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tIn the setting of 
ommuni
ation 
omplexity, two distributed parties want to 
omputea fun
tion depending on both their inputs, using as little 
ommuni
ation as possible.The required 
ommuni
ation 
an sometimes be signi�
antly lowered if we allow theparties the use of quantum 
ommuni
ation. We survey the main results of the youngarea of quantum 
ommuni
ation 
omplexity: its relation to teleportation and dense
oding, the main examples of fast quantum 
ommuni
ation proto
ols, lower bounds,and some appli
ations.Keywords: Quantum 
omputing. Communi
ation 
omplexity.
1 Introdu
tionThe area of 
ommuni
ation 
omplexity deals with the following type of prob-lem. There are two separated parties, 
alled Ali
e and Bob. Ali
e re
eives someinput x 2 X, Bob re
eives some y 2 Y , and together they want to 
omputesome fun
tion f(x; y). As the value f(x; y) will generally depend on both xand y, neither Ali
e nor Bob will have suÆ
ient information to do the 
om-putation by themselves, so they will have to 
ommuni
ate in order to a
hievetheir goal. In this model, individual 
omputation is free, but 
ommuni
ationis expensive and has to be minimized. How many bits do they need to 
om-muni
ate between them in order to solve this? Clearly, Ali
e 
an just sendher 
omplete input to Bob, but sometimes more eÆ
ient s
hemes are possible.This model was introdu
ed by Yao [64℄ and has been studied extensively, both1 Supported by Talent grant S 62{565 from the Netherlands Organization for S
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for its appli
ations (like lower bounds on VLSI and 
ir
uits) and for its ownsake. We refer to [45,38℄ for de�nitions and results.An interesting variant of the above is quantum 
ommuni
ation 
omplexity:suppose that Ali
e and Bob ea
h have a quantum 
omputer at their dis-posal and are allowed to ex
hange quantum bits (qubits) and/or to make useof the quantum 
orrelations given by shared EPR-pairs (entangled pairs ofqubits named after Einstein, Podolsky, and Rosen [31℄). Can Ali
e and Bobnow 
ompute f with less 
ommuni
ation than in the 
lassi
al 
ase? Quantum
ommuni
ation 
omplexity was �rst 
onsidered by Yao [65℄ for the model withqubit 
ommuni
ation and no prior EPR-pairs, and it was shown later that forsome problems the amount of 
ommuni
ation required in the quantum worldis indeed 
onsiderably less than the amount of 
lassi
al 
ommuni
ation.In this survey, we �rst give brief explanations of quantum 
omputation and
ommuni
ation, and then 
over the main results of quantum 
ommuni
ation
omplexity: upper bounds (Se
tion 5), lower bounds (Se
tion 6), and appli
a-tions (Se
tion 7). We in
lude proofs of some of the 
entral results and refer-en
es to others. Some other re
ent surveys of quantum 
ommuni
ation 
om-plexity are [60,18,41,16℄, and a more popular a

ount 
an be found in [59℄.Our survey di�ers from these in being a bit more extensive and up to date.2 Quantum ComputationIn this se
tion we brie
y give the relevant ba
kground from quantum 
ompu-tation, referring to the book of Nielsen and Chuang [53℄ for more details.2.1 States and operationsThe 
lassi
al unit of 
omputation is a bit, whi
h 
an take on the values 0 or1. In the quantum 
ase, the unit of 
omputation is a qubit, whi
h is a linear
ombination or superposition of the two 
lassi
al values:�0j0i+ �1j1i:More generally, an m-qubit state j�i is a superposition of all 2m di�erent
lassi
al m-bit strings: j�i = Xi2f0;1gm �ijii:The 
lassi
al state jii is 
alled a basis state. The 
oeÆ
ient �i is a 
om-plex number, whi
h is 
alled the amplitude of jii. The amplitudes form a 2m-dimensional 
omplex ve
tor, whi
h we require to have norm 1 (i.e. Pi j�ij2 =2



1). If some system is in state j�i and some other is in state j i, then theirjoint state is the tensor produ
t j�i 
 j i = j�ij i.We 
an basi
ally do two things to a quantum state: measure it or perform aunitary operation to it. If we measure j�i, then we will see a basis state; wewill see jii with probability j�ij2. Be
ause j�i has norm 1, the probabilitiesj�ij2 sum to 1, as they should. A measurement \
ollapses" the measured stateto the measurement out
ome: if we see jii, then j�i has 
ollapsed to jii, andall other information in j�i is gone.Apart from measuring, we 
an also transform the state, i.e., 
hange the am-plitudes. Quantum me
hani
s stipulates that this transformation U must bea linear transformation on the 2m-dimensional ve
tor of amplitudes:U 0BBBBB��0:::0...�1:::1
1CCCCCA = 0BBBBB��0:::0...�1:::1

