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2 � R. Beals, H. Buhrman, R. Cleve, M. Mos
a, R. de WolfWe examine the number of queries to input variables that a quantum algorithm requires to 
om-pute Boolean fun
tions on f0; 1gN in the bla
k-box model. We show that the exponential quantumspeed-up obtained for partial fun
tions (i.e., problems involving a promise on the input) by Deuts
hand Jozsa, Simon, and Shor 
annot be obtained for any total fun
tion: if a quantum algorithm
omputes some total Boolean fun
tion f with small error probability using T bla
k-box queries,then there is a 
lassi
al deterministi
 algorithm that 
omputes f exa
tly with O(T 6) queries. Wealso give asymptoti
ally tight 
hara
terizations of T for all symmetri
 f in the exa
t, zero-error,and bounded-error settings. Finally, we give new pre
ise bounds for AND, OR, and PARITY. Ourresults are a quantum extension of the so-
alled polynomial method, whi
h has been su

essfullyapplied in 
lassi
al 
omplexity theory, and also a quantum extension of results by Nisan about apolynomial relationship between randomized and deterministi
 de
ision tree 
omplexity.Categories and Subje
t Des
riptors: F.1.1 [Computation by Abstra
t Devi
es℄: Models ofComputation; F.2 [Theory of Computation℄: Analysis of Algorithms and Problem ComplexityGeneral Terms: Theory, Algorithms, Performan
eAdditional Key Words and Phrases: Quantum 
omputing, query 
omplexity, bla
k-box model,lower bounds, polynomial method1. INTRODUCTIONThe bla
k-box model of 
omputation arises when one is given a bla
k-box 
ontainingan N -tuple of Boolean variables X = (x0; x1; : : : ; xN�1). The box is equipped tooutput the bit xi on input i. We wish to determine some property of X , a

essingthe xi only through the bla
k-box. Su
h a bla
k-box a

ess is 
alled a query. Aproperty of X is any Boolean fun
tion that depends on X , i.e., a property is afun
tion f : f0; 1gN ! f0; 1g. We want to 
ompute su
h properties using as fewqueries as possible. For 
lassi
al algorithms, this optimal number of queries isknown as the de
ision tree 
omplexity of f .Consider, for example, the 
ase where the goal is to determine whether or notX 
ontains at least one 1, so we want to 
ompute the property ORN (X) =x0 _ : : : _ xN�1. It is well known that the number of queries required to 
om-pute ORN by any 
lassi
al (deterministi
 or probabilisti
) algorithm is �(N).Grover [Grover 1996℄ dis
overed a remarkable quantum algorithm that 
an be usedto 
ompute ORN with small error probability using only O(pN) queries. His algo-rithm makes essential use of the fa
t that a quantum algorithm 
an apply a queryto a superposition of di�erent i, thereby a

essing di�erent input bits xi at thesame time, ea
h with some amplitude. This upper bound of O(pN) queries wasshown to be asymptoti
ally optimal [Bennett et al. 1997; Boyer et al. 1998; Zalka1999℄ (the �rst version of [Bennett et al. 1997℄ in fa
t appeared before Grover'salgorithm).Most other existing quantum algorithms 
an be naturally expressed in the bla
k-box model. For example, in the 
ase of Simon's problem [Simon 1997℄, one is givena fun
tion ~X : f0; 1gn ! f0; 1gn satisfying the promise that there is an s 2 f0; 1gnsu
h that ~X(i) = ~X(j) i� i = j � s, where � denotes bitwise ex
lusive-or (additionmod 2). The goal is to determine whether s = 0 or not. Simon's quantum algorithmyields an exponential speed-up over 
lassi
al algorithms: it requires an expe
ted



Quantum Lower Bounds by Polynomials � 3number of O(n) appli
ations of ~X, whereas every 
lassi
al randomized algorithmfor the same problem must make 
(p2n) queries. Note that the fun
tion ~X 
anbe viewed as a bla
k-box X = (x0; : : : ; xN�1) of N = n2n bits, and that an ~X-appli
ation 
an be simulated by n queries to X . Thus we see that Simon's problem�ts squarely in the bla
k-box setting, and exhibits an exponential quantum-
lassi
alseparation for this promise-problem. The promise means that Simon's problemf : f0; 1gN ! f0; 1g is partial ; it is not de�ned on all X 2 f0; 1gN but only on Xthat 
orrespond to an ~X satisfying the promise. (In the previous example of ORN ,the fun
tion is total ; however, the quantum speed-up is only quadrati
 instead ofexponential.) Something similar holds for the order-�nding problem, whi
h is the
ore of Shor's eÆ
ient quantum fa
toring algorithm [Shor 1997℄. In this 
ase thepromise is the periodi
ity of a 
ertain fun
tion derived from the number that wewant to fa
tor (see [Cleve 2000℄ for the exponential 
lassi
al lower bound for order-�nding). Most other quantum algorithms are naturally expressed in the bla
k-boxmodel as well, see e.g. [Deuts
h and Jozsa 1992; Boneh and Lipton 1995; Kitaev1995; Boyer et al. 1998; Brassard and H�yer 1997; Brassard et al. 1997; H�yer1999; Mos
a and Ekert 1998; Cleve et al. 1998; Brassard et al. 2000; Grover 1998;Buhrman et al. 1998; Dam 1998; Farhi et al. 1999b; H�yer et al. 2001; Buhrmanet al. 2001; Dam and Hallgren 2000℄.Of 
ourse, upper bounds in the bla
k-box model immediately yield upper boundsfor the 
ir
uit des
ription model in whi
h the fun
tion X is su

in
tly des
ribed asa (logN)O(1)-sized 
ir
uit 
omputing xi from i. On the other hand, lower boundsin the bla
k-box model do not imply lower bounds in the 
ir
uit model, thoughthey 
an provide useful guidan
e, indi
ating what 
ertain algorithmi
 approa
hesare 
apable of a

omplishing. It is noteworthy that, at present, there is no knownalgorithm for 
omputing ORN (i.e., satis�ability of a logN -variable propositionalformula) in the 
ir
uit model that is signi�
antly more eÆ
ient than using the 
ir
uitsolely to make queries. Some better algorithms are known for k-SAT [S
h�oning1999℄ but not for satis�ability in general (though proving that no better algorithmexists is likely to be diÆ
ult, as it would imply P 6= NP ).It should also be noted that the bla
k-box 
omplexity of a fun
tion only 
on-siders the number of queries; it does not 
apture the 
omplexity of the auxiliary
omputational steps that have to be performed in addition to the queries. In 
asessu
h as the 
omputation of OR, PARITY, MAJORITY, this auxiliary work is notsigni�
antly larger than the number of queries; however, in some 
ases it may bemu
h larger. For example, 
onsider the 
ase of fa
toring N -bit integers. The bestknown algorithms for this involve �(N) queries to determine the integer, followedby 2N
(1) operations in the 
lassi
al 
ase but only N2(logN)O(1) operations in thequantum 
ase [Shor 1997℄. Thus, the number of queries seems not to be of primaryimportan
e in the 
ase of fa
toring. However, the problem that Shor's quantumalgorithm a
tually solves is the order-�nding problem, whi
h 
an be expressed inthe bla
k-box model as mentioned above.In this paper, we analyze the bla
k-box 
omplexity of several fun
tions and 
lassesof fun
tions in the quantum 
omputation setting, establishing strong lower bounds.In parti
ular, we show that the kind of exponential quantum speed-up that algo-rithms like Simon's a
hieve for partial fun
tions 
annot be obtained by any quantumalgorithm for any total fun
tion: at most a polynomial speed-up is possible. We



