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We examine the number of queries to input variables that a quantum algorithm requires to com-
pute Boolean functions on {0,1}" in the black-boz model. We show that the exponential quantum
speed-up obtained for partial functions (i.e., problems involving a promise on the input) by Deutsch
and Jozsa, Simon, and Shor cannot be obtained for any total function: if a quantum algorithm
computes some total Boolean function f with small error probability using T' black-box queries,
then there is a classical deterministic algorithm that computes f exactly with O(T®) queries. We
also give asymptotically tight characterizations of T' for all symmetric f in the exact, zero-error,
and bounded-error settings. Finally, we give new precise bounds for AND, OR, and PARITY. Our
results are a quantum extension of the so-called polynomial method, which has been successfully
applied in classical complexity theory, and also a quantum extension of results by Nisan about a
polynomial relationship between randomized and deterministic decision tree complexity.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of
Computation; F.2 [Theory of Computation]: Analysis of Algorithms and Problem Complexity

General Terms: Theory, Algorithms, Performance

Additional Key Words and Phrases: Quantum computing, query complexity, black-box model,
lower bounds, polynomial method

1. INTRODUCTION

The black-box model of computation arises when one is given a black-box containing
an N-tuple of Boolean variables X = (zg,x1,...,2ny-1). The box is equipped to
output the bit z; on input i. We wish to determine some property of X, accessing
the z; only through the black-box. Such a black-box access is called a query. A
property of X is any Boolean function that depends on X, i.e., a property is a
function f : {0,1}V — {0,1}. We want to compute such properties using as few
queries as possible. For classical algorithms, this optimal number of queries is
known as the decision tree complexity of f.

Consider, for example, the case where the goal is to determine whether or not
X contains at least one 1, so we want to compute the property ORy(X) =
o V...V xy_1. It is well known that the number of queries required to com-
pute ORy by any classical (deterministic or probabilistic) algorithm is ©(N).
Grover [Grover 1996] discovered a remarkable quantum algorithm that can be used
to compute ORx with small error probability using only O(v/N) queries. His algo-
rithm makes essential use of the fact that a quantum algorithm can apply a query
to a superposition of different i, thereby accessing different input bits z; at the
same time, each with some amplitude. This upper bound of O(\/N) queries was
shown to be asymptotically optimal [Bennett et al. 1997; Boyer et al. 1998; Zalka
1999] (the first version of [Bennett et al. 1997] in fact appeared before Grover’s
algorithm).

Most other existing quantum algorithms can be naturally expressed in the black-
box model. For example, in the case of Simon’s problem [Simon 1997], one is given
a function X : {0,1}" — {0, 1} satisfying the promise that there is an s € {0,1}"
such that X (i) = X(j) iff i = j @ s, where & denotes bitwise exclusive-or (addition
mod 2). The goal is to determine whether s = 0 or not. Simon’s quantum algorithm
yields an ezponential speed-up over classical algorithms: it requires an expected
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number of O(n) applications of X, whereas every classical randomized algorithm
for the same problem must make Q(v/27) queries. Note that the function X can
be viewed as a black-box X = (zq,...,2nx_1) of N = n2" bits, and that an X-
application can be simulated by n queries to X. Thus we see that Simon’s problem
fits squarely in the black-box setting, and exhibits an exponential quantum-classical
separation for this promise-problem. The promise means that Simon’s problem
f:{0,1}N — {0,1} is partial; it is not defined on all X € {0,1}" but only on X
that correspond to an X satisfying the promise. (In the previous example of OR
the function is total; however, the quantum speed-up is only quadratic instead of
exponential.) Something similar holds for the order-finding problem, which is the
core of Shor’s efficient quantum factoring algorithm [Shor 1997]. In this case the
promise is the periodicity of a certain function derived from the number that we
want to factor (see [Cleve 2000] for the exponential classical lower bound for order-
finding). Most other quantum algorithms are naturally expressed in the black-box
model as well, see e.g. [Deutsch and Jozsa 1992; Boneh and Lipton 1995; Kitaev
1995; Boyer et al. 1998; Brassard and Hgyer 1997; Brassard et al. 1997; Hgyer
1999; Mosca and Ekert 1998; Cleve et al. 1998; Brassard et al. 2000; Grover 1998;
Buhrman et al. 1998; Dam 1998; Farhi et al. 1999b; Hgyer et al. 2001; Buhrman
et al. 2001; Dam and Hallgren 2000].

Of course, upper bounds in the black-box model immediately yield upper bounds
for the circuit description model in which the function X is succinctly described as
a (log N)°(Wsized circuit computing z; from i. On the other hand, lower bounds
in the black-box model do not imply lower bounds in the circuit model, though
they can provide useful guidance, indicating what certain algorithmic approaches
are capable of accomplishing. It is noteworthy that, at present, there is no known
algorithm for computing ORy (i.e., satisfiability of a log N-variable propositional
formula) in the circuit model that is significantly more efficient than using the circuit
solely to make queries. Some better algorithms are known for k-SAT [Schoning
1999] but not for satisfiability in general (though proving that no better algorithm
exists is likely to be difficult, as it would imply P # NP).

It should also be noted that the black-box complexity of a function only con-
siders the number of queries; it does not capture the complexity of the auziliary
computational steps that have to be performed in addition to the queries. In cases
such as the computation of OR, PARITY, MAJORITY, this auxiliary work is not
significantly larger than the number of queries; however, in some cases it may be
much larger. For example, consider the case of factoring N-bit integers. The best
known algorithms for this involve ©(N) queries to determine the integer, followed
by 2N operations in the classical case but only N2(log N)°() operations in the
quantum case [Shor 1997]. Thus, the number of queries seems not to be of primary
importance in the case of factoring. However, the problem that Shor’s quantum
algorithm actually solves is the order-finding problem, which can be expressed in
the black-box model as mentioned above.

