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ABSTRACTA lo
ally de
odable 
ode en
odes n-bit strings x in m-bit
odewords C(x), in su
h a way that one 
an re
over any bitxi from a 
orrupted 
odeword by querying only a few bits ofthat word. We use a quantum argument to prove that LDCswith 2 
lassi
al queries need exponential length: m = 2
(n).Previously this was known only for linear 
odes (Goldrei
het al. 02). Our proof shows that a 2-query LDC 
an bede
oded with only 1 quantum query, and then proves anexponential lower bound for su
h 1-query lo
ally quantum-de
odable 
odes. We also show that q quantum queries allowmore su

in
t LDCs than the best known LDCs with q 
las-si
al queries. Finally, we give new 
lassi
al lower bounds andquantum upper bounds for the setting of private informationretrieval. In parti
ular, we exhibit a quantum 2-server PIRs
heme with O(n3=10) qubits of 
ommuni
ation, improvingupon the O(n1=3) bits of 
ommuni
ation of the best known
lassi
al 2-server PIR.
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1. INTRODUCTIONError-
orre
ting 
odes allow one to en
ode an n-bit stringx into anm-bit 
odeword C(x), in su
h a way that x 
an stillbe re
overed even if the 
odeword is 
orrupted in a number ofpla
es. For example, 
odewords of length m = O(n) alreadysuÆ
e to re
over from errors in a 
onstant fra
tion of thebitpositions of the 
odeword, even in linear time [26℄. Onedisadvantage of su
h \standard" error-
orre
tion, is that oneusually needs to 
onsider all or most of the (
orrupted) 
ode-word to re
over anything about x. If one is only interestedin re
overing one or a few of the bits of x, then more eÆ-
ient s
hemes are possible, so-
alled lo
ally de
odable 
odes(LDCs). These allow us to extra
t small parts of en
odedinformation from a 
orrupted 
odeword, while looking at(\querying") only a few positions of that word. They havefound various appli
ations in 
omplexity theory and 
ryp-tography, su
h as self-
orre
ting 
omputations [4, 18, 13, 12,14℄, PCPs [2℄, worst-
ase to average-
ase redu
tions [3, 27℄,private information retrieval [8℄, and extra
tors [19℄. Infor-mally, LDCs are des
ribed as follows:A (q; Æ; ")-lo
ally de
odable 
ode en
odes n-bit stringsx into m-bit 
odewords C(x), su
h that for ea
hi, the bit xi 
an be re
overed with probability1=2 + " making only q queries, even if the 
ode-word is 
orrupted in Æm of the bits.For example, the Hadamard 
ode is a lo
ally de
odable 
odewhere two queries are suÆ
ient in order to predi
t any bitwith 
onstant advantage, even with a 
onstant fra
tion oferrors. The 
ode has m = 2n and C(x)j = j � x mod 2for all j 2 f0; 1gn. Re
overy from a 
orrupted 
odewordy is possible by pi
king a random j 2 f0; 1gn, querying yjand yj�ei , and outputting the XOR of those two bits. Ifneither bit has been 
orrupted, then we output yj �yj�ei =j � x � (j � ei) � x = ei � x = xi, as we should. If C(x) hasbeen 
orrupted in at most Æm positions, then a fra
tion ofat least 1�2Æ of all (j; j�ei) pairs of indi
es is un
orrupted,so the re
overy probability is at least 1� 2Æ. This is > 1=2as long as Æ < 1=4. The main drawba
k of the Hadamard
ode is its exponential length.



Clearly, we would like both the 
odeword length m andthe number of queries q to be small. The main 
omplexityquestion about LDCs is how large m needs to be, as a fun
-tion of n, q, Æ, and ". For q = polylog(n), Babai et al. [2℄showed how to a
hieve length m = O(n2), for some �xedÆ; ". This was subsequently improved to nearly linear lengthby Polish
huk and Spielman [23℄. Beimel et al. [6℄ re
entlyimproved the best known upper bounds for 
onstant q tom = 2nO(log log q=q log q) , with some more pre
ise bounds forsmall q.The study of lower bounds on m was initiated by Katzand Trevisan [16℄. They proved that for q = 1, LDCs do notexist if n is larger than some 
onstant depending on Æ and". For q � 2, they proved a bound of m = 
(n1+1=(q�1)) ifthe q queries are made non-adaptively; this bound was gen-eralized to the adaptive 
ase by Deshpande et al. [11℄. Thisestablishes superlinear but at most quadrati
 lower boundson the length of LDCs with a 
onstant number of queries.There is still a large gap between the best known upper andlower bounds. In parti
ular, it is open whether m = poly(n)is a
hievable with 
onstant q. Re
ently, Goldrei
h et al. [15℄examined the 
ase q = 2, and showed that m � 2Æ"n=8 if Cis a linear 
ode. Obata [22℄ subsequently strengthened thedependen
e on " to m � 2
(Æn=(1�2")), whi
h is essentiallyoptimal.Katz and Trevisan, and Goldrei
h et al. established a
lose 
onne
tion between lo
ally de
odable 
odes and pri-vate information retrieval (PIR) s
hemes. In fa
t, the bestknown LDCs for 
onstant q are derived from PIR s
hemes.A PIR s
heme allows a user to extra
t a bit xi from an n-bit database x that is repli
ated over some k � 1 servers,without the server(s) learning whi
h i the user wants. Themain 
omplexity measure of a PIR s
heme is its 
ommuni-
ation 
omplexity, i.e., the sum of the lengths of the queriesthat the user sends to ea
h server, and the length of theservers' answers. If there is only one server (k = 1), thenpriva
y 
an be maintained by letting the server send thewhole n-bit database to the user. This takes n bits of 
om-muni
ation and is optimal. If the database is repli
atedover k � 2 servers, then smarter proto
ols are possible.Chor et al. [8℄ exhibited a 2-server PIR s
heme with 
om-muni
ation 
omplexity O(n1=3) and one with O(n1=k) fork > 2. Ambainis [1℄ improved the latter to O(n1=(2k�1)).Beimel et al. [6℄ improved the 
ommuni
ation 
omplexity toO(n2 log log k=k log k); their results improve the previous bestbounds for all k � 3 but not for k = 2. No general lowerbounds better than 
(log n) are known for PIRs with k � 2servers. A PIR s
heme is linear if for every query the usermakes, the answer bits are linear 
ombinations of the bitsof x. Goldrei
h et al. [15℄ proved that linear 2-server PIRswith t-bit queries and a-bit answers where the user looksonly at k predetermined positions in ea
h answer, requiret = 
(n=ak).
1.1 Results: Locally Decodable CodesThe main result of this paper is an exponential lowerbound for general 2-query LDCs:A (2; Æ; ")-lo
ally de
odable 
ode has length m � 2
n�1,for 
 = 1�H(1=2+3Æ"=14), whereH(�) is the binary entropyfun
tion. This is the �rst superpolynomial lower bound ongeneral LDCs with more than one query. Our 
onstant 
 inthe exponent is somewhat worse than the ones of Goldrei
h

