
ate C : S ! f0; 1g and �x the S-variables a

ordingly,then p must redu
e to the 
onstant-0 polynomial. This implies that S interse
ts alldegree-d monomials of p, be
ause a noninterse
ted degree-d monomial would still bepresent in the redu
ed polynomial, whi
h would then not be 
onstant-0. Thus takinga minimal 0-
erti�
ate and querying its variables redu
es the degree of p by at least 1.Repeating this at most ndeg(f) times, we redu
e p to a 
onstant polynomial and knowf(x). This algorithm takes at most C(0)(f)ndeg(f) queries.Combining this with the fa
t that bs(0)(f) � 6Q2(f)2 [6℄, we obtain the following.Corollary 2.8. D(f) � bs(0)(f)ndeg(f)2 � 6 Q2(f)2NQ(f)2.This 
orollary has the somewhat paradoxi
al 
onsequen
e that if the nondetermin-isti
 
omplexity NQ(f) is small, then the bounded-error 
omplexity Q2(f) must belarge (i.e., 
lose to D(f)). For instan
e, if NQ(f) = O(1), then Q2(f) = 
(pD(f)).We hope that this result will help tighten the relation D(f) = O(Q2(f)6) that wasproved in [6℄.



690 RONALD DE WOLF3. Nondeterministi
 quantum 
ommuni
ation 
omplexity.3.1. Communi
ation 
omplexity. In the standard version of 
ommuni
a-tion 
omplexity, two parties (Ali
e and Bob) want to 
ompute some fun
tion f :f0; 1gn � f0; 1gn ! f0; 1g. For example, EQ(x; y) = 1 i� x = y, NE(x; y) = 1 i�x 6= y, and DISJ(x; y) = 1 i� jx ^ yj = 0. A re
tangle is a subset R = S � T of thedomain of f . R is a 1-re
tangle (for f) if f(x; y) = 1 for all (x; y) 2 R. A 1-
overfor f is a set of 1-re
tangles whose union 
ontains all 1-inputs of f . Cov 1(f) denotesthe minimal size (i.e., minimal number of re
tangles) of a 1-
over for f . Similarly, wede�ne 0-re
tangles, 0-
overs, and Cov 0(f).The 
ommuni
ation matrix Mf of f is the 2n � 2n Boolean matrix whose (x; y)-entry is f(x; y), and rank(f) denotes the rank ofMf over the �eld of 
omplex numbers.A 2n � 2n matrix M is 
alled a nondeterministi
 