In this paper, we analyze the black-box complexity of several functions and classes
of functions in the quantum computation setting, establishing strong lower bounds.
In particular, we show that the kind of exponential quantum speed-up that algo-
rithms like Simon’s achieve for partial functions cannot be obtained by any quantum
algorithm for any total function: at most a polynomial speed-up is possible. We
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also tightly characterize the quantum black-box complexity of all symmetric func-
tions, and obtain exact bounds for functions such as AND, OR, PARITY, and
MAJORITY for various error models: exact, zero-error, bounded-error.

An important ingredient of our approach is a reduction that translates quantum
algorithms that make 7' queries into multilinear polynomials of degree at most 27
over the N variables. This is a quantum extension of the so-called polynomial
method, which has been successfully applied in classical complexity theory (see
e.g. [Nisan and Szegedy 1994; Beigel 1993]). Also, our polynomial relationship
between the quantum and the classical complexity is analogous to earlier results
by Nisan [Nisan 1991], who proved a polynomial relationship between randomized
and deterministic decision tree complexity.

The only quantum black-box lower bounds known prior to this work were Jozsa’s
limitations on the power of 1-query algorithms [Jozsa 1991], the search-type bounds
of [Bennett et al. 1997; Boyer et al. 1998; Zalka 1999], and some bounds derived
from communication complexity [Buhrman et al. 1998]. The tight lower bound for
PARITY of [Farhi et al. 1998] appeared independently and around the same time as
a first version of this work [Beals et al. 1998], but their proof technique does not seem
to generalize easily beyond PARITY. After the first appearance of this work, our
polynomial approach has been used to derive many other quantum lower bounds,
see e.g. [Nayak and Wu 1999; Buhrman et al. 1999; Farhi et al. 1999a; Ambainis
1999; Wolf 2000; Servedio and Gortler 2000]. Recently an alternative quantum
lower bound method appeared [Ambainis 2000] which yields good bounds in cases
where polynomial degrees are hard to determine (for instance for AND-OR trees),
but it seems, on the other hand, that some bounds obtainable using the polynomial
method cannot easily be obtained using this new method (see, e.g., [Buhrman et al.

1999)).

2. SUMMARY OF RESULTS

We consider three different settings for computing f on {0,1}" in the black-box
model. In the ezact setting, an algorithm is required to return f(X) with certainty
for every X. In the zero-error setting, for every X, an algorithm may return
“inconclusive” with probability at most 1/2, but if it returns an answer, this must
be the correct value of f(X) (algorithms in this setting are sometimes called Las
Vegas algorithms). Finally, in the two-sided bounded-error setting, for every X, an
algorithm must correctly return the answer with probability at least 2/3 (algorithms
in this setting are sometimes called Monte Carlo algorithms; the 2/3 is arbitrary
and may be replaced by any 1/2 + ¢ for fixed constant 0 < e < 1/2).
Our main results are:!

(1) In the black-box model, the quantum speed-up for any total function cannot be
more than by a sixth-root. More specifically, if a quantum algorithm computes

LAll our results remain valid if we consider a controlled black-box, where the first bit of the
state indicates whether the black-box is to be applied or not. (Thus such a black-box would
map |0,4,b,2) to 0,4,b,2) and |1,4,b,2) to |1,i,b @ z;,2).) Also, our results remain valid if we
consider mized rather than only pure states. In particular, allowing intermediate measurements
in a quantum query algorithm does not give more power, since all measurements can be delayed
until the end of the computation at the cost of some additional memory.
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f with bounded-error probability by making T queries, then there is a classical
deterministic algorithm that computes f exactly making at most O(T'®) queries.
If f is monotone then the classical algorithm needs at most O(T*) queries, and
if f is symmetric then it needs at most O(T?) queries. If the quantum algorithm
is ezact, then the classical algorithm needs O(T*) queries.

As a by-product, we also improve the polynomial relation between the decision
tree complexity D(f) and the approzimate degree deg(f) of [Nisan and Szegedy
1994] from D(f) € O(deg(f)®) to D(f) € O(deg(f)®).

(2) We tightly characterize the black-box complexity of all non-constant symmet-
ric functions as follows. In the exact or zero-error settings @(N) queries are
necessary and sufficient, and in the bounded-error setting ©(\/N(N —I'(f)))
queries are necessary and sufficient, where I'(f) = min{|2k — N + 1| : f flips
value if the Hamming weight of the input changes from & to k + 1} (this T'(f)
is a number that is low if f flips for inputs with Hamming weight close to
N/2 [Paturi 1992]). This should be compared with the classical bounded-error
query complexity of such functions, which is ©(N). Thus, T'(f) characterizes
the speed-up that quantum algorithms give for all total functions.

An interesting example is the THRESHOLD y; function, which is 1 iff its input
X contains at least M 1s. This has query complexity ©(y/M(N — M + 1)).

(3) For OR, AND, PARITY, MAJORITY, we obtain the bounds in the table below

(all given numbers are both necessary and sufficient). These results are all new,

| | exact | Zero-error | bounded-error |

ORny, ANDy N N O(V'N)
PARITY y N/2 N/2 N/2
MAJy O(N) O(N) O(N)

Table 1. Some quantum complexities

with the exception of the ©(v/N)-bounds for OR and AND in the bounded-error
setting, which appear in [Bennett et al. 1997; Boyer et al. 1998; Zalka 1999].
The new bounds improve by polylog(N) factors previous lower bound results
from [Buhrman et al. 1998], which were obtained through a reduction from
communication complexity. The new bounds for PARITY were independently
obtained by Farhi et al. [Farhi et al. 1998].

Note that lower bounds for OR imply lower bounds for the search problem,
where we want to find an 7 such that xz; = 1, if such an ¢ exists. Thus exact
or zero-error quantum search requires N queries, in contrast to @(\/N) queries
for the bounded-error case. (On the other hand, if we are promised in advance
that the number of solutions is ¢, then a solution can be found with probability
1 using O(y/N/t) queries [Brassard et al. 2000].)

