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Abstract

In the setting of communication complexity, two distributed parties want to compute
a function depending on both their inputs, using as little communication as possible.
The required communication can sometimes be significantly lowered if we allow the
parties the use of quantum communication. We survey the main results of the young
area of quantum communication complexity: its relation to teleportation and dense
coding, the main examples of fast quantum communication protocols, lower bounds,
and some applications.
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1 Introduction

The area of communication complexity deals with the following type of prob-
lem. There are two separated parties, called Alice and Bob. Alice receives some
input x € X, Bob receives some y € Y, and together they want to compute
some function f(z,y). As the value f(z,y) will generally depend on both x
and g, neither Alice nor Bob will have sufficient information to do the com-
putation by themselves, so they will have to communicate in order to achieve
their goal. In this model, individual computation is free, but communication
is expensive and has to be minimized. How many bits do they need to com-
municate between them in order to solve this? Clearly, Alice can just send
her complete input to Bob, but sometimes more efficient schemes are possible.
This model was introduced by Yao [64] and has been studied extensively, both
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for its applications (like lower bounds on VLSI and circuits) and for its own
sake. We refer to [45,38] for definitions and results.

An interesting variant of the above is quantum communication complexity:
suppose that Alice and Bob each have a quantum computer at their dis-
posal and are allowed to exchange quantum bits (qubits) and/or to make use
of the quantum correlations given by shared EPR-pairs (entangled pairs of
qubits named after Einstein, Podolsky, and Rosen [31]). Can Alice and Bob
now compute f with less communication than in the classical case? Quantum
communication complexity was first considered by Yao [65] for the model with
qubit communication and no prior EPR-pairs, and it was shown later that for
some problems the amount of communication required in the quantum world
is indeed considerably less than the amount of classical communication.

In this survey, we first give brief explanations of quantum computation and
communication, and then cover the main results of quantum communication
complexity: upper bounds (Section 5), lower bounds (Section 6), and applica-
tions (Section 7). We include proofs of some of the central results and refer-
ences to others. Some other recent surveys of quantum communication com-
plexity are [60,18,41,16], and a more popular account can be found in [59].
Our survey differs from these in being a bit more extensive and up to date.

2 Quantum Computation

In this section we briefly give the relevant background from quantum compu-
tation, referring to the book of Nielsen and Chuang [53] for more details.

2.1 States and operations

The classical unit of computation is a bit, which can take on the values 0 or
1. In the quantum case, the unit of computation is a qubit, which is a linear
combination or superposition of the two classical values:

a|0) + aq]1).

More generally, an m-qubit state |¢) is a superposition of all 2™ different
classical m-bit strings:
0= > aili).

i€{0,1}™
The classical state |i) is called a basis state. The coefficient «; is a com-
plex number, which is called the amplitude of |i). The amplitudes form a 2™-
dimensional complex vector, which we require to have norm 1 (i.e. 3, |o;|? =



1). If some system is in state |¢) and some other is in state |¢)), then their
joint state is the tensor product |¢) ® 1) = |d)|1)).

We can basically do two things to a quantum state: measure it or perform a
unitary operation to it. If we measure |¢), then we will see a basis state; we
will see |i) with probability |o;[?. Because |¢) has norm 1, the probabilities
|o;|? sum to 1, as they should. A measurement “collapses” the measured state
to the measurement outcome: if we see |i), then |¢) has collapsed to |i), and
all other information in |¢) is gone.

Apart from measuring, we can also transform the state, i.e., change the am-
plitudes. Quantum mechanics stipulates that this transformation U must be
a linear transformation on the 2™-dimensional vector of amplitudes:

Since the new vector of amplitudes 3; must also have norm 1, it follows that the
linear transformation U must be norm-preserving and hence unitary.? This
in turn implies that U has an inverse (in fact equal to its conjugate transpose
U*), hence non-measuring quantum operations are reversible.

2.2 Quantum algorithms

We describe quantum algorithms in the quantum circuit model [29,65], rather
than the somewhat more cumbersome quantum Turing machine model [28,14].
A classical Boolean circuit is a directed acyclic graph of elementary Boolean
gates (usually AND, OR, and NOT), only acting on one or two bits at a time.
It transforms an initial vector of bits (containing the input) into the output. A
quantum circuit is similar, except that the classical Boolean gates now become
elementary quantum gates. Such a gate is a unitary transformation acting only
on one or two qubits, and implicitly acting as the identity on the other qubits
of the state. A simple example of a 1-qubit gate is the Hadamard transform,
which maps basis state |b) to %(\(D + (=1)?[1)). In matrix form, this is

V2 {11

2 Both quantum measurements and quantum operations allow for a somewhat
more general description than given here (POVMs and superoperators, respectively,
see [53]), but the above definitions suffice for our purposes.



