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ABSTRACT

A locally decodable code encodes n-bit strings z in m-bit
codewords C(z), in such a way that one can recover any bit
z; from a corrupted codeword by querying only a few bits of
that word. We use a quantum argument to prove that LDCs
with 2 classical queries need exponential length: m = 2%,
Previously this was known only for linear codes (Goldreich
et al. 02). Our proof shows that a 2-query LDC can be
decoded with only 1 quantum query, and then proves an
exponential lower bound for such 1-query locally quantum-
decodable codes. We also show that ¢ quantum queries allow
more succinct LDCs than the best known LDCs with ¢ clas-
sical queries. Finally, we give new classical lower bounds and
quantum upper bounds for the setting of private information
retrieval. In particular, we exhibit a quantum 2-server PIR
scheme with O(n3/10) qubits of communication, improving
upon the O(n'/?) bits of communication of the best known
classical 2-server PIR.
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1. INTRODUCTION

Error-correcting codes allow one to encode an n-bit string
x into an m-bit codeword C(z), in such a way that x can still
be recovered even if the codeword is corrupted in a number of
places. For example, codewords of length m = O(n) already
suffice to recover from errors in a constant fraction of the
bitpositions of the codeword, even in linear time [26]. One
disadvantage of such “standard” error-correction, is that one
usually needs to consider all or most of the (corrupted) code-
word to recover anything about x. If one is only interested
in recovering one or a few of the bits of z, then more effi-
cient schemes are possible, so-called locally decodable codes
(LDCs). These allow us to extract small parts of encoded
information from a corrupted codeword, while looking at
(“querying”) only a few positions of that word. They have
found various applications in complexity theory and cryp-
tography, such as self-correcting computations [4, 18, 13, 12,
14], PCPs [2], worst-case to average-case reductions [3, 27],
private information retrieval [8], and extractors [19]. Infor-
mally, LDCs are described as follows:

A (q,6,¢)-locally decodable code encodes n-bit strings
z into m-bit codewords C(z), such that for each

i, the bit z; can be recovered with probability
1/2 + & making only ¢ queries, even if the code-
word is corrupted in dm of the bits.

For example, the Hadamard code is a locally decodable code
where two queries are sufficient in order to predict any bit
with constant advantage, even with a constant fraction of
errors. The code has m = 2" and C(z); = j - = mod 2
for all j € {0,1}". Recovery from a corrupted codeword
y is possible by picking a random j € {0,1}", querying y;
and yjee;, and outputting the XOR of those two bits. If
neither bit has been corrupted, then we output y; B yjgpe; =
jrx®(jDe) x=e -x =1z as we should. If C(z) has
been corrupted in at most dm positions, then a fraction of
at least 1—20 of all (j, j ®e;) pairs of indices is uncorrupted,
so the recovery probability is at least 1 — 24. This is > 1/2
as long as § < 1/4. The main drawback of the Hadamard
code is its exponential length.



Clearly, we would like both the codeword length m and
the number of queries ¢ to be small. The main complexity
question about LDCs is how large m needs to be, as a func-
tion of n, q, 4, and €. For ¢ = polylog(n), Babai et al. [2]
showed how to achieve length m = O(n?), for some fixed
d,e. This was subsequently improved to nearly linear length
by Polishchuk and Spielman [23]. Beimel et al. [6] recently

improved the best known upper bounds for constant ¢ to

O(loglogq/qlogaq)
n
m = 2

small q.

The study of lower bounds on m was initiated by Katz
and Trevisan [16]. They proved that for ¢ = 1, LDCs do not
exist if n is larger than some constant depending on ¢ and
e. For ¢ > 2, they proved a bound of m = Q(n*+/(@=1) if
the ¢ queries are made non-adaptively; this bound was gen-
eralized to the adaptive case by Deshpande et al. [11]. This
establishes superlinear but at most quadratic lower bounds
on the length of LDCs with a constant number of queries.
There is still a large gap between the best known upper and
lower bounds. In particular, it is open whether m = poly(n)
is achievable with constant g. Recently, Goldreich et al. [15]
examined the case ¢ = 2, and showed that m > 2°°"/8 if C
is a linear code. Obata [22] subsequently strengthened the
dependence on ¢ to m > 29207/ (129 which is essentially
optimal.

Katz and Trevisan, and Goldreich et al. established a
close connection between locally decodable codes and pri-
vate information retrieval (PIR) schemes. In fact, the best
known LDCs for constant g are derived from PIR schemes.
A PIR scheme allows a user to extract a bit z; from an n-
bit database x that is replicated over some k > 1 servers,
without the server(s) learning which i the user wants. The
main complexity measure of a PIR scheme is its communi-
cation complexity, i.e., the sum of the lengths of the queries
that the user sends to each server, and the length of the
servers’ answers. If there is only one server (k = 1), then
privacy can be maintained by letting the server send the
whole n-bit database to the user. This takes n bits of com-
munication and is optimal. If the database is replicated
over k > 2 servers, then smarter protocols are possible.
Chor et al. [8] exhibited a 2-server PIR scheme with com-
munication complexity O(n'/?) and one with O(n'/*) for
k > 2. Ambainis [1] improved the latter to O(n'/*=1),
Beimel et al. [6] improved the communication complexity to
O(n? loglogk/klogk); their results improve the previous best
bounds for all £ > 3 but not for k = 2. No general lower
bounds better than Q(logn) are known for PIRs with k£ > 2
servers. A PIR scheme is linear if for every query the user
makes, the answer bits are linear combinations of the bits
of z. Goldreich et al. [15] proved that linear 2-server PIRs
with ¢-bit queries and a-bit answers where the user looks
only at k predetermined positions in each answer, require
t = Q(n/a").

1.1 Results: Locally Decodable Codes

The main result of this paper is an exponential lower
bound for general 2-query LDCs:

A (2,4, ¢)-locally decodable code has length m > 2°"71,

forc =1—H(1/2+430¢/14), where H(-) is the binary entropy
function. This is the first superpolynomial lower bound on
general LDCs with more than one query. Our constant ¢ in
the exponent is somewhat worse than the ones of Goldreich

, with some more precise bounds for

et al. and of Obata, but our proof establishes the exponential
lower bound for all LDCs, not just linear ones. In the body
of the paper we will focus only on codes over the binary
alphabet. In Appendix B we show how to extend our result
to the case of larger alphabets, using a classical reduction
due to Trevisan.

