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Abstrat. We study nondeterministi quantum algorithms for Boolean funtions f . Suhalgorithms have positive aeptane probability on input x i� f(x) = 1. In the setting of queryomplexity, we show that the nondeterministi quantum omplexity of a Boolean funtion is equalto its \nondeterministi polynomial" degree. We also prove a quantum-vs.-lassial gap of 1 vs. n fornondeterministi query omplexity for a total funtion. In the setting of ommuniation omplexity,we show that the nondeterministi quantum omplexity of a two-party funtion is equal to thelogarithm of the rank of a nondeterministi version of the ommuniation matrix. This implies thatthe quantum ommuniation omplexities of the equality and disjointness funtions are n + 1 if wedo not allow any error probability. We also exhibit a total funtion in whih the nondeterministiquantum ommuniation omplexity is exponentially smaller than its lassial ounterpart.Key words. quantum omputing, query omplexity, ommuniation omplexity, nondetermin-ismAMS subjet lassi�ation. 68Q10PII. S00975397024073451. Introdution.1.1. Motivation. In lassial omputing, nondeterministi omputation has aprominent plae in many di�erent models and for many good reasons. For example, inTuring mahine omplexity, the study of nondeterminism leads naturally to the lassof NP-omplete problems, whih ontains some of the most important and pratiallyrelevant omputer siene problems|as well as some of the hardest theoretial openquestions. In �elds like query omplexity and ommuniation omplexity, there is atight relation between deterministi omplexity and nondeterministi omplexity, butit is often muh easier to analyze upper and lower bounds for the latter than for theformer.Suppose we want to ompute a Boolean funtion f in some algorithmi setting,suh as that of Turing mahines, deision trees, or ommuniation protools. Considerthe following two ways of viewing a nondeterministi algorithm. The �rst and mostommon way is to think of it as a \erti�ate veri�er": a deterministi algorithm Athat reeives, apart from the input x, a \erti�ate" y whose validity it needs toverify. For all inputs x, if f(x) = 1, then there is a erti�ate y suh that A(x; y) = 1;if f(x) = 0, then A(x; y) = 0 for all y. Seond, we may view A as a randomizedalgorithm whose aeptane probability is positive if f(x) = 1 and whose aeptaneprobability is zero if f(x) = 0. It is easy to see that these two views are equivalentin the lassial ase. To turn an algorithm A of the �rst kind into one of the seondkind, we an just guess a erti�ate y at random and output A(x; y). This will havepositive aeptane probability i� f(x) = 1. For the other diretion, we an onsider�Reeived by the editors May 8, 2002; aepted for publiation (in revised form) Deember 12,2002; published eletronially April 17, 2003. This paper ombines results from the onferene papers[50, 29℄ with some new results.http://www.siam.org/journals/siomp/32-3/40734.htmlyCWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands (rdewolf�wi.nl). This author waspartially supported by the EU �fth framework projet QAIP, IST{1999{11234. Part of this paperwas written when the author was a postdo at UC Berkeley, supported by Talent grant S 62{565from the Netherlands Organization for Sienti� Researh (NWO).681



682 RONALD DE WOLFthe sequene of oin ips used by an algorithm of the seond kind as a erti�ate.Clearly, there will be a erti�ate leading to output 1 i� f(x) = 1, whih gives us analgorithm of the �rst kind.Both views may be generalized to the quantum ase, yielding three potentialde�nitions of nondeterministi quantum algorithms, possibly nonequivalent. Thequantum algorithm may be required to output the right answer f(x) when givenan appropriate erti�ate, whih we an take to be either quantum or lassial. Or,third, the quantum algorithm may be required to have positive aeptane proba-bility i� f(x) = 1. An example is given by two alternative de�nitions of quantumnondeterminism in the ase of quantum Turing mahine omplexity. Kitaev de�nesthe lass \bounded-error quantum-NP" (BNQP) as the set of languages aepted bypolynomial-time bounded-error quantum algorithms that are given a polynomial-sizequantum erti�ate (e.g., [32, 31℄ and [30, Chapter 14℄). On the other hand, Adleman,Demarrais, and Huang [2℄ and Fenner et al. [24℄ de�ne quantum-NP as the set of lan-guages L for whih there is a polynomial-time quantum algorithm whose aeptaneprobability is positive i� x 2 L. This quantum lass was shown to be equal to thelassial ounting lass o-C=P [24, 52℄ using tools from Fortnow and Rogers [25℄.In this paper, we adopt the latter view: a nondeterministi quantum algorithmfor f is de�ned to be a quantum algorithm that outputs 1 with positive probabilityif f(x) = 1 and that always outputs 0 if f(x) = 0. This de�nition ontrasts withthe more traditional view of lassial determinism as \erti�ate veri�ation." Themotivation for our hoie of de�nition of quantum nondeterminism is twofold. First,in the appendix, we show that this de�nition is stritly more powerful than the othertwo possible de�nitions in the sense of being able to simulate the other de�nitionseÆiently, while the reverse is not true. Seond, it turns out that this de�nition lendsitself to very risp results. Rather than in the quantum Turing mahine setting ofKitaev, Adleman, et., we study the omplexity of nondeterministi algorithms inthe query omplexity and ommuniation omplexity settings. Our main results areexat haraterizations of these nondeterministi quantum omplexities in algebraiterms and large gaps between quantum and lassial omplexities in both settings.Our algebrai haraterizations an be extended to nontotal funtions in the obviousway, but we will stik to total funtions in our presentation.1.2. Query omplexity. We �rst onsider the model of query omplexity, alsoknown as deision tree omplexity or blak box omplexity. Here the goal is to om-pute some funtion f : f0; 1gn ! f0; 1g, making as few queries to input bits aspossible. Most existing quantum algorithms an naturally be expressed in this modeland ahieve provable speed-ups over the best lassial algorithms. Examples an befound, e.g., in [22, 48, 26, 12, 13, 14℄ and also inlude the order-�nding problem onwhih Shor's elebrated fatoring algorithm is based [47℄.Let D(f) and QE(f) denote the query omplexities of optimal deterministi andquantum algorithms that ompute f exatly. Let deg(f) denote the minimal degreeamong all multilinear polynomials that represent f . (A polynomial p represents fif f(x) = p(x) for all x 2 f0; 1gn.) The following relations are known. The �rstinequality is due to Beals et al. [6℄, the seond inequality is obvious, and the last isdue to Nisan and Smolensky|unpublished, but desribed in the survey paper [20℄.deg(f)2 � QE(f) � D(f) � O(deg(f)4):Thus deg(f), QE(f), and D(f) are polynomially related for all total f . (The situation