et al. and of Obata, but our proof establishes the exponentiallower bound for all LDCs, not just linear ones. In the bodyof the paper we will fo
us only on 
odes over the binaryalphabet. In Appendix B we show how to extend our resultto the 
ase of larger alphabets, using a 
lassi
al redu
tiondue to Trevisan.Our proof introdu
es one radi
ally new ingredient: quan-tum 
omputing. We show that if two 
lassi
al queries 
anre
over xi with probability 1=2 + ", then xi 
an also be re-
overed with probability 1=2+4"=7 using only one quantumquery.1 In other words, a (2; Æ; ")-lo
ally de
odable 
ode is a(1; Æ; 4"=7)-lo
ally quantum-de
odable 
ode. We then provean exponential lower bound for 1-query LQDCs by showing,roughly speaking, that a 1-query LQDC of length m in-du
es a quantum random a

ess 
ode for x of length logm.Nayak's [20℄ linear lower bound on su
h 
odes �nishes o�the proof. For the sake of 
ompleteness, we in
lude a proofof his result in Appendix A.This lower bound for 
lassi
al LDCs is one of the very fewexamples where tools from quantum 
omputing enable oneto prove new results in 
lassi
al 
omputer s
ien
e. We knowonly a few other examples of this.2 Radhakrishnan et al. [24℄proved lower bounds for the set membership data stru
turethat hold for quantum algorithms, but are in fa
t strongerthan the previous 
lassi
al lower bounds of Buhrman etal. [7℄. Sen and Venkatesh did the same for data stru
turesfor the prede
essor problem [25, quant-ph version℄. Finally,Klau
k et al. [17℄ proved lower bounds for the k-round quan-tum 
ommuni
ation 
omplexity of the tree-jumping problemthat are somewhat stronger than the previous best 
lassi
allower bounds. In these 
ases, however, the underlying proofte
hniques easily yield a 
lassi
al proof. Our proof seemsto be more inherently \quantum" sin
e there is no 
lassi
alanalog of our 2-
lassi
al-queries-to-1-quantum-query redu
-tion (2-query LDCs exist but 1-query LDCs don't).We also observe that our 
onstru
tion implies the exis-ten
e of 1-query quantum-de
odable 
odes for all n. TheHadamard 
ode is an example of this. Here the 
odewordsare still 
lassi
al, but the de
oding algorithm is quantum.As mentioned before, if we only allow one 
lassi
al query,then LDCs do not exist for n larger than some 
onstantdepending on Æ and " [16℄. For larger q, it turns out thatthe best known (2q; Æ; ")-LDCs, due to Beimel et al. [6℄, area
tually (q; Æ; ")-LQDCs. Hen
e for �xed number of queriesq, we obtain LQDCs that are signi�
antly shorter than thebest known LDCs. In parti
ular, Beimel et al. give a 4-queryLDC with length m = 2O(n3=10) whi
h is a 2-query LQDC.This is signi�
antly shorter than them = 2�(n) that 2-queryLDCs need. We summarize the situation in Table 1, whereour 
ontributions are indi
ated by boldfa
e.
1.2 Results: Private Information RetrievalIn the private information retrieval setting, our te
hniquesallow us to redu
e 
lassi
al 2-server PIR s
hemes with 1-bit answers to quantum 1-server PIRs, whi
h in turn 
anbe redu
ed to a random a

ess 
ode [20℄. Thus we obtainan 
(n) lower bound on the 
ommuni
ation 
omplexity for1One 
an't redu
e 3 
lassi
al queries to 1 quantum query,be
ause the XOR of 3 bits requires 2 quantum queries.2The quantum lower bound on the 
ommuni
ation 
omplex-ity of the inner produ
t fun
tion of Cleve et al. [9℄ providesnew insight in a 
lassi
al result, but does not establish a newresult for 
lassi
al 
omputer s
ien
e.



Queries Length of LDC Length of LQDCq = 1 don't exist 2�(n)q = 2 2�(n) 2O(n3=10)q = 3 2O(n1=2) 2O(n1=7)q = 4 2O(n3=10) 2O(n1=11)Table 1: Best known bounds on the length of LDCsand LQDCs with q queriesall 
lassi
al 2-server PIRs with 1-bit answers. Previously,su
h a bound was known only for linear PIRs (�rst provenin [8, Se
tion 5.2℄ and extended to linear PIRs with 
onstant-length answers in [15℄). In Appendix B we extend our lowerbound to PIR s
hemes with larger answers.Apart from giving new lower bounds for 
lassi
al PIR,we 
an also use our 2-to-1 redu
tion to obtain quantum PIRs
hemes that beat the best known 
lassi
al PIRs. In parti
u-lar, Beimel et al. [6, Example 4.2℄ exhibit a 
lassi
al 4-serverPIR s
heme with 1-bit answers and 
ommuni
ation 
om-plexity O(n3=10). We 
an redu
e this to a quantum 2-serverPIR with O(n3=10) qubits of 
ommuni
ation. This beatsthe best known 
lassi
al 2-server PIR, whi
h has 
omplex-ity O(n1=3). We 
an similarly give quantum improvementsover the best known k-server PIR s
hemes for k > 2. How-ever, this does not 
onstitute a true 
lassi
al-quantum sep-aration in the PIR setting yet, sin
e no good lower boundsare known for 
lassi
al PIR. We summarize the best knownbounds for 
lassi
al and quantum PIR in Table 2.Servers PIR 
omplexity QPIR 
omplexityk = 1 �(n) �(n)k = 2 O(n1=3) O(n3=10)k = 3 O(n1=5:25) O(n1=7)k = 4 O(n1=7:87) O(n1=11)Table 2: Best known bounds on the 
ommuni
ation
omplexity of 
lassi
al and quantum PIR
2. PRELIMINARIES