3. SOME DEFINITIONS

Our main goal in this paper is to find the number of queries a quantum algorithm
needs to compute some Boolean function by relating such algorithms to polyno-
mials. In this section we give some basic definitions and properties of multilinear
polynomials and Boolean functions, and describe our quantum setting.
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3.1 Boolean Functions and Polynomials

We assume the following setting, mainly adapted from [Nisan and Szegedy 1994].
We have a vector of N Boolean variables X = (zg,...,2ny_1), and we want to
compute a Boolean function f : {0,1}¥ — {0,1} of X. Unless explicitly stated
otherwise, f will always be total. The Hamming weight (number of 1s) of X is
denoted by | X|. For example, ORn(X) = 1iff |X| > 0, ANDy(X) =1iff | X| = N,
PARITY n(X) = 1iff | X] is odd, and MAJN(X) = 1 iff | X| > N/2.

We can represent Boolean functions using N-variate polynomials p : RY — R.
Since 2™ = x whenever z € {0,1}, we can restrict attention to multilinear p. If
p(X) = f(X) for all X € {0,1}", then we say that p represents f. It is easy to see
that every f is represented by a unique multilinear polynomial p of degree < N. We
use deg(f) to denote the degree of this p. If [p(X)—f(X)| < 1/3 for all X € {0,1}¥,
we say p approzimates f, and Eé;(f) denotes the degree of a minimum-degree p
that approximates f. For example, zgri...xzxy—1 is a multilinear polynomial of
degree N that represents ANDy. Similarly, 1 — (1 — 20)(1 — 21)...(1 — xn_1)
represents ORy. The polynomial %xg + %xl approximates but does not represent
AND,.

Nisan and Szegedy [Nisan and Szegedy 1994, Theorem 2.1] proved a general lower
bound on the degree of any Boolean function that depends on N variables:

THEOREM 3.1 (NISAN & SZEGEDY). If f is a Boolean function that depends on
N wariables, then deg(f) > log N — O(loglog N).

Let p: RY — R be a polynomial. If 7 is some permutation on {0,..., N — 1},
and X = (2o,...,2Nn-1), then 7(X) = (2:(),...,Zz(n-1)). Let Sy be the set of
all N! permutations. The symmetrization p*¥™ of p averages over all permutations
of the input, and is defined as:

ey (X))

pM(X) = i

Note that p®¥™ is a polynomial of degree at most the degree of p. Symmetrizing
may actually lower the degree: if p = xg — x1, then p%¥™ = (0. The following
lemma, originally due to [Minsky and Papert 1968], allows us to reduce an N-
variate polynomial to a single-variate one.

LEmMA 3.2 (MINskKY & PAPERT). If p : R® — R is a multilinear polynomial,
then there exists a polynomial q : R — R, of degree at most the degree of p, such
that p*¥™(X) = q(|X|) for all X € {0,1}V.

PrOOF. Let d be the degree of p*¥™, which is at most the degree of p. Let V;
denote the sum of all (]JV) products of j different variables, so Vi = 2o +...+xn_1,
Vo = xox1 + o2 + ... + TN_1ZN—2, etc. Since p*¥™ is symmetrical, it can be
written as

pV"(X) =ap+ a1V +axVa + ...+ aqVa,

for some a; € R. Note that V; assumes value (‘);‘) = |X|(|X]-1D)(X|-2)...(|X]|-
j+1)/j!on X, which is a polynomial of degree j of | X |. Therefore the single-variate
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polynomial ¢ defined by

q(1X]) = ao + a1 (f') + as <)2(|> +...+ ad(ij')

satisfies the lemma. O

A Boolean function f is symmetric if permuting the input does not change the
function value (i.e., f(X) only depends on |X|). Paturi has proved a powerful
theorem that characterizes leg(f) for symmetric f. For such f, let f;, = f(X) for
|X| = k, and define

I'(f) =min{|2k — N+ 1] : fr # fry1 and 0 < k < N —1}.

'(f) is low if f “jumps” near the middle (i.e., for some k ~ N/2). Now [Paturi
1992, Theorem 1] gives:

THEOREM 3.3 (PATURI). If f is a non-constant symmetric Boolean function on
{01}V, then deg(f) € O(/N(N =T(f))).

For functions like ORy and ANDy, we have ['(f) = N — 1 and hence deg(f) €
O(VN). For PARITYy (which is 1 iff |X| is odd) and MAJy (which is 1 iff
|X| > N/2), we have I'(f) = 1 if N is even and T'(f) = 0 if N is odd, hence
deg(f) € O(N) for those functions.

3.2 The Framework of Quantum Networks

Our goal is to compute some Boolean function f of X = (zg,...,2n-1), where X
is given as a black-box: calling the black-box on ¢ returns the value of z;. We want
to use as few queries as possible.

A classical algorithm that computes f by using (adaptive) black-box queries to
X is called a decision tree, since it can be pictured as a binary tree where each node
is a query, each node has the two outcomes of the query as children, and the leaves
give answer f(X) =0 or f(X) = 1. The cost of such an algorithm is the number
of queries made on the worst-case input X, i.e., the depth of the tree. The decision
tree complexity D(f) of f is the cost of the best decision tree that computes f.
Similarly we can define R(f) as the worst-case number of queries for randomized
algorithms that compute f(X) with error probability < 1/3 for all X. By a well-
known result of Nisan, the best randomized algorithm can be at most polynomially
more efficient than the best deterministic algorithm: D(f) € O(R(f)?) for all total
f [Nisan 1991, Theorem 4].

For a general introduction to quantum computing we refer to [Nielsen and Chuang
2000]. A quantum network (also called quantum algorithm) with T queries is the
quantum analogue to a classical decision tree with T queries, where queries and
other operations can now be made in quantum superposition. Such a network can
be represented as a sequence of unitary transformations:

U07017U1702 ----- UTflaoTaUTa

3 3

where the U; are arbitrary unitary transformations, and the O; are unitary trans-
formations that correspond to queries to X. The computation ends with some
measurement or observation of the final state. We assume each transformation
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acts on m qubits and each qubit has basis states |0) and |1), so there are 2™ ba-
sis states for each stage of the computation. It will be convenient to represent
each basis state as a binary string of length m or as the corresponding natural
number, so we have basis states |0), |1),2),...,]2™ —1). Let K be the index set
{0,1,2,...,2™ — 1}. With some abuse of notation, we will sometimes identify a
set of numbers with the corresponding set of basis states. Every state |¢) of the
network can be uniquely written as |¢) = ), x axlk), where the oy are complex
numbers such that Y, . |ax|* = 1. When |¢) is measured in the above basis, the
probability of observing |k) is |ay|?. Since we want to compute a function of X,
which is given as a black-box, the initial state of the network is not very important
and we will disregard it hereafter; we may assume the initial state to be |0) always.