NONDETERMINISTIC QUANTUM COMPLEXITY 683is very di�erent for partial f [22, 48, 47, 7℄.) Nisan and Szegedy [42℄ exhibit a funtionwith a large gap between D(f) = n and deg(f) = n0:6:::, but no funtion is knownwhere QE(f) is signi�antly larger than deg(f), and it may in fat be true that QE(f)and deg(f) are linearly related. In setion 2, we show that the nondeterministiversions of QE(f) and deg(f) are in fat equal :NQ(f) = ndeg(f):Here NQ(f) denotes the query omplexity of an optimal nondeterministi quantumalgorithm for f , whih has nonzero aeptane probability i� f(x) = 1. The non-deterministi degree ndeg(f) is the minimal degree of a so-alled nondeterministipolynomial for f , whih is required to be nonzero i� f(x) = 1. A note on termi-nology: the name \nondeterministi polynomial" is based only on analogy with theaeptane probability of a nondeterministi algorithm. This name is less than ideal,sine suh polynomials have little to do with the traditional view of nondeterminismas erti�ate veri�ation. Nevertheless, we use this name beause any alternativesthat we ould think of were worse (too verbose or onfusing).Apart from the algebrai haraterization of the nondeterministi quantum queryomplexity NQ(f), we also show that NQ(f) may be muh smaller than its lassialanalogue N(f): we exhibit an f where NQ(f) = 1 and N(f) = n, whih is thebiggest possible gap allowed by this model. Aordingly, while the ase of exat (or,for that matter, bounded-error) omputation allows at most polynomial quantum-lassial query omplexity gaps for total funtions, the nondeterministi ase allowsunbounded gaps.1.3. Communiation omplexity. In the ase of ommuniation omplexity,the goal is for two distributed parties, Alie and Bob, to ompute some funtionf : f0; 1gn � f0; 1gn ! f0; 1g. Alie reeives an x 2 f0; 1gn, and Bob reeives ay 2 f0; 1gn, and they want to ompute f(x; y), exhanging as few bits of ommunia-tion as possible. This model was introdued by Yao [53℄ and is fairly well understoodfor the ase in whih Alie and Bob are lassial players exhanging lassial bits [36℄.Muh less is known about quantum ommuniation omplexity, where Alie and Bobhave a quantum omputer and an exhange qubits. This was �rst studied by Yao [54℄,and it was shown later that quantum ommuniation omplexity an be signi�antlysmaller than lassial ommuniation omplexity [21, 17, 5, 44, 16℄.Let D(f) and QE(f) denote the ommuniation required for optimal deter-ministi lassial and exat quantum protools for omputing f , respetively.1 Herewe assume Alie and Bob do not share any randomness or prior entanglement. Letrank(f) be the rank of the 2n � 2n ommuniation matrix Mf , whih is de�ned byMf (x; y) = f(x; y). The following relations are known:log rank(f)2 � QE(f) � D(f):The �rst inequality follows from work of Kremer [35℄ and Yao [54℄, as �rst noted byBuhrman, Cleve, and Wigderson [17℄. (In [19℄ it is shown that this lower bound alsoholds if the quantum protool an make use of unlimited prior entanglement betweenAlie and Bob.) It is an open question whether D(f) an in turn be upper bounded1The notation D(f) is used for deterministi omplexity in deision tree omplexity as wellas in ommuniation omplexity. To avoid onfusion, we will onsistently add \" to indiateommuniation omplexity.



684 RONALD DE WOLFby some polynomial in log rank(f). The onjeture that it an is known as the log-rankonjeture. If this onjeture holds, then D(f) andQE(f) are polynomially relatedfor all total f (whih may well be true). It is known that log rank(f) and D(f) arenot linearly related [43℄. In setion 3, we show that the nondeterministi version oflog rank(f) in fat fully determines the nondeterministi version of QE(f):NQ(f) = dlognrank(f)e+ 1:Here nrank(f) denotes the minimal rank of a matrix whose (x; y)-entry is nonzero i�f(x; y) = 1. Thus we an haraterize the nondeterministi quantum ommuniationomplexity fully by the logarithm of the rank of its nondeterministi matrix. As far aswe know, only two other log-rank-style haraterizations of ertain variants of ommu-niation omplexity are known: the ommuniation omplexity of quantum samplingdue to Ambainis et al. [5℄ and the so-alled modular ommuniation omplexity dueto Meinel and Waak [38℄.Equality and disjointness both have nondeterministi rank 2n, so their nondeter-ministi omplexities are maximal: NQ(EQ) = NQ(DISJ) = n+1. Sine NQ(f)lower bounds QE(f), we also obtain optimal bounds for the exat quantum om-muniation omplexity of equality and disjointness. In partiular, for the equalityfuntion, we get QE(EQ) = n+ 1, whih answers a question posed by Gilles Bras-sard in a personal ommuniation [10℄. Surprisingly, no proof of this fat seems to beknown that avoids our detour via nondeterministi omputation. Thus our methodsalso give new lower bounds for regular quantum ommuniation omplexity.Finally, analogous to the query omplexity ase, we also show an exponentialgap between quantum and lassial nondeterministi ommuniation omplexity: weexhibit an f where NQ(f) � log(n+ 1) + 1 and N(f) 2 
(n). Massar et al. [37℄earlier found another gap that is unbounded, yet in some sense smaller: NQ(NE) = 2versus N(NE) = logn+ 1, where NE is the nonequality funtion.2. Nondeterministi quantum query omplexity.2.1. Funtions and polynomials. For x 2 f0; 1gn, we use jxj for the Hammingweight (number of 1's) of x, and xi for its ith bit, i 2 [n℄ = f1; : : : ; ng. We use ~0 for astring of n zeros. If B � [n℄ is a set of (indies of) variables, then xB denotes the inputobtained from x by omplementing all variables in B. If x; y 2 f0; 1gn, then x ^ ydenotes the n-bit string obtained by bitwise ANDing x and y. Let f : f0; 1gn ! f0; 1gbe a total Boolean funtion. For example, OR(x) = 1 i� jxj � 1, AND(x) = 1 i�jxj = n, PARITY(x) = 1 i� jxj is odd. We use f for the funtion 1� f .For b 2 f0; 1g, a b-erti�ate for f is an assignment C : S ! f0; 1g to someset S of variables, suh that f(x) = b whenever x is onsistent with C. The sizeof C is jSj. The erti�ate omplexity Cx(f) of f on input x is the minimal size ofan f(x)-erti�ate that is onsistent with x. We de�ne the 1-erti�ate omplexityof f as C(1)(f) = maxx:f(x)=1Cx(f). We de�ne C(0)(f) similarly. For example,C(1)(OR) = 1 and C(0)(OR) = n, but C(1)(OR) = n and C(0)(OR) = 1.An n-variate multilinear polynomial is a funtion p : C n ! C that an be writtenp(x) = XS�[n℄aSXS :Here S ranges over all sets of indies of variables, aS is a omplex number, andthe monomial XS is the produt �i2Sxi of all variables in S. The degree deg(p)