2.1 QuantumBelow we give more pre
ise de�nitions of lo
ally de
od-able 
odes and related notions, but we �rst brie
y explainthe standard notation of quantum 
omputing. We refer toNielsen and Chuang [21℄ for more details. A qubit is a linear
ombination of the basis states j0i and j1i, also viewed as a2-dimensional 
omplex ve
tor:�0j0i+ �1j1i = � �0�1 � :Here �0; �1 are amplitudes, and j�0j2 + j�1j2 = 1.The 2m basis states of an m-qubit system are the m-foldtensor produ
ts of the states j0i and j1i. For example, thebasis states of a 2-qubit system are the four 4-dimensionalunit ve
tors j0i 
 j0i, j0i 
 j1i, j1i 
 j0i, and j1i 
 j1i. Weabbreviate, e.g., j1i 
 j0i to j0ij1i, or j1; 0i, or j10i, or evenj2i (sin
e 2 is 10 in binary). With these basis states, an

m-qubit state j�i is a 2m-dimensional 
omplex unit ve
torj�i = Xi2f0;1gm �ijii:We use h�j = j�i� to denote the 
onjugate transpose of theve
tor j�i, and h�j i = h�j�j i for the inner produ
t betweenstates j�i and j i. These two states are orthogonal if h�j i =0. The norm of j�i is k � k = ph�j�i. The density matrix
orresponding to j�i is the outer produ
t j�ih�j. The densitymatrix 
orresponding to a mixed state, whi
h is in pure statej�ii with probability pi, is � =Pi pij�iih�ij. If a 2-registerquantum state has the form j�i = Pippijiij�ii, then thestate of a system holding only the se
ond register of j�i isdes
ribed by the (redu
ed) density matrixPi pij�iih�ij.The most general measurement allowed by quantum me-
hani
s is a so-
alled positive operator-valued measurement(POVM). A k-out
ome POVM is spe
i�ed by positive oper-ators Ei = M�i Mi, 1 � i � k, subje
t to the 
ondition thatPiEi = I. Given a state �, the probability of getting theith out
ome is pi = Tr(Ei�) = Tr(Mi�M�i ). If the out
omeis indeed i, then the resulting state is Mi�M�i =Tr(Mi�M�i ).In parti
ular, if � = j�ih�j, then pi = h�jEij�i = kMij�i k2,and the resulting state is Mij�i=kMij�i k. A spe
ial 
ase iswhere k = 2m and B = fj iig forms an orthonormal basisof the m-qubit spa
e. \Measuring in the B-basis" meansthat we apply the POVM given by Ei =Mi = j iih ij. Ap-plying this to a pure state j�i gives resulting state j ii withprobability pi = jh�j iij2. Apart from measurements, thebasi
 operations that quantum me
hani
s allows us to do,are unitary (i.e., linear norm-preserving) transformations ofthe ve
tor of amplitudes.Finally, a word about quantum queries. A query to an m-bit string y is 
ommonly formalized as the following unitarytransformation, where j 2 [m℄, and b 2 f0; 1g is 
alled thetarget bit: jjijbi 7! jjijb � yji:A quantum 
omputer may apply this to any superposition.An equivalent formalization that we will be using here, is:j
ijji 7! (�1)
�yj j
ijji:Here 
 is a 
ontrol bit that 
ontrols whether the phase (�1)yjis added or not. Given some extra workspa
e, one query ofeither type 
an be simulated exa
tly by one query of theother type.
2.2 CodesBelow, by a `de
oding algorithm' we mean an algorithm(quantum or 
lassi
al depending on 
ontext) with ora
le a
-
ess to the bits of some (possibly 
orrupted) 
odeword y forx. The algorithm gets input i and is supposed to re
over xi,making only few queries to y.Definition 1. C : f0; 1gn ! f0; 1gm is a (q; Æ; ")-lo
allyde
odable 
ode (LDC) if there is a 
lassi
al randomized de-
oding algorithm A su
h that1. A makes at most q queries to y, non-adaptively.2. For all x and i, and all y 2 f0; 1gm with Hammingdistan
e d(C(x); y) � Æm we have Pr[Ay(i) = xi℄ �1=2 + ".



The LDC is 
alled linear if C is a linear fun
tion over GF (2)(i.e., C(x+ y) = C(x) + C(y)).By allowing A to be a quantum 
omputer and to makequeries in superposition, we 
an similarly de�ne (q; Æ; ")-lo
ally quantum-de
odable 
odes (LQDCs).It will be 
onvenient to work with non-adaptive queries,as used in the above de�nition, so the distribution on thequeries that A makes is independent of y. However, ourmain lower bound also holds for adaptive queries, see the�rst remark at the end of Se
tion 3.3.
2.3 Private Information RetrievalNext we de�ne private information retrieval s
hemes.Definition 2. A one-round, (1�Æ)-se
ure, k-server pri-vate information retrieval (PIR) s
heme with re
overy prob-ability 1=2+ ", query size t, and answer size a, 
onsists of arandomized algorithm (the user), and k deterministi
 algo-rithms S1; : : : ; Sk (the servers), s.t.1. On input i 2 [n℄, the user produ
es k t-bit queriesq1; : : : ; qk and sends these to the respe
tive servers.The jth server sends ba
k an a-bit string aj = Sj(x; qj).The user outputs a bit b depending on i; a1; : : : ; ak; andhis randomness.2. For all x and i, the probability (over the user's ran-domness) that b = xi is at least 1=2 + ".3. For all x and j, the distributions on qj (over the user'srandomness) are Æ-
lose (in total variation distan
e)for di�erent i.The s
heme is 
alled linear if, for every j and qj , the jthserver's answer Sj(x; qj) is a linear 
ombination over GF (2)of the bits of x.All known upper bounds on PIR have one round, " = 1=2(perfe
t re
overy) and Æ = 0 (the servers get no informationwhatsoever about i). Below we will assume one round andÆ = 0 without mentioning this further. We 
an straightfor-wardly generalize these de�nitions to quantum PIR for the
ase where Æ = 0 (the server's state after the query shouldbe independent of i), and that is the only 
ase we need here.
3. LOWER BOUND FOR 2-QUERY

LOCALLY DECODABLE CODESOur proof has two parts, ea
h with a 
lear intuition butrequiring quite a few te
hni
alities:1. A 2-query LDC is a 1-query LQDC, be
ause one quan-tum query 
an 
ompute the same Boolean fun
tions astwo 
lassi
al queries (albeit with slightly worse errorprobability).2. The length m of a 1-query LQDC must be exponen-tial, be
ause a uniform superposition over all its in-di
es turns out to be a logm-qubit quantum randoma

ess 
ode for x, for whi
h a linear lower bound isalready known [20℄.