ommuni
ation matrix for f if ithas the property that M(x; y) 6= 0 i� f(x; y) = 1. Thus M is any matrix obtainableby repla
ing 1-entries in Mf by nonzero 
omplex numbers. Let the nondeterministi
rank of f , denoted nrank(f), be the minimum rank (over the 
omplex �eld) amongall nondeterministi
 matri
es M for f .2We 
onsider 
lassi
al and quantum 
ommuni
ation proto
ols and 
ount only theamount of 
ommuni
ation (bits or qubits) that these proto
ols make on a worst-
ase input. For 
lassi
al 
ommuni
ation proto
ols, we refer to [36℄. Here we brie
yde�ne quantum 
ommuni
ation proto
ols, referring to the surveys [49, 15, 33, 11, 51℄for more details. The spa
e in whi
h the quantum proto
ol works 
onsists of threeparts: Ali
e's part, the 
ommuni
ation 
hannel, and Bob's part. (We do not writethe dimensions of these spa
es expli
itly.) Initially these three parts 
ontain only0-qubits, j0ij0ij0i:We assume Ali
e starts the proto
ol. She applies a unitary transformation UA1 (x) toher private spa
e and part of the 
hannel. This 
orresponds to her initial 
omputationand her �rst message. The length of this message is the number of 
hannel qubits onwhi
h UA1 (x) a
ts. The total state is now(UA1 (x)
 IB)j0ij0ij0i;where 
 denotes tensor produ
t, and IB denotes the identity transformation on Bob'spart. Then Bob applies a unitary transformation UB2 (y) = V B2 (y)SB2 to his partand the 
hannel. First, the operation SB2 \reads" Ali
e's message by swapping the
ontents of the 
hannel with some fresh j0i-qubits in Bob's private spa
e. After this,the unitary V B2 (y) is applied to Bob's private spa
e and part of the 
hannel. This
orresponds to Bob's private 
omputation and his putting a message to Ali
e on the
hannel. The length of this new message is the number of 
hannel-qubits on whi
h2This de�nition looks somewhat similar to the de�nition of the Colin de Verdi�ere parameter �(G)of an undire
ted graph G [27℄. For G = (V;E) with jV j = n, �(G) is de�ned to be the maximal
orank (= n�rank) among all real symmetri
 n�nmatri
esM having the following three properties:(1)Mij < 0 if (i; j) 2 E andMij = 0 if i 6= j and (i; j) =2 E; (2)M has exa
tly one negative eigenvalueof multipli
ity 1; (3) there is no real symmetri
 matrix X 6= 0 su
h that MX = 0 and Xij = 0whenever i = j or Mij 6= 0. Su
h a matrix M is a nondeterministi
 matrix for the 
ommuni
ation
omplexity problem f : [n℄� [n℄! f0; 1g de�ned by f(i; j) = 1 i� (i; j) 2 E, with the promise thatthe inputs i and j are distin
t. However, the Colin de Verdi�ere requirement appears to be morestringent, sin
e it 
onstrains the nondeterministi
 matrix further by properties (2) and (3).
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ts. This pro
ess goes ba
k and forth for some k messages, so the �nal stateof the proto
ol on input (x; y) will be (in 
ase Ali
e goes last as well)(UAk (x) 
 IB)(IA 
 UBk�1(y)) � � � (IA 
 UB2 (y))(UA1 (x) 
 IB)j0ij0ij0i:The total 
ost of the proto
ol is the total length of all messages sent, on a worst-
aseinput (x; y). For te
hni
al 
onvenien
e, we assume that at the end of the proto
ol theoutput bit is the �rst qubit on the 
hannel. Thus the a

eptan
e probability P (x; y) ofthe proto
ol is the probability that a measurement of the �nal state gives a \1" in the�rst 
hannel-qubit. Note that we do not allow intermediate measurements during theproto
ol. This is without loss of generality; it is well known that su
h measurements
an be postponed until the end of the proto
ol at no extra 
ommuni
ation 
ost.Let D

(f) and Q

E(f) be the 
ommuni
ation 
omplexities of optimal determin-isti
 
lassi
al and quantum proto
ols for 
omputing f , respe
tively. A nondeterminis-ti
 proto
ol for f is a proto
ol that has positive a

eptan
e probability on input (x; y)i� f(x; y) = 1. Let N

(f) and NQ

(f) be the 
ommuni
ation 
omplexities of opti-mal nondeterministi
 
lassi
al and quantum proto
ols for f , respe
tively. Our N

(f)is 
alled N1(f) in [36℄.It is not hard to show that N

(f) = dlogCov 1(f)e + 1, where the \+1" is dueto the fa
t that we want Ali
e and Bob both to know the output at the end of theproto
ol.3.2. Algebrai
 
hara
terization. Here we 
hara
terize NQ

(f) in terms ofnrank(f). We use the following lemma. It was stated without proof by Yao [54℄ and inmore detail by Kremer [35℄ and is key to many of the earlier lower bounds on quantum
ommuni
ation 
omplexity as well as to ours. It is easily proven by indu
tion on `.Lemma 3.1 (see Yao [54℄ and Kremer [35℄). The �nal state of an `-qubit proto
olon input (x; y) 
an be written asXi2f0;1g` jAi(x)iji`ijBi(y)i;where the Ai(x); Bi(y) are ve
tors (of norm � 1), and i` denotes the last bit of the`-bit string i (the output bit).The a