NONDETERMINISTIC QUANTUM COMPLEXITY 685of p is the degree of a largest monomial with nonzero oeÆient. It is well knownthat every total Boolean f has a unique polynomial p suh that p(x) = f(x) forall x 2 f0; 1gn. Let deg(f) be the degree of this polynomial, whih is at most n.For example, OR(x1; x2) = x1 + x2 � x1x2, whih has degree 2. Every multilinearpolynomial p = PS aSXS an also be written out uniquely in the so-alled Fourierbasis : p(x) =XS S(�1)x�S:Again S ranges over all sets of indies of variables (we often identify a set S withits harateristi n-bit vetor), S is a omplex number, and x � S denotes the innerprodut of the n-bit strings x and S, or, equivalently, x � S = jx ^ Sj = Pi2S xi.It is easy to see that deg(p) = maxfjSj j S 6= 0g. For example, OR(x1; x2) =34 � 14 (�1)x1 � 14 (�1)x2 � 14 (�1)x1+x2 in the Fourier basis. We refer to [8, 42, 20℄ formore details about polynomial representations of Boolean funtions.We introdue the notion of a nondeterministi polynomial for f . This is a poly-nomial p suh that p(x) 6= 0 i� f(x) = 1. Let the nondeterministi degree of f ,denoted ndeg(f), be the minimum degree among all nondeterministi polynomials pfor f . For example, p(x) = Pni=1 xi is a nondeterministi polynomial for OR; henendeg(OR) = 1.We mention some upper and lower bounds for ndeg(f). Let f be a nononstantsymmetri funtion (i.e., f(x) depends only on jxj). Suppose f ahieves value 0on the z Hamming weights, k1; : : : ; kz. Sine jxj = Pi xi, it is easy to see that(jxj�k1)(jxj�k2) � � � (jxj�kz) is a nondeterministi polynomial for f ; hene ndeg(f) �z. This upper bound is tight for AND (see below) but not for PARITY. For example,p(x1; x2) = x1 � x2 is a degree-1 nondeterministi polynomial for PARITY on twovariables: it assumes value 0 on x-weights 0 and 2 and �1 on weight 1. By squar-ing p(x) and then using standard symmetrization tehniques (as used, for instane,in [39, 42, 6℄), we an also show the general lower bound ndeg(f) � z=2 for symmet-ri f . Furthermore, it is easy to show that ndeg(f) � C(1)(f) for every f . (Take apolynomial that is the \sum" over all 1-erti�ates for f .)Finally, we mention a general lower bound on ndeg(f). Let Pr[p 6= 0℄ =jfx 2 f0; 1gn j p(x) 6= 0gj=2n denote the probability that a random Boolean input xmakes a funtion p nonzero. A lemma of Shwartz [46℄ (see also [42, setion 2.2℄) statesthat if p is a nononstant multilinear polynomial of degree d, then Pr[p 6= 0℄ � 2�d,and hene d � log(1=Pr[p 6= 0℄). Sine a nondeterministi polynomial p for f isnonzero i� f(x) = 1, it follows thatndeg(f) � log(1=Pr[f 6= 0℄) = log(1=Pr[f = 1℄):Aordingly, funtions with a very small fration of 1-inputs will have high nondeter-ministi degree. For instane, Pr[AND = 1℄ = 2�n, so ndeg(AND) = n.2.2. Quantum omputing. We assume familiarity with lassial omputationand briey sketh the setting of quantum omputation (see, e.g., [40℄ for more details).An m-qubit state is a linear ombination of all lassial m-bit statesj�i = Xi2f0;1gm �ijii;where jii denotes the basis state i (a lassial m-bit string) and �i is a omplexnumber that is alled the amplitude of jii. We require Pi j�ij2 = 1. Viewing j�i as



686 RONALD DE WOLFa 2m-dimensional olumn vetor, we use h�j for the row vetor that is the onjugatetranspose of j�i. Note that the inner produt hijjji = hijji is 1 if i = j and 0 ifi 6= j. When we observe j�i, we will see jii with probability jhij�ij2 = j�ij2, andthe state will ollapse to the observed jii. A quantum operation whih is not anobservation orresponds to a unitary (i.e., norm-preserving) transformation U on the2m-dimensional vetor of amplitudes.2.3. Query omplexity. Suppose we want to ompute some funtion f :f0; 1gn ! f0; 1g. For input x 2 f0; 1gn, a query orresponds to the unitary transfor-mation O that maps ji; b; zi ! ji; b � xi; zi. Here i 2 [n℄ and b 2 f0; 1g; the z-partorresponds to the workspae, whih is not a�eted by the query. We assume thatthe input an be aessed only via suh queries. A T -query quantum algorithm hasthe form A = UTOUT�1 � � �OU1OU0, where the Uk are �xed unitary transforma-tions, independent of the input x. This A depends on x via the T appliations of O.We sometimes write Ax to emphasize this. The algorithm starts in initial state j~0i,and its output is the bit obtained from observing the leftmost qubit of the �nal su-perposition Aj~0i. The aeptane probability of A (on input x) is its probability ofoutputting 1 (on x).We will onsider lassial and quantum algorithms and will ount only the numberof queries these algorithms make on a worst-ase input. Let D(f) and QE(f) be thequery omplexities of optimal deterministi lassial and exat quantum algorithmsfor omputing f , respetively. D(f) is also known as the deision tree omplexityof f . Similarly we an de�ne R2(f) and Q2(f) to be the query omplexity of ffor bounded-error lassial and quantum algorithms, respetively. Quantum queryomplexity and its relation to lassial omplexity has been well studied in reentyears; see, for example, [6, 4, 20℄.We de�ne a nondeterministi algorithm for f to be an algorithm that has positiveaeptane probability on input x i� f(x) = 1. Let N(f) and NQ(f) be the queryomplexities of optimal nondeterministi lassial and quantum algorithms for f , re-spetively. It is easy to show that the 1-erti�ate omplexity fully haraterizes thelassial nondeterministi omplexity of f .Proposition 2.1. N(f) = C(1)(f).Proof. A lassial algorithm that guesses a 1-erti�ate, queries its variables,and outputs 1 i� the erti�ate holds is a nondeterministi algorithm for f . HeneN(f) � C(1)(f).A nondeterministi algorithm for f an only output 1 if the outomes of thequeries that it has made fore the funtion to 1. Hene, if x is an input where all1-erti�ates have size at least C(1)(f), then the algorithm will have to query at leastC(1)(f) variables before it an output 1 (whih it must do on some runs). HeneN(f) � C(1)(f).2.4. Algebrai haraterization. Here we show that NQ(f) is equal to ndeg(f),using the following result from [6℄.Lemma 2.2 (see [6℄). The amplitudes of the basis states in the �nal superpositionof a T -query quantum algorithm an be written as multilinear omplex-valued polyno-mials of degree � T in the n xi-variables. Therefore, the aeptane probability of thealgorithm (whih is the sum of squares of some of those amplitudes) an be written asan n-variate multilinear polynomial P (x) of degree � 2T .Note that the aeptane probability of a nondeterministi quantum algorithmis atually a nondeterministi polynomial for f , sine it is positive i� f(x) = 1. ByLemma 2.2, this polynomial will have degree at most twie the number of queries