3.1 From 2 Classical to 1 Quantum QueryThe key to the �rst step is the following lemma:Lemma 1. Let f : f0; 1g2 ! f0; 1g and suppose we 
anmake queries to the bits of some input string a = a1a2 2f0; 1g2. There exists a quantum algorithm that makes onlyone query (one that is independent of f) and outputs f(a)with probability exa
tly 11=14, and outputs 1 � f(a) other-wise.Proof. If we 
ould 
onstru
t the statej ai = 12(j0ij1i+(�1)a1 j1ij1i+(�1)a2 j1ij2i+(�1)a1+a2 j0ij2i)with one quantum query then we 
ould determine a with
ertainty, sin
e the four possible states j bi (b 2 f0; 1g2)form an orthonormal basis. We 
ould also see these statesas the Hadamard en
oding of the strings b 2 f0; 1g2. Un-fortunately we 
annot 
onstru
t j ai perfe
tly. Instead, weapproximate this state by making the query1p3 (j0ij1i+ j1ij1i + j1ij2i) ;where the �rst bit is the 
ontrol bit, and the appropriatephase (�1)aj is put in front of jji if the 
ontrol bit is 1. Theresult of the query is the statej�i = 1p3 (j0ij1i+ (�1)a1 j1ij1i+ (�1)a2 j1ij2i) :The algorithm then measures this state j�i in the orthonor-mal basis 
onsisting of the four states j bi. The probabilityof getting out
ome a is jh�j aij2 = 3=4, and ea
h of theother 3 out
omes has probability 1=12. The algorithm nowdetermines its output based on f and on the measurementout
ome b. We distinguish 3 
ases for f :1. jf(1)�1j = 1 (the 
ase jf(1)�1j = 3 is 
ompletely anal-ogous, with 0 and 1 reversed). If f(b) = 1, then the al-gorithm outputs 1 with probability 1. If f(b) = 0 thenit outputs 0 with probability 6=7 and 1 with probabil-ity 1=7. A

ordingly, if f(a) = 1, then the probabilityof outputting 1 is Pr[f(b) = 1℄ �1+Pr[f(b) = 0℄ �1=7 =3=4 + 1=28 = 11=14: If f(a) = 0, then the probabilityof outputting 0 is Pr[f(b) = 0℄ �6=7 = (11=12) �(6=7) =11=14:2. jf(1)�1j = 2. Then Pr[f(a) = f(b)℄ = 3=4 + 1=12 =5=6. If the algorithm outputs f(b) with probability13=14 and outputs 1�f(b) with probability 1=14, thenits probability of outputting f(a) is exa
tly 11=14.3. f is 
onstant. In that 
ase the algorithm just outputsthat value with probability 11=14.Thus we always output f(a) with probability 11=14.Peter H�yer (personal 
ommuni
ation) re
ently improvedthe 11=14 in the lemma to 9=10, whi
h we 
an show to beoptimal.Using our lemma we 
an prove:Theorem 1. A (2; Æ; ")-LDC is a (1; Æ; 4"=7)-LQDC.Proof. Consider i, x, and y su
h that d(C(x); y) � Æm.The 1-query quantum de
oder will use the same randomnessas the 2-query 
lassi
al de
oder. The random string of the




lassi
al de
oder determines two indi
es j; k 2 [m℄ and anf : f0; 1g2 ! f0; 1g su
h thatPr[f(yj ; yk) = xi℄ = p � 1=2 + ";where the probability is taken over the de
oder's random-ness. We now use Lemma 1 to obtain a 1-query quantumde
oder that outputs some bit o su
h thatPr[o = f(yj ; yk)℄ = 11=14:The su

ess probability of this quantum de
oder is:3Pr[o = xi℄ = Pr[o = f(yj ; yk)℄ � Pr[f(yj ; yk) = xi℄ +Pr[o 6= f(yj ; yk)℄ � Pr[f(yj ; yk) 6= xi℄= 1114p+ 314 (1� p)= 314 + 47p� 12 + 4"7 ;as promised.
3.2 Lower Bound for 1-Query LQDCsA quantum random a

ess 
ode is an en
oding x 7! �x ofn-bit strings x into m-qubit states �x, su
h that any bit xi
an be re
overed with some probability p � 1=2+" from �x.The following lower bound is known on the length of su
hquantum 
odes [20℄ (see Appendix A).Theorem 2 (Nayak). An en
oding x 7! �x of n-bitstrings into m-qubit states with re
overy probability at leastp, has m � (1�H(p))n.This allows us to prove an exponential lower bound for1-query LQDC:Theorem 3. If C : f0; 1gn ! f0; 1gm is a (1; Æ; ")-LQDC,then m � 2
n�1;for 
 = 1�H(1=2 + Æ"=4).Proof. Our goal below is to show that we 
an re
overea
h xi with probability 1=2 + Æ"=4 from the uniform statejU(x)i = 1p2m X
2f0;1g;j2[m℄(�1)
�C(x)j j
ijji:The intuitive reason for this is as follows. Sin
e C is anLDC, it is able to re
over xi even from a 
odeword thatis 
orrupted in many (up to Æm) pla
es. Therefore the\distribution" of queries of the de
oder must be \smooth",i.e., spread over almost all the positions of the 
odeword|otherwise an adversary 
ould 
hoose the 
orrupted bits ina way that makes the re
overy probability too low. Theuniform distribution provides a reasonable approximationto su
h a \smooth" distribution. Sin
e the uniform state3Here we use the `exa
tly' part of Lemma 1. To see what
ould go wrong if the `exa
tly' were `at least', suppose the
lassi
al de
oder outputs AND(y1; y2) = xi with probabil-ity 3=5 and XOR(y3; y4) = 1 � xi with probability 2=5.Then it outputs xi with probability 3=5 > 1=2. However, ifour quantum pro
edure 
omputes AND(y1; y2) with su

essprobability 11=14 but XOR(y3; y4) with su

ess probability1, then its re
overy probability is (3=5)(11=14) < 1=2.

jU(x)i is independent of i, we 
an a
tually re
over any bit xifrom it with good probability. Hen
e jU(x)i is a (log(m)+1)-qubit random a