Our proof introduces one radically new ingredient: quan-
tum computing. We show that if two classical queries can
recover z; with probability 1/2 + ¢, then z; can also be re-
covered with probability 1/2+4e/7 using only one quantum
query.! In other words, a (2,0, ¢)-locally decodable code is a
(1,6, 4e/7)-locally quantum-decodable code. We then prove
an exponential lower bound for 1-query LQDCs by showing,
roughly speaking, that a 1-query LQDC of length m in-
duces a quantum random access code for z of length log m.
Nayak’s [20] linear lower bound on such codes finishes off
the proof. For the sake of completeness, we include a proof
of his result in Appendix A.

This lower bound for classical LDCs is one of the very few
examples where tools from quantum computing enable one
to prove new results in classical computer science. We know
only a few other examples of this.> Radhakrishnan et al. [24]
proved lower bounds for the set membership data structure
that hold for quantum algorithms, but are in fact stronger
than the previous classical lower bounds of Buhrman et
al. [7]. Sen and Venkatesh did the same for data structures
for the predecessor problem [25, quant-ph version]. Finally,
Klauck et al. [17] proved lower bounds for the k-round quan-
tum communication complexity of the tree-jumping problem
that are somewhat stronger than the previous best classical
lower bounds. In these cases, however, the underlying proof
techniques easily yield a classical proof. Our proof seems
to be more inherently “quantum” since there is no classical
analog of our 2-classical-queries-to-1-quantum-query reduc-
tion (2-query LDCs exist but 1-query LDCs don’t).

We also observe that our construction implies the exis-
tence of 1-query quantum-decodable codes for all n. The
Hadamard code is an example of this. Here the codewords
are still classical, but the decoding algorithm is quantum.
As mentioned before, if we only allow one classical query,
then LDCs do not exist for n larger than some constant
depending on § and e [16]. For larger ¢, it turns out that
the best known (2¢, §,£)-LDCs, due to Beimel et al. [6], are
actually (q,d,¢)-LQDCs. Hence for fixed number of queries
q, we obtain LQDCs that are significantly shorter than the
best known LDCs. In particular, Beimel et al. give a 4-query
LDC with length m = 2°¢*"™) which is a 2-query LQDC.
This is significantly shorter than the m = 290 that 2-query
LDCs need. We summarize the situation in Table 1, where
our contributions are indicated by boldface.

1.2 Results: Private Information Retrieval

In the private information retrieval setting, our techniques
allow us to reduce classical 2-server PIR schemes with 1-
bit answers to quantum 1-server PIRs, which in turn can
be reduced to a random access code [20]. Thus we obtain
an Q(n) lower bound on the communication complexity for

1One can’t reduce 3 classical queries to 1 quantum query,
because the XOR of 3 bits requires 2 quantum queries.
?The quantum lower bound on the communication complex-
ity of the inner product function of Cleve et al. [9] provides
new insight in a classical result, but does not establish a new
result for classical computer science.



[ Queries | Length of LDC | Length of LQDC ]

g=1 don’t exist 20(™)

q=2 20(n) 90(n3719)
q= 3 2O(n1 2) 20(11.1/7)
q= 4 20(n3 10) 2O(n1/11)

Table 1: Best known bounds on the length of LDCs
and LQDCs with ¢ queries

all classical 2-server PIRs with 1-bit answers. Previously,
such a bound was known only for linear PIRs (first proven
in [8, Section 5.2] and extended to linear PIRs with constant-
length answers in [15]). In Appendix B we extend our lower
bound to PIR schemes with larger answers.

Apart from giving new lower bounds for classical PIR,
we can also use our 2-to-1 reduction to obtain quantum PIR
schemes that beat the best known classical PIRs. In particu-
lar, Beimel et al. [6, Example 4.2] exhibit a classical 4-server
PIR scheme with 1-bit answers and communication com-
plexity O(n*/*?). We can reduce this to a quantum 2-server
PIR with O(n%!°) qubits of communication. This beats
the best known classical 2-server PIR, which has complex-
ity O(n1/3). We can similarly give quantum improvements
over the best known k-server PIR schemes for k > 2. How-
ever, this does not constitute a true classical-quantum sep-
aration in the PIR setting yet, since no good lower bounds
are known for classical PIR. We summarize the best known
bounds for classical and quantum PIR in Table 2.

[ Servers | PIR complexity | QPIR complexity |

k=1 O(n) O(n)

k=2 O(n'’®) 0(n3/19)
k=23 O(nl 5.25 O(nl/V)
k=4 O(nl 7.87) O(nl/ll)

Table 2: Best known bounds on the communication
complexity of classical and quantum PIR

2. PRELIMINARIES

2.1 Quantum

Below we give more precise definitions of locally decod-
able codes and related notions, but we first briefly explain
the standard notation of quantum computing. We refer to
Nielsen and Chuang [21] for more details. A qubit is a linear
combination of the basis states |0) and |1), also viewed as a
2-dimensional complex vector:

@ol0) + aq|1) = ( ao >

a1

Here ag, a1 are amplitudes, and |oz0|2 + \a1|2 =1

The 2™ basis states of an m-qubit system are the m-fold
tensor products of the states |0) and |1). For example, the
basis states of a 2-qubit system are the four 4-dimensional
unit vectors |0) ® |0), |0) ® [1), [1) ® |0), and |1) ® |1). We
abbreviate, e.g., |1) ® |0) to |0)|1), or |1,0), or |10}, or even
|2) (since 2 is 10 in binary). With these basis states, an

m-qubit state |@) is a 2™-dimensional complex unit vector

o)y =" aili).

i€{0,1}m

We use (¢| = |¢)* to denote the conjugate transpose of the
vector |¢), and (p|y) = (¢||¢) for the inner product between
states |¢) and |¢). These two states are orthogonal if (¢p|)) =
0. The norm of |¢) is || ¢ || = \/(¢|¢). The density matriz
corresponding to |¢) is the outer product |¢)(¢|. The density
matrix corresponding to a mized state, which is in pure state
|¢:) with probability p;, is p = Y-, pi|di)(¢:|. If a 2-register
quantum state has the form |¢) = >, /pili)|¢:), then the
state of a system holding only the second register of |¢) is
described by the (reduced) density matrix Y, pi|di)(di|.