NONDETERMINISTIC QUANTUM COMPLEXITY 687of the algorithm, whih immediately implies ndeg(f)=2 � NQ(f). Below we willshow how we an get rid of the fator 1=2 in this lower bound, improving it tondeg(f) � NQ(f). We show that this lower bound is in fat optimal by deriving anondeterministi algorithm from a nondeterministi polynomial. This derivation usesa trik similar to the one used in [24℄ to show that o-C=P � quantum-NP.Theorem 2.3. NQ(f) = ndeg(f).Proof. Upper bound. Let p(x) be a nondeterministi polynomial for f of degreed = ndeg(f). Reall that x�S denotes jx^Sj, identifying S � [n℄ with its harateristin-bit vetor. We write p in the Fourier basis:p(x) =XS S(�1)x�S:Sine deg(p) = maxfjSj j S 6= 0g, we have that S 6= 0 only if jSj � d.We an onstrut a unitary transformation F that uses d queries to x and mapsjSi ! (�1)x�SjSi whenever jSj � d. Informally, this transformation does a ontrolledparity-omputation: it omputes jx �Sj (mod 2) using jSj=2 queries [6, 23℄, then addsa phase \�1" if that answer is 1, and then reverses the omputation to lean up theworkspae and the answer at the ost of another jSj=2 queries. (If jSj is odd, thenone variable is treated separately, still using jSj queries in total.)Now onsider the following quantum algorithm:1. Start with PS S jSi (an n-qubit state, where  = 1=pPS jS j2 is a nor-malizing onstant).2. Apply F to the state.3. Apply a Hadamard transform H to eah qubit.4. Measure the �nal state, and output 1 if the outome is the all-zero state j~0i,and output 0 otherwise.The state after step 2 is PS S(�1)x�SjSi. Note that the sum of the amplitudes inthis state is  �p(x), whih is nonzero i� f(x) = 1. The Hadamard transform in step 3gives us this sum as amplitude of the j~0i-state, with a normalizing fator of 1=p2n.Aordingly, the probability of observing j~0i at the end isP (x) = �����h~0jH
nFXS S jSi�����2= 22n �����XS0 hS0jXS S(�1)x�SjSi�����2= 22n �����XS S(�1)x�S�����2= 2p(x)22n :Sine p(x) is nonzero i� f(x) = 1, P (x) will be positive i� f(x) = 1. Hene we havea nondeterministi quantum algorithm for f with d = ndeg(f) queries.Lower bound. Let T = NQ(f), and onsider a T -query nondeterministi quantumalgorithm for f . By Lemma 2.2, the amplitudes �i in the �nal state,j�xi =Xi �i(x)jii;



688 RONALD DE WOLFon input x are n-variate polynomials of x of degree � T . We use the probabilistimethod [3℄ to show that some linear ombination of these polynomials is a nonde-terministi polynomial for f , thus avoiding losing the fator 1=2 mentioned afterLemma 2.2.Let S be the set of basis states having a 1 as leftmost bit (observing suh a statewill lead the algorithm to output 1). Sine the algorithm is nondeterministi, we havethe following properties:If f(x) = 0, then �i(x) = 0 for all i 2 S.If f(x) = 1, then �i(x) 6= 0 for at least one i 2 S.Let I be an arbitrary set of more than 2n numbers. For eah i 2 S, pik a oeÆient iuniformly at random from I , and de�ne p(x) =Pi2S i�i(x). By the �rst property,we have p(x) = 0 whenever f(x) = 0. Now onsider an x for whih f(x) = 1, and letk 2 S satisfy a = �k(x) 6= 0. Suh a k must exist by the seond property. We want toshow that the event p(x) = 0 happens only with very small probability (probabilitytaken over the random hoies of the i). In order to do this, we �x the randomhoies i for all i 6= k and view p(x) = ak + b as a linear funtion in the onlynot-yet-hosen oeÆient k. Sine a 6= 0, at most one out of jI j > 2n many possiblehoies of k an make p(x) = 0, soPr[p(x) = 0℄ < 2�n:However, then, by the union bound we havePr �there is an x 2 f�1(1) for whih p(x) = 0�� Xx2f�1(1)Pr[p(x) = 0℄ < 2n � 2�n = 1:This probability is stritly less than 1, whih shows that there exists a way of settingthe oeÆients i that satis�es p(x) 6= 0 for all x 2 f�1(1), thus making p a nondeter-ministi polynomial for f . Sine p is a sum of polynomials of degree � T , it followsthat ndeg(f) � deg(p) � T = NQ(f).2.5. Quantum-lassial separation. What is the biggest possible gap betweenquantum and lassial nondeterministi query omplexity? Consider the total Booleanfuntion f : f0; 1gn ! f0; 1g de�ned byf(x) = 1 i� jxj 6= 1:It is easy to see that N(f) = C(1)(f) = C(0)(f) = n. On the other hand, the followingis a degree-1 nondeterministi polynomial for f :(2.1) p(x) =  nXi=1 xi!� 1 = n2 � 1� 12 nXi=1(�1)xi :Thus we have that NQ(f) = ndeg(f) = 1. Expliitly, the 1-query algorithm that weget from the proof is as follows:1. Start with  ((n=2 � 1)j~0i � (1=2)Pi jeii), where  = 1=pn2=4� 3n=4+ 1and jeii has a 1 only at the ith bit.2. Using one query, we an map jeii ! (�1)xi jeii.3. Applying a Hadamard transform turns the amplitude of j~0i into �~0 =p2n ((n=2� 1)�Pi(�1)xi=2) = p(x)=p2n.