The queries are implemented using the unitary transformations O; in the follow-
ing standard way. The transformation O; only affects the leftmost part of a basis
state: it maps basis state |i, b, z) to |i,b @ z;, z) (& denotes XOR). Here i has length
[log N bits, b is one bit, and z is an arbitrary string of m — [log N — 1 bits. Note
that the O; are all equal.

How does a quantum network compute a Boolean function f of X? Let us
designate the rightmost qubit of the final state of the network as the output bit.
More precisely, the output of the computation is defined to be the value we observe
if we measure the rightmost qubit of the final state. If this output equals f(X) with
certainty, for every X, then the network computes f exactly. If the output equals
f(X) with probability at least 2/3, for every X, then the network computes f with
bounded error probability at most 1/3. To define the zero-error setting, the output
is obtained by observing the two rightmost qubits of the final state. If the first
of these qubits is 0, the network claims ignorance (“inconclusive”), otherwise the
second qubit should contain f(X) with certainty. For every X, the probability of
getting “inconclusive” should be less than 1/2. We use Qg(f), Qo(f) and Q2(f) to
denote the minimum number of queries required by a quantum network to compute
f in the exact, zero-error and bounded-error settings, respectively. It can be shown
that the quantum setting generalizes the classical setting, hence Q2(f) < Qo(f) <

Qe(f) < D(f) < N and Q2(f) < R(f) < D(f) < N.

4. GENERAL LOWER BOUNDS ON THE NUMBER OF QUERIES

In this section we will provide some general lower bounds on the number of queries
required to compute a Boolean function f on a quantum network, either exactly or
with zero- or bounded-error probability.

4.1 The Acceptance Probability is a Polynomial

Here we prove that the acceptance probability of a T-query quantum network can
be written as a multilinear N-variate polynomial P(X) of degree at most 27". The
next lemmas relate quantum networks to polynomials; they are the key to most of
our results.

LEMMA 4.1. Let N be a quantum network that makes T queries to a black-boz X .
Then there exist complex-valued N -variate multilinear polynomials pg,...,pam _1,
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each of degree at most T', such that the final state of the network is the superposition

Zpk(X”k)/

keK
for any black-box X .

PROOF. Let |¢;) be the state of the network (using some black-box X) just
before the ith query. Note that |¢; 1) = U;O;|¢;). The amplitudes in |¢g) depend
on the initial state and on Uy but not on X, so they are polynomials of X of degree
0. A query maps basis state |i,b,z) to |i,b® z;,z). Hence if the amplitude of
i,0,2) in |@g) is @ and the amplitude of |i, 1, z) is 3, then the amplitude of |7, 0, z)
after the query becomes (1 — z;)a + x;8 and the amplitude of |i, 1, z) becomes
z;a + (1 — z;) 3, which are polynomials of degree 1. (In general, if the amplitudes
before a query are polynomials of degree < j, then the amplitudes after the query
will be polynomials of degree < j + 1.) Between the first and the second query lies
the unitary transformation U;. However, the amplitudes after applying U; are just
linear combinations of the amplitudes before applying U, so the amplitudes in |¢1)
are polynomials of degree at most 1. Continuing in this manner, the amplitudes
of the final states are found to be polynomials of degree at most 7. We can make
these polynomials multilinear without affecting their values on X € {0,1}", by
replacing all 2" by z;. O

Note that we have not used the assumption that the U; are unitary, but only
their linearity. The next lemma is also implicit in the combination of some proofs
in [Fenner et al. 1993; Fortnow and Rogers 1999].

LEMMA 4.2. Let N be a quantum network that makes T queries to a black-
box X, and B be a set of basis states. Then there exists a real-valued multilinear
polynomial P(X) of degree at most 2T, which equals the probability that observing
the final state of the network with black-box X yields a state from B.

PROOF. By the previous lemma, we can write the final state of the network as

S pe(O)IR),

keK

for any X, where the p; are complex-valued polynomials of degree < T. The
probability of observing a state in B is

P(X) = [p(X).

keB

If we split pg into its real and imaginary parts as pg(X) = pri(X) + i - pir(X),
where pry and piy are real-valued polynomials of degree < T, then |p;(X)|? =
(pri(X))? + (pix(X))?, which is a real-valued polynomial of degree at most 27.
Hence P is also a real-valued polynomial of degree at most 27", which we can make

multilinear without affecting its values on X € {0,1}"V. O

Letting B be the set of states that have 1 as rightmost bit, it follows that we
can write the acceptance probability of a T-query network (i.e., the probability of
getting output 1) as a polynomial P(X) of degree < 2T'.
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4.2 Lower Bounds for Exact and Zero-Error Quantum Computation

Consider a quantum network that computes f exactly using T' = Qg(f) queries.
Its acceptance probability P(X) is a polynomial of degree < 2T which equals f(X)
for all X. But then P(X) must have degree deg(f), which implies the following
lower bound result for Qg(f):

THEOREM 4.3. If f is a Boolean function, then Qg (f) > deg(f)/2.
Combining this with Theorem 3.1, we obtain a weak but general lower bound:

COROLLARY 4.4. If f depends on N variables, then Qgr(f) > 10gQN—O(log log N).

For symmetric f we can prove a much stronger bound. Firstly for the zero-error
setting:

THEOREM 4.5. If f is non-constant and symmetric, then Qo(f) > (N +1)/4.