ess 
ode for x, and applying Theorem 2gives the result.Let us be more pre
ise. The most general query thatthe quantum de
oder 
ould make to re
over xi, is some-thing of the form jQii =P
2f0;1g;j2[m℄ �
j j
ijjij�
ji, wherethe j�
ji are pure states in the de
oder's workspa
e andthe �
j are non-negative reals (any phases 
ould be put inthe j�
ji). This workspa
e 
an also in
orporate any 
las-si
al randomness used. However, the de
oder 
ould equiv-alently add these workspa
e states after the query, usingthe unitary map j
ijjij0i 7! j
ijjij�
ji. Hen
e we 
an as-sume without loss of generality that the a
tual query isjQii = P
2f0;1g;j2[m℄ �
j j
ijji, and that the de
oder justmeasures the state resulting from this query. Let D andI � D be the two POVM operators that the de
oder usesfor this measurement, 
orresponding to outputs 1 and 0, re-spe
tively. Its probability of outputting 1 on query-resultjRi is p(R) = hRjDjRi = k pDjRi k2.Inspired by the smoothing te
hnique of [16℄, we split theamplitudes �j of the query jQii into small and large ones:A = f
j : �
j � p1=Æmg and B = f
j : �
j > p1=Æmg.Sin
e the query does not a�e
t the j0ijji-states, we 
an as-sume without loss of generality that �0j is the same forall j, so �0j � 1=pm � 1=pÆm and hen
e 0j 2 A. Leta = qP
j2A �2
j be the norm of the \small-amplitude"part. Sin
e P
j2B �2
j � 1, we have jBj < Æm. De�nenon-normalized statesjA(x)i = X
j2A(�1)
�C(x)j�
j j
ijjijBi = X
j2B �
j j
ijji:The states jA(x)i + jBi and jA(x)i � jBi ea
h 
orrespondto a y 2 f0; 1gm that is 
orrupted (
ompared to C(x)) inat most jBj � Æm positions, so the de
oder 
an re
over xifrom ea
h of these states. If x has xi = 1, thenp(A(x) +B) � 1=2 + "p(A(x)�B) � 1=2 + ":Sin
e p(A�B) = p(A) + p(B)� (hAjDjBi+ hBjDjAi), av-eraging the previous two inequalities givesp(A(x)) + p(B) � 1=2 + ":Similarly, if x0 has x0i = 0, thenp(A(x0)) + p(B) � 1=2 � ":Hen
e, for the normalized states jA(x)i=a and jA(x0)i=a:p(A(x)=a)� p(A(x0)=a) � 2"=a2:Sin
e this holds for every x; x0 with xi = 1 and x0i = 0,there are 
onstants q1; q0 2 [0; 1℄, q1 � q0 � 2"=a2, su
hthat p(A(x)=a) � q1 whenever xi = 1 and p(A(x)=a) � q0whenever xi = 0.If we had a 
opy of the state jA(x)i=a, then we 
ould runthe pro
edure below to re
over xi. Here we assume thatq1 � 1=2 + "=a2 (if not, then we must have q0 � 1=2� "=a2and we 
an use the same argument with 0 and 1 reversed),and that q1+ q0 � 1 (if not, then q0 � 1=2� "=a2 and we'realready done).



Output 0 with probability q = 1� 1=(q1 + q0),and otherwise output the result of running thede
oder's POVM on jA(x)i=a.If xi = 1, then the probability that this pro
edure outputs1 is(1� q)p(A(x)=a) � (1� q)q1 = q1q1 + q0= 12 + q1 � q02(q1 + q0) � 12 + "2a2 :If xi = 0, then the probability that the pro
edure outputs 0is q + (1� q)(1� p(A(x)=a)) � q + (1� q)(1� q0)= 1� q0q1 + q0 = q1q1 + q0 � 12 + "2a2 :Thus, we 
an re
over xi with good probability if we havethe state jA(x)i=a (whi
h depends on i as well as x).It remains to show how we 
an obtain jA(x)i=a fromjU(x)i with reasonable probability. This we do by applying aPOVM with operatorsMyM and I�MyM to jU(x)i, whereM = pÆmP
j2A �
j j
jih
jj. Both MyM and I � MyMare positive operators (as required for a POVM) be
ause0 � pÆm�
j � 1 for all 
j 2 A. The POVM gives the �rstout
ome with probabilityhU(x)jMyM jU(x)i = Æm2m X
j2A�2
j = Æa22 :In this 
ase we have obtained the normalized version ofM jU(x)i, whi
h is jA(x)i=a, so then we 
an run the abovepro
edure to re
over xi. If the measurement gives the se
-ond out
ome, then we just output a fair 
oin 
ip. Thus were
over xi from jU(x)i with probability at leastÆa22 �12 + "2a2�+�1� Æa22 � 12 = 12 + Æ"4 ;whi
h 
on
ludes the proof.
3.3 Lower Bound for 2-Query LDCsTheorem 4. If C : f0; 1gn ! f0; 1gm is a (2; Æ; ")-lo
allyde
odable 
ode, then m � 2
n�1;for 
 = 1�H(1=2 + 3Æ"=14).Proof. The theorem 
ombines Theorem 1 and 3. Straight-forwardly, this would give a 
onstant of 1�H(1=2 + Æ"=7).We get the better 
onstant 
laimed here by observing thatthe 1-query LQDC derived from the 2-query LDC a
tuallyhas 1=3 of the overall squared amplitude on queries wherethe 
ontrol bit 
 is zero (and all those �0j are in A). Hen
ein the proof of Theorem 3, we 
an rede�ne \small ampli-tude" to �
j � p2=3Æm, and still B will have at most Æmelements be
ause P
j2B �2
j � 2=3. This in turns allowsus to make M a fa
tor p3=2 larger, whi
h improves theprobability of getting jA(x)i=a from jU(x)i to 3Æa2=4 andthe re
overy probability to 1=2 + 3Æ"=8. Combining thatwith Theorem 1 (whi
h makes " a fa
tor 4=7 smaller) gives
 = 1�H(1=2 + 3Æ"=14), as 
laimed.

Remarks:(1) Note that a (2; Æ; ")-LDC with adaptive queries gives a(2; Æ; "=2)-LDC with non-adaptive queries: if query q1 wouldbe followed by query q02 or q12 depending on the out
ome ofq1, then we 
an just guess in advan
e whether to query q1and q02 , or q1 and q12 . With probability 1/2, the se
ond querywill be the one we would have made in the adaptive 
ase andwe're �ne, in the other 
ase we just 
ip a 
oin, giving overallre
overy probability 1=2(1=2 + ") + 1=2(1=2) = 1=2 + "=2.Thus we also get slightly weaker but still exponential lowerbounds for adaptive 2-query LDCs.(2) For a (2; Æ; ")-LDC where the de
oder's output is theXOR of its two queries, we 
an give a better redu
tion thanin Theorem 1. In this 
ase, the quantum de
oder 
an query1p2 (j1ij1i+ j1ij2i) ; giving1p2 ((�1)a1 j1ij1i+ (�1)a2 j1ij2i) ;and extra
t a1 � a2 from this with 
ertainty. Thus the re-
overy probability remains 1=2 + " instead of going down to1=2 + 4"=7. A