An example of a 2-qubit gate is the controlled-NOT (CNOT) gate, which
negates the second bit of the state depending on the first bit: |c,b) — |c,b®c).
In matrix form, this is

1000
0100
0001
0010

It is known that the set of gates consisting of CNOT and all 1-qubit gates is
universal, meaning that any other unitary transformation can be written as a
product of gates from this set. We refer to [6,53] for more details.

The product of all elementary gates in a quantum circuit is a big unitary
transformation that transforms the initial state (usually a classical bitstring
containing the input z) into a final superposition. The output of the circuit
is then the outcome of measuring some dedicated part of the final state. We
say that a quantum circuit computes some function f : {0,1}" — Z ezactly if
it always outputs the correct value f(z) on input . The circuit computes f
with bounded error if it outputs f(x) with probability at least 2/3, for all .
Notice that a quantum circuit involves only one measurement; this is without
loss of generality, since it is known that measurements can always be pushed
to the end at the cost of a moderate amount of extra memory.

The complezity of a quantum circuit is usually measured by the number of
elementary gates it contains. A circuit is deemed efficient if its complexity is
at most polynomial in the length n of the input. The most spectacular instance
of an efficient quantum circuit (rather, a uniform family of such circuits, one
for each n) is still Shor’s 1994 efficient algorithm for finding factors of large
integers. It finds a factor of arbitrary n-bit numbers with high probability
using only n’polylog(n) elementary gates. This compromises the security of
modern public-key cryptographic systems like RSA, which are based on the
assumed hardness of factoring.

2.3  Query algorithms

A type of quantum algorithms that we will refer to later are the query algo-
rithms. In fact, most existing quantum algorithms are of this type. Here the
input is not part of the initial state, but encoded in a special “black box”
quantum gate. The black box maps basis state |i,b) to |i,b @ x;), thus giving
access to the bits z; of the input. Note that a quantum algorithm can run the
black box on a superposition of basis states, gaining access to several input
bits z; at the same time. One such application of the black box is called a



query. The complexity of a quantum circuit for computing some function f is
now the number of queries we need on the worst-case input; we don’t count
the complexity of other operations in this model. In the classical world, this
query complexity is known as the decision tree complexity of f.

A simple but illustrative example is the Deutsch-Jozsa algorithm [30,27]: sup-
pose that n is a power of 2, and we get the promise that the input = € {0,1}"
is either 0...0 (“constant”) or has exactly n/2 0s and n/2 1s (“balanced”).
Define DeJo(z) = 1 in the first case and DeJo(z) = 0 in the second. It is easy
to see that a deterministic classical computer needs n/2 + 1 queries for this
(if the computer has queried n/2 bits and they are all 0, then the function
value is still undetermined). On the other hand, here is a 1-query quantum
algorithm for this problem:

(1) Start in a basis state [0...01) of logn zeroes followed by a 1

(2) Apply a Hadamard transform to each of the logn + 1 qubits

(3) Query the black box once

(4) Apply a Hadamard transform to the first logn qubits

(5) Measure the first logn qubits, output 1 if the observed state is |0...0)
and output 0 otherwise

By following the state through these steps, it may be verified that the algo-
rithm always outputs 1 if the input x is constant, and 0 if it is balanced.

Another important quantum query algorithm is Grover’s search algorithm [35],
which finds an 7 such that x; = 1 if such an i exists in the n-bit input. It
has error probability < 1/3 on each input and uses O(y/n) queries, which is
optimal [12,15,66]. Note that the algorithm can also be viewed as computing
the OR-function: it can determine whether at least one of the input bits is 1.

3 Quantum Communication

The area of quantum information theory deals with the properties of quan-
tum information and its communication between different parties. We refer
to [13,53] for general surveys, and will here restrict ourselves to explaining
two important primitives: teleportation [10] and superdense coding [11]. These
pre-date quantum communication complexity and show some of the power of
quantum communication.