NONDETERMINISTIC QUANTUM COMPLEXITY 6894. Hene the probability of observing j~0i at the end is �2~0 = 2p(x)2=2n.For the omplement of f , we an easily show NQ(f) = ndeg(f) � n� 1 (the \�1" istight for n = 2; witness p(x) = x1 � x2). In sum, we have the following theorem.Theorem 2.4. For the above f , we have NQ(f) = 1, NQ(f) � n � 1, andN(f) = N(f) = n.2.6. Relation to some other omplexity measures. Many relations areknown between all sorts of omplexity measures of Boolean funtions, suh as polyno-mial degree, erti�ate omplexity, various lassial and quantum deision tree om-plexities, et. A survey may be found in [20℄. In this subsetion, we will similarlyembed ndeg(f) (= NQ(f)) in this web of relations and give upper bounds on D(f)in terms of ndeg(f), C(f), and the blok sensitivity bs(f), whih is de�ned as fol-lows. A set of (indies of) variables B � [n℄ is alled a sensitive blok for f oninput x if f(x) 6= f(xB); B is minimal if no B0 � B is sensitive. The blok sensi-tivity bsx(f) is the maximal number of disjoint minimal sensitive bloks in x, andbs(b)(f) = maxx2f�1(b) bsx(f).Lemma 2.5. If f(x) = 0 and B is a minimal sensitive blok for f on x, thenjBj � ndeg(f).Proof. Assume without loss of generality that x = ~0. Beause B is minimal, forevery proper subset B0 of B, we have f(x) = f(xB0) = 0, but on the other handf(xB) = 1. Aordingly, if we �x all variables outside of B to zero, then we obtainthe AND-funtion of jBj variables, whih requires nondeterministi degree jBj. HenejBj � ndeg(f).Lemma 2.6. C(0)(f) � bs(0)(f)ndeg(f).Proof. Consider any input x. As Nisan [41℄ proved, the union of a maximal setof sensitive bloks forms a erti�ate for that input (for otherwise there would be onemore sensitive blok). If f(x) = 0, then there an be at most bs(0)(f) disjoint sensitivebloks, and by the previous lemma eah blok ontains at most ndeg(f) variables.Hene eah 0-input ontains a erti�ate of at most bs(0)(f)ndeg(f) variables.The following theorem improves upon an argument of Nisan and Smolensky, de-sribed in [20℄.Theorem 2.7. D(f) � C(0)(f)ndeg(f).Proof. Let p be a nondeterministi polynomial for f of degree d = ndeg(f). Notethat if we take a 0-erti�ate C : S ! f0; 1g and �x the S-variables aordingly,then p must redue to the onstant-0 polynomial. This implies that S intersets alldegree-d monomials of p, beause a noninterseted degree-d monomial would still bepresent in the redued polynomial, whih would then not be onstant-0. Thus takinga minimal 0-erti�ate and querying its variables redues the degree of p by at least 1.Repeating this at most ndeg(f) times, we redue p to a onstant polynomial and knowf(x). This algorithm takes at most C(0)(f)ndeg(f) queries.Combining this with the fat that bs(0)(f) � 6Q2(f)2 [6℄, we obtain the following.Corollary 2.8. D(f) � bs(0)(f)ndeg(f)2 � 6 Q2(f)2NQ(f)2.This orollary has the somewhat paradoxial onsequene that if the nondetermin-isti omplexity NQ(f) is small, then the bounded-error omplexity Q2(f) must belarge (i.e., lose to D(f)). For instane, if NQ(f) = O(1), then Q2(f) = 
(pD(f)).We hope that this result will help tighten the relation D(f) = O(Q2(f)6) that wasproved in [6℄.



690 RONALD DE WOLF3. Nondeterministi quantum ommuniation omplexity.3.1. Communiation omplexity. In the standard version of ommunia-tion omplexity, two parties (Alie and Bob) want to ompute some funtion f :f0; 1gn � f0; 1gn ! f0; 1g. For example, EQ(x; y) = 1 i� x = y, NE(x; y) = 1 i�x 6= y, and DISJ(x; y) = 1 i� jx ^ yj = 0. A retangle is a subset R = S � T of thedomain of f . R is a 1-retangle (for f) if f(x; y) = 1 for all (x; y) 2 R. A 1-overfor f is a set of 1-retangles whose union ontains all 1-inputs of f . Cov 1(f) denotesthe minimal size (i.e., minimal number of retangles) of a 1-over for f . Similarly, wede�ne 0-retangles, 0-overs, and Cov 0(f).The ommuniation matrix Mf of f is the 2n � 2n Boolean matrix whose (x; y)-entry is f(x; y), and rank(f) denotes the rank ofMf over the �eld of omplex numbers.A 2n � 2n matrix M is alled a nondeterministi ommuniation matrix for f if ithas the property that M(x; y) 6= 0 i� f(x; y) = 1. Thus M is any matrix obtainableby replaing 1-entries in Mf by nonzero omplex numbers. Let the nondeterministirank of f , denoted nrank(f), be the minimum rank (over the omplex �eld) amongall nondeterministi matries M for f .2We onsider lassial and quantum ommuniation protools and ount only theamount of ommuniation (bits or qubits) that these protools make on a worst-ase input. For lassial ommuniation protools, we refer to [36℄. Here we brieyde�ne quantum ommuniation protools, referring to the surveys [49, 15, 33, 11, 51℄for more details. The spae in whih the quantum protool works onsists of threeparts: Alie's part, the ommuniation hannel, and Bob's part. (We do not writethe dimensions of these spaes expliitly.) Initially these three parts ontain only0-qubits, j0ij0ij0i:We assume Alie starts the protool. She applies a unitary transformation UA1 (x) toher private spae and part of the hannel. This orresponds to her initial omputationand her �rst message. The length of this message is the number of hannel qubits onwhih UA1 (x) ats. The total state is now(UA1 (x)
 IB)j0ij0ij0i;where 
 denotes tensor produt, and IB denotes the identity transformation on Bob'spart. Then Bob applies a unitary transformation UB2 (y) = V B2 (y)SB2 to his partand the hannel. First, the operation SB2 \reads" Alie's message by swapping theontents of the hannel with some fresh j0i-qubits in Bob's private spae. After this,the unitary V B2 (y) is applied to Bob's private spae and part of the hannel. Thisorresponds to Bob's private omputation and his putting a message to Alie on thehannel. The length of this new message is the number of hannel-qubits on whih2This de�nition looks somewhat similar to the de�nition of the Colin de Verdi�ere parameter �(G)of an undireted graph G [27℄. For G = (V;E) with jV j = n, �(G) is de�ned to be the maximalorank (= n�rank) among all real symmetri n�nmatriesM having the following three properties:(1)Mij < 0 if (i; j) 2 E andMij = 0 if i 6= j and (i; j) =2 E; (2)M has exatly one negative eigenvalueof multipliity 1; (3) there is no real symmetri matrix X 6= 0 suh that MX = 0 and Xij = 0whenever i = j or Mij 6= 0. Suh a matrix M is a nondeterministi matrix for the ommuniationomplexity problem f : [n℄� [n℄! f0; 1g de�ned by f(i; j) = 1 i� (i; j) 2 E, with the promise thatthe inputs i and j are distint. However, the Colin de Verdi�ere requirement appears to be morestringent, sine it onstrains the nondeterministi matrix further by properties (2) and (3).