4 � R. Beals, H. Buhrman, R. Cleve, M. Mos
a, R. de Wolfalso tightly 
hara
terize the quantum bla
k-box 
omplexity of all symmetri
 fun
-tions, and obtain exa
t bounds for fun
tions su
h as AND, OR, PARITY, andMAJORITY for various error models: exa
t, zero-error, bounded-error.An important ingredient of our approa
h is a redu
tion that translates quantumalgorithms that make T queries into multilinear polynomials of degree at most 2Tover the N variables. This is a quantum extension of the so-
alled polynomialmethod, whi
h has been su

essfully applied in 
lassi
al 
omplexity theory (seee.g. [Nisan and Szegedy 1994; Beigel 1993℄). Also, our polynomial relationshipbetween the quantum and the 
lassi
al 
omplexity is analogous to earlier resultsby Nisan [Nisan 1991℄, who proved a polynomial relationship between randomizedand deterministi
 de
ision tree 
omplexity.The only quantum bla
k-box lower bounds known prior to this work were Jozsa'slimitations on the power of 1-query algorithms [Jozsa 1991℄, the sear
h-type boundsof [Bennett et al. 1997; Boyer et al. 1998; Zalka 1999℄, and some bounds derivedfrom 
ommuni
ation 
omplexity [Buhrman et al. 1998℄. The tight lower bound forPARITY of [Farhi et al. 1998℄ appeared independently and around the same time asa �rst version of this work [Beals et al. 1998℄, but their proof te
hnique does not seemto generalize easily beyond PARITY. After the �rst appearan
e of this work, ourpolynomial approa
h has been used to derive many other quantum lower bounds,see e.g. [Nayak and Wu 1999; Buhrman et al. 1999; Farhi et al. 1999a; Ambainis1999; Wolf 2000; Servedio and Gortler 2000℄. Re
ently an alternative quantumlower bound method appeared [Ambainis 2000℄ whi
h yields good bounds in 
aseswhere polynomial degrees are hard to determine (for instan
e for AND-OR trees),but it seems, on the other hand, that some bounds obtainable using the polynomialmethod 
annot easily be obtained using this new method (see, e.g., [Buhrman et al.1999℄).2. SUMMARY OF RESULTSWe 
onsider three di�erent settings for 
omputing f on f0; 1gN in the bla
k-boxmodel. In the exa
t setting, an algorithm is required to return f(X) with 
ertaintyfor every X . In the zero-error setting, for every X , an algorithm may return\in
on
lusive" with probability at most 1=2, but if it returns an answer, this mustbe the 
orre
t value of f(X) (algorithms in this setting are sometimes 
alled LasVegas algorithms). Finally, in the two-sided bounded-error setting, for every X , analgorithmmust 
orre
tly return the answer with probability at least 2=3 (algorithmsin this setting are sometimes 
alled Monte Carlo algorithms; the 2=3 is arbitraryand may be repla
ed by any 1=2 + " for �xed 
onstant 0 < " < 1=2).Our main results are:1(1) In the bla
k-box model, the quantum speed-up for any total fun
tion 
annot bemore than by a sixth-root. More spe
i�
ally, if a quantum algorithm 
omputes1All our results remain valid if we 
onsider a 
ontrolled bla
k-box, where the �rst bit of thestate indi
ates whether the bla
k-box is to be applied or not. (Thus su
h a bla
k-box wouldmap j0; i; b; zi to j0; i; b; zi and j1; i; b; zi to j1; i; b� xi; zi.) Also, our results remain valid if we
onsider mixed rather than only pure states. In parti
ular, allowing intermediate measurementsin a quantum query algorithm does not give more power, sin
e all measurements 
an be delayeduntil the end of the 
omputation at the 
ost of some additional memory.



Quantum Lower Bounds by Polynomials � 5f with bounded-error probability by making T queries, then there is a 
lassi
aldeterministi
 algorithm that 
omputes f exa
tly making at most O(T 6) queries.If f is monotone then the 
lassi
al algorithm needs at most O(T 4) queries, andif f is symmetri
 then it needs at most O(T 2) queries. If the quantum algorithmis exa
t, then the 
lassi
al algorithm needs O(T 4) queries.As a by-produ
t, we also improve the polynomial relation between the de
isiontree 
omplexity D(f) and the approximate degree gdeg(f) of [Nisan and Szegedy1994℄ from D(f) 2 O(gdeg(f)8) to D(f) 2 O(gdeg(f)6).(2) We tightly 
hara
terize the bla
k-box 
omplexity of all non-
onstant symmet-ri
 fun
tions as follows. In the exa
t or zero-error settings �(N) queries arene
essary and suÆ
ient, and in the bounded-error setting �(pN(N � �(f)))queries are ne
essary and suÆ
ient, where �(f) = minfj2k � N + 1j : f 
ipsvalue if the Hamming weight of the input 
hanges from k to k + 1g (this �(f)is a number that is low if f 
ips for inputs with Hamming weight 
lose toN=2 [Paturi 1992℄). This should be 
ompared with the 
lassi
al bounded-errorquery 
omplexity of su
h fun
tions, whi
h is �(N). Thus, �(f) 
hara
terizesthe speed-up that quantum algorithms give for all total fun
tions.An interesting example is the THRESHOLDM fun
tion, whi
h is 1 i� its inputX 
ontains at least M 1s. This has query 
omplexity �(pM(N �M + 1)).(3) For OR, AND, PARITY, MAJORITY, we obtain the bounds in the table below(all given numbers are both ne
essary and suÆ
ient). These results are all new,exa
t zero-error bounded-errorORN , ANDN N N �(pN)PARITYN N=2 N=2 N=2MAJN �(N) �(N) �(N)Table 1. Some quantum 
omplexitieswith the ex
eption of the �(pN)-bounds for OR and AND in the bounded-errorsetting, whi
h appear in [Bennett et al. 1997; Boyer et al. 1998; Zalka 1999℄.The new bounds improve by polylog(N) fa
tors previous lower bound resultsfrom [Buhrman et al. 1998℄, whi
h were obtained through a redu
tion from
ommuni
ation 
omplexity. The new bounds for PARITY were independentlyobtained by Farhi et al. [Farhi et al. 1998℄.Note that lower bounds for OR imply lower bounds for the sear
h problem,where we want to �nd an i su
h that xi = 1, if su
h an i exists. Thus exa
tor zero-error quantum sear
h requires N queries, in 
ontrast to �(pN) queriesfor the bounded-error 
ase. (On the other hand, if we are promised in advan
ethat the number of solutions is t, then a solution 
an be found with probability1 using O(pN=t) queries [Brassard et al. 2000℄.)3. SOME DEFINITIONSOur main goal in this paper is to �nd the number of queries a quantum algorithmneeds to 
ompute some Boolean fun
tion by relating su
h algorithms to polyno-mials. In this se
tion we give some basi
 de�nitions and properties of multilinearpolynomials and Boolean fun
tions, and des
ribe our quantum setting.