The most general measurement allowed by quantum me-
chanics is a so-called positive operator-valued measurement
(POVM). A k-outcome POVM is specified by positive oper-
ators E; = M/ M;, 1 <i < k, subject to the condition that
> ; Ei = I. Given a state p, the probability of getting the
ith outcome is p; = Tr(Eip) = Tr(M;pM;). If the outcome
is indeed 4, then the resulting state is M;pM;" /Tr(M;pM;).
In particular, if p = |¢)($|, then p; = (¢|Ei[¢) = || Mi|¢) ||°,
and the resulting state is M;|¢)/|| M;|¢) ||. A special case is
where k = 2™ and B = {|v¢;)} forms an orthonormal basis
of the m-qubit space. “Measuring in the B-basis” means
that we apply the POVM given by E; = M; = |¢;){(¢i|. Ap-
plying this to a pure state |¢) gives resulting state |1;) with
probability p; = [(¢|¢:)|>. Apart from measurements, the
basic operations that quantum mechanics allows us to do,
are unitary (i.e., linear norm-preserving) transformations of
the vector of amplitudes.

Finally, a word about quantum queries. A query to an m-
bit string y is commonly formalized as the following unitary
transformation, where j € [m], and b € {0,1} is called the
target bit:

) = 15)1b & yi).

A quantum computer may apply this to any superposition.
An equivalent formalization that we will be using here, is:

[e)]7) = (1) [e)]3)-

Here c is a control bit that controls whether the phase (—1)¥
is added or not. Given some extra workspace, one query of
either type can be simulated exactly by one query of the
other type.

2.2 Codes

Below, by a ‘decoding algorithm’ we mean an algorithm
(quantum or classical depending on context) with oracle ac-
cess to the bits of some (possibly corrupted) codeword y for
z. The algorithm gets input ¢ and is supposed to recover z;,
making only few queries to y.

DEFINITION 1. C: {0,1}" — {0,1}™ is a (q,d, £)-locally
decodable code (LDC) if there is a classical randomized de-
coding algorithm A such that

1. A makes at most q queries to y, non-adaptively.
2. For all x and i, and all y € {0,1}" with Hamming

distance d(C(z),y) < dm we have Pr[AY(i) = z;] >
1/2 +e.



The LDC'is called linear if C' is a linear function over GF(2)
fi.e., C(a+1y) = C(z) + C(y))

By allowing A to be a quantum computer and to make
queries in superposition, we can similarly define (q,9,¢)-
locally quantum-decodable codes (LQDCs).

It will be convenient to work with mon-adaptive queries,
as used in the above definition, so the distribution on the
queries that A makes is independent of y. However, our
main lower bound also holds for adaptive queries, see the
first remark at the end of Section 3.3.

2.3 Private Information Retrieval

Next we define private information retrieval schemes.

DEFINITION 2. A one-round, (1—4)-secure, k-server pri-
vate information retrieval (PIR) scheme with recovery prob-
ability 1/2 + ¢, query size t, and answer size a, consists of a
randomized algorithm (the user), and k deterministic algo-
rithms S1,..., Sk (the servers), s.t.

1. On input i € [n], the user produces k t-bit queries

qi,...,qk and sends these to the respective servers.
The jth server sends back an a-bit string a; = Sj(z,q;).
The user outputs a bit b depending on i,a1,...,ar, and

his randomness.

2. For all  and i, the probability (over the user’s ran-
domness) that b = x; is at least 1/2 + €.

3. For allx and j, the distributions on q; (over the user’s
randomness) are d-close (in total variation distance)
for different 1.

The scheme 1is called linear if, for every j and gq;, the jth
server’s answer S;(z,q;) is a linear combination over GF(2)
of the bits of x.

All known upper bounds on PIR have one round, ¢ = 1/2
(perfect recovery) and § = 0 (the servers get no information
whatsoever about 7). Below we will assume one round and
6 = 0 without mentioning this further. We can straightfor-
wardly generalize these definitions to quantum PIR for the
case where 6 = 0 (the server’s state after the query should
be independent of ¢), and that is the only case we need here.

3. LOWER BOUND FOR 2-QUERY
LOCALLY DECODABLE CODES

Our proof has two parts, each with a clear intuition but
requiring quite a few technicalities:

1. A 2-query LDC is a 1-query LQDC, because one quan-
tum query can compute the same Boolean functions as
two classical queries (albeit with slightly worse error
probability).

2. The length m of a 1-query LQDC must be exponen-
tial, because a uniform superposition over all its in-
dices turns out to be a log m-qubit quantum random
access code for x, for which a linear lower bound is
already known [20].

3.1 From 2 Classical to 1 Quantum Query
The key to the first step is the following lemma:

Lemma 1. Let f: {0,1}* — {0,1} and suppose we can
make queries to the bits of some input string a = aijaz €
{0,1}2. There exists a quantum algorithm that makes only
one query (one that is independent of f) and outputs f(a)
with probability exactly 11/14, and outputs 1 — f(a) other-
wise.

PRrROOF. If we could construct the state
1 a a a a
[¥a) = S(10)1)+(=1)" 1) +(=1)"*|1)|2)+(-1) 17210)|2))

with one quantum query then we could determine a with
certainty, since the four possible states |¢;) (b € {0,1}?)
form an orthonormal basis. We could also see these states
as the Hadamard encoding of the strings b € {0,1}*. Un-
fortunately we cannot construct |¢,) perfectly. Instead, we
approximate this state by making the query

1
V3

where the first bit is the control bit, and the appropriate
phase (—1)% is put in front of |5) if the control bit is 1. The
result of the query is the state

1

) 7
The algorithm then measures this state |¢) in the orthonor-
mal basis consisting of the four states |¢)y). The probability
of getting outcome a is |{($|Ys)|> = 3/4, and each of the
other 3 outcomes has probability 1/12. The algorithm now
determines its output based on f and on the measurement
outcome b. We distinguish 3 cases for f:

(10)[1) + [DI1) +[1)[2))

(10)[1) + (="' [1)1) + (=1)"2[1)[2)) .