NONDETERMINISTIC QUANTUM COMPLEXITY 691V B2 (y) ats. This proess goes bak and forth for some k messages, so the �nal stateof the protool on input (x; y) will be (in ase Alie goes last as well)(UAk (x) 
 IB)(IA 
 UBk�1(y)) � � � (IA 
 UB2 (y))(UA1 (x) 
 IB)j0ij0ij0i:The total ost of the protool is the total length of all messages sent, on a worst-aseinput (x; y). For tehnial onveniene, we assume that at the end of the protool theoutput bit is the �rst qubit on the hannel. Thus the aeptane probability P (x; y) ofthe protool is the probability that a measurement of the �nal state gives a \1" in the�rst hannel-qubit. Note that we do not allow intermediate measurements during theprotool. This is without loss of generality; it is well known that suh measurementsan be postponed until the end of the protool at no extra ommuniation ost.Let D(f) and QE(f) be the ommuniation omplexities of optimal determin-isti lassial and quantum protools for omputing f , respetively. A nondeterminis-ti protool for f is a protool that has positive aeptane probability on input (x; y)i� f(x; y) = 1. Let N(f) and NQ(f) be the ommuniation omplexities of opti-mal nondeterministi lassial and quantum protools for f , respetively. Our N(f)is alled N1(f) in [36℄.It is not hard to show that N(f) = dlogCov 1(f)e + 1, where the \+1" is dueto the fat that we want Alie and Bob both to know the output at the end of theprotool.3.2. Algebrai haraterization. Here we haraterize NQ(f) in terms ofnrank(f). We use the following lemma. It was stated without proof by Yao [54℄ and inmore detail by Kremer [35℄ and is key to many of the earlier lower bounds on quantumommuniation omplexity as well as to ours. It is easily proven by indution on `.Lemma 3.1 (see Yao [54℄ and Kremer [35℄). The �nal state of an `-qubit protoolon input (x; y) an be written asXi2f0;1g` jAi(x)iji`ijBi(y)i;where the Ai(x); Bi(y) are vetors (of norm � 1), and i` denotes the last bit of the`-bit string i (the output bit).The aeptane probability P (x; y) of the protool is the squared norm of the partof the �nal state that has i` = 1. Letting aij be the 2n-dimensional omplex olumnvetor with the inner produts hAi(x)jAj(x)i as entries and bij the 2n-dimensionalolumn vetor with entries hBi(y)jBj(y)i, we an write P (viewed as a 2n�2n matrix)as the sum Pi;j:i`=j`=1 aijbTij of 22`�2 matries, eah of rank at most 1, so the rankof P is at most 22`�2. For example, for exat protools this gives immediately that` � 12 log rank(f) + 1, and for nondeterministi protools ` � 12 lognrank(f) + 1.Below we show how we an get rid of the fator 12 in the nondeterministi aseand show that the lower bound of lognrank(f) + 1 is atually optimal. The lowerbound part of the proof relies on the following tehnial lemma.Lemma 3.2. If there exist two families of vetors fA1(x); : : : ; Am(x)g � C d andfB1(y); : : : ; Bm(y)g � C d suh that, for all x 2 f0; 1gn and y 2 f0; 1gn, we havemXi=1 Ai(x) 
Bi(y) = 0 i� f(x; y) = 0;then nrank(f) � m.



692 RONALD DE WOLFProof. Assume there exist two suh families of vetors. Let Ai(x)j denote the jthentry of vetor Ai(x), and similarly let Bi(y)k denote the kth entry of vetor Bi(y).We use pairs (j; k) 2 f1; : : : ; dg2 to index entries of vetors in the d2-dimensionaltensor spae. Note thatif f(x; y) = 0, then Pmi=1 Ai(x)jBi(y)k = 0 for all (j; k), andif f(x; y) = 1, then Pmi=1 Ai(x)jBi(y)k 6= 0 for some (j; k).As a �rst step, we want to replae the vetors Ai(x) and Bi(y) by numbers ai(x)and bi(y) that have similar properties. We use the probabilisti method to show thatthis an be done.Let I be an arbitrary set of 22n+1 numbers. Choose oeÆients �1; : : : ; �d and�1; : : : ; �d, eah oeÆient piked uniformly at random from I . For every x de�neai(x) =Pdj=1 �jAi(x)j , and for every y de�ne bi(y) =Pdk=1 �kBi(y)k. Consider thenumber v(x; y) = mXi=1 ai(x)bi(y) = dXj;k=1�j�k  mXi=1 Ai(x)jBi(y)k! :If f(x; y) = 0, then v(x; y) = 0 for all hoies of the �j ; �k.Now onsider some (x; y) with f(x; y) = 1. There is a pair (j0; k0) for whihPmi=1Ai(x)j0Bi(y)k0 6= 0. We want to prove that v(x; y) = 0 happens only withvery small probability. In order to do this, �x the random hoies of all �j , j 6= j0,and �k, k 6= k0, and view v(x; y) as a funtion of the two remaining not-yet-hosenoeÆients � = �j0 and � = �k0 ,v(x; y) = 0�� + 1�+ 2� + 3:Here we know that 0 = Pmi=1 Ai(x)j0Bi(y)k0 6= 0. There is at most one value of �for whih 0�+ 2 = 0. All other values of � turn v(x; y) into a linear equation in �,so for those � there is at most one hoie of � that gives v(x; y) = 0. Hene out ofthe (22n+1)2 di�erent ways of hoosing (�; �), at most 22n+1+(22n+1� 1) � 1 < 22n+2hoies give v(x; y) = 0. Therefore,Pr[v(x; y) = 0℄ < 22n+2(22n+1)2 = 2�2n:Using the union bound, we now havePr �there is an (x; y) 2 f�1(1) for whih v(x; y) = 0�� X(x;y)2f�1(1)Pr[v(x; y) = 0℄ < 22n � 2�2n = 1:This probability is stritly less than 1, so there exist sets fa1(x); : : : ; am(x)g andfb1(y); : : : ; bm(y)g that make v(x; y) 6= 0 for every (x; y) 2 f�1(1). We thus have thatmXi=1 ai(x)bi(y) = 0 i� f(x; y) = 0:View the ai and bi as 2n-dimensional vetors, let A be the 2n � m matrix havingthe ai as olumns, and let B be the m � 2n matrix having the bi as rows. Then(AB)xy =Pmi=1 ai(x)bi(y), whih is 0 i� f(x; y) = 0. Thus AB is a nondeterministimatrix for f , and nrank(f) � rank(AB) � rank(A) � m.