ordingly, we also get better lower boundsfor 2-query LDCs where the output is the XOR of the twoqueries, namely 
 = 1�H(1=2 + 3Æ"=8).(3) In Appendix B we extend the lower bound to largeralphabets.
3.4 Locally Decodable Erasure CodesRe
ently, the notion of a Lo
ally De
odable Erasure Code(LDEC) was used in the 
onstru
tion of extra
tors [19℄. A
ode C is a (q; ")-LDEC, if for every i, in every "-fra
tionof the 
odeword, there exists a q-tuple of positions fromwhi
h we 
an re
over the bit xi. We show that LDECsare equivalent to \smooth" 
odes and hen
e to LDCs. Thenotion of \smooth" 
odes and their equivalen
e to LDCswere des
ribed in [16℄ (see Appendix B). Take S to be theset of an "-fra
tion of positions of the 
odeword in an LDEC.By de�nition, there exists a \good" q-tuple in S, i.e., onefrom whi
h we 
an re
over xi. Remove these q positionsof the 
odeword from S and repla
e them by some other qpositions. Now in this new set S0 of positions there shouldstill be a \good" q-tuple. Remove it and go on. You 
an dothis substitution (1�")m=q times, where m is the size of the
ode. Therefore, there are 
(m) disjoint q-tuples that are\good" for xi and so the 
ode is a \smooth" 
ode as de�nedin Appendix B. The 
onverse is also true. A \smooth" 
ode
ontains 
(m) disjoint q-tuples, say �m, that are \good" forxi. Hen
e, in any subset of the positions of the 
odeword ofsize (1��)m+1, there exists a \good" q-tuple and thereforethe 
ode is an LDEC. This equivalen
e shows that our lowerbound holds also for LDECs. In parti
ular, (2; ")-LDECsneed exponential length.
4. LOCALLY QUANTUM-DECODABLE

CODES WITH FEW QUERIESThe se
ond remark of Se
tion 3.3 immediately generalizesto:Theorem 5. A (2q; Æ; �)-LDC where the de
oder's outputis the XOR of the 2q queried bits, is a (q; Æ; ")-LQDC.LDCs with q queries 
an be obtained from q-server PIRs
hemes with 1-bit answers by 
on
atenating the answersthat the servers give to all possible queries of the user.



Beimel et al. [6, Corollary 4.3℄ re
ently improved the bestknown upper bounds on q-query LDCs, based on their im-proved PIR 
onstru
tion. They give a general upper boundm = 2nO(log log q=q log q) for q-query LDCs, for some 
onstantdepending on Æ and �, as well as more pre
ise estimates forsmall q. In parti
ular, for q = 4 they 
onstru
t an LDC oflength m = 2O(n3=10). All their LDCs are of the XOR-type,so we 
an redu
e the number of queries by half when allow-ing quantum de
oding. For instan
e, their 4-query LDC is a2-query LQDC with length m = 2O(n3=10). In 
ontrast, any2-query LDC needs length m = 2
(n) as proved above.For general LDCs we 
an do something nearly as good,using van Dam's result that a q-bit ora
le 
an be re
ov-ered with probability nearly 1 using q=2 +O(pq) quantumqueries [10℄:Theorem 6. A (q; Æ; �)-LDC is a (q=2 + O(pq); Æ; "=2)-LQDC.
5. PRIVATE INFORMATION RETRIEVAL

5.1 Lower Bounds for Classical PIRAs mentioned, there is a 
lose 
onne
tion between lo
allyde
odable 
odes and private information retrieval. Our te
h-niques allow us to give new lower bounds for 2-server PIRs.Again we give a 2-step proof: a redu
tion of 2 
lassi
alservers to 1 quantum server, 
ombined with a lower boundfor 1-server quantum PIR.Theorem 7. If there exists a 
lassi
al 2-server PIR s
hemewith t-bit queries, 1-bit answers, and re
overy probability1=2 + ", then there exists a quantum 1-server PIR s
hemewith (t+2)-qubit queries, (t+2)-qubit answers, and re
overyprobability 1=2 + 4"=7.Proof. The proof is analogous to the proof for lo
allyde
odable 
odes. If we let the quantum user use the samerandomness as the 
lassi
al one, the problem boils down to
omputing some f(a1; a2), where a1 is the �rst server's 1-bit answer to query q1, and a2 is the se
ond server's 1-bitanswer to query q2. However, in addition we now have tohide i from the quantum server. This we do by making thequantum user set up the (4 + t)-qubit state1p3 �j0ij0; 0ti+ j1ij1; q1i+ j2ij2; q2i� ;where `0t' is a string of t 0s. The user sends everything butthe �rst register to the server. The state of the server isnow a uniform mixture of j0; 0ti, j1; q1i, and j2; q2i. By these
urity of the 
lassi
al proto
ol, j1; q1i 
ontains no informa-tion about i (averaged over the user's randomness), and thesame holds for j2; q2i. Hen
e the server gets no informationabout i.The quantum server then puts (�1)aj in front of jj; qji(j 2 f1; 2g), leaves j0; 0ti alone, and sends everything ba
k.Note that we need to supply the name of the 
lassi
al serverj 2 f1; 2g to tell the server in superposition whether itshould play the role of server 1 or 2. The user now has1p3 �j0ij0; 0ti+ (�1)a1 j1ij1; q1i+ (�1)a2 j2ij2; q2i� :From this we 
an 
ompute f(a1; a2) with su

ess probabilityexa
tly 11=14, giving overall re
overy probability 1=2+4"=7as in Theorem 1.

Combining the above redu
tion with the quantum ran-dom a

ess 
ode lower bound, we obtain the �rst 
(n) lowerbound that holds for all 1-bit-answer 2-server PIRs, not justfor linear ones.Theorem 8. A 
lassi
al 2-server PIR s
heme with t-bitqueries, 1-bit answers, and re
overy probability 1=2 + ", hast � (1�H(1=2 + 4"=7))n� 2.Proof. We �rst redu
e the 2 
lassi
al servers to 1 quan-tum server in the way of Theorem 7. Now 
onsider the stateof the quantum PIR s
heme after the user sends his (t+2)-qubit message j�ii:Xr rpr3 jri �j0ij0; 0ti+ j1ij1; q1(r; i)i+ j2ij2; q2(r; i)i� :Here the pr are the 
lassi
al probabilities of the user (thesedepend on i) and qj(r; i) is the t-bit query that the user sendsto server j in the 
lassi
al 2-server s
heme, if he wants xi andhas random string r. Letting B = f0t+1g [ f1; 2g � f0; 1gtbe the server's basis states, we 
an write j�ii as:j�ii =Xb2B �bjaibijbi:Here the jaibi are pure states that do not depend on x. The
oeÆ
ients �b are non-negative reals that do not dependon i, for otherwise a measurement of b would give the serverinformation about i (
ontradi
ting priva
y). The server thentags on the appropriate phase sbx, whi
h is 1 for b = 0t+1and (�1)Sj(x;qj) for b = jqj , j 2 f1; 2g. This givesj�ixi =Xb2B �bjaibisbxjbi:Now the following pure state will be a random a