We first show how teleporting a qubit works. Alice has a qubit ag|0) + ay|1)
that she wants to send to Bob via a classical channel. Without further re-
sources this would be impossible, but Alice also shares an EPR-pair %(\00) +



|11)) with Bob. Initially, their joint state is

mm+mm®%mmﬂm»

The first two qubits belong to Alice, the third to Bob. Alice performs a CNOT
on her two qubits and then a Hadamard transform on her first qubit. Their
joint state can now be written as
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Alice then measures her two qubits and sends the result (2 random classical
bits) to Bob, who now knows which transformation he must do on his qubit in
order to regain the qubit aq|0) + «;|1). For instance, if Alice sent 11 then Bob
knows that his qubit is ag|1) — a;|0). A bit-flip (|o) — |1 — b)) followed by a
phase-flip (|b) — (—1)|b)) will give him Alice’s original qubit cg|0)+ c[1). In
fact, if Alice’s qubit had been entangled with other qubits, then teleportation
preserves this entanglement: Bob then receives a qubit that is entangled in
the same way as Alice’s original qubit was.

Note that the qubit on Alice’s side has been destroyed: teleporting moves a
qubit from A to B, rather than copying it. In fact, copying an unknown qubit is
impossible [62], which can be seen as follows. Suppose C were a 1-qubit copier,
i.e. Clg)|0) = |p)|¢) for every qubit |¢). In particular C'|0)|0) = |0)|0) and
C1)|0) = [1)|1). But then C would not copy |¢) = %(|0)+|1)) correctly, since

by linearity C|)[0) = =(C10)(0) + C[1)[0)) = 25(0}]0) + [1)]1)) # |8)/).

In teleportation, Alice uses 2 classical bits and 1 EPR-pair to send 1 qubit to
Bob. Superdense coding achieves the opposite: using 1 qubit and 1 EPR-pair,
Alice can send 2 classical bits by, by to Bob. It works as follows. Initially they
share an EPR-pair %(|00> + [11)). First, if by = 1 then Alice applies a phase-
flip to her half of the pair. Second, if by = 1 she applies a bit-flip. Third, she
sends her half of the EPR-pair to Bob, who now has one of 4 states |@,s,):

600) = 25100 +11))
601 = = (110) +01))
b10) = = (100) — 111))
611) = = (110) = 101))

Since these states are orthogonal, Bob can apply a unitary transformation



that maps |¢y,,) — |b1bs) and thus learn by and bs.

Suppose Alice wants to send n classical bits of information to Bob and they do
not share any prior entanglement. Alice can just send her n bits to Bob, but,
alternatively, Bob can also first send n/2 halves of EPR-pairs to Alice and
then Alice can send n bits in n/2 qubits using dense coding. In either case, n
qubits are exchanged between them. If Alice and Bob already share n/2 prior
EPR-pairs, then n/2 qubits suffice by superdense coding. The following result
shows that this is optimal. We will refer to it as Holevo’s theorem, because
the first part is an immediate consequence of a result of [36] (the second part
was derived in [26]).

Theorem 1 (Holevo [36]) If Alice wants to send n bits of information to
Bob via a qubit channel, and they don’t share prior entanglement, then they
have to exchange at least n qubits. If they do share unlimited prior entangle-
ment, then Alice has to send at least n/2 qubits to Bob, no matter how many
qubits Bob sends to Alice.

A somewhat stronger and more subtle variant of this lower bound was derived
by Nayak [48], improving upon [2]. Suppose that Alice doesn’t want to send
Bob all of her n bits, but just wants to send a message that allows Bob to learn
one of her bits x;, where Bob can choose i after the message has been sent.
Even for this weaker form of communication, Alice has to send an Q(n)-qubit
message.

4 Quantum Communication Complexity: The Model

First we sketch the setting for classical communication complexity, referring
to [45,38] for more details. Alice and Bob want to compute some function
f D — {0,1}, where D C X x Y. If the domain D equals X x Y then
f is called a total function, otherwise it is a promise function. Alice receives
input z € X, Bob receives input y € Y, with (z,y) € D. As the value f(z,y)
will generally depend on both x and y, some communication between Alice
and Bob is required in order for them to be able to compute f(x,y). We are
interested in the minimal amount of communication they need.