6 � R. Beals, H. Buhrman, R. Cleve, M. Mos
a, R. de Wolf3.1 Boolean Fun
tions and PolynomialsWe assume the following setting, mainly adapted from [Nisan and Szegedy 1994℄.We have a ve
tor of N Boolean variables X = (x0; : : : ; xN�1), and we want to
ompute a Boolean fun
tion f : f0; 1gN ! f0; 1g of X . Unless expli
itly statedotherwise, f will always be total. The Hamming weight (number of 1s) of X isdenoted by jX j. For example, ORN (X) = 1 i� jX j > 0, ANDN (X) = 1 i� jX j = N ,PARITYN (X) = 1 i� jX j is odd, and MAJN (X) = 1 i� jX j > N=2.We 
an represent Boolean fun
tions using N -variate polynomials p : RN ! R.Sin
e xm = x whenever x 2 f0; 1g, we 
an restri
t attention to multilinear p. Ifp(X) = f(X) for all X 2 f0; 1gN , then we say that p represents f . It is easy to seethat every f is represented by a unique multilinear polynomial p of degree � N . Weuse deg(f) to denote the degree of this p. If jp(X)�f(X)j � 1=3 for allX 2 f0; 1gN ,we say p approximates f , and gdeg(f) denotes the degree of a minimum-degree pthat approximates f . For example, x0x1 : : : xN�1 is a multilinear polynomial ofdegree N that represents ANDN . Similarly, 1 � (1 � x0)(1 � x1) : : : (1 � xN�1)represents ORN . The polynomial 13x0 + 13x1 approximates but does not representAND2.Nisan and Szegedy [Nisan and Szegedy 1994, Theorem 2.1℄ proved a general lowerbound on the degree of any Boolean fun
tion that depends on N variables:Theorem 3.1 (Nisan & Szegedy). If f is a Boolean fun
tion that depends onN variables, then deg(f) � logN �O(log logN).Let p : RN ! R be a polynomial. If � is some permutation on f0; : : : ; N � 1g,and X = (x0; : : : ; xN�1), then �(X) = (x�(0); : : : ; x�(N�1)). Let SN be the set ofall N ! permutations. The symmetrization psym of p averages over all permutationsof the input, and is de�ned as:psym(X) = P�2SN p(�(X))N ! :Note that psym is a polynomial of degree at most the degree of p. Symmetrizingmay a
tually lower the degree: if p = x0 � x1, then psym = 0. The followinglemma, originally due to [Minsky and Papert 1968℄, allows us to redu
e an N -variate polynomial to a single-variate one.Lemma 3.2 (Minsky & Papert). If p : Rn ! R is a multilinear polynomial,then there exists a polynomial q : R ! R, of degree at most the degree of p, su
hthat psym(X) = q(jX j) for all X 2 f0; 1gN .Proof. Let d be the degree of psym, whi
h is at most the degree of p. Let Vjdenote the sum of all �Nj � produ
ts of j di�erent variables, so V1 = x0+ : : :+xN�1,V2 = x0x1 + x0x2 + : : : + xN�1xN�2, et
. Sin
e psym is symmetri
al, it 
an bewritten as psym(X) = a0 + a1V1 + a2V2 + : : :+ adVd;for some ai 2 R. Note that Vj assumes value �jXjj � = jX j(jX j�1)(jX j�2) : : : (jX j�j+1)=j! on X , whi
h is a polynomial of degree j of jX j. Therefore the single-variate