ess 
odefor x j xi =Xb2B �bsbxjbi;be
ause a user 
an unitarily map j0ijbi 7! jaibijbi to mapj0ij xi 7! j�ixi, from whi
h he 
an get xi with probabilityp = 1=2 + 4"=7 by 
ompleting the quantum PIR proto
ol.The state j xi has t + 2 qubits, hen
e from Theorem 2 weobtain t � (1�H(p))n� 2.In Appendix B we extend this bound to 
lassi
al 2-serverPIR s
hemes with larger answer size.For the spe
ial 
ase where the 
lassi
al PIR outputs theXOR of the two answer bits, we 
an improve our lower boundto t � (1�H(1=2+ "))n�1. In parti
ular, t � n�1 in 
aseof perfe
t re
overy (" = 1=2), whi
h is tight.Subsequently to our work, Beigel, Fortnow, and Gasar
h [5℄found a 
lassi
al proof that a 2-server PIR with perfe
t re-
overy and 1-bit answers needs query length t � n � 2 (nomatter whether it uses XOR or not).
5.2 Upper Bounds for Quantum PIRThe best known LDCs are derived from 
lassi
al PIRs
hemes with 1-bit answers where the output is the XOR ofthe 1-bit answers that the user re
eives. By allowing quan-tum queries, we 
an redu
e the number of queries by halfto obtain more eÆ
ient LQDCs. Similarly, we 
an also turnthe underlying 
lassi
al k-server PIRs dire
tly into quantumPIRs with k=2 servers.



Most interestingly, there exists a 4-server PIR with 1-bitanswers and 
ommuni
ation 
omplexity O(n3=10) [6, Ex-ample 4.2℄. This gives us a quantum 2-server PIR s
hemewith O(n3=10) 
ommuni
ation, improving upon the 
ommu-ni
ation required by the best known 
lassi
al 2-server PIRs
heme, whi
h has been O(n1=3) ever sin
e the introdu
tionof PIR by Chor et al. [8℄. In the introdu
tion we mentionedalso some quantum upper bounds for k > 2, whi
h are ob-tained similarly.
6. FUTURE: MORE THAN 2 QUERIES?This paper is the �rst where a new 
lassi
al result isproved using te
hniques from quantum 
omputing in an ap-parently essential way. Clearly, it would be very interestingto �nd other su
h appli
ations. This would mu
h broadenthe relevan
e of quantum 
omputing and make it less 
on-ditional on whether an a
tual quantum 
omputer will everbe built.In parti
ular, we would like to use our te
hniques to getbetter lower bounds for lo
ally de
odable 
odes with morethan 2 queries. For LDCs with q � 3 queries, we were able toimprove the polynomial lower bounds m = 
(n1+1=(q�1)) ofKatz and Trevisan [16℄, to m = 
((n= log n)1+1=(dq=2e�1)).In both 
ases the 
onstant in 
(�) depends on q, Æ, and ".The idea is sket
hed below. Suppose for simpli
ity that q iseven andm is a multiple of q. By the results of Katz and Tre-visan [16℄, we 
an assume that for re
overing xi from C(x),the q-query de
oder has a �xed partitionMi of [m℄ into m=qq-tuples; it just pi
ks a random q-tuple (i1; : : : ; iq) 2Mi andoutputs the XOR of the q bits C(x)i1 ; : : : ; C(x)iq . The de-
oding will be 1=2 + " 
orre
t, averaged over x.Let Pij = jiihij + jjihjj be the proje
tor on the states jiiand jji. Suppose (i1; j1); : : : ; (im=2; jm=2) is a partition ofall the q-tuples in Mi into pairs. By measuring the uni-form state jU(x)i = 1pmPmj=1(�1)C(x)j jji with operatorsPi1j1 ; : : : ; Pim=2jm=2 , we get (�1)C(x)i` ji`i+ (�1)C(x)j` jj`i,for random 1 � ` � m=2. From this we 
an obtain the parityC(x)i` � C(x)j` , so we 
an generate the XOR of a randompair from the partition. In order to re
over xi we need to�nd q=2 di�erent pairs that 
ome from the same q-tuple.Ea
h state jU(x)i gives us a random pair out of the pos-sible m=2. By the Birthday Paradox, we need O(m1�2=q)
opies of the logm-qubit state jU(x)i to 
onstru
t this (av-erage) random a

ess 
ode. The random a

ess 
ode lowerbound now gives m1�2=q � logm = 
(n), whi
h implies m =
((n= log n)1+2=(q�2)).
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APPENDIX

A. RANDOM ACCESS CODESAs mentioned before, a quantum random a

ess 
ode is anen
oding x 7! �x, su
h that any bit xi 
an be re
overed withsome probability p � 1=2 + " from �x. Below we reproveNayak's [20℄ linear lower bound on the length m of su
hen
odings.We assume familiarity with the following notions fromquantum information theory, see [21, Chapters 11 and 12℄ fordetails. Very brie
y, if we have a bipartite quantum systemAB (given by some density matrix), then we use A and B todenote the states (redu
ed density matri
es) of the individ-ual systems. S(A) = �Tr(A logA) is the (Von Neumann)entropy of A; S(AjB) = S(AB)�S(B) is the 
onditional en-tropy of A given B; and S(A : B) = S(A)+S(B)�S(AB) =S(A)�S(AjB) is the mutual information between A and B.We de�ne an n+m-qubit state XM as follows:12n Xx2f0;1gn jxihxj 
 �x:We use X to denote the �rst subsystem, Xi for its individ-ual bits, and M for the se
ond subsystem. By [21, Theo-

rem 11.8.4℄ we haveS(XM) = n+ 12n Xx S(�x) � n = S(X):Sin
e M has m qubits we have S(M) � m, hen
eS(X :M) = S(X) + S(M)� S(XM) � S(M) � m:Using a 
hain rule for relative entropy, and the (highly non-trivial) subadditivity of Von Neumann entropy we getS(XjM) = nXi=1 S(XijX1 : : : Xi�1M) � nXi=1 S(XijM):Sin
e we 
an predi
t Xi from M with su

ess probability p,Fano's inequality impliesH(p) � S(XijM):In fa
t, Fano's inequality even applies under the weaker as-sumption that the su