A communication protocol is a distributed algorithm where first Alice does
some individual computation, and then sends a message (of one or more bits)
to Bob, then Bob does some computation and sends a message to Alice, etc.
Each message is called a round. After one or more rounds the protocol ter-
minates and outputs some value, which must be known to both players. The
cost of a protocol is the total number of bits communicated on the worst-case
input. A deterministic protocol for f always has to output the right value



f(z,y) for all (z,y) € D. In a bounded-error protocol, Alice and Bob may flip
coins and the protocol has to output the right value f(z,y) with probability
> 2/3 for all (x,y) € D. We use D(f) and Ry(f) to denote the minimal cost of
deterministic and bounded-error protocols for f, respectively. The subscript
‘27 in Ro(f) stands for 2-sided bounded error. For Ry(f) we can either allow
Alice and Bob to toss coins individually (private coin) or jointly (public coin).
This makes not much difference: a public coin can save at most O(logn) bits
of communication [50], compared to a protocol with a private coin.

Some often studied total functions where X =Y = {0,1}"™

e Fquality: EQ(x,y)=1iff z =y

e Inner product: IP(z,y) = PARITY (x A y) = ¥, z;y; (mod 2)
(for z,y € {0,1}", z; is the ith bit of x and z Ay € {0,1}" is the bit-wise
AND of z and y)

e Disjointness: DISJ(z,y) = NOR(z A y). This function is 1 iff there is no i
where z; = y; = 1 (viewing z and y as characteristic vectors of sets, the sets
are disjoint)

It is known that D(EQ) = D(IP) = D(DISJ) = n + 1, Ry(IP) = Ry(DISJ) =
Q(n). However, Ry(EQ) is only O(1), as follows. Alice and Bob jointly toss a
random string r € {0,1}". Alice sends the bit @ = z - r to Bob (where ‘" is
inner product mod 2). Bob computes b = y - r and compares this with a. If
x =y then a = b, but if x # y then a # b with probability 1/2. Thus Alice
and Bob can decide equality with small error using O(n) public coin flips and
O(1) communication. Since public coin and private coin protocols are close,
this also implies that Ry (EQ) € O(logn) with a private coin.

Now what happens if we give Alice and Bob a quantum computer and allow
them to send each other qubits and/or to make use of EPR-pairs that they
share at the start of the protocol? Formally speaking, we can model a quantum
protocol as follows. The total state consists of 3 parts: Alice’s private space,
the channel, and Bob’s private space. The starting state is |z)|0)|y): Alice
gets x, the channel is initially empty, and Bob gets y. Now Alice applies a
unitary transformation to her space and the channel. This corresponds to
her private computation as well as to putting a message on the channel (the
length of this message is the number of channel-qubits affected by Alice’s
operation). Then Bob applies a unitary transformation to his space and the
channel, etc. At the end of the protocol Alice or Bob makes a measurement
to determine the output of the protocol. We use Q(f) to denote the minimal
communication cost of a quantum protocol that computes f(z,y) exactly (=
with error probability 0). This model was introduced by Yao [65]. In the
second model, introduced by Cleve and Buhrman [25], Alice and Bob share
an unlimited number of EPR-pairs at the start of the protocol, but now they
communicate via a classical channel: the channel has to be in a classical state



throughout the protocol. We use C*(f) for the minimal complexity of an exact
protocol for f in this model. Note that we only count the communication, not
the number of EPR-pairs used. The third variant combines the strengths of the
other two: here Alice and Bob start out with an unlimited number of shared
EPR-pairs and they are allowed to communicate qubits. We use Q*(f) to
denote the communication complexity in this third model. By teleportation, 1
EPR-pair and 2 classical bits can replace 1 qubit of communication, so we have
Q'(f) < C*(f) < 2Q°(f). Similarly we define Qs(f), Q4(/), and C3(f) for
bounded-error quantum protocols. Note that a shared EPR-pair can simulate
a public coin toss: if Alice and Bob each measure their half of the pair, they
get the same random bit.

Before continuing to study this model, we first have to face an important ques-
tion: is there anything to be gained here? At first sight, the following argument
seems to rule out any significant gain. By definition, in the classical world D( f)
bits have to be communicated in order to compute f. Since Holevo’s theorem
says that k& qubits cannot contain more information than k classical bits, it
seems that the quantum communication complexity should be roughly D(f)
qubits as well (maybe D(f)/2 to account for superdense coding, but not less).
Fortunately and surprisingly, this argument is false, and quantum communi-
cation can sometimes be much less than classical communication complexity.
The information-theoretic argument via Holevo’s theorem fails, because Alice
and Bob do not need to communicate the information in the D(f) bits of the
classical protocol; they are only interested in the value f(z,y), which is just
1 bit. Below we will survey the main examples that have so far been found of
gaps between quantum and classical communication complexity.