Quantum Lower Bounds by Polynomials � 7polynomial q de�ned byq(jX j) = a0 + a1�jX j1 �+ a2�jX j2 �+ : : :+ ad�jX jd �satis�es the lemma.A Boolean fun
tion f is symmetri
 if permuting the input does not 
hange thefun
tion value (i.e., f(X) only depends on jX j). Paturi has proved a powerfultheorem that 
hara
terizesgdeg(f) for symmetri
 f . For su
h f , let fk = f(X) forjX j = k, and de�ne�(f) = minfj2k �N + 1j : fk 6= fk+1 and 0 � k � N � 1g:�(f) is low if fk \jumps" near the middle (i.e., for some k � N=2). Now [Paturi1992, Theorem 1℄ gives:Theorem 3.3 (Paturi). If f is a non-
onstant symmetri
 Boolean fun
tion onf0; 1gN , then gdeg(f) 2 �(pN(N � �(f))).For fun
tions like ORN and ANDN , we have �(f) = N � 1 and hen
e gdeg(f) 2�(pN). For PARITYN (whi
h is 1 i� jX j is odd) and MAJN (whi
h is 1 i�jX j > N=2), we have �(f) = 1 if N is even and �(f) = 0 if N is odd, hen
egdeg(f) 2 �(N) for those fun
tions.3.2 The Framework of Quantum NetworksOur goal is to 
ompute some Boolean fun
tion f of X = (x0; : : : ; xN�1), where Xis given as a bla
k-box: 
alling the bla
k-box on i returns the value of xi. We wantto use as few queries as possible.A 
lassi
al algorithm that 
omputes f by using (adaptive) bla
k-box queries toX is 
alled a de
ision tree, sin
e it 
an be pi
tured as a binary tree where ea
h nodeis a query, ea
h node has the two out
omes of the query as 
hildren, and the leavesgive answer f(X) = 0 or f(X) = 1. The 
ost of su
h an algorithm is the numberof queries made on the worst-
ase input X , i.e., the depth of the tree. The de
isiontree 
omplexity D(f) of f is the 
ost of the best de
ision tree that 
omputes f .Similarly we 
an de�ne R(f) as the worst-
ase number of queries for randomizedalgorithms that 
ompute f(X) with error probability � 1=3 for all X . By a well-known result of Nisan, the best randomized algorithm 
an be at most polynomiallymore eÆ
ient than the best deterministi
 algorithm: D(f) 2 O(R(f)3) for all totalf [Nisan 1991, Theorem 4℄.For a general introdu
tion to quantum 
omputing we refer to [Nielsen and Chuang2000℄. A quantum network (also 
alled quantum algorithm) with T queries is thequantum analogue to a 
lassi
al de
ision tree with T queries, where queries andother operations 
an now be made in quantum superposition. Su
h a network 
anbe represented as a sequen
e of unitary transformations:U0; O1; U1; O2; : : : ; UT�1; OT ; UT ;where the Ui are arbitrary unitary transformations, and the Oj are unitary trans-formations that 
orrespond to queries to X . The 
omputation ends with somemeasurement or observation of the �nal state. We assume ea
h transformation
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a, R. de Wolfa
ts on m qubits and ea
h qubit has basis states j0i and j1i, so there are 2m ba-sis states for ea
h stage of the 
omputation. It will be 
onvenient to representea
h basis state as a binary string of length m or as the 
orresponding naturalnumber, so we have basis states j0i; j1i; j2i; : : : ; j2m � 1i. Let K be the index setf0; 1; 2; : : : ; 2m � 1g. With some abuse of notation, we will sometimes identify aset of numbers with the 
orresponding set of basis states. Every state j�i of thenetwork 
an be uniquely written as j�i =Pk2K �kjki, where the �k are 
omplexnumbers su
h that Pk2K j�kj2 = 1. When j�i is measured in the above basis, theprobability of observing jki is j�kj2. Sin
e we want to 
ompute a fun
tion of X ,whi
h is given as a bla
k-box, the initial state of the network is not very importantand we will disregard it hereafter; we may assume the initial state to be j0i always.The queries are implemented using the unitary transformations Oj in the follow-ing standard way. The transformation Oj only a�e
ts the leftmost part of a basisstate: it maps basis state ji; b; zi to ji; b� xi; zi (� denotes XOR). Here i has lengthdlogNe bits, b is one bit, and z is an arbitrary string of m�dlogNe� 1 bits. Notethat the Oj are all equal.How does a quantum network 
ompute a Boolean fun
tion f of X? Let usdesignate the rightmost qubit of the �nal state of the network as the output bit.More pre
isely, the output of the 
omputation is de�ned to be the value we observeif we measure the rightmost qubit of the �nal state. If this output equals f(X) with
ertainty, for every X , then the network 
omputes f exa
tly. If the output equalsf(X) with probability at least 2=3, for every X , then the network 
omputes f withbounded error probability at most 1=3. To de�ne the zero-error setting, the outputis obtained by observing the two rightmost qubits of the �nal state. If the �rstof these qubits is 0, the network 
laims ignoran
e (\in
on
lusive"), otherwise these
ond qubit should 
ontain f(X) with 
ertainty. For every X , the probability ofgetting \in
on
lusive" should be less than 1=2. We use QE(f), Q0(f) and Q2(f) todenote the minimum number of queries required by a quantum network to 
omputef in the exa
t, zero-error and bounded-error settings, respe
tively. It 
an be shownthat the quantum setting generalizes the 
lassi
al setting, hen
e Q2(f) � Q0(f) �QE(f) � D(f) � N and Q2(f) � R(f) � D(f) � N .4. GENERAL LOWER BOUNDS ON THE NUMBER OF QUERIESIn this se
tion we will provide some general lower bounds on the number of queriesrequired to 
ompute a Boolean fun
tion f on a quantum network, either exa
tly orwith zero- or bounded-error probability.4.1 The A

eptan
e Probability is a PolynomialHere we prove that the a

eptan
e probability of a T -query quantum network 
anbe written as a multilinear N -variate polynomial P (X) of degree at most 2T . Thenext lemmas relate quantum networks to polynomials; they are the key to most ofour results.Lemma 4.1. Let N be a quantum network that makes T queries to a bla
k-box X.Then there exist 
omplex-valued N-variate multilinear polynomials p0; : : : ; p2m�1,
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h of degree at most T , su
h that the �nal state of the network is the superpositionXk2K pk(X)jki;for any bla
k-box X.Proof. Let j�ii be the state of the network (using some bla
k-box X) justbefore the ith query. Note that j�i+1i = UiOij�ii. The amplitudes in j�0i dependon the initial state and on U0 but not on X , so they are polynomials of X of degree0. A query maps basis state ji; b; zi to ji; b� xi; zi. Hen
e if the amplitude ofji; 0; zi in j�0i is � and the amplitude of ji; 1; zi is �, then the amplitude of ji; 0; ziafter the query be
omes (1 � xi)� + xi� and the amplitude of ji; 1; zi be
omesxi� + (1� xi)�, whi
h are polynomials of degree 1. (In general, if the amplitudesbefore a query are polynomials of degree � j, then the amplitudes after the querywill be polynomials of degree � j +1.) Between the �rst and the se
ond query liesthe unitary transformation U1. However, the amplitudes after applying U1 are justlinear 
ombinations of the amplitudes before applying U1, so the amplitudes in j�1iare polynomials of degree at most 1. Continuing in this manner, the amplitudesof the �nal states are found to be polynomials of degree at most T . We 
an makethese polynomials multilinear without a�e
ting their values on X 2 f0; 1gN , byrepla
ing all xmi by xi.Note that we have not used the assumption that the Uj are unitary, but onlytheir linearity. The next lemma is also impli
it in the 
ombination of some proofsin [Fenner et al. 1993; Fortnow and Rogers 1999℄.Lemma 4.2. Let N be a quantum network that makes T queries to a bla
k-box X, and B be a set of basis states. Then there exists a real-valued multilinearpolynomial P (X) of degree at most 2T , whi
h equals the probability that observingthe �nal state of the network with bla
k-box X yields a state from B.Proof. By the previous lemma, we 
an write the �nal state of the network asXk2K pk(X)jki;for any X , where the pk are 
omplex-valued polynomials of degree � T . Theprobability of observing a state in B isP (X) =Xk2B jpk(X)j2:If we split pk into its real and imaginary parts as pk(X) = prk(X) + i � pik(X),where prk and pik are real-valued polynomials of degree � T , then jpk(X)j2 =(prk(X))2 + (pik(X))2, whi
h is a real-valued polynomial of degree at most 2T .Hen
e P is also a real-valued polynomial of degree at most 2T , whi
h we 
an makemultilinear without a�e
ting its values on X 2 f0; 1gN .Letting B be the set of states that have 1 as rightmost bit, it follows that we
an write the a

eptan
e probability of a T -query network (i.e., the probability ofgetting output 1) as a polynomial P (X) of degree � 2T .
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a, R. de Wolf4.2 Lower Bounds for Exa
t and Zero-Error Quantum ComputationConsider a quantum network that 
omputes f exa
tly using T = QE(f) queries.Its a