NONDETERMINISTIC QUANTUM COMPLEXITY 693Lemma 3.2 allows us to prove the following tight haraterization.Theorem 3.3. NQ(f) = dlognrank(f)e+ 1.Proof. Upper bound. Let r = nrank(f), and let M be a rank-r nondeterministimatrix for f . Let MT = U�V be the singular value deomposition of the transposeof M [28℄, so U and V are unitary, and � is a diagonal matrix whose �rst r diagonalentries are positive real numbers and whose other diagonal entries are 0. Below wedesribe a one-round nondeterministi protool for f , using dlog re+ 1 qubits.First, Alie prepares the state j�xi = x�V jxi, where x > 0 is a normalizingreal number that depends on x. Beause only the �rst r diagonal entries of � arenonzero, only the �rst r amplitudes of j�xi are nonzero, so j�xi an be ompressedinto dlog re qubits. Alie sends these qubits to Bob. Bob then applies U to j�xi andmeasures the resulting state. If he observes jyi, then he puts 1 on the hannel, andotherwise he puts 0 there. The aeptane probability of this protool isP (x; y) = jhyjU j�xij2 = 2xjhyjU�V jxij2 = 2xjMTyxj2 = 2xjMxyj2:Sine Mxy is nonzero i� f(x; y) = 1, P (x; y) will be positive i� f(x; y) = 1. Thus wehave a nondeterministi quantum protool for f with dlog re+ 1 qubits of ommuni-ation.Lower bound. Consider a nondeterministi `-qubit protool for f . By Lemma 3.1,its �nal state on input (x; y) an be written asXi2f0;1g` jAi(x)iji`ijBi(y)i:Without loss of generality, we assume the vetors Ai(x) and Bi(y) all have the samedimension d. Let S = fi 2 f0; 1g` j i` = 1g, and onsider the part of the state thatorresponds to output 1 (we drop the i` = 1 and the j�i-notation here),�(x; y) =Xi2S Ai(x)
Bi(y):Beause the protool has aeptane probability 0 i� f(x; y) = 0, this vetor �(x; y)will be the zero vetor i� f(x; y) = 0. The previous lemma gives nrank(f) � jSj =2`�1; hene log(nrank(f)) + 1 � NQ(f).Note that any nondeterministi matrix for the equality funtion has nonzeroson its diagonal and zeros o�-diagonal and hene has full rank. Thus we obtainNQ(EQ) = n + 1. Similarly, a nondeterministi matrix for disjointness has fullrank, beause reversing the ordering of the olumns in Mf gives an upper triangularmatrix with nonzero elements on the diagonal. This gives tight bounds for the non-deterministi as well as for the exat setting, neither of whih was known prior to thiswork.Corollary 3.4. QE(EQ) = NQ(EQ) = n+1 and QE(DISJ) = NQ(DISJ)= n+ 1.3.3. Quantum-lassial separation. To repeat, lassially we have N(f) =dlogCov 1(f)e + 1, and quantumly we have NQ(f) = dlognrank(f)e + 1. We nowgive a total funtion f with an exponential gap between N(f) and NQ(f). Forn > 1, de�ne f by f(x; y) = 1 i� jx ^ yj 6= 1:



694 RONALD DE WOLFWe �rst show that the quantum omplexity NQ(f) is low.Theorem 3.5. For the above f , we have NQ(f) � dlog(n+ 1)e+ 1.Proof. By Theorem 3.3, it suÆes to prove nrank(f) � n + 1. We will derive alow-rank nondeterministi matrix from the polynomial p of (2.1), using a tehniquefrom [43℄. Let Mi be the matrix de�ned by Mi(x; y) = 1 if xi = yi = 1 and byMi(x; y) = 0 otherwise. Notie that Mi has rank 1. De�ne a 2n � 2n matrix M byM(x; y) =  nXi=1Mi(x; y)!� 1:Note that M(x; y) = p(x ^ y). Sine p is a nondeterministi polynomial for thefuntion whih is 1 i� its input does not have weight 1, it an be seen that M isa nondeterministi matrix for f . Beause M is the sum of n + 1 rank-1 matries,M itself has rank at most n+ 1.Now we show that the lassial N(f) is high (both for f and its omplement).Theorem 3.6. For the above f , we have N(f) 2 
(n) and N(f) � n� 1.Proof. Let R1; : : : ; Rk be a minimal 1-over for f . We use the following resultfrom [36, Example 3.22 and setion 4.6℄, whih is essentially due to Razborov [45℄.There exist sets A;B � f0; 1gn � f0; 1gn and a probability distri-bution � : f0; 1gn � f0; 1gn ! [0; 1℄ suh that all (x; y) 2 A havejx ^ yj = 0, all (x; y) 2 B have jx ^ yj = 1, �(A) = 3=4, andthere are �; Æ > 0 (independent of n) suh that for all retangles R,�(R \ B) � � � �(R \ A)� 2�Æn.Sine the Ri are 1-retangles, they annot ontain elements from B. Hene �(Ri\B) =0 and �(Ri \ A) � 2�Æn=�. However, sine all elements of A are overed by the Ri,we have 34 = �(A) = � k[i=1(Ri \ A)! � kXi=1 �(Ri \ A) � k � 2�Æn� :Therefore, N(f) = dlog ke+ 1 � Æn+ log(3�=4).For the lower bound on N(f), onsider the set S = f(x; y) j x1 = y1 = 1, xi = yifor i > 1g. This S ontains 2n�1 elements, all of whih are 1-inputs for f . Note thatif (x; y) and (x0; y0) are two elements from S, then jx ^ y0j > 1 or jx0 ^ yj > 1, so a1-retangle for f an ontain at most one element of S. This shows that a minimal1-over for f requires at least 2n�1 retangles and N(f) � n� 1.Another quantum-lassial separation was obtained earlier by Massar et al. [37℄.We inlude it for the sake of ompleteness. It shows that the nondeterministi om-plexity of the nonequality problem is extremely low, in sharp ontrast to the equalityproblem itself.Theorem 3.7 (see [37℄). For the nonequality problem on n bits, NQ(NE) = 2versus N(NE) = logn+ 1.Proof. N(NE) = logn+1 is well known (see [36, Example 2.5℄). Below we givethe protool for NE from [37℄.Viewing her input x as a number 2 [0; 2n � 1℄, Alie rotates a j0i-qubit overan angle x�=2n, obtaining a qubit os(x�=2n)j0i + sin(x�=2n)j1i whih she sends toBob. Bob rotates the qubit bak over an angle y�=2n, obtaining os((x�y)�=2n)j0i+sin((x � y)�=2n)j1i. Bob now measures the qubit and sends bak the observed bit.If x = y, then sin((x � y)�=2n) = 0, so Bob will always send 0. If x 6= y, thensin((x� y)�=2n) 6= 0, so Bob will send 1 with positive probability.