1. |f(1)7! =1 (the case |f(1)"*| = 3 is completely anal-
ogous, with 0 and 1 reversed). If f(b) = 1, then the al-
gorithm outputs 1 with probability 1. If f(b) = 0 then
it outputs 0 with probability 6/7 and 1 with probabil-
ity 1/7. Accordingly, if f(a) = 1, then the probability
of outputting 1 is Pr[f(b) = 1]-1+Pr[f(b) =0]-1/7 =
3/4+1/28 = 11/14. If f(a) = 0, then the probability
of outputting 0 is Pr[f(b) = 0]-6/7 = (11/12)-(6/7) =
11/14.

2. |f(1)7| = 2. Then Pr[f(a) = f(b)] = 3/4 +1/12 =
5/6. If the algorithm outputs f(b) with probability
13/14 and outputs 1 — f(b) with probability 1/14, then
its probability of outputting f(a) is exactly 11/14.

3. f is constant. In that case the algorithm just outputs
that value with probability 11/14.

Thus we always output f(a) with probability 11/14. [

Peter Hgyer (personal communication) recently improved
the 11/14 in the lemma to 9/10, which we can show to be
optimal.

Using our lemma we can prove:

THEOREM 1. A (2,0,¢)-LDC is a (1,0,4¢/7)-LQDC.

ProoF. Consider i, z, and y such that d(C(z),y) < dm.
The 1-query quantum decoder will use the same randomness
as the 2-query classical decoder. The random string of the



classical decoder determines two indices j,k € [m] and an
f:{0,1}*> = {0,1} such that

Pr(f(yj,yr) =] =p>1/2 + ¢,

where the probability is taken over the decoder’s random-
ness. We now use Lemma 1 to obtain a 1-query quantum
decoder that outputs some bit o such that

Prlo = f(y;, y)] = 11/14.

The success probability of this quantum decoder is:

Prlo=w=;] = Prlo= f(yj,yx)] - Prlf(ys, yx) = z:] +

Prlo # f(yj,yx)] - Prlf(ys, yx) # 2]

11 3
= 14p+14(1 )
3 4
= taP
1 4e

2 T

3

A%

as promised. [

3.2 Lower Bound for 1-Query LQDCs

A quantum random access code is an encoding x — p, of
n-bit strings x into m-qubit states p,, such that any bit z;
can be recovered with some probability p > 1/2+¢ from p.
The following lower bound is known on the length of such
quantum codes [20] (see Appendix A).

THEOREM 2 (NAYAK). An encoding © — p, of n-bit

strings into m-qubit states with recovery probability at least
p, has m > (1 — H(p))n.

This allows us to prove an exponential lower bound for
1-query LQDC:

THEOREM 3. IfC :{0,1}" — {0,1}™ isa (1,4,¢)-LQDC,
then
m Z 2cn717
forc=1—H(1/2+ de/4).

PROOF. Our goal below is to show that we can recover
each z; with probability 1/2 + de/4 from the uniform state

1
|U(z)) = o Z

c€{0,1},j€[m]

(=1)" Wi fe) ).

The intuitive reason for this is as follows. Since C is an
LDC, it is able to recover z; even from a codeword that
is corrupted in many (up to dm) places. Therefore the
“distribution” of queries of the decoder must be “smooth”,
i.e., spread over almost all the positions of the codeword—
otherwise an adversary could choose the corrupted bits in
a way that makes the recovery probability too low. The
uniform distribution provides a reasonable approximation
to such a “smooth” distribution. Since the uniform state

®Here we use the ‘exactly’ part of Lemma 1. To see what
could go wrong if the ‘exactly’ were ‘at least’, suppose the
classical decoder outputs AND(y1,y2) = x; with probabil-
ity 3/5 and XOR(ys,ys) = 1 — z; with probability 2/5.
Then it outputs z; with probability 3/5 > 1/2. However, if
our quantum procedure computes AND(y1,y>) with success
probability 11/14 but XOR(ys, y4) with success probability
1, then its recovery probability is (3/5)(11/14) < 1/2.

|U(z)) is independent of i, we can actually recover any bit z;
from it with good probability. Hence |U(z)) is a (log(m)+1)-
qubit random access code for z, and applying Theorem 2
gives the result.

Let us be more precise. The most general query that
the quantum decoder could make to recover z;, is some-
thing of the form [Q:) = 3 0 13,jepm) Xeil)i)|des), where
the |¢c;) are pure states in the decoder’s workspace and
the a.; are non-negative reals (any phases could be put in
the |¢c;)). This workspace can also incorporate any clas-
sical randomness used. However, the decoder could equiv-
alently add these workspace states after the query, using
the unitary map |c)|7)[0) — |c}|j)|¢c;). Hence we can as-
sume without loss of generality that the actual query is
Qi) = > ccio1}.jeim) Xeile)|s), and that the decoder just
measures the state resulting from this query. Let D and
I — D be the two POVM operators that the decoder uses
for this measurement, corresponding to outputs 1 and 0, re-
spectively. Its probability of outputting 1 on query-result
|R) is p(R) = (RID|R) = || VDIR) |

Inspired by the smoothing technique of [16], we split the
amplitudes «; of the query |@Q;) into small and large ones:
A={cj:ac <+ /1/dm} and B = {cj : ac; > +/1/dm}.
Since the query does not affect the |0)|j)-states, we can as-
sume without loss of generality that ao; is the same for
all j, so aop; < 1/v/m < 1/v/dm and hence 0j € A. Let

a = \/2ejea aZ; be the norm of the “small-amplitude”

part. Since ) .. az; < 1, we have |B| < dm. Define
non-normalized states

[A@) = D (=1 “@iage)]j)
cjEA
B) = 3 agloli).
cjEB

The states |A(z)) + |B) and |A(x)) — |B) each correspond
toay € {0,1}™ that is corrupted (compared to C(z)) in
at most |B| < dm positions, so the decoder can recover z;
from each of these states. If z has z; = 1, then

p(A(x)+B) > 1/2+¢
p(A(z)—B) > 1/2+e.