eptan
e probability P (x; y) of the proto
ol is the squared norm of the partof the �nal state that has i` = 1. Letting aij be the 2n-dimensional 
omplex 
olumnve
tor with the inner produ
ts hAi(x)jAj(x)i as entries and bij the 2n-dimensional
olumn ve
tor with entries hBi(y)jBj(y)i, we 
an write P (viewed as a 2n�2n matrix)as the sum Pi;j:i`=j`=1 aijbTij of 22`�2 matri
es, ea
h of rank at most 1, so the rankof P is at most 22`�2. For example, for exa
t proto
ols this gives immediately that` � 12 log rank(f) + 1, and for nondeterministi
 proto
ols ` � 12 lognrank(f) + 1.Below we show how we 
an get rid of the fa
tor 12 in the nondeterministi
 
aseand show that the lower bound of lognrank(f) + 1 is a
tually optimal. The lowerbound part of the proof relies on the following te
hni
al lemma.Lemma 3.2. If there exist two families of ve
tors fA1(x); : : : ; Am(x)g � C d andfB1(y); : : : ; Bm(y)g � C d su
h that, for all x 2 f0; 1gn and y 2 f0; 1gn, we havemXi=1 Ai(x) 
Bi(y) = 0 i� f(x; y) = 0;then nrank(f) � m.



692 RONALD DE WOLFProof. Assume there exist two su
h families of ve
tors. Let Ai(x)j denote the jthentry of ve
tor Ai(x), and similarly let Bi(y)k denote the kth entry of ve
tor Bi(y).We use pairs (j; k) 2 f1; : : : ; dg2 to index entries of ve
tors in the d2-dimensionaltensor spa
e. Note thatif f(x; y) = 0, then Pmi=1 Ai(x)jBi(y)k = 0 for all (j; k), andif f(x; y) = 1, then Pmi=1 Ai(x)jBi(y)k 6= 0 for some (j; k).As a �rst step, we want to repla
e the ve
tors Ai(x) and Bi(y) by numbers ai(x)and bi(y) that have similar properties. We use the probabilisti
 method to show thatthis 
an be done.Let I be an arbitrary set of 22n+1 numbers. Choose 
oeÆ
ients �1; : : : ; �d and�1; : : : ; �d, ea
h 
oeÆ
ient pi
ked uniformly at random from I . For every x de�neai(x) =Pdj=1 �jAi(x)j , and for every y de�ne bi(y) =Pdk=1 �kBi(y)k. Consider thenumber v(x; y) = mXi=1 ai(x)bi(y) = dXj;k=1�j�k  mXi=1 Ai(x)jBi(y)k! :If f(x; y) = 0, then v(x; y) = 0 for all 
hoi
es of the �j ; �k.Now 
onsider some (x; y) with f(x; y) = 1. There is a pair (j0; k0) for whi
hPmi=1Ai(x)j0Bi(y)k0 6= 0. We want to prove that v(x; y) = 0 happens only withvery small probability. In order to do this, �x the random 
hoi
es of all �j , j 6= j0,and �k, k 6= k0, and view v(x; y) as a fun
tion of the two remaining not-yet-
hosen
oeÆ
ients � = �j0 and � = �k0 ,v(x; y) = 
0�� + 
1�+ 
2� + 
3:Here we know that 
0 = Pmi=1 Ai(x)j0Bi(y)k0 6= 0. There is at most one value of �for whi
h 
0�+ 
2 = 0. All other values of � turn v(x; y) into a linear equation in �,so for those � there is at most one 
hoi
e of � that gives v(x; y) = 0. Hen
e out ofthe (22n+1)2 di�erent ways of 
hoosing (�; �), at most 22n+1+(22n+1� 1) � 1 < 22n+2
hoi
es give v(x; y) = 0. Therefore,Pr[v(x; y) = 0℄ < 22n+2(22n+1)2 = 2�2n:Using the union bound, we now havePr �there is an (x; y) 2 f�1(1) for whi
h v(x; y) = 0�� X(x;y)2f�1(1)Pr[v(x; y) = 0℄ < 22n � 2�2n = 1:This probability is stri
tly less than 1, so there exist sets fa1(x); : : : ; am(x)g andfb1(y); : : : ; bm(y)g that make v(x; y) 6= 0 for every (x; y) 2 f�1(1). We thus have thatmXi=1 ai(x)bi(y) = 0 i� f(x; y) = 0:View the ai and bi as 2n-dimensional ve
tors, let A be the 2n � m matrix havingthe ai as 
olumns, and let B be the m � 2n matrix having the bi as rows. Then(AB)xy =Pmi=1 ai(x)bi(y), whi
h is 0 i� f(x; y) = 0. Thus AB is a nondeterministi
matrix for f , and nrank(f) � rank(AB) � rank(A) � m.