1CCCCCA :Sin
e the new ve
tor of amplitudes �i must also have norm 1, it follows that thelinear transformation U must be norm-preserving and hen
e unitary. 2 Thisin turn implies that U has an inverse (in fa
t equal to its 
onjugate transposeU�), hen
e non-measuring quantum operations are reversible.2.2 Quantum algorithmsWe des
ribe quantum algorithms in the quantum 
ir
uit model [29,65℄, ratherthan the somewhat more 
umbersome quantum Turing ma
hine model [28,14℄.A 
lassi
al Boolean 
ir
uit is a dire
ted a
y
li
 graph of elementary Booleangates (usually AND, OR, and NOT), only a
ting on one or two bits at a time.It transforms an initial ve
tor of bits (
ontaining the input) into the output. Aquantum 
ir
uit is similar, ex
ept that the 
lassi
al Boolean gates now be
omeelementary quantum gates. Su
h a gate is a unitary transformation a
ting onlyon one or two qubits, and impli
itly a
ting as the identity on the other qubitsof the state. A simple example of a 1-qubit gate is the Hadamard transform,whi
h maps basis state jbi to 1p2(j0i+ (�1)bj1i). In matrix form, this isH = 1p2 0B� 1 11 �11CA :2 Both quantum measurements and quantum operations allow for a somewhatmore general des
ription than given here (POVMs and superoperators, respe
tively,see [53℄), but the above de�nitions suÆ
e for our purposes.3



An example of a 2-qubit gate is the 
ontrolled-NOT (CNOT) gate, whi
hnegates the se
ond bit of the state depending on the �rst bit: j
; bi ! j
; b�
i.In matrix form, this is C = 0BBBBBBBB� 1 0 0 00 1 0 00 0 0 10 0 1 0
1CCCCCCCCA :It is known that the set of gates 
onsisting of CNOT and all 1-qubit gates isuniversal, meaning that any other unitary transformation 
an be written as aprodu
t of gates from this set. We refer to [6,53℄ for more details.The produ
t of all elementary gates in a quantum 
ir
uit is a big unitarytransformation that transforms the initial state (usually a 
lassi
al bitstring
ontaining the input x) into a �nal superposition. The output of the 
ir
uitis then the out
ome of measuring some dedi
ated part of the �nal state. Wesay that a quantum 
ir
uit 
omputes some fun
tion f : f0; 1gn ! Z exa
tly ifit always outputs the 
orre
t value f(x) on input x. The 
ir
uit 
omputes fwith bounded error if it outputs f(x) with probability at least 2=3, for all x.Noti
e that a quantum 
ir
uit involves only one measurement; this is withoutloss of generality, sin
e it is known that measurements 
an always be pushedto the end at the 
ost of a moderate amount of extra memory.The 
omplexity of a quantum 
ir
uit is usually measured by the number ofelementary gates it 
ontains. A 
ir
uit is deemed eÆ
ient if its 
omplexity isat most polynomial in the length n of the input. The most spe
ta
ular instan
eof an eÆ
ient quantum 
ir
uit (rather, a uniform family of su
h 
ir
uits, onefor ea
h n) is still Shor's 1994 eÆ
ient algorithm for �nding fa
tors of largeintegers. It �nds a fa
tor of arbitrary n-bit numbers with high probabilityusing only n2polylog(n) elementary gates. This 
ompromises the se
urity ofmodern publi
-key 
ryptographi
 systems like RSA, whi
h are based on theassumed hardness of fa
toring.2.3 Query algorithmsA type of quantum algorithms that we will refer to later are the query algo-rithms. In fa
t, most existing quantum algorithms are of this type. Here theinput is not part of the initial state, but en
oded in a spe
ial \bla
k box"quantum gate. The bla
k box maps basis state ji; bi to ji; b� xii, thus givinga

ess to the bits xi of the input. Note that a quantum algorithm 
an run thebla
k box on a superposition of basis states, gaining a

ess to several inputbits xi at the same time. One su
h appli
ation of the bla
k box is 
alled a4



query. The 
omplexity of a quantum 
ir
uit for 
omputing some fun
tion f isnow the number of queries we need on the worst-
ase input; we don't 
ountthe 
omplexity of other operations in this model. In the 
lassi
al world, thisquery 
omplexity is known as the de
ision tree 
omplexity of f .A simple but illustrative example is the Deuts
h-Jozsa algorithm [30,27℄: sup-pose that n is a power of 2, and we get the promise that the input x 2 f0; 1gnis either 0 : : : 0 (\
onstant") or has exa
tly n=2 0s and n=2 1s (\balan
ed").De�ne DeJo(x) = 1 in the �rst 
ase and DeJo(x) = 0 in the se
ond. It is easyto see that a deterministi
 
lassi
al 
omputer needs n=2 + 1 queries for this(if the 
omputer has queried n=2 bits and they are all 0, then the fun
tionvalue is still undetermined). On the other hand, here is a 1-query quantumalgorithm for this problem:(1) Start in a basis state j0 : : : 01i of logn zeroes followed by a 1(2) Apply a Hadamard transform to ea
h of the logn+ 1 qubits(3) Query the bla
k box on
e(4) Apply a Hadamard transform to the �rst logn qubits(5) Measure the �rst logn qubits, output 1 if the observed state is j0 : : : 0iand output 0 otherwiseBy following the state through these steps, it may be veri�ed that the algo-rithm always outputs 1 if the input x is 
onstant, and 0 if it is balan
ed.Another important quantum query algorithm is Grover's sear
h algorithm [35℄,whi
h �nds an i su
h that xi = 1 if su
h an i exists in the n-bit input. Ithas error probability � 1=3 on ea
h input and uses O(pn) queries, whi
h isoptimal [12,15,66℄. Note that the algorithm 
an also be viewed as 
omputingthe OR-fun
tion: it 
an determine whether at least one of the input bits is 1.
3 Quantum Communi
ationThe area of quantum information theory deals with the properties of quan-tum information and its 
ommuni
ation between di�erent parties. We referto [13,53℄ for general surveys, and will here restri
t ourselves to explainingtwo important primitives: teleportation [10℄ and superdense 
oding [11℄. Thesepre-date quantum 
ommuni
ation 
omplexity and show some of the power ofquantum 
ommuni
ation.We �rst show how teleporting a qubit works. Ali
e has a qubit �0j0i + �1j1ithat she wants to send to Bob via a 
lassi
al 
hannel. Without further re-sour
es this would be impossible, but Ali
e also shares an EPR-pair 1p2(j00i+5