Since p(A + B) = p(A) + p(B) £ ((A|D|B) + (B|D|A)), av-
eraging the previous two inequalities gives

P(A@)) +p(B) > 1/2 +c.
Similarly, if ' has z; = 0, then
p(A@")) +p(B) <1/2 —e.
Hence, for the normalized states |A(z))/a and |A(z"))/a:
p(A(z)/a) — p(A(z) /a) > 2¢/a’.

Since this holds for every z,z’ with z; = 1 and 2} = 0,
there are constants qi,q0 € [0,1], ¢1 — go > 2¢/a?, such
that p(A(z)/a) > q1 whenever z; = 1 and p(A(z)/a) < qo
whenever z; = 0.

If we had a copy of the state |A(z))/a, then we could run
the procedure below to recover x;. Here we assume that
q1 > 1/24¢/a® (if not, then we must have go < 1/2 — ¢/a’
and we can use the same argument with 0 and 1 reversed),
and that g1 +¢qo > 1 (if not, then go < 1/2 —¢/a” and we’re
already done).



Output 0 with probability ¢ =1 —1/(q1 + qo),
and otherwise output the result of running the
decoder’s POVM on |A(z))/a.

If z; = 1, then the probability that this procedure outputs
1is
Q1

1- A(z)/a) > (1 — = —

(1 = p(A()/a) 2 (1= ) =
1 q1 — qo 1 13
=4 _>-4

2 2(qi+q) T 2  2a?
If x; = 0, then the probability that the procedure outputs 0
is

g+ (1-¢q)(1—p(A(z)/a)) > ¢+ (1 - qg)(1 - qo)
o @

1 €
g1 + qo g1 + qo 2

+Ta2'

Thus, we can recover z; with good probability if we have
the state |A(z))/a (which depends on i as well as ).

It remains to show how we can obtain |A(z))/a from
|U(z)) with reasonable probability. This we do by applying a
POVM with operators MM and I—M'M to |U(x)), where
M = VomY, ¢ 4 ocjlci)(cil. Both MTM and T — M'M
are positive operators (as required for a POVM) because
0 < Vdmae; <1 for all ¢j € A. The POVM gives the first
outcome with probability

om 5 da?
(U(2)| M'M|U(x)) = %m Z acj ==
cjEA

In this case we have obtained the normalized version of
M|U(z)), which is |A(z))/a, so then we can run the above
procedure to recover x;. If the measurement gives the sec-
ond outcome, then we just output a fair coin flip. Thus we

recover z; from |U(z)) with probability at least

da’ (L e\, (y_ 92’1 _1, 0
2 \2 242 2 J2 2 4’

which concludes the proof. [
3.3 Lower Bound for 2-Query LDCs

THEOREM 4. IfC : {0,1}" — {0,1}™ is a (2,0, )-locally
decodable code, then

m 2 2cn—1’
forc=1—H(1/2+ 3de/14).

PROOF. The theorem combines Theorem 1 and 3. Straight-
forwardly, this would give a constant of 1 — H(1/2 + /7).
We get the better constant claimed here by observing that
the 1-query LQDC derived from the 2-query LDC actually
has 1/3 of the overall squared amplitude on queries where
the control bit ¢ is zero (and all those ag; are in A). Hence
in the proof of Theorem 3, we can redefine “small ampli-
tude” to ae; < 4/2/36m, and still B will have at most dm
elements because EcjeBazj < 2/3. This in turns allows

us to make M a factor /3/2 larger, which improves the
probability of getting |A(x))/a from |U(z)) to 36a”/4 and
the recovery probability to 1/2 + 3d¢/8. Combining that
with Theorem 1 (which makes ¢ a factor 4/7 smaller) gives
¢=1—H(1/2+ 36e/14), as claimed. [

Remarks:

(1) Note that a (2,4, )-LDC with adaptive queries gives a
(2,4,e/2)-LDC with non-adaptive queries: if query ¢; would
be followed by query g5 or g5 depending on the outcome of
q1, then we can just guess in advance whether to query q:
and ¢3, or 1 and ¢3. With probability 1/2, the second query
will be the one we would have made in the adaptive case and
we're fine, in the other case we just flip a coin, giving overall
recovery probability 1/2(1/2 +¢) +1/2(1/2) = 1/2 + ¢/2.
Thus we also get slightly weaker but still exponential lower
bounds for adaptive 2-query LDCs.

(2) For a (2,9,e)-LDC where the decoder’s output is the
XOR of its two queries, we can give a better reduction than
in Theorem 1. In this case, the quantum decoder can query

75 (D[1) +11)[2)), giving

1 a as

75 (G D) + (=177 1)12)).
and extract a1 @ a2 from this with certainty. Thus the re-
covery probability remains 1/2 + ¢ instead of going down to
1/2 4+ 4¢/7. Accordingly, we also get better lower bounds
for 2-query LDCs where the output is the XOR of the two
queries, namely ¢ =1 — H(1/2 + 3d¢/8).

(3) In Appendix B we extend the lower bound to larger

alphabets.