5 Quantum Communication Complexity: Upper bounds

5.1 Initial steps

Quantum communication complexity was introduced by Yao [65] and studied
by Kremer [44], but neither showed any advantages of quantum over classical
communication. Cleve and Buhrman [25] introduced the variant with classi-
cal communication and prior entanglement, and exhibited the first quantum
protocol provably better than any classical protocol. It uses quantum entan-
glement to save 1 bit of classical communication. This gap was extended by
Buhrman, Cleve, and van Dam [19] and, for arbitrary & parties, by Buhrman,
van Dam, Hgyer, and Tapp [23].



5.2 Buhrman, Cleve, Wigderson

The first impressively large gaps between quantum and classical communi-
cation complexity were exhibited by Buhrman, Cleve, and Wigderson [21].
Their protocols are distributed versions of known quantum query algorithms,
like the Deutsch-Jozsa and Grover algorithms. The following lemma shows
how a query algorithm induces a communication protocol:

Lemma 1 (BCW [21]) Let g : {0,1}" — {0,1} and f(z,y) = g(z xy),
where x is any binary connective (for instance @ or A). If there is a T-query
quantum algorithm for g, then there is a protocol for f that communicates
T(2logn +4) qubits (and uses no prior entanglement) and that has the same
error probability as the query algorithm.

Proof. The quantum protocol consists of Alice’s simulating the quantum
query algorithm A on input xxy. Every query in A will correspond to 2 rounds
of communication. Namely, suppose Alice at some point wants to apply a query
to the state |¢) = >, apli,b) (for simplicity we omit Alice’s workspace).
Then she adds a |0)-qubit to the state, applies the unitary mapping |i, b, 0) —
i, b, z;), and sends the resulting state to Bob. Bob now applies the unitary
mapping |4, b, x;) — |i,b® (x;xy;), x;) and sends the result back to Alice. Alice
applies |i, b, x;) — |i,0,0), takes off the last qubit, and ends up with the state
>ip @ip|i, b @ (z; % y;)), which is exactly the result of applying an z x y-query
to |¢). Thus every query to x * y can be simulated using 2logn + 4 qubits
of communication. The final quantum protocol will have T'(2logn + 4) qubits
of communication and computes f(z,y) with the same error probability as A
has on input z % y. a

Now consider the disjointness function: DISJ(z,y) = NOR(z A y). Since
Grover’s algorithm can compute the NOR of n variables with O(y/n) queries
with bounded-error, the previous lemma implies a bounded-error protocol for
disjointness with O(y/nlogn) qubits. On the other hand, the linear lower
bound for disjointness is a well-known result of classical communication com-
plexity [39,56]. Thus we obtain the following near-quadratic separation:

Theorem 2 (BCW [21]) Q2(DISJ) € O(y/nlogn) and Ry(DISJ) € Q(n).

Hoyer and de Wolf [37] slightly improved the upper bound on Q(DISJ) to
O(y/nc'°8 ™) for some constant ¢ > 1, thus showing that the logn in the upper
bound can be replaced by a function that grows slower than any iterated
logarithm.

10



Another separation is given by a distributed version of the Deutsch-Jozsa
problem of Section 2.3: define EQ'(z,y) = DeJo(z @ y). This is a promise
version of equality, where the promise is that x and y are either equal or are
at Hamming distance n/2. Since there is an exact 1-query quantum algorithm
for DeJo, Lemma 1 implies Q(EQ') € O(logn). In contrast, Buhrman, Cleve,
and Wigderson use a combinatorial result of Frankl and R6dl [33] to prove the
classical lower bound D(EQ') € Q(n). Thus we have the following exponential
separation for exact protocols:

Theorem 3 (BCW [21]) Q(EQ') € O(logn) and D(EQ') € Q(n).