j11i) with Bob. Initially, their joint state is(�0j0i+ �1j1i)
 1p2(j00i+ j11i):The �rst two qubits belong to Ali
e, the third to Bob. Ali
e performs a CNOTon her two qubits and then a Hadamard transform on her �rst qubit. Theirjoint state 
an now be written as12 j00i(�0j0i+ �1j1i) +12 j01i(�0j1i+ �1j0i) +12 j10i(�0j0i � �1j1i) +12 j11i|{z}Ali
e (�0j1i � �1j0i)| {z }Bob :Ali
e then measures her two qubits and sends the result (2 random 
lassi
albits) to Bob, who now knows whi
h transformation he must do on his qubit inorder to regain the qubit �0j0i+�1j1i. For instan
e, if Ali
e sent 11 then Bobknows that his qubit is �0j1i � �1j0i. A bit-
ip (jbi ! j1� bi) followed by aphase-
ip (jbi ! (�1)bjbi) will give him Ali
e's original qubit �0j0i+�1j1i. Infa
t, if Ali
e's qubit had been entangled with other qubits, then teleportationpreserves this entanglement: Bob then re
eives a qubit that is entangled inthe same way as Ali
e's original qubit was.Note that the qubit on Ali
e's side has been destroyed: teleporting moves aqubit from A to B, rather than 
opying it. In fa
t, 
opying an unknown qubit isimpossible [62℄, whi
h 
an be seen as follows. Suppose C were a 1-qubit 
opier,i.e. Cj�ij0i = j�ij�i for every qubit j�i. In parti
ular Cj0ij0i = j0ij0i andCj1ij0i = j1ij1i. But then C would not 
opy j�i = 1p2(j0i+j1i) 
orre
tly, sin
eby linearity Cj�ij0i = 1p2(Cj0ij0i+ Cj1ij0i) = 1p2(j0ij0i+ j1ij1i) 6= j�ij�i.In teleportation, Ali
e uses 2 
lassi
al bits and 1 EPR-pair to send 1 qubit toBob. Superdense 
oding a
hieves the opposite: using 1 qubit and 1 EPR-pair,Ali
e 
an send 2 
lassi
al bits b1; b2 to Bob. It works as follows. Initially theyshare an EPR-pair 1p2(j00i+ j11i). First, if b1 = 1 then Ali
e applies a phase-
ip to her half of the pair. Se
ond, if b2 = 1 she applies a bit-
ip. Third, shesends her half of the EPR-pair to Bob, who now has one of 4 states j�b1b2i:j�00i = 1p2(j00i+ j11i)j�01i = 1p2(j10i+ j01i)j�10i = 1p2(j00i � j11i)j�11i = 1p2(j10i � j01i)Sin
e these states are orthogonal, Bob 
an apply a unitary transformation6



that maps j�b1b2i ! jb1b2i and thus learn b1 and b2.Suppose Ali
e wants to send n 
lassi
al bits of information to Bob and they donot share any prior entanglement. Ali
e 
an just send her n bits to Bob, but,alternatively, Bob 
an also �rst send n=2 halves of EPR-pairs to Ali
e andthen Ali
e 
an send n bits in n=2 qubits using dense 
oding. In either 
ase, nqubits are ex
hanged between them. If Ali
e and Bob already share n=2 priorEPR-pairs, then n=2 qubits suÆ
e by superdense 
oding. The following resultshows that this is optimal. We will refer to it as Holevo's theorem, be
ausethe �rst part is an immediate 
onsequen
e of a result of [36℄ (the se
ond partwas derived in [26℄).Theorem 1 (Holevo [36℄) If Ali
e wants to send n bits of information toBob via a qubit 
hannel, and they don't share prior entanglement, then theyhave to ex
hange at least n qubits. If they do share unlimited prior entangle-ment, then Ali
e has to send at least n=2 qubits to Bob, no matter how manyqubits Bob sends to Ali
e.A somewhat stronger and more subtle variant of this lower bound was derivedby Nayak [48℄, improving upon [2℄. Suppose that Ali
e doesn't want to sendBob all of her n bits, but just wants to send a message that allows Bob to learnone of her bits xi, where Bob 
an 
hoose i after the message has been sent.Even for this weaker form of 
ommuni
ation, Ali
e has to send an 
(n)-qubitmessage.4 Quantum Communi
ation Complexity: The ModelFirst we sket
h the setting for 
lassi
al 
ommuni
ation 
omplexity, referringto [45,38℄ for more details. Ali
e and Bob want to 
ompute some fun
tionf : D ! f0; 1g, where D � X � Y . If the domain D equals X � Y thenf is 
alled a total fun
tion, otherwise it is a promise fun
tion. Ali
e re
eivesinput x 2 X, Bob re
eives input y 2 Y , with (x; y) 2 D. As the value f(x; y)will generally depend on both x and y, some 
ommuni
ation between Ali
eand Bob is required in order for them to be able to 
ompute f(x; y). We areinterested in the minimal amount of 
ommuni
ation they need.A 
ommuni
ation proto
ol is a distributed algorithm where �rst Ali
e doessome individual 
omputation, and then sends a message (of one or more bits)to Bob, then Bob does some 
omputation and sends a message to Ali
e, et
.Ea
h message is 
alled a round. After one or more rounds the proto
ol ter-minates and outputs some value, whi
h must be known to both players. The
ost of a proto
ol is the total number of bits 
ommuni
ated on the worst-
aseinput. A deterministi
 proto
ol for f always has to output the right value7