NONDETERMINISTIC QUANTUM COMPLEXITY 695In another diretion, Klauk [34℄ showed that NQ(f) is in general inomparableto bounded-error quantum ommuniation omplexity: the latter may be exponen-tially larger or smaller, depending on f .4. Future work. One of the main reasons for the usefulness of nondeterministiquery and ommuniation omplexities in the lassial ase is the tight relation of theseomplexities with deterministi omplexity.In the query omplexity (deision tree) setting, we have the well-known boundmaxfN(f); N(f)g � D(f) � N(f)N(f):We onjeture that something similar holds in the quantum ase:max�NQ(f);NQ(f)	 � QE(f) � D(f) ?� O(NQ(f)NQ(f)):The ?-part is open and ties in with tightly embedding NQ(f) and ndeg(f) into the webof known relations between various omplexity measures (setion 2.6). This onje-ture implies, for instane, D(f) 2 O(deg(f)2), whih would be lose to optimal [42℄.Similarly, it would imply D(f) 2 O(Q0(f)2), whih would be lose to optimal aswell [18℄. In both ases, the urrently best relation has a fourth power instead of asquare.Similarly, for ommuniation omplexity, the following is known [36, setion 2.11℄:maxfN(f);N(f)g � D(f) � O(N(f)N(f)):An analogous result might be true in the quantum setting, but we have been unableto prove it. So far, the best result in this diretion is Klauk's observation thatD(f) = O(N(f)NQ(f)) [33, Theorem 1℄.Appendix. Comparison with alternative de�nitions. As mentioned in theintrodution, three di�erent de�nitions of nondeterministi quantum omplexity arepossible. We may onsider the omplexity of quantum algorithms that1. output 1 i� given an appropriate lassial erti�ate (and suh erti�atesmust exist i� f(x) = 1),2. output 1 i� given an appropriate quantum erti�ate (and suh erti�atesmust exist i� f(x) = 1), or3. output 1 with positive probability i� f(x) = 1.The third de�nition is the one we adopted for this paper. Clearly de�nition 2 is atleast as strong as de�nition 1 in the sense that the omplexity of a funtion aordingto de�nition 2 will be less than or equal to the omplexity aording to de�nition 1. Infat, in the setting of query omplexity, these two de�nitions are equivalent, beausewithout loss of generality the erti�ate an be taken to be the purported input. SeeAaronson [1℄ for some reent results about \quantum erti�ate (query) omplexity."Here we show that de�nition 3 is at least as strong as de�nition 2. We give theproof for the query omplexity setting, but the same proof an be modi�ed to workfor ommuniation omplexity and other nonuniform settings as well. We then givean example in whih the query omplexity aording to de�nition 3 is muh less thanaording to de�nition 2. This shows that our NQ(f) is in fat the most powerfulde�nition of nondeterministi quantum query omplexity.We formalize de�nition 2 as follows. A T -query quantum veri�er for f is a T -query quantum algorithm V together with a set C of m-qubit states, suh that for allx 2 f0; 1gn we have (1) if f(x) = 1, then there is a j�xi 2 C suh that Vxj�xi has



696 RONALD DE WOLFaeptane probability 1; and (2) if f(x) = 0, then Vxj�i has aeptane probability 0for every j�i 2 C. Informally, the set C ontains all possible erti�ates: (1) for every1-input, there is a veri�able 1-erti�ate in C; and (2) for 0-inputs, there are notany. We do not put any onstraints on C. However, note that the de�nition impliesthat if f(x) = 0 for some x, then C annot ontain all m-qubit states; otherwise,j�xi = V �1x j1~0i would be a 1-erti�ate in C even for x with f(x) = 0.We now prove that a T -query quantum veri�er an be turned into a T -querynondeterministi quantum algorithm aording to our third de�nition. This showsthat the third de�nition is at least as powerful as the seond. In fat, this evenholds if we replae the aeptane probability 1 in lause (1) of the de�nition of aquantum veri�er by just positive aeptane probability|in this ase, both de�nitionsare equivalent.Theorem A.1. If there is a T -query quantum veri�er V for f , then NQ(f) � T .Proof. The veri�er V and the assoiated set C satisfy the following:1. If f(x) = 1, then there is a j�xi 2 C suh that Vxj�xi has aeptane proba-bility 1.2. If f(x) = 0, then Vxj�i has aeptane probability 0 for all j�i 2 C.Let X1 = fz j f(z) = 1g. For eah z 2 X1, hoose one spei� 1-erti�ate j�zi 2 C.Now let us onsider some input x and see what happens if we run Vx 
 I (where I isthe 2n � 2n identity operation) on the m+ n-qubit statej�i = 1pjX1j Xz2X1 j�zijzi:Vx ats on only the �rst m qubits of j�i; the jzi-part remains una�eted. Therefore,running Vx 
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 I)j�i has aeptane probability at least 1=jX1j > 0.Aordingly, (Vx
I)j�i has positive aeptane probability i� f(x) = 1. By pre�xingVx 
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