3.4 Locally Decodable Erasure Codes

Recently, the notion of a Locally Decodable Erasure Code
(LDEC) was used in the construction of extractors [19]. A
code C is a (q,¢)-LDEC, if for every i, in every e-fraction
of the codeword, there exists a g-tuple of positions from
which we can recover the bit z;. We show that LDECs
are equivalent to “smooth” codes and hence to LDCs. The
notion of “smooth” codes and their equivalence to LDCs
were described in [16] (see Appendix B). Take S to be the
set of an e-fraction of positions of the codeword in an LDEC.
By definition, there exists a “good” g¢-tuple in S, i.e., one
from which we can recover x;. Remove these ¢ positions
of the codeword from S and replace them by some other ¢
positions. Now in this new set S’ of positions there should
still be a “good” g-tuple. Remove it and go on. You can do
this substitution (1 —&)m/q times, where m is the size of the
code. Therefore, there are Q(m) disjoint g-tuples that are
“good” for z; and so the code is a “smooth” code as defined
in Appendix B. The converse is also true. A “smooth” code
contains Q(m) disjoint g-tuples, say Bm, that are “good” for
z;. Hence, in any subset of the positions of the codeword of
size (1—B)m+1, there exists a “good” g-tuple and therefore
the code is an LDEC. This equivalence shows that our lower
bound holds also for LDECs. In particular, (2,¢)-LDECs
need exponential length.

4. LOCALLY QUANTUM-DECODABLE
CODES WITH FEW QUERIES

The second remark of Section 3.3 immediately generalizes
to:

THEOREM 5. A (2q,6,€)-LDC where the decoder’s output
1s the XOR of the 2q queried bits, is a (q,0,€)-LQDC.

LDCs with g queries can be obtained from g-server PIR
schemes with 1-bit answers by concatenating the answers
that the servers give to all possible queries of the user.



Beimel et al. [6, Corollary 4.3] recently improved the best
known upper bounds on g-query LDCs, based on their im-

proved PIR construction. They give a general upper bound
m = gnolielesa/atosd) g g-query LDCs, for some constant
depending on § and €, as well as more precise estimates for

small g. In particular, for ¢ = 4 they construct an LDC of

length m = /1% " All their LDCs are of the XOR-type,
so we can reduce the number of queries by half when allow-
ing quantum decoding. For instance, their 4-query LDC is a
2-query LQDC with length m = 90(n®/1%) 1y contrast, any
2-query LDC needs length m = 2°") as proved above.

For general LDCs we can do something nearly as good,
using van Dam’s result that a g-bit oracle can be recov-
ered with probability nearly 1 using ¢/2 4+ O(,/q) quantum
queries [10]:

THEOREM 6. A (q,0,€)-LDC is a (q/2 + O(y/q),9,£/2)-
LQ@DC.

2O(n

5. PRIVATE INFORMATION RETRIEVAL

5.1 Lower Bounds for Classical PIR

As mentioned, there is a close connection between locally
decodable codes and private information retrieval. Our tech-
niques allow us to give new lower bounds for 2-server PIRs.
Again we give a 2-step proof: a reduction of 2 classical
servers to 1 quantum server, combined with a lower bound
for 1-server quantum PIR.

THEOREM 7. Ifthere exists a classical 2-server PIR scheme

with t-bit queries, 1-bit answers, and recovery probability
1/2 + £, then there exists a quantum I-server PIR scheme
with (t+2)-qubit queries, (t+2)-qubit answers, and recovery
probability 1/2 + 4¢/7.

ProOF. The proof is analogous to the proof for locally
decodable codes. If we let the quantum user use the same
randomness as the classical one, the problem boils down to
computing some f(a1,a2), where a; is the first server’s 1-
bit answer to query ¢i, and a2 is the second server’s 1-bit
answer to query q2. However, in addition we now have to
hide ¢ from the quantum server. This we do by making the
quantum user set up the (4 + ¢)-qubit state

1
V3

where ‘0"’ is a string of ¢ 0s. The user sends everything but
the first register to the server. The state of the server is
now a uniform mixture of |0,0%), |1,¢1), and |2, ¢2). By the
security of the classical protocol, |1, ¢1) contains no informa-
tion about i (averaged over the user’s randomness), and the
same holds for |2, ¢2). Hence the server gets no information
about 4.

The quantum server then puts (—1)% in front of |7, q;)
(5 € {1,2}), leaves |0,0") alone, and sends everything back.
Note that we need to supply the name of the classical server
j € {1,2} to tell the server in superposition whether it
should play the role of server 1 or 2. The user now has

1
V3
From this we can compute f(a1,a2) with success probability

exactly 11/14, giving overall recovery probability 1/2+4¢/7
as in Theorem 1. [

(10)10,0%) + [1)[1, q1) + 12)[2, g2)) ,

(10)10,0%) + (=1)"" [1)[L, 1) + (=1)"[2)|2,¢2)) -

Combining the above reduction with the quantum ran-
dom access code lower bound, we obtain the first Q(n) lower
bound that holds for all 1-bit-answer 2-server PIRs, not just
for linear ones.

THEOREM 8. A classical 2-server PIR scheme with t-bit

queries, 1-bit answers, and recovery probability 1/2 + ¢, has
t>(1—H(1/2+4e/7))n — 2.

PrOOF. We first reduce the 2 classical servers to 1 quan-
tum server in the way of Theorem 7. Now consider the state
of the quantum PIR scheme after the user sends his (¢ + 2)-
qubit message |@;):

> %V}(|0>\0,0t>+\1>|1:q1(’“:i)>+|2>\2aq2(7"ai)>)-

Here the p, are the classical probabilities of the user (these
depend on 7) and g; (r, i) is the ¢-bit query that the user sends
to server j in the classical 2-server scheme, if he wants z; and
has random string r. Letting B = {0'*'} U {1,2} x {0, 1}!
be the server’s basis states, we can write |¢;) as:

6i) =D Nolain)[b).

beB

Here the |a;p) are pure states that do not depend on z. The
coefficients A, are non-negative reals that do not depend
on i, for otherwise a measurement of b would give the server
information about ¢ (contradicting privacy). The server then
tags on the appropriate phase sp,, which is 1 for b = 0!
and (—1)% @ %) for b = jq;, j € {1,2}. This gives

|pia) = Z Ab|@ibn) 862 |b)-

beB

Now the following pure state will be a random access code
for

|¢2) = > Xosvalb),

beB

because a user can unitarily map |0)|b) — |a;}|b) to map
|0)|2) — |¢iz), from which he can get z; with probability
p = 1/2 + 4¢/7 by completing the quantum PIR protocol.
The state |t¢,) has t + 2 qubits, hence from Theorem 2 we
obtain t > (1 - H(p))n—2. O

In Appendix B we extend this bound to classical 2-server
PIR schemes with larger answer size.