f(x; y) for all (x; y) 2 D. In a bounded-error proto
ol, Ali
e and Bob may 
ip
oins and the proto
ol has to output the right value f(x; y) with probability� 2=3 for all (x; y) 2 D. We use D(f) and R2(f) to denote the minimal 
ost ofdeterministi
 and bounded-error proto
ols for f , respe
tively. The subs
ript`2' in R2(f) stands for 2-sided bounded error. For R2(f) we 
an either allowAli
e and Bob to toss 
oins individually (private 
oin) or jointly (publi
 
oin).This makes not mu
h di�eren
e: a publi
 
oin 
an save at most O(logn) bitsof 
ommuni
ation [50℄, 
ompared to a proto
ol with a private 
oin.Some often studied total fun
tions where X = Y = f0; 1gn:� Equality: EQ(x; y) = 1 i� x = y� Inner produ
t: IP(x; y) = PARITY(x ^ y) = Pi xiyi (mod 2)(for x; y 2 f0; 1gn, xi is the ith bit of x and x ^ y 2 f0; 1gn is the bit-wiseAND of x and y)� Disjointness: DISJ(x; y) = NOR(x ^ y). This fun
tion is 1 i� there is no iwhere xi = yi = 1 (viewing x and y as 
hara
teristi
 ve
tors of sets, the setsare disjoint)It is known that D(EQ) = D(IP) = D(DISJ) = n+ 1, R2(IP) = R2(DISJ) =
(n). However, R2(EQ) is only O(1), as follows. Ali
e and Bob jointly toss arandom string r 2 f0; 1gn. Ali
e sends the bit a = x � r to Bob (where `�' isinner produ
t mod 2). Bob 
omputes b = y � r and 
ompares this with a. Ifx = y then a = b, but if x 6= y then a 6= b with probability 1/2. Thus Ali
eand Bob 
an de
ide equality with small error using O(n) publi
 
oin 
ips andO(1) 
ommuni
ation. Sin
e publi
 
oin and private 
oin proto
ols are 
lose,this also implies that R2(EQ) 2 O(logn) with a private 
oin.Now what happens if we give Ali
e and Bob a quantum 
omputer and allowthem to send ea
h other qubits and/or to make use of EPR-pairs that theyshare at the start of the proto
ol? Formally speaking, we 
an model a quantumproto
ol as follows. The total state 
onsists of 3 parts: Ali
e's private spa
e,the 
hannel, and Bob's private spa
e. The starting state is jxij0ijyi: Ali
egets x, the 
hannel is initially empty, and Bob gets y. Now Ali
e applies aunitary transformation to her spa
e and the 
hannel. This 
orresponds toher private 
omputation as well as to putting a message on the 
hannel (thelength of this message is the number of 
hannel-qubits a�e
ted by Ali
e'soperation). Then Bob applies a unitary transformation to his spa
e and the
hannel, et
. At the end of the proto
ol Ali
e or Bob makes a measurementto determine the output of the proto
ol. We use Q(f) to denote the minimal
ommuni
ation 
ost of a quantum proto
ol that 
omputes f(x; y) exa
tly (=with error probability 0). This model was introdu
ed by Yao [65℄. In these
ond model, introdu
ed by Cleve and Buhrman [25℄, Ali
e and Bob sharean unlimited number of EPR-pairs at the start of the proto
ol, but now they
ommuni
ate via a 
lassi
al 
hannel: the 
hannel has to be in a 
lassi
al state8



throughout the proto
ol. We use C�(f) for the minimal 
omplexity of an exa
tproto
ol for f in this model. Note that we only 
ount the 
ommuni
ation, notthe number of EPR-pairs used. The third variant 
ombines the strengths of theother two: here Ali
e and Bob start out with an unlimited number of sharedEPR-pairs and they are allowed to 
ommuni
ate qubits. We use Q�(f) todenote the 
ommuni
ation 
omplexity in this third model. By teleportation, 1EPR-pair and 2 
lassi
al bits 
an repla
e 1 qubit of 
ommuni
ation, so we haveQ�(f) � C�(f) � 2Q�(f). Similarly we de�ne Q2(f), Q�2(f), and C�2 (f) forbounded-error quantum proto
ols. Note that a shared EPR-pair 
an simulatea publi
 
oin toss: if Ali
e and Bob ea
h measure their half of the pair, theyget the same random bit.Before 
ontinuing to study this model, we �rst have to fa
e an important ques-tion: is there anything to be gained here? At �rst sight, the following argumentseems to rule out any signi�
ant gain. By de�nition, in the 
lassi
al worldD(f)bits have to be 
ommuni
ated in order to 
ompute f . Sin
e Holevo's theoremsays that k qubits 
annot 
ontain more information than k 
lassi
al bits, itseems that the quantum 
ommuni
ation 
omplexity should be roughly D(f)qubits as well (maybe D(f)=2 to a