NONDETERMINISTIC QUANTUM COMPLEXITY 693Lemma 3.2 allows us to prove the following tight 
hara
terization.Theorem 3.3. NQ

(f) = dlognrank(f)e+ 1.Proof. Upper bound. Let r = nrank(f), and let M be a rank-r nondeterministi
matrix for f . Let MT = U�V be the singular value de
omposition of the transposeof M [28℄, so U and V are unitary, and � is a diagonal matrix whose �rst r diagonalentries are positive real numbers and whose other diagonal entries are 0. Below wedes
ribe a one-round nondeterministi
 proto
ol for f , using dlog re+ 1 qubits.First, Ali
e prepares the state j�xi = 
x�V jxi, where 
x > 0 is a normalizingreal number that depends on x. Be
ause only the �rst r diagonal entries of � arenonzero, only the �rst r amplitudes of j�xi are nonzero, so j�xi 
an be 
ompressedinto dlog re qubits. Ali
e sends these qubits to Bob. Bob then applies U to j�xi andmeasures the resulting state. If he observes jyi, then he puts 1 on the 
hannel, andotherwise he puts 0 there. The a

eptan
e probability of this proto
ol isP (x; y) = jhyjU j�xij2 = 
2xjhyjU�V jxij2 = 
2xjMTyxj2 = 
2xjMxyj2:Sin
e Mxy is nonzero i� f(x; y) = 1, P (x; y) will be positive i� f(x; y) = 1. Thus wehave a nondeterministi
 quantum proto
ol for f with dlog re+ 1 qubits of 
ommuni-
ation.Lower bound. Consider a nondeterministi
 `-qubit proto
ol for f . By Lemma 3.1,its �nal state on input (x; y) 
an be written asXi2f0;1g` jAi(x)iji`ijBi(y)i:Without loss of generality, we assume the ve
tors Ai(x) and Bi(y) all have the samedimension d. Let S = fi 2 f0; 1g` j i` = 1g, and 
onsider the part of the state that
orresponds to output 1 (we drop the i` = 1 and the j�i-notation here),�(x; y) =Xi2S Ai(x)
Bi(y):Be
ause the proto
ol has a

eptan
e probability 0 i� f(x; y) = 0, this ve
tor �(x; y)will be the zero ve
tor i� f(x; y) = 0. The previous lemma gives nrank(f) � jSj =2`�1; hen
e log(nrank(f)) + 1 � NQ

(f).Note that any nondeterministi
 matrix for the equality fun
tion has nonzeroson its diagonal and zeros o�-diagonal and hen
e has full rank. Thus we obtainNQ

(EQ) = n + 1. Similarly, a nondeterministi
 matrix for disjointness has fullrank, be
ause reversing the ordering of the 
olumns in Mf gives an upper triangularmatrix with nonzero elements on the diagonal. This gives tight bounds for the non-deterministi
 as well as for the exa
t setting, neither of whi
h was known prior to thiswork.Corollary 3.4. Q