5.8 Raz

Notice the contrast between the two separations of the previous section. For
the Deutsch-Jozsa problem we get an ezponential quantum-classical separa-
tion, but the separation only holds if we force the classical protocol to be exact;
it is easy to see that O(logn) bits are sufficient if we allow some error (the
classical protocol can just try a few random positions ¢ and check if x; = y; or
not). On the other hand, the gap for the disjointness function is only quadratic,
but it holds even if we allow classical protocols to have some error probability.
Ran Raz [55] has exhibited a function where the quantum-classical separation
has both features: the quantum protocol is exponentially better than the clas-
sical protocol, even if the latter is allowed some error probability. Consider
the following promise problem P:

Alice receives a unit vector v € R™ and a decomposition of the correspond-
ing space in two orthogonal subspaces H(®) and H("). Bob receives an m xm
unitary transformation U. Promise: Uv is either “close” to H® or to H("),
Question: which of the two?

As stated, this is a problem with continuous input, but it can be discretized
in a natural way by approximating each real number by O(logm) bits. Alice
and Bob’s input is now n = O(m?logm) bits long. There is a simple yet
efficient 2-round quantum protocol for this problem: Alice views v as a log m-
qubit vector and sends this to Bob. Bob applies U and sends back the result.
Alice then measures in which subspace H®) the vector Uv lies and outputs
the resulting i. This takes only 2logm = O(logn) qubits of communication.

The efficiency of this protocol comes from the fact that an m-dimensional
vector can be “compressed” or “represented” as a log m-qubit state. Similar
compression is not possible with classical bits, which suggests that any classical
protocol for P will have to send the vector v more or less literally and hence
will require a lot of communication. This turns out to be true but the proof
(given in [55]) is surprisingly hard. The result is the first exponential gap

11



between (> and Rs:

Theorem 4 (Raz [55]) Q2(P) € O(logn) and Ry(P) € Q(n'/*/logn).

6 Quantum Communication Complexity: Lower Bounds

In the previous section we exhibited some of the power of quantum communi-
cation complexity. Here we will look at its limitations, first for exact protocols
and then for the bounded-error case.

6.1 Lower bounds on exact protocols

Quite good lower bounds are known for exact quantum protocols for total
functions. For a total function f : X x Y — {0,1} let M;[z,y] = f(x,y)
be the communication matriz of f. This is an |X| x |Y| Boolean matrix that
completely describes f. Let rank(f) denote the rank of M; over the reals.
Mehlhorn and Schmidt [47] proved that D(f) > logrank(f), which is the
main source of lower bounds on D(f). For Q(f) a similar lower bound follows
from techniques of Yao and Kremer [65,44], as first observed in [21]. This
bound was later extended to the case where Alice and Bob share unlimited
prior entanglement by Buhrman and de Wolf [24]. Their result turned out to
be equivalent to a result in Nielsen’s thesis [52, Section 6.4.2]. The result is:

Theorem 5 Q*(f) > 3logrank(f) and C*(f) > logrank(f).

Hence quantum communication complexity in the exact model with prior en-
tanglement is maximal whenever M, has full rank, which happens for al-
most all functions, including equality, (the complement of) inner product,
and disjointness. For Q(f), the model without prior entanglement, the same
bounds apply and it is open whether the factor of % can be removed in
this case. For the equality and disjointness functions, the optimal bounds
Q(EQ) = Q(DISJ) = n + 1 were shown recently by Hgyer and de Wolf [37].

How tight is the log rank(f) lower bound? It has been conjectured that D(f) <
(log rank(f))°M for all total functions, in which case log rank(f) would char-
acterize D(f) up to polynomial factors. If this log-rank conjecture is true, then
Theorem 5 implies that Q*(f) and D(f) are polynomially close for all total
f, since then Q*(f) < D(f) < (logrank(f))°™ < (2Q*(f))°™. Some small
classes of functions where this provably holds are identified in [24]. It should
be noted that, in fact, no total f is known where Q*(f) is more than a factor
of 2 smaller than D(f) (the factor of 2 can be achieved by superdense coding).

12



6.2 Lower bounds on bounded-error protocols

The previous section showed some strong lower bounds for exact quantum pro-
tocols. The situation is worse in the case of bounded-error protocols, for which
only a few good lower bounds are known. One of the few general lower bound
techniques known to hold for bounded-error quantum complexity (without
prior entanglement), is the so-called “discrepancy method”. This was shown
by Kremer [44], who used it to derive an Q(n) lower bound for Q2 (IP). Cleve,
van Dam, Nielsen, and Tapp [26] later independently proved such a lower
bound for Q5(IP).