ount for superdense 
oding, but not less).Fortunately and surprisingly, this argument is false, and quantum 
ommuni-
ation 
an sometimes be mu
h less than 
lassi
al 
ommuni
ation 
omplexity.The information-theoreti
 argument via Holevo's theorem fails, be
ause Ali
eand Bob do not need to 
ommuni
ate the information in the D(f) bits of the
lassi
al proto
ol; they are only interested in the value f(x; y), whi
h is just1 bit. Below we will survey the main examples that have so far been found ofgaps between quantum and 
lassi
al 
ommuni
ation 
omplexity.
5 Quantum Communi
ation Complexity: Upper bounds5.1 Initial stepsQuantum 
ommuni
ation 
omplexity was introdu
ed by Yao [65℄ and studiedby Kremer [44℄, but neither showed any advantages of quantum over 
lassi
al
ommuni
ation. Cleve and Buhrman [25℄ introdu
ed the variant with 
lassi-
al 
ommuni
ation and prior entanglement, and exhibited the �rst quantumproto
ol provably better than any 
lassi
al proto
ol. It uses quantum entan-glement to save 1 bit of 
lassi
al 
ommuni
ation. This gap was extended byBuhrman, Cleve, and van Dam [19℄ and, for arbitrary k parties, by Buhrman,van Dam, H�yer, and Tapp [23℄. 9



5.2 Buhrman, Cleve, WigdersonThe �rst impressively large gaps between quantum and 
lassi
al 
ommuni-
ation 
omplexity were exhibited by Buhrman, Cleve, and Wigderson [21℄.Their proto
ols are distributed versions of known quantum query algorithms,like the Deuts
h-Jozsa and Grover algorithms. The following lemma showshow a query algorithm indu
es a 
ommuni
ation proto
ol:Lemma 1 (BCW [21℄) Let g : f0; 1gn ! f0; 1g and f(x; y) = g(x ? y),where ? is any binary 
onne
tive (for instan
e � or ^). If there is a T -queryquantum algorithm for g, then there is a proto
ol for f that 
ommuni
atesT (2 logn+ 4) qubits (and uses no prior entanglement) and that has the sameerror probability as the query algorithm.Proof. The quantum proto
ol 
onsists of Ali
e's simulating the quantumquery algorithm A on input x?y. Every query in A will 
orrespond to 2 roundsof 
ommuni
ation. Namely, suppose Ali
e at some point wants to apply a queryto the state j�i = Pi;b �ibji; bi (for simpli
ity we omit Ali
e's workspa
e).Then she adds a j0i-qubit to the state, applies the unitary mapping ji; b; 0i !ji; b; xii, and sends the resulting state to Bob. Bob now applies the unitarymapping ji; b; xii ! ji; b�(xi ?yi); xii and sends the result ba
k to Ali
e. Ali
eapplies ji; b; xii ! ji; b; 0i, takes o� the last qubit, and ends up with the statePi;b �ibji; b� (xi ? yi)i, whi
h is exa
tly the result of applying an x ? y-queryto j�i. Thus every query to x ? y 
an be simulated using 2 logn + 4 qubitsof 
ommuni
ation. The �nal quantum proto
ol will have T (2 logn+4) qubitsof 
ommuni
ation and 
omputes f(x; y) with the same error probability as Ahas on input x ? y. 2Now 
onsider the disjointness fun
tion: DISJ(x; y) = NOR(x ^ y). Sin
eGrover's algorithm 
an 
ompute the NOR of n variables with O(pn) querieswith bounded-error, the previous lemma implies a bounded-error proto
ol fordisjointness with O(pn logn) qubits. On the other hand, the linear lowerbound for disjointness is a well-known result of 
lassi
al 
ommuni
ation 
om-plexity [39,56℄. Thus we obtain the following near-quadrati
 separation:Theorem 2 (BCW [21℄) Q2(DISJ) 2 O(pn logn) and R2(DISJ) 2 
(n).H�yer and de Wolf [37℄ slightly improved the upper bound on Q2(DISJ) toO(pn
log� n) for some 
onstant 
 > 1, thus showing that the logn in the upperbound 
an be repla
ed by a fun
tion that grows slower than any iteratedlogarithm. 10