E(EQ) = NQ

(EQ) = n+1 and Q

E(DISJ) = NQ

(DISJ)= n+ 1.3.3. Quantum-
lassi
al separation. To repeat, 
lassi
ally we have N

(f) =dlogCov 1(f)e + 1, and quantumly we have NQ

(f) = dlognrank(f)e + 1. We nowgive a total fun
tion f with an exponential gap between N

(f) and NQ

(f). Forn > 1, de�ne f by f(x; y) = 1 i� jx ^ yj 6= 1:



694 RONALD DE WOLFWe �rst show that the quantum 
omplexity NQ

(f) is low.Theorem 3.5. For the above f , we have NQ

(f) � dlog(n+ 1)e+ 1.Proof. By Theorem 3.3, it suÆ
es to prove nrank(f) � n + 1. We will derive alow-rank nondeterministi
 matrix from the polynomial p of (2.1), using a te
hniquefrom [43℄. Let Mi be the matrix de�ned by Mi(x; y) = 1 if xi = yi = 1 and byMi(x; y) = 0 otherwise. Noti
e that Mi has rank 1. De�ne a 2n � 2n matrix M byM(x; y) =  nXi=1Mi(x; y)!� 1:Note that M(x; y) = p(x ^ y). Sin
e p is a nondeterministi
 polynomial for thefun
tion whi
h is 1 i� its input does not have weight 1, it 
an be seen that M isa nondeterministi
 matrix for f . Be
ause M is the sum of n + 1 rank-1 matri
es,M itself has rank at most n+ 1.Now we show that the 
lassi
al N

(f) is high (both for f and its 
omplement).Theorem 3.6. For the above f , we have N

(f) 2 
(n) and N

(f) � n� 1.Proof. Let R1; : : : ; Rk be a minimal 1-
over for f . We use the following resultfrom [36, Example 3.22 and se
tion 4.6℄, whi
h is essentially due to Razborov [45℄.There exist sets A;B � f0; 1gn � f0; 1gn and a probability distri-bution � : f0; 1gn � f0; 1gn ! [0; 1℄ su
h that all (x; y) 2 A havejx ^ yj = 0, all (x; y) 2 B have jx ^ yj = 1, �(A) = 3=4, andthere are �; Æ > 0 (independent of n) su
h that for all re
tangles R,�(R \ B) � � � �(R \ A)� 2�Æn.Sin
e the Ri are 1-re
tangles, they 
annot 
ontain elements from B. Hen
e �(Ri\B) =0 and �(Ri \ A) � 2�Æn=�. However, sin
e all elements of A are 
overed by the Ri,we have 34 = �(A) = � k[i=1(Ri \ A)! � kXi=1 �(Ri \ A) � k � 2�Æn� :Therefore, N

(f) = dlog ke+ 1 � Æn+ log(3�=4).For the lower bound on N

(f), 
onsider the set S = f(x; y) j x1 = y1 = 1, xi = yifor i > 1g. This S 
ontains 2n�1 elements, all of whi
h are 1-inputs for f . Note thatif (x; y) and (x0; y0) are two elements from S, then jx ^ y0j > 1 or jx0 ^ yj > 1, so a1-re
tangle for f 
an 
ontain at most one element of S. This shows that a minimal1-
over for f requires at least 2n�1 re
tangles and N

(f) � n� 1.Another quantum-
lassi
al separation was obtained earlier by Massar et al. [37℄.We in
lude it for the sake of 
ompleteness. It shows that the nondeterministi
 
om-plexity of the nonequality problem is extremely low, in sharp 
ontrast to the equalityproblem itself.Theorem 3.7 (see [37℄). For the nonequality problem on n bits, NQ