eptan
e probability P (X) is a polynomial of degree � 2T whi
h equals f(X)for all X . But then P (X) must have degree deg(f), whi
h implies the followinglower bound result for QE(f):Theorem 4.3. If f is a Boolean fun
tion, then QE(f) � deg(f)=2.Combining this with Theorem 3.1, we obtain a weak but general lower bound:Corollary 4.4. If f depends on N variables, then QE(f) � logN2 �O(log logN).For symmetri
 f we 
an prove a mu
h stronger bound. Firstly for the zero-errorsetting:Theorem 4.5. If f is non-
onstant and symmetri
, then Q0(f) � (N + 1)=4.Proof. We assume f(X) = 0 for at least (N +1)=2 di�erent Hamming weightsof X ; the proof is similar if f(X) = 1 for at least (N + 1)=2 di�erent Hammingweights. Consider a network that uses T = Q0(f) queries to 
ompute f with zero-error. Let B be the set of basis states that have 11 as rightmost bits. These arethe basis states 
orresponding to output 1. By Lemma 4.2, there is a real-valuedmultilinear polynomial P of degree � 2T , su
h that for all X , P (X) equals theprobability that the output of the network is 11 (i.e., that the network answers 1).Sin
e the network 
omputes f with zero-error and f is non-
onstant, P (X) is non-
onstant and equals 0 on at least (N+1)=2 di�erent Hamming weights (namely theHamming weights for whi
h f(X) = 0). Let q be the single-variate polynomial ofdegree � 2T obtained from symmetrizing P (Lemma 3.2). This q is non-
onstantand has at least (N + 1)=2 zeroes, hen
e degree at least (N + 1)=2, and the resultfollows.Thus fun
tions like ORN , ANDN , PARITYN , threshold fun
tions et
., all requireat least (N +1)=4 queries to be 
omputed exa
tly or with zero-error on a quantumnetwork. Sin
e N queries always suÆ
e, even 
lassi
ally, we have QE(f) 2 �(N)and Q0(f) 2 �(N) for all non-
onstant symmetri
 f .Se
ondly, for the exa
t setting we 
an prove slightly stronger lower bounds usingresults by Von zur Gathen and Ro
he [Gathen and Ro
he 1997, Theorems 2.6and 2.8℄:Theorem 4.6 (Von zur Gathen & Ro
he). If f is non-
onstant and sym-metri
, then deg(f) = N � O(N0:548). If, in addition, N + 1 is prime, thendeg(f) = N .Corollary 4.7. If f is non-
onstant and symmetri
, then QE(f) � N=2 �O(N0:548). If, in addition, N + 1 is prime, then QE(f) � N=2.In Se
tion 6 we give more pre
ise bounds for some parti
ular fun
tions. In par-ti
ular, this will show that the N=2 lower bound is tight, as it 
an be met forPARITYN .4.3 Lower Bounds for Bounded-Error Quantum ComputationHere we use similar te
hniques to get bounds on the number of queries required forbounded-error 
omputation of some fun
tion. Consider the a

eptan
e probability



Quantum Lower Bounds by Polynomials � 11of a T -query network that 
omputes f with bounded-error, written as a polynomialP (X) of degree � 2T . If f(X) = 0 then we have 0 � P (X) � 1=3, and if f(X) = 1then 2=3 � P (X) � 1. Hen
e P approximates f , and we obtain:Theorem 4.8. If f is a Boolean fun
tion, then Q2(f) �gdeg(f)=2.This result implies that a quantum algorithm that 
omputes f with boundederror probability 
an be at most polynomially more eÆ
ient (in terms of number ofqueries) than a 
lassi
al deterministi
 algorithm: Nisan and Szegedy proved thatD(f) 2 O(gdeg(f)8) [Nisan and Szegedy 1994, Theorem 3.9℄, whi
h together with theprevious theorem implies D(f) 2 O(Q2(f)8). The fa
t that there is a polynomialrelation between the 
lassi
al and the quantum 
omplexity is also impli
it in thegeneri
 ora
le-
onstru
tions of Fortnow and Rogers [Fortnow and Rogers 1999℄. InSe
tion 5 we will prove the stronger result D(f) 2 O(Q2(f)6).Combining Theorem 4.8 with Paturi's Theorem 3.3 gives a lower bound for sym-metri
 fun
tions in the bounded-error setting: if f is non-
onstant and symmetri
,then Q2(f) 2 
(pN(N � �(f))). We 
an in fa
t prove a mat
hing upper bound,using the following result about quantum 
ounting [Brassard et al. 2000, Theo-rem 13℄:Theorem 4.9 (Brassard, H�yer, Mos
a, Tapp). There exists a quantumalgorithm with the following property. For every N-bit input X (with t = jX j)and number T , the algorithm uses T queries and outputs a number ~t su
h thatjt� ~tj � 2�pt(N � t)T + �2 NT 2with probability at least 8=�2.Theorem 4.10. If f is non-
onstant and symmetri
, then we have that Q2(f) 2�(pN(N � �(f))).Proof. We des
ribe a strategy that 
omputes f with small error probability.Let fk = f(x) for x with jX j = k. First note that sin
e �(f) = minfj2k �N + 1j : fk 6= fk+1 and 0 � k � N � 1g, fk must be identi
ally 0 or 1 fork 2 fd(N � �(f))=2e; : : : ; d(N + �(f)� 2)=2eg. Consider some X with jX j = t.In order to be able to 
ompute f(X), it is suÆ
ient to know t exa
tly if t <d(N � �(f))=2e or t > d(N + �(f)� 2)=2e, or to know that d(N � �(f))=2e � t �d(N + �(f)� 2)=2e otherwise.Run the quantum 
ounting algorithm for �(p(N � �(f))N) steps to 
ount thenumber of 1s in X . If t is in one of the two tails (t < d(N � �(f))=2e or t >d(N + �(f)� 2)=2e), then with high probability the algorithm gives us an exa
t
ount of t. If d(N � �(f))=2e � t � d(N + �(f)� 2)=2e, then with high probabilitythe 
ounting algorithm returns some ~t that is in this interval as well. Thus withhigh probability f~t equals ft = f(X). This shows that we 
an 
ompute f usingonly O(pN(N � �(f))) queries.Theorem 4.10 implies that the above-stated result about quantum 
ounting (The-orem 4.9) is optimal, sin
e a better upper bound for 
ounting would give a betterupper bound on Q2(f) for symmetri
 f , whereas we already know that Theo-rem 4.10 is tight. In 
ontrast to Theorem 4.10, it 
an be shown that a randomized
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lassi
al strategy needs �(N) queries to 
ompute any non-
onstant symmetri
 fwith bounded-error.Moreover, it 
an be shown that almost all fun
tions f satisfy deg(f) = N , see[Buhrman and Wolf 2001℄, hen
e almost all f have QE(f) � N=2. After readingthe preliminary version of this paper [Beals et al. 1998℄, Andris Ambainis [Ambainis1999℄ proved a similar result for the approximate 
ase: almost all f satisfygdeg(f) �N=2� O(pN logN) and hen
e have Q2(f) � N=4� O(pN logN). On the otherhand, Wim van Dam [Dam 1998℄ proved that with good probability we 
an learnall N variables in the bla
k-box using only N=2 + pN queries. This implies thegeneral upper bound Q2(f) � N=2 +pN for every f . This bound is almost tight,as we will show later on that Q2(f) = dN=2e for f = PARITY.4.4 Lower Bounds in Terms of Blo
k SensitivityAbove we gave lower bounds on the number of queries used, in terms of degreesof polynomials that represent or approximate the fun
tion f that is to be 
om-puted. Here we give lower bounds in terms of the blo
k sensitivity of f , a measureintrodu
ed in [Nisan 1991℄.Definition 4.11. Let f : f0; 1gN ! f0; 1g be a fun
tion, X 2 f0; 1gN, andB � f0; : : : ; N � 1g a set of indi
es. Let XB denote the string obtained from X by
ipping the variables in B. We say that f is sensitive to B on X if f(X) 6= f(XB).The blo
k sensitivity bsX(f) of f on X is the maximum number t for whi
h thereexist t disjoint sets of indi
es B1; : : : ; Bt su
h that f is sensitive to ea
h Bi on X.The blo
k sensitivity bs(f) of f is the maximum of bsX(f) over all X 2 f0; 1gN .For example, bs(ORN ) = N , be
ause if we take X = (0; : : : ; 0) and Bi = fig,then 
ipping Bi in X 
ips the value of ORN from 0 to 1.We 
an adapt the proof of [Nisan and Szegedy 1994, Lemma 3.8℄ on lower boundsof polynomials to get lower bounds on the number of queries in a quantum networkin terms of blo
k sensitivity.2 The proof uses a theorem from [Ehli
h and Zeller1964; Rivlin and Cheney 1966℄:Theorem 4.12 (Ehli
h & Zeller; Rivlin & Cheney). Let p : R ! R be apolynomial su
h that b1 � p(i) � b2 for every integer 0 � i � N , and the derivativep0 satis�es jp0(x)j � 
 for some real 0 � x � N . Then deg(p) �p
N=(
+ b2 � b1).Theorem 4.13. If f is a Boolean fun
tion, thenQE(f) �rbs(f)8 and Q2(f) �r bs(f)16 :Proof. We prove the lower bound on Q2(f) here, the bound on QE(f) is 
om-pletely analogous. Consider a network using T = Q2(f) queries that 
omputes fwith error probability � 1=3. Let p be the polynomial of degree � 2T that approx-imates f , obtained as for Theorem 4.8. Note that p(X) 2 [0; 1℄ for all X 2 f0; 1gN ,be
ause p represents a probability.2This theorem 
an also be proved by an argument similar to the lower bound proof for quantumsear
hing in [Bennett et al. 1997℄, see e.g. [Vazirani 1998℄.