We will sketch the very elegant proof of [26] here for the case of exact protocols.
The proof uses the IP-protocol to communicate Alice’s n-bit input to Bob, and
then invokes Holevo’s theorem to conclude that many qubits must have been
communicated in order to achieve this. Suppose Alice and Bob have some
protocol for IP. They can use this to compute the following mapping:

[2)1y) = |2)(=1)"]y).

Now suppose Alice starts with an arbitrary n-bit state |z) and Bob starts with
the uniform superposition \/% > yeqo13n |y)- If they apply the above mapping,
the final state becomes

)*Y
\/_ yG{UZI}" o

If Bob applies a Hadamard transform to each of his n qubits, then he obtains
the basis state |z), so Alice’s n classical bits have been communicated to Bob.
Theorem 1 now implies that the IP-protocol must communicate n/2 qubits,
even if Alice and Bob share unlimited prior entanglement. With some more
technical complication, the same idea gives an (1 — 2¢)?n lower bound for e-
error protocols [26]. The constant factor in this bound was recently improved
to the optimal % by Nayak and Salzman [49].

The above proof works for TP, but does not easily yield good bounds in general.
Neither does the discrepancy method, or an approximate version of the rank
lower bound that was noted in [21]. New lower bound techniques for quantum
communication are required. Of particular interest is whether the upper bound
of roughly y/n on Qy(DISJ) is tight. Because disjointness can be reduced to
many other problems (it is in fact “coNP-complete” [4]), a good lower bound
for disjointness would imply many other lower bounds as well. Hgyer and de
Wolf proved an (y/n) lower bound for a restricted class of protocols, namely
those whose acceptance probability is a function of x A y, rather than = and y
separately. All known quantum protocols for disjointness fall in this class, but
it is still rather limited. Klauck [42] extended the classical Fourier analysis-
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based lower bound technique of Raz [54] to the quantum case. The technique
gives good lower bounds on Q(f) for threshold functions (where f(z,y) =1
iff |z A y| > t) with sufficiently large threshold ¢. Unfortunately, it fails to
give good bounds for the ¢ = 1 case, which is exactly the complement of
disjointness.

Then, in a recent breakthrough, Razborov [57] established the expected lower
bound, using a clever multidimensional version of the discrepancy method:

Theorem 6 (Razborov [57]) Q3(DISJ]) = Q(y/n).

Moreover, his lower bound method gives nearly optimal lower bounds on Q3( f)
for all functions that are of the form f(x,y) = g(z A y) for some g depending
only on the Hamming weight of its input.

7 Quantum Communication Complexity: Applications

The main applications of classical communication complexity have been in
proving lower bounds for various models like VLSI, Boolean circuits, formula
size, Turing machine complexity, data structures, automata size etc. We re-
fer to [45,38] for many examples. Typically one proceeds by showing that a
communication complexity problem f is “embedded” in the computational
problem P of interest, and then uses communication complexity lower bounds
on f to establish lower bounds on P. Similarly, quantum communication com-
plexity has been used to establish lower bounds in various models of quantum
computation, though such applications have received relatively little attention
so far. We will briefly mention some.

Yao [65] initially introduced quantum communication complexity as a tool
for proving a superlinear lower bound on the quantum formula size of the
majority function (a “formula” is a circuit of restricted form). More recently,
Klauck [40] used one-round quantum communication complexity lower bounds
to prove lower bounds on the size of quantum formulae.

Since upper bounds on query complexity give upper bounds on communication
complexity (Lemma 1), lower bounds on communication complexity give lower
bounds on query complexity. For instance, IP(x,y) = PARITY (z A y), so the
Q(n) bound for IP (Section 6.2) implies an (n/logn) lower bound for the
quantum query complexity of the parity function, as observed by Buhrman,
Cleve, and Wigderson [21]. This query lower bound was later strengthened to
n/2 in [7,32].

Furthermore, as in the classical case, lower bounds on one-round communica-
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tion complexity imply lower bounds on the size of quantum finite automata.
This was used by Klauck [40] to show that Las Vegas (zero-error) quantum
finite automata cannot be much smaller than classical deterministic finite au-
tomata.

Again, as in the classical case, lower bounds on quantum communication com-
plexity give rise to lower bounds on the size of certain quantum data structures.
For example, tradeoffs between size and access time for the “static predeces-

sor” and “static membership” problems were obtained recently by Sen and

Venkatesh [58].