(NE) = 2versus N

(NE) = logn+ 1.Proof. N

(NE) = logn+1 is well known (see [36, Example 2.5℄). Below we givethe proto
ol for NE from [37℄.Viewing her input x as a number 2 [0; 2n � 1℄, Ali
e rotates a j0i-qubit overan angle x�=2n, obtaining a qubit 
os(x�=2n)j0i + sin(x�=2n)j1i whi
h she sends toBob. Bob rotates the qubit ba
k over an angle y�=2n, obtaining 
os((x�y)�=2n)j0i+sin((x � y)�=2n)j1i. Bob now measures the qubit and sends ba
k the observed bit.If x = y, then sin((x � y)�=2n) = 0, so Bob will always send 0. If x 6= y, thensin((x� y)�=2n) 6= 0, so Bob will send 1 with positive probability.
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tion, Klau
k [34℄ showed that NQ

(f) is in general in
omparableto bounded-error quantum 
ommuni
ation 
omplexity: the latter may be exponen-tially larger or smaller, depending on f .4. Future work. One of the main reasons for the usefulness of nondeterministi
query and 
ommuni
ation 
omplexities in the 
lassi
al 
ase is the tight relation of these
omplexities with deterministi
 
omplexity.In the query 
omplexity (de
ision tree) setting, we have the well-known boundmaxfN(f); N(f)g � D(f) � N(f)N(f):We 
onje
ture that something similar holds in the quantum 
ase:max�NQ(f);NQ(f)	 � QE(f) � D(f) ?� O(NQ(f)NQ(f)):The ?-part is open and ties in with tightly embedding NQ(f) and ndeg(f) into the webof known relations between various 
omplexity measures (se
tion 2.6). This 
onje
-ture implies, for instan
e, D(f) 2 O(deg(f)2), whi
h would be 
lose to optimal [42℄.Similarly, it would imply D(f) 2 O(Q0(f)2), whi
h would be 
lose to optimal aswell [18℄. In both 
ases, the 
urrently best relation has a fourth power instead of asquare.Similarly, for 
ommuni
ation 
omplexity, the following is known [36, se
tion 2.11℄:maxfN

(f);N

(f)g � D

(f) � O(N

(f)N

(f)):An analogous result might be true in the quantum setting, but we have been unableto prove it. So far, the best result in this dire
tion is Klau
k's observation thatD

(f) = O(N

(f)NQ

(f)) [33, Theorem 1℄.Appendix. Comparison with alternative de�nitions. As mentioned in theintrodu
tion, three di�erent de�nitions of nondeterministi
 quantum 
omplexity arepossible. We may 
onsider the 
omplexity of quantum algorithms that1. output 1 i� given an appropriate 
lassi
al 
erti�
ate (and su
h 
erti�
atesmust exist i� f(x) = 1),2. output 1 i� given an appropriate quantum 
erti�
ate (and su
h 
erti�
atesmust exist i� f(x) = 1), or3. output 1 with positive probability i� f(x) = 1.The third de�nition is the one we adopted for this paper. Clearly de�nition 2 is atleast as strong as de�nition 1 in the sense that the 
omplexity of a fun
tion a

ordingto de�nition 2 will be less than or equal to the 
omplexity a

ording to de�nition 1. Infa
t, in the setting of query 
omplexity, these two de�nitions are equivalent, be
ausewithout loss of generality the 
erti�
ate 
an be taken to be the purported input. SeeAaronson [1℄ for some re
ent results about \quantum 
erti�
ate (query) 
omplexity."Here we show that de�nition 3 is at least as strong as de�nition 2. We give theproof for the query 
omplexity setting, but the same proof 
an be modi�ed to workfor 
ommuni
ation 
omplexity and other nonuniform settings as well. We then givean example in whi
h the query 
omplexity a

ording to de�nition 3 is mu
h less thana

ording to de�nition 2. This shows that our NQ(f) is in fa
t the most powerfulde�nition of nondeterministi
 quantum query 
omplexity.We formalize de�nition 2 as follows. A T -query quantum veri�er for f is a T -query quantum algorithm V together with a set C of m-qubit states, su
h that for allx 2 f0; 1gn we have (1) if f(x) = 1, then there is a j�xi 2 C su
h that Vxj�xi has