PrOOF. We assume f(X) = 0 for at least (N + 1)/2 different Hamming weights
of X; the proof is similar if f(X) = 1 for at least (N + 1)/2 different Hamming
weights. Consider a network that uses T' = Qo(f) queries to compute f with zero-
error. Let B be the set of basis states that have 11 as rightmost bits. These are
the basis states corresponding to output 1. By Lemma 4.2, there is a real-valued
multilinear polynomial P of degree < 2T, such that for all X, P(X) equals the
probability that the output of the network is 11 (i.e., that the network answers 1).
Since the network computes f with zero-error and f is non-constant, P(X) is non-
constant and equals 0 on at least (N +1)/2 different Hamming weights (namely the
Hamming weights for which f(X) = 0). Let ¢ be the single-variate polynomial of
degree < 2T obtained from symmetrizing P (Lemma 3.2). This ¢ is non-constant
and has at least (N + 1)/2 zeroes, hence degree at least (N + 1)/2, and the result
follows. 0O

Thus functions like ORy, AND , PARITY y, threshold functions etc., all require
at least (IV 4+ 1)/4 queries to be computed exactly or with zero-error on a quantum
network. Since N queries always suffice, even classically, we have Qgr(f) € O(N)
and Qo(f) € ©(N) for all non-constant symmetric f.

Secondly, for the exact setting we can prove slightly stronger lower bounds using
results by Von zur Gathen and Roche [Gathen and Roche 1997, Theorems 2.6
and 2.8]:

THEOREM 4.6 (VON zZUR GATHEN & ROCHE). If f is non-constant and sym-
metric, then deg(f) = N — O(N®**®). If, in addition, N + 1 is prime, then
deg(f) = N.

COROLLARY 4.7. If f is non-constant and symmetric, then Qg(f) > N/2 —
O(NO-548) " If, in addition, N + 1 is prime, then Qr(f) > N/2.

In Section 6 we give more precise bounds for some particular functions. In par-
ticular, this will show that the N/2 lower bound is tight, as it can be met for
PARITY y.

4.3 Lower Bounds for Bounded-Error Quantum Computation

Here we use similar techniques to get bounds on the number of queries required for
bounded-error computation of some function. Consider the acceptance probability
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of a T-query network that computes f with bounded-error, written as a polynomial
P(X) of degree < 2T. If f(X) = 0 then we have 0 < P(X) <1/3,and if f(X) =1
then 2/3 < P(X) < 1. Hence P approximates f, and we obtain:

THEOREM 4.8. If f is a Boolean function, then Q2(f) > Egg}(f)/Q

This result implies that a quantum algorithm that computes f with bounded
error probability can be at most polynomially more efficient (in terms of number of
queries) than a classical deterministic algorithm: Nisan and Szegedy proved that
D(f) € O(deg(f)?) [Nisan and Szegedy 1994, Theorem 3.9], which together with the
previous theorem implies D(f) € O(Q2(f)®). The fact that there is a polynomial
relation between the classical and the quantum complexity is also implicit in the
generic oracle-constructions of Fortnow and Rogers [Fortnow and Rogers 1999]. In
Section 5 we will prove the stronger result D(f) € O(Q2(f)%).

Combining Theorem 4.8 with Paturi’s Theorem 3.3 gives a lower bound for sym-
metric functions in the bounded-error setting: if f is non-constant and symmetric,
then Q2(f) € Q(/N(N —T(f))). We can in fact prove a matching upper bound,
using the following result about quantum counting [Brassard et al. 2000, Theo-
rem 13]:

THEOREM 4.9 (BRASSARD, HOYER, M0SCA, TAPP). There exists a quantum
algorithm with the following property. For every N-bit input X (with t = |X|)
and number T, the algorithm uses T queries and outputs a number t such that

N t(N —1) N
il Somd———

with probability at least 8/m>.

THEOREM 4.10. If f is non-constant and symmetric, then we have that Qa(f) €
O(VN(N =T(f))).

PROOF. We describe a strategy that computes f with small error probability.
Let fr, = f(z) for  with |X| = k. First note that since I'(f) = min{|2k —
N+1 : fi # fry1and 0 < k < N — 1}, fr must be identically 0 or 1 for

In order to be able to compute f(X), it is sufficient to know ¢ exactly if ¢ <
[(N=T(f))/2] ort > [(N +T(f) —2)/2], or to know that [(N —T'(f))/2] <t <
[(N 4+ T(f) —2)/2] otherwise.

Run the quantum counting algorithm for ©(y/(N —I'(f))N) steps to count the
number of 1s in X. If ¢ is in one of the two tails (¢ < [(N —T(f))/2] or ¢t >
[(N+T(f) —2)/2]), then with high probability the algorithm gives us an exact
count of t. If [(N —T'(f))/2] <t < [(N +T(f)—2)/2], then with high probability
the counting algorithm returns some ¢ that is in this interval as well. Thus with
high probability f; equals f; = f(X). This shows that we can compute f using
only O(v/N(N —TI(f))) queries. O

Theorem 4.10 implies that the above-stated result about quantum counting (The-
orem 4.9) is optimal, since a better upper bound for counting would give a better
upper bound on @Q2(f) for symmetric f, whereas we already know that Theo-
rem 4.10 is tight. In contrast to Theorem 4.10, it can be shown that a randomized
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classical strategy needs ©(N) queries to compute any non-constant symmetric f
with bounded-error.

Moreover, it can be shown that almost all functions f satisfy deg(f) = N, see
[Buhrman and Wolf 2001], hence almost all f have Qg(f) > N/2. After reading
the preliminary version of this paper [Beals et al. 1998], Andris Ambainis [Ambainis
1999] proved a similar result for the approximate case: almost all f satisfy leg( f) >
N/2 — O(v/Nlog N) and hence have Q5(f) > N/4 — O(v/Nlog N). On the other
hand, Wim van Dam [Dam 1998] proved that with good probability we can learn
all N variables in the black-box using only N/2 + V/N queries. This implies the
general upper bound Qs(f) < N/2 + /N for every f. This bound is almost tight,
as we will show later on that Q2(f) = [N/2] for f = PARITY.

4.4 Lower Bounds in Terms of Block Sensitivity

Above we gave lower bounds on the number of queries used, in terms of degrees
of polynomials that represent or approximate the function f that is to be com-
puted. Here we give lower bounds in terms of the block sensitivity of f, a measure
introduced in [Nisan 1991].