Another separation is given by a distributed version of the Deuts
h-Jozsaproblem of Se
tion 2.3: de�ne EQ0(x; y) = DeJo(x � y). This is a promiseversion of equality, where the promise is that x and y are either equal or areat Hamming distan
e n=2. Sin
e there is an exa
t 1-query quantum algorithmfor DeJo, Lemma 1 implies Q(EQ0) 2 O(logn). In 
ontrast, Buhrman, Cleve,and Wigderson use a 
ombinatorial result of Frankl and R�odl [33℄ to prove the
lassi
al lower bound D(EQ0) 2 
(n). Thus we have the following exponentialseparation for exa
t proto
ols:Theorem 3 (BCW [21℄) Q(EQ0) 2 O(logn) and D(EQ0) 2 
(n).5.3 RazNoti
e the 
ontrast between the two separations of the previous se
tion. Forthe Deuts
h-Jozsa problem we get an exponential quantum-
lassi
al separa-tion, but the separation only holds if we for
e the 
lassi
al proto
ol to be exa
t;it is easy to see that O(logn) bits are suÆ
ient if we allow some error (the
lassi
al proto
ol 
an just try a few random positions i and 
he
k if xi = yi ornot). On the other hand, the gap for the disjointness fun
tion is only quadrati
,but it holds even if we allow 
lassi
al proto
ols to have some error probability.Ran Raz [55℄ has exhibited a fun
tion where the quantum-
lassi
al separationhas both features: the quantum proto
ol is exponentially better than the 
las-si
al proto
ol, even if the latter is allowed some error probability. Considerthe following promise problem P:Ali
e re
eives a unit ve
tor v 2 Rm and a de
omposition of the 
orrespond-ing spa
e in two orthogonal subspa
es H(0) and H(1). Bob re
eives an m�munitary transformation U . Promise: Uv is either \
lose" to H(0) or to H(1).Question: whi
h of the two?As stated, this is a problem with 
ontinuous input, but it 
an be dis
retizedin a natural way by approximating ea
h real number by O(logm) bits. Ali
eand Bob's input is now n = O(m2 logm) bits long. There is a simple yeteÆ
ient 2-round quantum proto
ol for this problem: Ali
e views v as a logm-qubit ve
tor and sends this to Bob. Bob applies U and sends ba
k the result.Ali
e then measures in whi
h subspa
e H(i) the ve
tor Uv lies and outputsthe resulting i. This takes only 2 logm = O(logn) qubits of 
ommuni
ation.The eÆ
ien
y of this proto
ol 
omes from the fa
t that an m-dimensionalve
tor 
an be \
ompressed" or \represented" as a logm-qubit state. Similar
ompression is not possible with 
lassi
al bits, whi
h suggests that any 
lassi
alproto
ol for P will have to send the ve
tor v more or less literally and hen
ewill require a lot of 
ommuni
ation. This turns out to be true but the proof(given in [55℄) is surprisingly hard. The result is the �rst exponential gap11



between Q2 and R2:Theorem 4 (Raz [55℄) Q2(P) 2 O(logn) and R2(P) 2 
(n1=4= logn).6 Quantum Communi
ation Complexity: Lower BoundsIn the previous se
tion we exhibited some of the power of quantum 
ommuni-
ation 
omplexity. Here we will look at its limitations, �rst for exa
t proto
olsand then for the bounded-error 
ase.6.1 Lower bounds on exa
t proto
olsQuite good lower bounds are known for exa
t quantum proto
ols for totalfun
tions. For a total fun
tion f : X � Y ! f0; 1g let Mf [x; y℄ = f(x; y)be the 
ommuni
ation matrix of f . This is an jXj � jY j Boolean matrix that
ompletely des
ribes f . Let rank(f) denote the rank of Mf over the reals.Mehlhorn and S
hmidt [47℄ proved that D(f) � log rank(f), whi
h is themain sour
e of lower bounds on D(f). For Q(f) a similar lower bound followsfrom te
hniques of Yao and Kremer [65,44℄, as �rst observed in [21℄. Thisbound was later extended to the 
ase where Ali
e and Bob share unlimitedprior entanglement by Buhrman and de Wolf [24℄. Their result turned out tobe equivalent to a result in Nielsen's thesis [52, Se
tion 6.4.2℄. The result is:Theorem 5 Q�(f) � 12 log rank(f) and C�(f) � log rank(f).Hen
e quantum 
ommuni
ation 
omplexity in the exa
t model with prior en-tanglement is maximal whenever Mf has full rank, whi
h happens for al-most all fun
tions, in
luding equality, (the 
omplement of) inner produ
t,and disjointness. For Q(f), the model without prior entanglement, the samebounds apply and it is open whether the fa
tor of 12 
an be removed inthis 
ase. For the equality and disjointness fun
tions, the optimal boundsQ(EQ) = Q(DISJ) = n+ 1 were shown re
ently by H�yer and de Wolf [37℄.How tight is the log rank(f) lower bound? It has been 
onje
tured thatD(f) �(log rank(f))O(1) for all total fun
tions, in whi
h 
ase log rank(f) would 
har-a
terize D(f) up to polynomial fa
tors. If this log-rank 
onje
ture is true, thenTheorem 5 implies that Q�(f) and D(f) are polynomially 
lose for all totalf , sin
e then Q�(f) � D(f) � (log rank(f))O(1) � (2Q�(f))O(1). Some small
lasses of fun
tions where this provably holds are identi�ed in [24℄. It shouldbe noted that, in fa
t, no total f is known where Q�(f) is more than a fa
torof 2 smaller than D(f) (the fa
tor of 2 
an be a
hieved by superdense 
oding).12