696 RONALD DE WOLFa

eptan
e probability 1; and (2) if f(x) = 0, then Vxj�i has a

eptan
e probability 0for every j�i 2 C. Informally, the set C 
ontains all possible 
erti�
ates: (1) for every1-input, there is a veri�able 1-
erti�
ate in C; and (2) for 0-inputs, there are notany. We do not put any 
onstraints on C. However, note that the de�nition impliesthat if f(x) = 0 for some x, then C 
annot 
ontain all m-qubit states; otherwise,j�xi = V �1x j1~0i would be a 1-
erti�
ate in C even for x with f(x) = 0.We now prove that a T -query quantum veri�er 
an be turned into a T -querynondeterministi
 quantum algorithm a

ording to our third de�nition. This showsthat the third de�nition is at least as powerful as the se
ond. In fa
t, this evenholds if we repla
e the a

eptan
e probability 1 in 
lause (1) of the de�nition of aquantum veri�er by just positive a

eptan
e probability|in this 
ase, both de�nitionsare equivalent.Theorem A.1. If there is a T -query quantum veri�er V for f , then NQ(f) � T .Proof. The veri�er V and the asso
iated set C satisfy the following:1. If f(x) = 1, then there is a j�xi 2 C su
h that Vxj�xi has a

eptan
e proba-bility 1.2. If f(x) = 0, then Vxj�i has a

eptan
e probability 0 for all j�i 2 C.Let X1 = fz j f(z) = 1g. For ea
h z 2 X1, 
hoose one spe
i�
 1-
erti�
ate j�zi 2 C.Now let us 
onsider some input x and see what happens if we run Vx 
 I (where I isthe 2n � 2n identity operation) on the m+ n-qubit statej�i = 1pjX1j Xz2X1 j�zijzi:Vx a
ts on only the �rst m qubits of j�i; the jzi-part remains una�e
ted. Therefore,running Vx 
 I on j�i gives the same a

eptan
e probabilities as when we �rst ran-domly 
hoose some z 2 X1 and then apply Vx to j�zi. In the 
ase when f(x) = 0,this Vxj�zi will have a

eptan
e probability 0, so (Vx 
 I)j�i will have a

eptan
eprobability 0 as well. In the 
ase when the input x is su
h that f(x) = 1, the spe
i�

erti�
ate j�zi that we 
hose for this x will satisfy that Vxj�xi has a

eptan
e prob-ability 1. However, then (Vx 
 I)j�i has a

eptan
e probability at least 1=jX1j > 0.A

ordingly, (Vx
I)j�i has positive a

eptan
e probability i� f(x) = 1. By pre�xingVx 
 I with a unitary transformation that maps j~0i (of m+n qubits) to j�i, we have
onstru
ted a nondeterministi
 quantum algorithm for f with T queries.The above proof shows that our de�nition of NQ(f) is at least as strong as the
erti�
ate-veri�er de�nition. Could it be that both de�nitions are in fa
t equivalent(i.e., yield the same 
omplexity)? The fun
tion we used in se
tion 2.5 shows that thisis not the 
ase. Consider again f(x) = 1 i� jxj 6= 1:It satis�es NQ(f) = 1. On the other hand, if we take a T -query veri�er for f and�x the 
erti�
ate for the all-0 input, we obtain a T -query algorithm that alwaysoutputs 1 on the all-0 input and that outputs 0 on all inputs of Hamming weight 1.The quantum sear
h lower bounds [9, 6℄ immediately imply T = 
(pn). This showsthat our de�nition of NQ(f) is stri
tly more powerful than the 
erti�
ate-verifyingone.A
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