DEFINITION 4.11. Let f : {0,1}Y — {0,1} be a function, X € {0,1}", and
B C{0,...,N —1} a set of indices. Let XB denote the string obtained from X by
flipping the variables in B. We say that f is sensitive to B on X if f(X) # f(XP).
The block sensitivity bsx (f) of f on X is the mazimum number t for which there
exist t disjoint sets of indices By, ..., B; such that f is sensitive to each B; on X .

3 3

The block sensitivity bs(f) of f is the maximum of bsx (f) over all X € {0,1}V,

For example, bs(ORy) = N, because if we take X = (0,...,0) and B; = {i},
then flipping B; in X flips the value of ORy from 0 to 1.

We can adapt the proof of [Nisan and Szegedy 1994, Lemma 3.8] on lower bounds
of polynomials to get lower bounds on the number of queries in a quantum network

in terms of block sensitivity.?2 The proof uses a theorem from [Ehlich and Zeller
1964; Rivlin and Cheney 1966]:

THEOREM 4.12 (EHLICH & ZELLER; RIVLIN & CHENEY). Letp: R = R be a
polynomial such that by < p(i) < by for every integer 0 < i < N, and the derivative
p' satisfies |p'(x)| > ¢ for some real 0 < & < N. Then deg(p) > \/cN/(c+ bz — by).

THEOREM 4.13. If f is a Boolean function, then

bs(f) bs(f)
8 16 °

PRrROOF. We prove the lower bound on Qs(f) here, the bound on Qg(f) is com-
pletely analogous. Consider a network using T' = Q2(f) queries that computes f
with error probability < 1/3. Let p be the polynomial of degree < 2T that approx-
imates f, obtained as for Theorem 4.8. Note that p(X) € [0,1] for all X € {0,1}¥,
because p represents a probability.

Qe(f) > and Qx(f) >

2This theorem can also be proved by an argument similar to the lower bound proof for quantum
searching in [Bennett et al. 1997], see e.g. [Vazirani 1998].
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Let b = bs(f), and Z and By, ..., By be the input and sets that achieve the block

sensitivity. We assume without loss of generality that f(Z) = 0. We transform
p(xo, ..., xn—1) into a polynomial ¢(y1,...,ys) by replacing every z; in p as follows:

3

(1) zj = (1 = z)yi + 21 - i) if j € B
(2) z; = z; if j occurs in none of the B;

Now it is easy to see that ¢ has the following properties:

(1

) q is a multilinear polynomial of degree < d < 2T
(2) q(Y) €0,1] for all Y € {0,1}°
(3) a(0) =p(2) €[0,1/3]
(4) q(e;) = p(ZP7) € [2/3,1] for all unit vectors e; € {0,1}°

Let 7 be the single-variate polynomial of degree < d obtained from symmetrizing
q over {0,1}® (Lemma 3.2). Note that 0 < r(i) < 1 for every integer 0 < i < b,
and for some z € [0, 1] we have 7/(x) > 1/3 (because r(0) < 1/3 and r(1) > 2/3).
Applying Theorem 4.12 we obtain d > /(1/3)b/(1/3+1—0) = +/b/4, hence

T > /b/16. O

We can generalize this result to the computation of partial Boolean functions,
which are only defined on a domain D C {0, 1} of inputs that satisfy some promise,
by generalizing the definition of block sensitivity to partial functions in the obvious
way.

5. POLYNOMIAL RELATION FOR CLASSICAL AND QUANTUM COMPLEXITY

Here we will compare the classical complexities D(f) and R(f) with the quantum
complexities. First some separations: in the next section we show Q2 (PARITY ) =
[N/2] while D(PARITY x) = N. In the bounded-error setting Q2(ORx) € O(V/N)
by Grover’s algorithm, while R(ORy) € ©(N) and D(ORy) = N, so we have a
quadratic gap between Q2(f) on the one hand and R(f) and D(f) on the other.?

Nisan proved that the randomized complexity is at most polynomially better
than the deterministic complexity: D(f) € O(R(f)?) [Nisan 1991]. As mentioned
in Section 4, we can prove that also the quantum complexity can be at most poly-
nomially better than the best deterministic algorithm: D(f) € O(Q2(f)?). Here we
give the stronger result that D(f) € O(Q2(f)%). In other words, if we can compute
some function quantumly with bounded-error using T queries, we can compute it
classically error-free using O(T°) queries. We will need the notion of certificate
complexity:

DEFINITION 5.1. Let C be an assignment C : S — {0, 1} of values to some subset
S of the N wvariables. We say that C is consistent with X € {0,1}" if z; = C(i)
for alli e S.

3In the case of randomized decision trees, no function is known for which there is a quadratic
gap between D(f) and R(f). The best known separation is for complete binary AND/OR-trees,
where D(f) = N and R(f) € ©(N®753:) and it has been conjectured that this is the largest
gap possible. This holds both for zero-error randomized trees [Saks and Wigderson 1986] and for
bounded-error trees [Santha 1991].
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For b € {0,1}, a b-certificate for f is an assignment C such that f(X) = b
whenever X is consistent with C. The size of C is |S]|.

The certificate complexity Cx(f) of f on X is the size of a smallest f(X)-
certificate that is consistent with X. The certificate complexity of [ is C(f) =
maxx Cx (f). The 1-certificate complexity of f is CV(f) = maxyx|f(x)=1} Cx (f),
and similarly we define C©(f).

For example, if f is the OR-function, then the certificate complexity on the input
(1,0,0,...,0) is 1, because the assignment zq = 1 already forces the OR to 1. The
same holds for the other X for which f(X) = 1, so CY(f) = 1. On the other
hand, the certificate complexity on (0,0,...,0) is N, so C(f) = N.

The first inequality in the next lemma is obvious from the definitions, the second
inequality is [Nisan 1991, Lemma 2.4]. We include the proof for completeness.

LEMMA 5.2 (N1saN). CO(f) < O(f) < bs(f)?.