Quantum Lower Bounds by Polynomials � 13Let b = bs(f), and Z and B1; : : : ; Bb be the input and sets that a
hieve the blo
ksensitivity. We assume without loss of generality that f(Z) = 0. We transformp(x0; : : : ; xN�1) into a polynomial q(y1; : : : ; yb) by repla
ing every xj in p as follows:(1) xj = (1� zj)yi + zj(1� yi) if j 2 Bi(2) xj = zj if j o

urs in none of the BiNow it is easy to see that q has the following properties:(1) q is a multilinear polynomial of degree � d � 2T(2) q(Y ) 2 [0; 1℄ for all Y 2 f0; 1gb(3) q(~0) = p(Z) 2 [0; 1=3℄(4) q(ei) = p(ZBi) 2 [2=3; 1℄ for all unit ve
tors ei 2 f0; 1gbLet r be the single-variate polynomial of degree � d obtained from symmetrizingq over f0; 1gb (Lemma 3.2). Note that 0 � r(i) � 1 for every integer 0 � i � b,and for some x 2 [0; 1℄ we have r0(x) � 1=3 (be
ause r(0) � 1=3 and r(1) � 2=3).Applying Theorem 4.12 we obtain d � p(1=3)b=(1=3+ 1� 0) = pb=4, hen
eT �pb=16.We 
an generalize this result to the 
omputation of partial Boolean fun
tions,whi
h are only de�ned on a domainD � f0; 1gN of inputs that satisfy some promise,by generalizing the de�nition of blo
k sensitivity to partial fun
tions in the obviousway.5. POLYNOMIAL RELATION FOR CLASSICAL AND QUANTUM COMPLEXITYHere we will 
ompare the 
lassi
al 
omplexities D(f) and R(f) with the quantum
omplexities. First some separations: in the next se
tion we showQ2(PARITYN ) =dN=2e while D(PARITYN ) = N . In the bounded-error setting Q2(ORN ) 2 �(pN)by Grover's algorithm, while R(ORN ) 2 �(N) and D(ORN ) = N , so we have aquadrati
 gap between Q2(f) on the one hand and R(f) and D(f) on the other.3Nisan proved that the randomized 
omplexity is at most polynomially betterthan the deterministi
 
omplexity: D(f) 2 O(R(f)3) [Nisan 1991℄. As mentionedin Se
tion 4, we 
an prove that also the quantum 
omplexity 
an be at most poly-nomially better than the best deterministi
 algorithm: D(f) 2 O(Q2(f)8). Here wegive the stronger result that D(f) 2 O(Q2(f)6). In other words, if we 
an 
omputesome fun
tion quantumly with bounded-error using T queries, we 
an 
ompute it
lassi
ally error-free using O(T 6) queries. We will need the notion of 
erti�
ate
omplexity :Definition 5.1. Let C be an assignment C : S ! f0; 1g of values to some subsetS of the N variables. We say that C is 
onsistent with X 2 f0; 1gN if xi = C(i)for all i 2 S.3In the 
ase of randomized de
ision trees, no fun
tion is known for whi
h there is a quadrati
gap between D(f) and R(f). The best known separation is for 
omplete binary AND/OR-trees,where D(f) = N and R(f) 2 �(N0:753:::), and it has been 
onje
tured that this is the largestgap possible. This holds both for zero-error randomized trees [Saks and Wigderson 1986℄ and forbounded-error trees [Santha 1991℄.
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a, R. de WolfFor b 2 f0; 1g, a b-
erti�
ate for f is an assignment C su
h that f(X) = bwhenever X is 
onsistent with C. The size of C is jSj.The 
erti�
ate 
omplexity CX(f) of f on X is the size of a smallest f(X)-
erti�
ate that is 
onsistent with X. The 
erti�
ate 
omplexity of f is C(f) =maxX CX (f). The 1-
erti�
ate 
omplexity of f is C(1)(f) = maxfXjf(X)=1g CX(f),and similarly we de�ne C(0)(f).For example, if f is the OR-fun
tion, then the 
erti�
ate 
omplexity on the input(1; 0; 0; : : : ; 0) is 1, be
ause the assignment x0 = 1 already for
es the OR to 1. Thesame holds for the other X for whi
h f(X) = 1, so C(1)(f) = 1. On the otherhand, the 
erti�
ate 
omplexity on (0; 0; : : : ; 0) is N , so C(f) = N .The �rst inequality in the next lemma is obvious from the de�nitions, the se
ondinequality is [Nisan 1991, Lemma 2.4℄. We in
lude the proof for 
ompleteness.Lemma 5.2 (Nisan). C(1)(f) � C(f) � bs(f)2.Proof. Consider an input X 2 f0; 1gN and let B1; : : : ; Bb be disjoint minimalsets of variables that a
hieve the blo
k sensitivity b = bsX(f) � bs(f). We willshow that C : [iBi ! f0; 1g that sets variables a