For the special case where the classical PIR outputs the
XOR of the two answer bits, we can improve our lower bound
tot > (1—H(1/24¢))n—1. In particular, t > n—1 in case
of perfect recovery (¢ = 1/2), which is tight.

Subsequently to our work, Beigel, Fortnow, and Gasarch [5]
found a classical proof that a 2-server PIR with perfect re-
covery and 1-bit answers needs query length ¢ > n — 2 (no
matter whether it uses XOR or not).

5.2 Upper Bounds for Quantum PIR

The best known LDCs are derived from classical PIR
schemes with 1-bit answers where the output is the XOR of
the 1-bit answers that the user receives. By allowing quan-
tum queries, we can reduce the number of queries by half
to obtain more efficient LQDCs. Similarly, we can also turn
the underlying classical k-server PIRs directly into quantum
PIRs with k/2 servers.



Most interestingly, there exists a 4-server PIR with 1-bit
answers and communication complexity O(n*/'°) [6, Ex-
ample 4.2]. This gives us a quantum 2-server PIR scheme
with O(n®/'°) communication, improving upon the commu-
nication required by the best known classical 2-server PIR
scheme, which has been O(n'/?) ever since the introduction
of PIR by Chor et al. [8]. In the introduction we mentioned
also some quantum upper bounds for £ > 2, which are ob-
tained similarly.

6. FUTURE: MORE THAN 2 QUERIES?

This paper is the first where a new classical result is
proved using techniques from quantum computing in an ap-
parently essential way. Clearly, it would be very interesting
to find other such applications. This would much broaden
the relevance of quantum computing and make it less con-
ditional on whether an actual quantum computer will ever
be built.

In particular, we would like to use our techniques to get
better lower bounds for locally decodable codes with more
than 2 queries. For LDCs with ¢ > 3 queries, we were able to
improve the polynomial lower bounds m = Q(n' T/~ of
Katz and Trevisan [16], to m = Q((n/logn)'*/(T9/21-1),
In both cases the constant in Q(-) depends on g, J, and e.
The idea is sketched below. Suppose for simplicity that ¢ is
even and m is a multiple of ¢q. By the results of Katz and Tre-
visan [16], we can assume that for recovering z; from C(z),
the g-query decoder has a fixed partition M; of [m] into m/q
g-tuples; it just picks a random g-tuple (41, ...,4q) € M; and
outputs the XOR of the ¢ bits C(x)i,,...,C(x):,. The de-
coding will be 1/2 + £ correct, averaged over z.

Let P;; = |i)(¢| + |7){(j| be the projector on the states |i)
and [j). Suppose (i1,71),...,(¢m/2,Jm/2) is a partition of
all the g-tuples in M; into pairs. By measuring the uni-
form state |U(z)) = \/% Z;":l(—l)c(””)f |7) with operators

Pijjyse.. :Pim/gjm/zz we get (_1)C(z)i£ |U> + (_1)0(1)]1 ‘jl),
for random 1 < ¢ < m/2. From this we can obtain the parity
C(z)i, ® C(z);,, so we can generate the XOR of a random
pair from the partition. In order to recover x; we need to
find ¢/2 different pairs that come from the same g-tuple.
Each state |U(z)) gives us a random pair out of the pos-
sible m/2. By the Birthday Paradox, we need O(m'~2/9)
copies of the log m-qubit state |U(z)) to construct this (av-
erage) random access code. The random access code lower
bound now gives m' =7 .log m = Q(n), which implies m =
Q((n/ log n)'+?/(a=2)y,
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APPENDIX
A. RANDOM ACCESS CODES

As mentioned before, a quantum random access code is an
encoding = —> pg, such that any bit z; can be recovered with
some probability p > 1/2 + ¢ from p,. Below we reprove
Nayak’s [20] linear lower bound on the length m of such
encodings.

We assume familiarity with the following notions from
quantum information theory, see [21, Chapters 11 and 12] for
details. Very briefly, if we have a bipartite quantum system
AB (given by some density matrix), then we use A and B to
denote the states (reduced density matrices) of the individ-
ual systems. S(A) = —Tr(Alog A) is the (Von Neumann)
entropy of A; S(A|B) = S(AB)—S(B) is the conditional en-
tropy of A given B; and S(A: B) = S(A)+S(B)—S(4AB) =
S(A)— S(A|B) is the mutual information between A and B.

We define an n + m-qubit state X M as follows:

1
= 3 Il @
z€{0,1}7

We use X to denote the first subsystem, X; for its individ-
ual bits, and M for the second subsystem. By [21, Theo-

rem 11.8.4] we have

S(XM) —n+—ZSpm )>n=8(X).

Since M has m qubits we have S(M) < m, hence
S(X:M)=8(X)+S(M)—-S(XM)<S(M) <m.

Using a chain rule for relative entropy, and the (highly non-
trivial) subadditivity of Von Neumann entropy we get
S(X|M) = ZSX\Xl X, 1 M) <ZSX\M)
i=1
Since we can predict X; from M with success probability p,
Fano’s inequality implies

H(p) 2 S(Xi[M).

In fact, Fano’s inequality even applies under the weaker as-
sumption that the success probability in predicting z; is p
only when averaged over all z. Putting the above equations
together we obtain

(1-H@p)n < —ZS(XAM)
< S(X)—S(X|M)=S(X:M)<m

B. NON-BINARY ALPHABETS

In this section we extend our lower bounds for binary 2-
query LDCs to the case of larger alphabets (and our bounds
for binary 2-server PIR schemes to the case of larger an-
swers). For simplicity we assume the alphabet is ¥ = {0, 1}*,
so a query to position j now returns an £-bit string C(z);.
The definition of (q,d,e)-LDC from Section 2.2 carries over
immediately, with d(C(z),y) now measuring the Hamming
distance between C(z) € ¥™ and y € ™.

We will need the notion of smooth codes and their con-
nection to LDCs as stated in [16].