PrROOF. Consider an input X € {0,1}" and let By,..., By be disjoint minimal
sets of variables that achieve the block sensitivity b = bsx(f) < bs(f). We will
show that C' : U;B; — {0, 1} that sets variables according to X, is a certificate for
X of size < bs(f)?.

Firstly, if C' were not an f(X)-certificate then let X' be an input that agrees
with C, such that f(X') # f(X). Let X' = XBs+1. Now f is sensitive to By, on
X and By is disjoint from By, ..., By, which contradicts b = bsx (f). Hence C' is
an f(X)-certificate.

Secondly, note that for 1 < i < b we must have |B;| < bsxs; (f): if we flip one
of the B;-variables in X Pi then the function value must flip from f(X5i) to f(X)
(otherwise B; would not be minimal), so every B;-variable forms a sensitive set for
f on input XBi. Hence the size of C'is | U; B;| = Z?Zl |B;| < Z?Zl bsxa; (f) <
bs(f)?. O

The crucial lemma is the following, which we prove along the lines of [Nisan 1991,
Lemma 4.1].

LEMMA 5.3. D(f) < CW(f)bs(f).

PRrROOF. The following describes an algorithm to compute f(X), querying at
most CM(f)bs(f) variables of X (in the algorithm, by a “consistent” certificate
C or input Y at some point we mean a C or Y that agrees with the values of all
variables queried up to that point).

(1) Repeat the following at most bs(f) times:
Pick a consistent 1-certificate C' and query those of its variables
whose X -values are still unknown (if there is no such C, then return
0 and stop); if the queried values agree with C' then return 1 and
stop.

(2) Pick a consistent Y € {0,1}" and return f(Y).

The nondeterministic “pick a C” and “pick a Y” can easily be made deterministic
by choosing the first C' resp. Y in some fixed order. Call this algorithm A. Since
A runs for at most bs(f) stages and each stage queries at most C'!)(f) variables,
A queries at most C'(1)(f)bs(f) variables.
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It remains to show that A always returns the right answer. If it returns an answer
in step 1, this is either because there are no consistent 1-certificates left (and hence
f(X) must be 0) or because X is found to agree with a particular 1-certificate C;
in both cases A gives the right answer.

Now consider the case where A returns an answer in step 2. We will show
that all consistent ¥ must have the same f-value. Suppose not. Then there are
consistent Y, Y’ with f(Y) = 0 and f(Y') = 1. A has queried b = bs(f) 1-
certificates Cy,Cs, ..., Cy. Furthermore, Y’ contains a consistent 1-certificate Cpy 1.
We will derive from these C; disjoint sets B; such that f is sensitive to each B;
on Y. For every 1 <i < b+ 1, define B; as the set of variables on which ¥ and
C; disagree. Clearly, each B; is non-empty. Note that Y5 agrees with C;, so
f(YBi) = 1 which shows that f is sensitive to each B; on Y. Let v be a variable
in some B; (1 < i <b), then X(v) = Y(v) # C;(v). Now for j > i, C; has been
chosen consistent with all variables queried up to that point (including v), so we
cannot have X (v) = Y (v) # C;(v), hence v ¢ B;. This shows that all B; and
B; are disjoint. But then f is sensitive to bs(f) + 1 disjoint sets on Y, which is a
contradiction. Accordingly, all consistent Y in step 2 must have the same f-value,
and A returns the right value f(Y) = f(X) in step 2, because X is one of those

congsistent Y. [

The inequality of the previous lemma is tight, because if f = OR, then D(f) = N,
CO(f) =1, bs(f) = N.

The previous two lemmas imply D(f) < bs(f)?. Combining this with Theo-
rem 4.13 (bs(f) < 16 Q2(f)?), we obtain the main result:

THEOREM 5.4. If f is a Boolean function, then D(f) < 4096 Qo(f)°.

We do not know if the D(f) € O(Q2(f)%)-relation is tight, and suspect that
it is not. The best separation we know is for OR and similar functions, where
D(f) = N and Q2(f) € ©(v/N). However, for such symmetric Boolean function
we can do no better than a quadratic separation: D(f) < N always holds, and we
have Q2(f) € Q(V/N) by Theorem 4.10, hence D(f) € O(Q2(f)?) for symmetric
f. For monotone Boolean functions, where the function value either increases or
decreases monotonically if we set more input bits to 1, we can use [Nisan 1991,
Proposition 2.2] (bs(f) = C(f)) to prove D(f) < 256 Q2(f)*. For the case of
exact computation we can also give a better result: Nisan and Smolensky proved
D(f) < 2 deg(f)* for any f (they never published this, but allowed their proof
to be included in [Buhrman and Wolf 2001]). Together with our Theorem 4.3 this
yields

THEOREM 5.5. If f is a Boolean function, then D(f) < 32 Qp(f)*.

As a by-product, we improve the polynomial relation between D(f) and deg(f).
Nisan and Szegedy [Nisan and Szegedy 1994, Theorem 3.9] proved ZZZ(](f) < D(f) <
1296 ZZZQ(f)& Using our result D(f) < bs(f)® and Nisan and Szegedy’s bs(f) <
6 deg(f)? [Nisan and Szegedy 1994, Lemma 3.8] we obtain

COROLLARY 5.6. deg(f) < D(f) < 216 deg(f)°.
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6. SOME PARTICULAR FUNCTIONS

In this section we consider the precise complexity of various specific functions.

First we consider the OR-function, which is related to search. By Grover’s well-
known search algorithm [Grover 1996; Boyer et al. 1998], if at least one z; equals
1, we can find an index ¢ such that z; = 1 with high probability of success in
O(V/N) queries. This implies that we can also compute the OR-function with high
success probability in O(v/N): let Grover’s algorithm generate an index i, and
return ;. Since bs(ORy) = N, Theorem 4.13 gives us a lower bound of %\/N
on computing ORy with bounded error probability (this Q(v/N) bound was first
shown in [Bennett et al. 1997] and is given in a tighter form in [Boyer et al. 1998;
Zalka 1999], but the way we obtained it here is rather different from those proofs).
Thus Q2(ORx) € O(V/N), where classically we require ©(N) queries. Now suppose
we want to get rid of the probability of error: can we compute ORy exactly or
with zero-error using O(\/N) queries? If not, can quantum computation give us at
least some advantage over the classical deterministic case? Both questions have a
negative answer:

PROPOSITION 6.1. Qo(ORy) = N.