ording to X , is a 
erti�
ate forX of size � bs(f)2.Firstly, if C were not an f(X)-
erti�
ate then let X 0 be an input that agreeswith C, su
h that f(X 0) 6= f(X). Let X 0 = XBb+1 . Now f is sensitive to Bb+1 onX and Bb+1 is disjoint from B1; : : : ; Bb, whi
h 
ontradi
ts b = bsX(f). Hen
e C isan f(X)-
erti�
ate.Se
ondly, note that for 1 � i � b we must have jBij � bsXBi (f): if we 
ip oneof the Bi-variables in XBi then the fun
tion value must 
ip from f(XBi) to f(X)(otherwise Bi would not be minimal), so every Bi-variable forms a sensitive set forf on input XBi . Hen
e the size of C is j [i Bij = Pbi=1 jBij � Pbi=1 bsXBi (f) �bs(f)2.The 
ru
ial lemma is the following, whi
h we prove along the lines of [Nisan 1991,Lemma 4.1℄.Lemma 5.3. D(f) � C(1)(f)bs(f).Proof. The following des
ribes an algorithm to 
ompute f(X), querying atmost C(1)(f)bs(f) variables of X (in the algorithm, by a \
onsistent" 
erti�
ateC or input Y at some point we mean a C or Y that agrees with the values of allvariables queried up to that point).(1) Repeat the following at most bs(f) times:Pi
k a 
onsistent 1-
erti�
ate C and query those of its variableswhose X-values are still unknown (if there is no su
h C, then return0 and stop); if the queried values agree with C then return 1 andstop.(2) Pi
k a 
onsistent Y 2 f0; 1gN and return f(Y ).The nondeterministi
 \pi
k a C" and \pi
k a Y " 
an easily be made deterministi
by 
hoosing the �rst C resp. Y in some �xed order. Call this algorithm A. Sin
eA runs for at most bs(f) stages and ea
h stage queries at most C(1)(f) variables,A queries at most C(1)(f)bs(f) variables.



Quantum Lower Bounds by Polynomials � 15It remains to show thatA always returns the right answer. If it returns an answerin step 1, this is either be
ause there are no 
onsistent 1-
erti�
ates left (and hen
ef(X) must be 0) or be
ause X is found to agree with a parti
ular 1-
erti�
ate C;in both 
ases A gives the right answer.Now 
onsider the 
ase where A returns an answer in step 2. We will showthat all 
onsistent Y must have the same f -value. Suppose not. Then there are
onsistent Y; Y 0 with f(Y ) = 0 and f(Y 0) = 1. A has queried b = bs(f) 1-
erti�
ates C1; C2; : : : ; Cb. Furthermore, Y 0 
ontains a 
onsistent 1-
erti�
ate Cb+1.We will derive from these Ci disjoint sets Bi su
h that f is sensitive to ea
h Bion Y . For every 1 � i � b + 1, de�ne Bi as the set of variables on whi
h Y andCi disagree. Clearly, ea
h Bi is non-empty. Note that Y Bi agrees with Ci, sof(Y Bi) = 1 whi
h shows that f is sensitive to ea
h Bi on Y . Let v be a variablein some Bi (1 � i � b), then X(v) = Y (v) 6= Ci(v). Now for j > i, Cj has been
hosen 
onsistent with all variables queried up to that point (in
luding v), so we
annot have X(v) = Y (v) 6= Cj(v), hen
e v 62 Bj . This shows that all Bi andBj are disjoint. But then f is sensitive to bs(f) + 1 disjoint sets on Y , whi
h is a
ontradi
tion. A

ordingly, all 
onsistent Y in step 2 must have the same f -value,and A returns the right value f(Y ) = f(X) in step 2, be
ause X is one of those
onsistent Y .The inequality of the previous lemma is tight, be
ause if f =OR, thenD(f) = N ,C(1)(f) = 1, bs(f) = N .The previous two lemmas imply D(f) � bs(f)3. Combining this with Theo-rem 4.13 (bs(f) � 16 Q2(f)2), we obtain the main result:Theorem 5.4. If f is a Boolean fun
tion, then D(f) � 4096 Q2(f)6.We do not know if the D(f) 2 O(Q2(f)6)-relation is tight, and suspe
t thatit is not. The best separation we know is for OR and similar fun
tions, whereD(f) = N and Q2(f) 2 �(pN). However, for su
h symmetri
 Boolean fun
tionwe 
an do no better than a quadrati
 separation: D(f) � N always holds, and wehave Q2(f) 2 
(pN) by Theorem 4.10, hen
e D(f) 2 O(Q2(f)2) for symmetri
f . For monotone Boolean fun
tions, where the fun
tion value either in
reases orde
reases monotoni
ally if we set more input bits to 1, we 
an use [Nisan 1991,Proposition 2.2℄ (bs(f) = C(f)) to prove D(f) � 256 Q2(f)4. For the 
ase ofexa
t 
omputation we 
an also give a better result: Nisan and Smolensky provedD(f) � 2 deg(f)4 for any f (they never published this, but allowed their proofto be in
luded in [Buhrman and Wolf 2001℄). Together with our Theorem 4.3 thisyieldsTheorem 5.5. If f is a Boolean fun
tion, then D(f) � 32 QE(f)4.As a by-produ
t, we improve the polynomial relation between D(f) andgdeg(f).Nisan and Szegedy [Nisan and Szegedy 1994, Theorem 3.9℄ provedgdeg(f) � D(f) �1296 gdeg(f)8: Using our result D(f) � bs(f)3 and Nisan and Szegedy's bs(f) �6gdeg(f)2 [Nisan and Szegedy 1994, Lemma 3.8℄ we obtainCorollary 5.6. gdeg(f) � D(f) � 216gdeg(f)6:
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a, R. de Wolf6. SOME PARTICULAR FUNCTIONSIn this se
tion we 
onsider the pre
ise 
omplexity of various spe
i�
 fun
tions.First we 
onsider the OR-fun
tion, whi
h is related to sear
h. By Grover's well-known sear
h algorithm [Grover 1996; Boyer et al. 1998℄, if at least one xi equals1, we 
an �nd an index i su
h that xi = 1 with high probability of su

ess inO(pN) queries. This implies that we 
an also 
ompute the OR-fun
tion with highsu