6.2 Lower bounds on bounded-error proto
olsThe previous se
tion showed some strong lower bounds for exa
t quantum pro-to
ols. The situation is worse in the 
ase of bounded-error proto
ols, for whi
honly a few good lower bounds are known. One of the few general lower boundte
hniques known to hold for bounded-error quantum 
omplexity (withoutprior entanglement), is the so-
alled \dis
repan
y method". This was shownby Kremer [44℄, who used it to derive an 
(n) lower bound for Q2(IP). Cleve,van Dam, Nielsen, and Tapp [26℄ later independently proved su
h a lowerbound for Q�2(IP).We will sket
h the very elegant proof of [26℄ here for the 
ase of exa
t proto
ols.The proof uses the IP-proto
ol to 
ommuni
ate Ali
e's n-bit input to Bob, andthen invokes Holevo's theorem to 
on
lude that many qubits must have been
ommuni
ated in order to a
hieve this. Suppose Ali
e and Bob have someproto
ol for IP. They 
an use this to 
ompute the following mapping:jxijyi ! jxi(�1)x�yjyi:Now suppose Ali
e starts with an arbitrary n-bit state jxi and Bob starts withthe uniform superposition 1p2n Py2f0;1gn jyi. If they apply the above mapping,the �nal state be
omes jxi 1p2n Xy2f0;1gn(�1)x�yjyi:If Bob applies a Hadamard transform to ea
h of his n qubits, then he obtainsthe basis state jxi, so Ali
e's n 
lassi
al bits have been 
ommuni
ated to Bob.Theorem 1 now implies that the IP-proto
ol must 
ommuni
ate n=2 qubits,even if Ali
e and Bob share unlimited prior entanglement. With some morete
hni
al 
ompli
ation, the same idea gives an 12(1� 2")2n lower bound for "-error proto
ols [26℄. The 
onstant fa
tor in this bound was re
ently improvedto the optimal 12 by Nayak and Salzman [49℄.The above proof works for IP, but does not easily yield good bounds in general.Neither does the dis
repan
y method, or an approximate version of the ranklower bound that was noted in [21℄. New lower bound te
hniques for quantum
ommuni
ation are required. Of parti
ular interest is whether the upper boundof roughly pn on Q2(DISJ) is tight. Be
ause disjointness 
an be redu
ed tomany other problems (it is in fa
t \
oNP-
omplete" [4℄), a good lower boundfor disjointness would imply many other lower bounds as well. H�yer and deWolf proved an 
(pn) lower bound for a restri
ted 
lass of proto
ols, namelythose whose a

eptan
e probability is a fun
tion of x^ y, rather than x and yseparately. All known quantum proto
ols for disjointness fall in this 
lass, butit is still rather limited. Klau
k [42℄ extended the 
lassi
al Fourier analysis-13



based lower bound te
hnique of Raz [54℄ to the quantum 
ase. The te
hniquegives good lower bounds on Q2(f) for threshold fun
tions (where f(x; y) = 1i� jx ^ yj � t) with suÆ
iently large threshold t. Unfortunately, it fails togive good bounds for the t = 1 
ase, whi
h is exa
tly the 
omplement ofdisjointness.Then, in a re
ent breakthrough, Razborov [57℄ established the expe
ted lowerbound, using a 
lever multidimensional version of the dis
repan
y method:Theorem 6 (Razborov [57℄) Q�2(DISJ) = 
(pn).Moreover, his lower bound method gives nearly optimal lower bounds onQ�2(f)for all fun
tions that are of the form f(x; y) = g(x ^ y) for some g dependingonly on the Hamming weight of its input.7 Quantum Communi
ation Complexity: Appli
ationsThe main appli
ations of 
lassi
al 
ommuni
ation 
omplexity have been inproving lower bounds for various models like VLSI, Boolean 
ir
uits, formulasize, Turing ma
hine 
omplexity, data stru
tures, automata size et
. We re-fer to [45,38℄ for many examples. Typi
ally one pro
eeds by showing that a
ommuni
ation 
omplexity problem f is \embedded" in the 
omputationalproblem P of interest, and then uses 
ommuni
ation 
omplexity lower boundson f to establish lower bounds on P . Similarly, quantum 
ommuni
ation 
om-plexity has been used to establish lower bounds in various models of quantum
omputation, though su
h appli
ations have re
eived relatively little attentionso far. We will brie
y mention some.Yao [65℄ initially introdu
ed quantum 
ommuni
ation 
omplexity as a toolfor proving a superlinear lower bound on the quantum formula size of themajority fun
tion (a \formula" is a 
ir
uit of restri
ted form). More re
ently,Klau
k [40℄ used one-round quantum 
ommuni
ation 
omplexity lower boundsto prove lower bounds on the size of quantum formulae.Sin
e upper bounds on query 
omplexity give upper bounds on 
ommuni
ation
omplexity (Lemma 1), lower bounds on 
ommuni
ation 
omplexity give lowerbounds on query 
omplexity. For instan
e, IP(x; y) = PARITY(x ^ y), so the
(n) bound for IP (Se
tion 6.2) implies an 
(n= logn) lower bound for thequantum query 
omplexity of the parity fun
tion, as observed by Buhrman,Cleve, and Wigderson [21℄. This query lower bound was later strengthened ton=2 in [7,32℄.Furthermore, as in the 
lassi
al 
ase, lower bounds on one-round 
ommuni
a-14



tion 
omplexity imply lower bounds on the size of quantum �nite automata.This was used by Klau
k [40℄ to show that Las Vegas (zero-error) quantum�nite automata 
annot be mu
h smaller than 
lassi
al deterministi
 �nite au-tomata.Again, as in the 
lassi
al 
ase, lower bounds on quantum 
ommuni
ation 
om-plexity give rise to lower bounds on the size of 
ertain quantum data stru
tures.For example, tradeo�s between size and a