DEFINITION 3. C : {0,1}" — X™ is a (q,c, €)-smooth
code if there is a classical randomized decoding algorithm A
such that

1. A makes at most q queries, non-adaptively.
2. For all © and i we have Pr[AS® (1) = z,] > 1/2 + ¢.

3. For all z, i, and j, the probability that on input i ma-
chine A queries indez j is at most ¢/m.

Note that smooth codes only require good decoding on
codewords C(z), not on y that are close to C(z). Katz and
Trevisan [16, Theorem 1] established the following connec-
tion:

THEOREM 9 (KATz & TREVISAN). A (q,0,£)-LDC C :
{0,1}" — ™ is a (q,q/d,€)-smooth code.

A converse to Theorem 9 also holds: a (g, ¢, &)-smooth
code is a (g, 9, — ¢d)-LDC. Hence LDCs and smooth codes
are essentially equivalent.

To prove the exponential lower bound for LDCs over non-
binary alphabet ¥, we will reduce a smooth code over ¥
to a somewhat longer binary smooth code that works well
averaged over x. Then, we will show a lower bound on such
average-case binary smooth codes in a way very similar to
the proof of Theorem 4. The following key lemma was sug-
gested to us by Luca Trevisan.



LEMMA 2 (TREVISAN). Let C : {0,1}" — X™ be a
(2, ¢,€)-smooth code. Then there exists a (2,c - 2" ¢/2%)-
smooth code C' : {0,1}" — {0, 1}””22 that is good on aver-
age, i.e., there is a decoder A such that for all i € [n]

1 ' 1
5 > PlATP@) =2 > 5+ 2%
z€{0,1}m

PROOF. We form the new binary code C’ by replacing
each symbol C(z); € X of the old code by its Hadamard
code, which consists of 2 bits. The length of C'(x) is m - 2°
bits. The new decoding algorithm uses the same randomness
as the old one. Let us fix the two queries j, k € [m] and the
output function f : £* — {0,1} of the old decoder. We
will describe a new decoding algorithm that is good for an
average = and looks only at one bit of the Hadamard codes
of each of a = C(z); and b = C(z).

First, if for this specific j, k, f we have Pr,[f(a,b) = z;] <
1/2, then the new decoder just outputs a random bit, so in
this case it is at least as good as the old one for an average x.
Now consider the case Pr,[f(a,b) = z;] = 1/2 4+ n for some
n > 0. Switching from the {0, 1}-notation to the {—1,1}-
notation enables us to say that E,[f(a,b) -z;] = 2. Viewing
a and b as two £-bit strings, we can represent f by its Fourier

representation: f(a,b) =3 s rcp fo.r [I,csas [1;cqpbe and

hence
S forE, [H o Tt ]
ST seS  teT
(Z fs.r H as H bt) ;| = Ez[f(a,b)x:] = 2.
S, T SES teT

Averaging and using that |fs, 7| < 1, it follows that there
exist subsets So, To such that

z[nasnbt.xi]

sESy  teT,

> fso,TO [H as H by -

sESp teTy

2n
>T.

Returning to the {0, 1}-notation, we must have either
Pr[(So-a @& To-b) = ;] > 1/2 + /2%
or

Pr[(So-a® To-b) = x;] < 1/2 — /2%,

where So - a and Tp - b denote inner products mod 2 of £-bit
strings. Accordingly, either the XOR of the two bits So - a
and Tp - b, or its negation, predicts x; with average proba-
bility > 1/2 + 5/2*. Both of these bits are in the binary
code C'(z). The c-smoothness of C translates into ¢ - 2¢-
smoothness of C’'. Averaging over the classical randomness
(i.e. the choice of j, k, and f) gives the lemma. [J

This lemma enables us to modify our proof of Theorem 4
so that it works for non-binary alphabets X:

TuroreEM 10. If C : {0,1}" — =™ = ({0,1}))™
(2,0,¢)-locally decodable code, then

-1
m > gcn ’

fore=1—H(1/2 + 6e/23+).

ProOOF. Using Theorem 9 and Lemma 2, we turn C into
a binary (2,278, £/2%")-smooth code C’ that has average
recovery probability 1/2 + £/2% and length m' = m - 2°
bits. Since its decoder XORs its two binary queries, we can
reduce this to one quantum query without any loss in the av-
erage recovery probability (see the second remark following
Theorem 4).

We now reduce this quantum smooth code to a quantum
random access code, by a modified version of the proof of
Theorem 4. The smoothness of C’ implies that all ampli-
tudes a; (which depend on i) in the one quantum query
satisfy a; < 4/2/+1/dm'. Hence there is no need to split the
set of j’s into A and B. Also, the control bit ¢ will always
be 1, so we can ignore it.

Consider the states |U(z)) = F > 1( )C(I) ilj) and

|A(z)) = ijzll a; (—1)°®%i|j), and the 2-outcome POVM
with operator M = /dm//2%1 37 a;[j)(j|. The proba-
bility that the POVM takes us from |U(z)) to M|U(z)) =
|A(z)) is equal to (U(z)|M* M|U(z)) = 6/2°*". Hence |U(z))
forms a random access code with average success probability

8 1 Lo 0 N1 _1. g
r=gm (gt )+ (- ) s =3 T o

The (1 — H(p))n lower bound for a quantum random ac-
cess code holds even if the recovery probability p is only an
average over z, hence we obtain log(m’) > (1 — H(p))n. O

We can also extend our linear lower bound on 2-server
PIR schemes with answer length a =1 (Theorem 8) to the
case of larger answer length. We use the reduction from PIR
to smooth codes given by Lemma 7.1 of [15]:

LEMMA 3 (GKST). If there is a classical 2-server PIR
scheme with query length t, answer length a, and recovery
probability 1/2 + e, then there is a (2,3, e)-smooth code C :
{0,1}" = ™ for = = {0,1}* and m < 6 - 2°.

Going through roughly the same steps as for the above
LDC lower bound, we get:

THEOREM 11. A classical 2-server PIR scheme with t-bit

queries, a-bit answers, and recovery probability 1/2 + ¢, has
t > Q(ne?/254).