ess probability in predi
ting xi is ponly when averaged over all x. Putting the above equationstogether we obtain(1�H(p))n � S(X)� nXi=1 S(XijM)� S(X)� S(XjM) = S(X :M) � m:
B. NON-BINARY ALPHABETSIn this se
tion we extend our lower bounds for binary 2-query LDCs to the 
ase of larger alphabets (and our boundsfor binary 2-server PIR s
hemes to the 
ase of larger an-swers). For simpli
ity we assume the alphabet is � = f0; 1g`,so a query to position j now returns an `-bit string C(x)j .The de�nition of (q; Æ; ")-LDC from Se
tion 2.2 
arries overimmediately, with d(C(x); y) now measuring the Hammingdistan
e between C(x) 2 �m and y 2 �m.We will need the notion of smooth 
odes and their 
on-ne
tion to LDCs as stated in [16℄.Definition 3. C : f0; 1gn ! �m is a (q; 
; �)-smooth
ode if there is a 
lassi
al randomized de
oding algorithm Asu
h that1. A makes at most q queries, non-adaptively.2. For all x and i we have Pr[AC(x)(i) = xi℄ � 1=2 + ".3. For all x, i, and j, the probability that on input i ma-
hine A queries index j is at most 
=m.Note that smooth 
odes only require good de
oding on
odewords C(x), not on y that are 
lose to C(x). Katz andTrevisan [16, Theorem 1℄ established the following 
onne
-tion:Theorem 9 (Katz & Trevisan). A (q; Æ; ")-LDC C :f0; 1gn ! �m is a (q; q=Æ; ")-smooth 
ode.A 
onverse to Theorem 9 also holds: a (q; 
; ")-smooth
ode is a (q; Æ; "� 
Æ)-LDC. Hen
e LDCs and smooth 
odesare essentially equivalent.To prove the exponential lower bound for LDCs over non-binary alphabet �, we will redu
e a smooth 
ode over �to a somewhat longer binary smooth 
ode that works wellaveraged over x. Then, we will show a lower bound on su
haverage-
ase binary smooth 
odes in a way very similar tothe proof of Theorem 4. The following key lemma was sug-gested to us by Lu
a Trevisan.



Lemma 2 (Trevisan). Let C : f0; 1gn ! �m be a(2; 
; ")-smooth 
ode. Then there exists a (2; 
 � 2`; "=22`)-smooth 
ode C0 : f0; 1gn ! f0; 1gm�2` that is good on aver-age, i.e., there is a de
oder A su
h that for all i 2 [n℄12n Xx2f0;1gn Pr[AC0(x)(i) = xi℄ � 12 + "22` :Proof. We form the new binary 
ode C0 by repla
ingea
h symbol C(x)j 2 � of the old 
ode by its Hadamard
ode, whi
h 
onsists of 2` bits. The length of C0(x) is m � 2`bits. The new de
oding algorithm uses the same randomnessas the old one. Let us �x the two queries j; k 2 [m℄ and theoutput fun
tion f : �2 ! f0; 1g of the old de
oder. Wewill des
ribe a new de
oding algorithm that is good for anaverage x and looks only at one bit of the Hadamard 
odesof ea
h of a = C(x)j and b = C(x)k.First, if for this spe
i�
 j; k; f we have Prx[f(a; b) = xi℄ �1=2, then the new de
oder just outputs a random bit, so inthis 
ase it is at least as good as the old one for an average x.Now 
onsider the 
ase Prx[f(a; b) = xi℄ = 1=2 + � for some� > 0. Swit
hing from the f0; 1g-notation to the f�1; 1g-notation enables us to say that Ex[f(a; b)�xi℄ = 2�. Viewinga and b as two `-bit strings, we 
an represent f by its Fourierrepresentation: f(a; b) =PS;T�[`℄ f̂S;T Qs2S asQt2T bt andhen
eXS;T f̂S;TEx "Ys2S asYt2T bt � xi#= Ex " XS;T f̂S;T Ys2S asYt2T bt! � xi# = Ex[f(a; b)�xi℄ = 2�:Averaging and using that jf̂S0;T0 j � 1, it follows that thereexist subsets S0; T0 su
h that�����Ex "Ys2S0 as Yt2T0 bt � xi#������ f̂S0;T0Ex " Ys2S0 as Yt2T0 bt � xi# � 2�22` :Returning to the f0; 1g-notation, we must have eitherPrx [(S0 � a� T0 � b) = xi℄ � 1=2 + �=22`or Prx [(S0 � a� T0 � b) = xi℄ � 1=2� �=22`;where S0 � a and T0 � b denote inner produ
ts mod 2 of `-bitstrings. A

ordingly, either the XOR of the two bits S0 � aand T0 � b, or its negation, predi
ts xi with average proba-bility � 1=2 + �=22`. Both of these bits are in the binary
ode C0(x). The 
-smoothness of C translates into 
 � 2`-smoothness of C0. Averaging over the 
lassi
al randomness(i.e. the 
hoi
e of j; k, and f) gives the lemma.This lemma enables us to modify our proof of Theorem 4so that it works for non-binary alphabets �:Theorem 10. If C : f0; 1gn ! �m = (f0; 1g`)m is a(2; Æ; ")-lo
ally de
odable 
ode, thenm � 2
n�`;for 
 = 1�H(1=2 + Æ"=23`+1).

Proof. Using Theorem 9 and Lemma 2, we turn C intoa binary (2; 2`+1=Æ; "=22`)-smooth 
ode C0 that has averagere
overy probability 1=2 + "=22` and length m0 = m � 2`bits. Sin
e its de
oder XORs its two binary queries, we 
anredu
e this to one quantum query without any loss in the av-erage re
overy probability (see the se
ond remark followingTheorem 4).We now redu
e this quantum smooth 
ode to a quantumrandom a

ess 
ode, by a modi�ed version of the proof ofTheorem 4. The smoothness of C0 implies that all ampli-tudes �j (whi
h depend on i) in the one quantum querysatisfy �j �p2`+1=Æm0. Hen
e there is no need to split theset of j's into A and B. Also, the 
ontrol bit 
 will alwaysbe 1, so we 
an ignore it.Consider the states jU(x)i = 1pm0 Pm0j=1(�1)C(x)0j jji andjA(x)i = Pm0j=1 �j(�1)C(x)0j jji, and the 2-out
ome POVMwith operator M = pÆm0=2`+1Pj �j jjihjj. The proba-bility that the POVM takes us from jU(x)i to M jU(x)i =jA(x)i is equal to hU(x)jM�M jU(x)i = Æ=2`+1. Hen
e jU(x)iforms a random a

ess 
ode with average su

ess probabilityp = Æ2`+1 � �12 + "22`�+�1� Æ2`+1� 12 = 12 + Æ"23`+1 :The (1 � H(p))n lower bound for a quantum random a
-
ess 
ode holds even if the re
overy probability p is only anaverage over x, hen
e we obtain log(m0) � (1�H(p))n.We 
an also extend our linear lower bound on 2-serverPIR s
hemes with answer length a = 1 (Theorem 8) to the
ase of larger answer length. We use the redu
tion from PIRto smooth 
odes given by Lemma 7.1 of [15℄:Lemma 3 (GKST). If there is a 
lassi
al 2-server PIRs
heme with query length t, answer length a, and re
overyprobability 1=2 + ", then there is a (2; 3; ")-smooth 
ode C :f0; 1gn ! �m for � = f0; 1ga and m � 6 � 2t.Going through roughly the same steps as for the aboveLDC lower bound, we get:Theorem 11. A 
lassi
al 2-server PIR s
heme with t-bitqueries, a-bit answers, and re
overy probability 1=2 + ", hast � 
(n"2=26a).