Finally, Ben-Or [9] has applied the lower bounds for IP in a new proof of the
security of quantum key distribution.

8 Other Developments and Open Problems

Here we mention some other results in quantum communication complexity
or related models:

e Quantum sampling. For the sampling problem, Alice and Bob do not
want to compute some f(z,y), but instead want to sample an (z,y)-pair
according to some known joint probability distribution, using as little com-
munication as possible. Ambainis et al. [3] give a tight algebraic character-
ization of quantum sampling complexity, and exhibit an exponential gap
between the quantum and classical communication required for a sampling
problem related to disjointness.

¢ Spooky communication. Referring to Einstein’s description of certain
quantum effects as “spooky action at a distance” (“spukhafte Fernwirku-
ngen” ), Brassard, Cleve, and Tapp [17] exhibit tasks that can be achieved in
the quantum world with entanglement and no communication whatsoever,
but that would require communication in the classical world. They also give
upper and lower bounds on the amount of classical communication needed
to “simulate” EPR-pairs. Their results—and subsequent ones [46]—may be
viewed as quantitative extensions of the famous Bell inequalities [8].

e Las Vegas protocols. In this survey we just considered two modes of com-
putation: exact and bounded-error. An intermediate type of protocols are
zero-error or Las Vegas protocols. These never output an incorrect answer,
but may claim ignorance with probability at most 1/2. Some quantum-
classical separations for zero-error protocols may be found in [22,40].

e One-round communication. Suppose the communication consists of just
one round: Alice sends a message (depending on x) to Bob, who should then
compute f(z,y). Klauck [40] showed for all total functions that quantum
one-round communication is not significantly better than classical one-round
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communication in the case of exact or zero-error protocols. For the case of
bounded-error protocols this is still open.

¢ Quantum fingerprinting. The model of simultaneous message passing is
even more restricted than the one-round setting. Here there are three par-
ties: Alice has x, Bob has y, they don’t share entanglement or randomness
but they can each send one message to a referee, who wants to determine
f(z,y). Buhrman, Cleve, Watrous, and de Wolf [20] gave an efficient quan-
tum protocol for the equality function in this model: Alice and Bob send
O(logn)-qubit “quantum fingerprints” of their respective inputs to the ref-
eree, who can then decide with high success probability whether x = y. In
contrast, classically the equality function requires ©(y/n) bits of communi-
cation in this model [1,51,5].

e Rounds. In classical communication complexity it is well known that al-
lowing Alice and Bob k + 1 rounds of communication instead of k£ reduces
the required communication exponentially for some functions. An analogous
result has been shown for quantum communication by Klauck, Nayak, Ta-
Shma, and Zuckerman [43], using a quantum version of the classical “round
elimination” technique. This technique has been further strengthened by
Sen and Venkatesh [58], giving for instance tight communication-rounds
tradeoffs for the “greater than” function.

e Non-deterministic communication complexity. A non-deterministic
protocol has positive acceptance probability on input (x,y) iff f(z,y) = 1.
Classically, the non-deterministic communication complexity is character-
ized by the logarithm of the cover number of the communication matrix
My. The quantum non-deterministic communication complexity has been
shown equal to the logarithm of the rank of a non-deterministic version of
M [61,37]. There exist total functions where the quantum non-deterministic
complexity is exponentially smaller than the classical one [61].

Finally, here’s a list of interesting open problems in quantum communication
complexity:

e Very few interesting quantum protocols are known. For what other problems
can quantum mechanics save communication?

e Raz’s exponential gap only holds for a promise problem. Are Ry(f) and
Q5 (f) polynomially related for all total f? A similar question can be posed
for the relation between D(f) and Q*(f). As we showed in Section 6.1,
a positive answer to this last question would be implied by the classical
log-rank conjecture.

e Does entanglement add much power to qubit communication? That is, what
are the biggest gaps between Q(f) and Q*(f), and between @Qy(f) and
Q5(f)? (We only know Q2(EQ) € ©(logn) and Q3(EQ) € O(1).)

e Classically, Yao [63] used the minimax theorem from game theory to show an
equivalence between deterministic protocols with a probability distribution
on the inputs, and bounded-error protocols. Is some relation like this true
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in the quantum case as well? Some preliminary results on quantum versions
of Yao’s result may be found in [34].
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