Proo¥r. Consider a zero-error network for OR x that uses T' = Qo (OR ) queries.
By Lemma 4.1, there are complex-valued polynomials py of degree at most 7', such
that the final state of the network on black-box X is

6%) =" pe(X)[k).

keK

Let B be the set of all basis states having 10 as rightmost bits (i.e., where the
output is the answer 0). Then for every k € B we must have pg(X) = 0 if X #
0= (0,...,0), otherwise the probability of getting the incorrect answer 0 on |¢~)
would be non-zero. On the other hand, there must be at least one k' € B such that
pr (0) # 0, since the probability of getting the correct answer 0 on |¢6> must be non-
zero. Let p(X) be the real part of 1 — py (X)/ps: (0). This polynomial p has degree
at most T' and represents ORy. But then p must have degree deg(ORy) = N, so
T>N. O

COROLLARY 6.2. A quantum network for exact or zero-error search requires N
queries.

In contrast, under the promise that the number of solutions is either 0 or ¢,
for some fixed known ¢, exact search can be done in O(y/N/t) queries [Brassard
et al. 2000]. A partial block sensitivity argument (see the comment following The-
orem 4.13) shows that this is optimal up to a multiplicative constant.

Like the OR-function, PARITY has deg(PARITYy) = N, so by Theorem 4.3
exact computation requires at least [N/2] queries. This is also sufficient. It is well
known that the XOR of 2 variables can be computed using only one query [Cleve
et al. 1998]. Assuming N even, we can group the variables of X as N/2 pairs:
(xo,21), (X2, 23),. .., (N—2,2N—-1), and compute the XOR of all pairs using N/2
queries. The parity of X is the parity of these N/2 XOR values, which can be
computed without any further queries. If we allow bounded-error, then [N/2]
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queries of course still suffice. It follows from Theorem 4.8 that this cannot be
improved, because deg(PARITY ) = N [Minsky and Papert 1968]:

LEMMA 6.3 (MINSKY, PAPERT). EéJg(PARITYN) = N.

ProoF. Let f be PARITY on N variables. Let p be a polynomial of degree
El;g(f) that approximates f. Since p approximates f, its symmetrization p*¥™ also
approximates f. By Lemma 3.2, there is a polynomial ¢, of degree at most c/ig/g(f),
such that ¢(|X|) = p*¥™(X) for all inputs. Thus we must have |f(X) — ¢(|X|)| <
1/3, so

q(0) <1/3,4(1) >2/3, ..., ¢(N —1) >2/3, ¢(N) < 1/3 (assuming N
even).

We see that the polynomial ¢(z) — 1/2 must have at least N zeroes, hence ¢ has
degree at least N and deg(f) = N. O

PROPOSITION 6.4. If f is PARITY on {0, 1}V, then Qr(f) = Qo(f) = Qa(f) =
[N/2].4

Note that this result also implies that Theorems 4.3 and 4.8 are tight. For
classical algorithms, N queries are necessary in the exact, zero-error, and bounded-
error settings. Note that while computing PARITY on a quantum network is much
harder than OR in the bounded-error setting ([N/2] versus ©(v/N)), in the ezact
setting PARITY is actually easier ([N/2] versus N).

The upper bound on PARITY uses the fact that the XOR connective can be
computed with only one query. Using polynomial arguments, it turns out that
XOR and its negation are the only examples among all 16 connectives on 2 variables
where quantum gives an advantage over classical computation.

Since ORn can be reduced to MAJORITY on 2N — 1 variables (if we set the
first N — 1 variables to 1, then the MAJORITY of all variables equals the OR
of the last N variables) and OR requires N queries to be computed exactly or
with zero-error, it follows that MAJy takes at least (N + 1)/2 queries. Hayes,
Kutin, and Van Melkebeek [Hayes et al. 1998] found an exact quantum algorithm
that uses at most N + 1 — w(N) queries, where w(NN) is the number of 1s in the
binary representation of N; this can save up to log N queries. This also follows
from classical results [Saks and Werman 1991; Alonso et al. 1993] that show that
an item with the majority value can be identified classically deterministically with
N — w(N) comparisons between bits (a comparison between two input bits is the
parity of the two bits, which can be computed with 1 quantum query). For the
zero-error case, the same (N + 1)/2 lower bound applies; Van Melkebeek, Hayes
and Kutin give a zero-error quantum algorithm that works in roughly %N queries.
For the bounded-error case, we can apply Theorem 4.10: ['(MAJy) = 1, so we need
Q>(MAJx) € O(N) queries. The best upper bound we have here is N/2 4+ /N,
which follows from [Dam 1998].

4This has also been proved independently by Farhi, Goldstone, Gutmann, and Sipser [Farhi et al.
1998], using a different technique. As noted independently by Terhal [Terhal 1997] and [Farhi
et al. 1998], this result immediately implies results by Ozhigov [Ozhigov 1998] to the effect that
no quantum computer can significantly speed up the computation of all functions (this follows
because no quantum computer can significantly speed up the computation of PARITY).
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The Q(N) lower bound for MAJORITY also implies a lower bound for the number
of comparisons required to sort N totally ordered elements. It is well known that
Nlog N + ©(N) comparisons between elements are necessary and sufficient for
sorting on a classical computer. Note that if we can sort then we can compute
MAJORITY: if we sort the N-bit black-box then the bit at the (N/2)th position
gives the MAJORITY-value (a comparison between 2 black-box bits can easily be
simulated by a few queries). Hence our Q(N)-bound for MAJORITY implies:

COROLLARY 6.5. Sorting N elements on a quantum computer takes at least
Q(N) comparisons.

An Q(N) lower bound for sorting was also derived independently in [Farhi et al.
1999a], via a different application of our polynomial-based method. The bound has
recently been improved to the optimal Q(N log N) [Hgyer et al. 2001].
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