ess time for the \stati
 prede
es-sor" and \stati
 membership" problems were obtained re
ently by Sen andVenkatesh [58℄.Finally, Ben-Or [9℄ has applied the lower bounds for IP in a new proof of these
urity of quantum key distribution.8 Other Developments and Open ProblemsHere we mention some other results in quantum 
ommuni
ation 
omplexityor related models:� Quantum sampling. For the sampling problem, Ali
e and Bob do notwant to 
ompute some f(x; y), but instead want to sample an (x; y)-paira

ording to some known joint probability distribution, using as little 
om-muni
ation as possible. Ambainis et al. [3℄ give a tight algebrai
 
hara
ter-ization of quantum sampling 
omplexity, and exhibit an exponential gapbetween the quantum and 
lassi
al 
ommuni
ation required for a samplingproblem related to disjointness.� Spooky 
ommuni
ation. Referring to Einstein's des
ription of 
ertainquantum e�e
ts as \spooky a
tion at a distan
e" (\spukhafte Fernwirku-ngen"), Brassard, Cleve, and Tapp [17℄ exhibit tasks that 
an be a
hieved inthe quantum world with entanglement and no 
ommuni
ation whatsoever,but that would require 
ommuni
ation in the 
lassi
al world. They also giveupper and lower bounds on the amount of 
lassi
al 
ommuni
ation neededto \simulate" EPR-pairs. Their results|and subsequent ones [46℄|may beviewed as quantitative extensions of the famous Bell inequalities [8℄.� Las Vegas proto
ols. In this survey we just 
onsidered two modes of 
om-putation: exa
t and bounded-error. An intermediate type of proto
ols arezero-error or Las Vegas proto
ols. These never output an in
orre
t answer,but may 
laim ignoran
e with probability at most 1/2. Some quantum-
lassi
al separations for zero-error proto
ols may be found in [22,40℄.� One-round 
ommuni
ation. Suppose the 
ommuni
ation 
onsists of justone round: Ali
e sends a message (depending on x) to Bob, who should then
ompute f(x; y). Klau
k [40℄ showed for all total fun
tions that quantumone-round 
ommuni
ation is not signi�
antly better than 
lassi
al one-round15




ommuni
ation in the 
ase of exa
t or zero-error proto
ols. For the 
ase ofbounded-error proto
ols this is still open.� Quantum �ngerprinting. The model of simultaneous message passing iseven more restri
ted than the one-round setting. Here there are three par-ties: Ali
e has x, Bob has y, they don't share entanglement or randomnessbut they 
an ea
h send one message to a referee, who wants to determinef(x; y). Buhrman, Cleve, Watrous, and de Wolf [20℄ gave an eÆ
ient quan-tum proto
ol for the equality fun
tion in this model: Ali
e and Bob sendO(logn)-qubit \quantum �ngerprints" of their respe
tive inputs to the ref-eree, who 
an then de
ide with high su

ess probability whether x = y. In
ontrast, 
lassi
ally the equality fun
tion requires �(pn) bits of 
ommuni-
ation in this model [1,51,5℄.� Rounds. In 
lassi
al 
ommuni
ation 
omplexity it is well known that al-lowing Ali
e and Bob k + 1 rounds of 
ommuni
ation instead of k redu
esthe required 
ommuni
ation exponentially for some fun
tions. An analogousresult has been shown for quantum 
ommuni
ation by Klau
k, Nayak, Ta-Shma, and Zu
kerman [43℄, using a quantum version of the 
lassi
al \roundelimination" te
hnique. This te
hnique has been further strengthened bySen and Venkatesh [58℄, giving for instan
e tight 
ommuni
ation-roundstradeo�s for the \greater than" fun
tion.� Non-deterministi
 
ommuni
ation 
omplexity. A non-deterministi
proto
ol has positive a

eptan
e probability on input (x; y) i� f(x; y) = 1.Classi
ally, the non-deterministi
 
ommuni
ation 
omplexity is 
hara
ter-ized by the logarithm of the 
over number of the 
ommuni
ation matrixMf . The quantum non-deterministi
 
ommuni
ation 
omplexity has beenshown equal to the logarithm of the rank of a non-deterministi
 version ofMf [61,37℄. There exist total fun
tions where the quantum non-deterministi

omplexity is exponentially smaller than the 
lassi
al one [61℄.Finally, here's a list of interesting open problems in quantum 
ommuni
ation
omplexity:� Very few interesting quantum proto
ols are known. For what other problems
an quantum me
hani
s save 
ommuni
ation?� Raz's exponential gap only holds for a promise problem. Are R2(f) andQ�2(f) polynomially related for all total f? A similar question 
an be posedfor the relation between D(f) and Q�(f). As we showed in Se
tion 6.1,a positive answer to this last question would be implied by the 
lassi
allog-rank 
onje
ture.� Does entanglement add mu
h power to qubit 
ommuni
ation? That is, whatare the biggest gaps between Q(f) and Q�(f), and between Q2(f) andQ�2(f)? (We only know Q2(EQ) 2 �(logn) and Q�2(EQ) 2 O(1).)� Classi
ally, Yao [63℄ used the minimax theorem from game theory to show anequivalen
e between deterministi
 proto
ols with a probability distributionon the inputs, and bounded-error proto
ols. Is some relation like this true16



in the quantum 
ase as well? Some preliminary results on quantum versionsof Yao's result may be found in [34℄.A
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