ess probability in O(pN): let Grover's algorithm generate an index i, andreturn xi. Sin
e bs(ORN ) = N , Theorem 4.13 gives us a lower bound of 14pNon 
omputing ORN with bounded error probability (this 
(pN) bound was �rstshown in [Bennett et al. 1997℄ and is given in a tighter form in [Boyer et al. 1998;Zalka 1999℄, but the way we obtained it here is rather di�erent from those proofs).Thus Q2(ORN ) 2 �(pN), where 
lassi
ally we require �(N) queries. Now supposewe want to get rid of the probability of error: 
an we 
ompute ORN exa
tly orwith zero-error using O(pN) queries? If not, 
an quantum 
omputation give us atleast some advantage over the 
lassi
al deterministi
 
ase? Both questions have anegative answer:Proposition 6.1. Q0(ORN ) = N .Proof. Consider a zero-error network for ORN that uses T = Q0(ORN ) queries.By Lemma 4.1, there are 
omplex-valued polynomials pk of degree at most T , su
hthat the �nal state of the network on bla
k-box X isj�X i = Xk2K pk(X)jki:Let B be the set of all basis states having 10 as rightmost bits (i.e., where theoutput is the answer 0). Then for every k 2 B we must have pk(X) = 0 if X 6=~0 = (0; : : : ; 0), otherwise the probability of getting the in
orre
t answer 0 on j�X iwould be non-zero. On the other hand, there must be at least one k0 2 B su
h thatpk0(~0) 6= 0, sin
e the probability of getting the 
orre
t answer 0 on j�~0imust be non-zero. Let p(X) be the real part of 1� pk0(X)=pk0(~0). This polynomial p has degreeat most T and represents ORN . But then p must have degree deg(ORN ) = N , soT � N .Corollary 6.2. A quantum network for exa
t or zero-error sear
h requires Nqueries.In 
ontrast, under the promise that the number of solutions is either 0 or t,for some �xed known t, exa
t sear
h 
an be done in O(pN=t) queries [Brassardet al. 2000℄. A partial blo
k sensitivity argument (see the 
omment following The-orem 4.13) shows that this is optimal up to a multipli
ative 
onstant.Like the OR-fun
tion, PARITY has deg(PARITYN ) = N , so by Theorem 4.3exa
t 
omputation requires at least dN=2e queries. This is also suÆ
ient. It is wellknown that the XOR of 2 variables 
an be 
omputed using only one query [Cleveet al. 1998℄. Assuming N even, we 
an group the variables of X as N=2 pairs:(x0; x1); (x2; x3); : : : ; (xN�2; xN�1), and 
ompute the XOR of all pairs using N=2queries. The parity of X is the parity of these N=2 XOR values, whi
h 
an be
omputed without any further queries. If we allow bounded-error, then dN=2e
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ourse still suÆ
e. It follows from Theorem 4.8 that this 
annot beimproved, be
ausegdeg(PARITYN ) = N [Minsky and Papert 1968℄:Lemma 6.3 (Minsky, Papert). gdeg(PARITYN ) = N .Proof. Let f be PARITY on N variables. Let p be a polynomial of degreegdeg(f) that approximates f . Sin
e p approximates f , its symmetrization psym alsoapproximates f . By Lemma 3.2, there is a polynomial q, of degree at mostgdeg(f),su
h that q(jX j) = psym(X) for all inputs. Thus we must have jf(X)� q(jX j)j �1=3, soq(0) � 1=3, q(1) � 2=3, . . . , q(N � 1) � 2=3, q(N) � 1=3 (assuming Neven).We see that the polynomial q(x) � 1=2 must have at least N zeroes, hen
e q hasdegree at least N andgdeg(f) = N .Proposition 6.4. If f is PARITY on f0; 1gN , then QE(f) = Q0(f) = Q2(f) =dN=2e.4Note that this result also implies that Theorems 4.3 and 4.8 are tight. For
lassi
al algorithms, N queries are ne
essary in the exa
t, zero-error, and bounded-error settings. Note that while 
omputing PARITY on a quantum network is mu
hharder than OR in the bounded-error setting (dN=2e versus �(pN)), in the exa
tsetting PARITY is a
tually easier (dN=2e versus N).The upper bound on PARITY uses the fa
t that the XOR 
onne
tive 
an be
omputed with only one query. Using polynomial arguments, it turns out thatXOR and its negation are the only examples among all 16 
onne
tives on 2 variableswhere quantum gives an advantage over 
lassi
al 
omputation.Sin
e ORN 
an be redu
ed to MAJORITY on 2N � 1 variables (if we set the�rst N � 1 variables to 1, then the MAJORITY of all variables equals the ORof the last N variables) and OR requires N queries to be 
omputed exa
tly orwith zero-error, it follows that MAJN takes at least (N + 1)=2 queries. Hayes,Kutin, and Van Melkebeek [Hayes et al. 1998℄ found an exa
t quantum algorithmthat uses at most N + 1 � w(N) queries, where w(N) is the number of 1s in thebinary representation of N ; this 
an save up to logN queries. This also followsfrom 
lassi
al results [Saks and Werman 1991; Alonso et al. 1993℄ that show thatan item with the majority value 
an be identi�ed 
lassi
ally deterministi
ally withN � w(N) 
omparisons between bits (a 
omparison between two input bits is theparity of the two bits, whi
h 
an be 
omputed with 1 quantum query). For thezero-error 
ase, the same (N + 1)=2 lower bound applies; Van Melkebeek, Hayesand Kutin give a zero-error quantum algorithm that works in roughly 23N queries.For the bounded-error 
ase, we 
an apply Theorem 4.10: �(MAJN ) = 1, so we needQ2(MAJN ) 2 �(N) queries. The best upper bound we have here is N=2 + pN ,whi
h follows from [Dam 1998℄.4This has also been proved independently by Farhi, Goldstone, Gutmann, and Sipser [Farhi et al.1998℄, using a di�erent te
hnique. As noted independently by Terhal [Terhal 1997℄ and [Farhiet al. 1998℄, this result immediately implies results by Ozhigov [Ozhigov 1998℄ to the e�e
t thatno quantum 
omputer 
an signi�
antly speed up the 
omputation of all fun
tions (this followsbe
ause no quantum 
omputer 
an signi�
antly speed up the 
omputation of PARITY).
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a, R. de WolfThe 
(N) lower bound for MAJORITY also implies a lower bound for the numberof 
omparisons required to sort N totally ordered elements. It is well known thatN logN + �(N) 
omparisons between elements are ne
essary and suÆ
ient forsorting on a 
lassi
al 
omputer. Note that if we 
an sort then we 
an 
omputeMAJORITY: if we sort the N -bit bla
k-box then the bit at the (N=2)th positiongives the MAJORITY-value (a 
omparison between 2 bla
k-box bits 
an easily besimulated by a few queries). Hen
e our 
(N)-bound for MAJORITY implies:Corollary 6.5. Sorting N elements on a quantum 
omputer takes at least
(N) 
omparisons.An 
(N) lower bound for sorting was also derived independently in [Farhi et al.1999a℄, via a di�erent appli
ation of our polynomial-based method. The bound hasre
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