
Strengths and Weaknesses of Quantum Fingerprinting

Dmitry Gavinsky
University of Calgary

Julia Kempe∗

CNRS & LRI
Univ. de Paris-Sud, Orsay

Ronald de Wolf†

CWI, Amsterdam

Abstract

We study the power of quantum fingerprints in the simul-
taneous message passing (SMP) setting of communication
complexity. Yao recently showed how to simulate, with ex-
ponential overhead, classical shared-randomness SMP pro-
tocols by means of quantum SMP protocols without shared
randomness (Q‖-protocols). Our first result is to extend
Yao’s simulation to the strongest possible model: every
many-round quantum protocol with unlimited shared en-
tanglement can be simulated, with exponential overhead,
by Q‖-protocols. We apply our technique to obtain an effi-
cientQ‖-protocol for a function which cannot be efficiently
solved through more restricted simulations. Second, we
tightly characterize the power of the quantum fingerprint-
ing technique by making a connection to arrangements of
homogeneous halfspaces with maximal margin. These ar-
rangements have been well studied in computational learn-
ing theory, and we use some strong results obtained in this
area to exhibit weaknesses of quantum fingerprinting. In
particular, this implies that for almost all functions, quan-
tum fingerprinting protocols are exponentiallyworsethan
classical deterministic SMP protocols.

1 Introduction

1.1 Setting

This paper studies the power of quantum fingerprinting
protocols in communication complexity. In the simultane-
ous message passing (SMP) setting, Alice and Bob hold in-
putsx andy, respectively, and each send a message to a
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third party, usually called the “referee”. The referee holds
no input himself, but is supposed to infer some function
f(x, y) from the messages he receives. The goal is to min-
imize the amount of communication sent for the worst-case
input x, y. In this model there is no direct communication
between Alice and Bob themselves, unlike in the standard
model of one-way or multi-round two-party communication
complexity. The SMP model is arguably the weakest setting
of communication complexity that is still interesting.

We will consider SMP quantum protocols where Alice
sends aq-qubit state|αx〉, Bob sends aq-qubit state|βy〉,
and the referee does the 2-outcome “swap test” [3]. This
test outputs 0 with probability

1

2
+

|〈αx|βy〉|2
2

.

Estimating this probability is tantamount to estimating the
absolute value of the inner product〈αx|βy〉. They repeat
this r times in parallel, the referee uses ther bits that are
the outcomes of hisr swap tests to estimate|〈αx|βy〉|, and
bases his output on this estimate. We will call such proto-
cols “repeated fingerprinting protocols”.

A quantum protocol of this form can only work effi-
ciently if we can ensure that|〈αx|βy〉|2 ≤ δ0 whenever
f(x, y) = 0 and |〈αx|βy〉|2 ≥ δ1 wheneverf(x, y) = 1.
Here δ0 < δ1 should be reasonably far apart, otherwise
r would have to be too large to distinguish the two cases
with high probability. A statistical argument shows that
r = Θ(1/(δ1 − δ0)

2) is necessary and sufficient for this.
In total, such a protocol uses2qr = O(q/(δ1 − δ0)

2) qubits
of communication. Generally a protocol is considered “ef-
ficient” if its communication cost is polylogarithmic in the
input length. Even though quantum fingerprinting is a re-
stricted model, it is the only technique we know to get in-
teresting quantum protocols in the SMP model.

A bit of notation before we get into the study of quan-
tum fingerprinting: we useR‖(f) to denote the minimal
cost among allclassicalSMP protocols that computef with
error probability at most1/3 on all inputs. Replacing su-
perscript ‘‖’ by ‘1’, or removing this superscript altogether,
give respectively one-way and multi-round communication



complexity in the standard two-party model without the ref-
eree. Adding superscripts ‘pub’ or ‘ent’ indicates that Alice
and Bob share unlimited amounts of shared randomness or
shared entanglement. These shared resources do not count
towards the communication cost. Replacing ‘R’ by ‘ Q’
gives the variants of these measures where the communi-
cation consists of qubits instead of classical bits.

1.2 Strengths of quantum fingerprinting

Quantum fingerprints have surprising power. They were
first used by Buhrman et al. [3] to showQ‖(EQ) =
O(log n) for the n-bit equality function. In contrast,
it is known that R‖(EQ) = Θ(

√
n) [1, 17, 2], while

R‖,pub(EQ) = O(1). Subsequently, Yao [22] showed that

Q‖(f) = 2O(R‖,pub(f)) log n.

In particular, ifR‖,pub(f) = O(1) thenQ‖(f) = O(log n).
The quantum fingerprinting protocol for equality is a spe-
cial case of this result. Yao’s exponential simulation can
be extended to relational problems, and recently Gavinsky
et al. [9] showed that it is essentially optimal by exhibiting
a relational problemP1 for which R‖,pub(P1) = O(log n)
andQ‖(P1) = Ω(n1/3). Whether there exist exponential
gaps for functional problems remains open.

In this paper we show that Yao’s simulation can be ex-
tended far beyond classical SMP protocols. Given any
bounded-error two-party quantum protocol withq qubits of
communication, no matter how many rounds of commu-
nication, and no matter how much entanglement it starts
with, we show how to construct a repeated quantum finger-
printing protocol that communicates2O(q) log n qubits and
computes the same function with small error probability. In
symbols:

Q‖(f) = 2O(Qent(f)) log n.

Thus, the exponential simulation still works even if we add
interaction, quantum communication, and entanglement to
theR‖,pub-model that Yao considered. When we restrict to
simulatingR‖,pub-protocols, we get a bound that is quadrat-
ically better than Yao’s. A similar quadratic improvement
over Yao’s has been obtained independently by Golinsky
and Sen [10].

Actually, the vectors that we construct for our quantum
simulation can also be used to obtain a classical SMP pro-
tocol with shared randomness andO(r) bits of communi-
cation (r being the number of repetitions of the quantum
protocol), as follows. Alice and Bob use their shared ran-
domness to pick anO(1)-dimensional random subspace and
each projects her/his vector onto that space and renormal-
izes. The expectation of the inner product of the two pro-
jected vectors equals their original inner product. They send

the resultingO(1)-dimensional vectors to the referee in suf-
ficient precision (O(log r) bits per entry suffices), and re-
peat thisO(r) times to approximate the inner product be-
tween the original vectors with sufficient precision. Hence
our construction implies Shi’s result [20]

R‖,pub(f) = 2O(Qent(f)).

This is not too surprising, because our derivation of the ap-
propriate vectors (fingerprints) from theQent-protocol is
inspired by some of the techniques in Shi’s paper—though
we avoid his use of tensor norms.

The fact that our simulation has exponential overhead is
unfortunate but unavoidable. For instance, for Raz’s func-
tion [18] we haveQ(f) = O(log n) via a two-round pro-
tocol while it is easy to see that any quantum fingerprint-
ing protocol needs to communicatenΩ(1) qubits: by the
argument of the last paragraph, a quantum fingerprinting
protocol implies a classical shared-randomness protocol of
roughly the same complexity, and Raz proved that all classi-
cal protocols for his problem requirenΩ(1) bits of commu-
nication. Despite the exponential overhead, our simulation
still gives nontrivial efficientQ‖-protocols when simulating
protocols withO(log log n) quantum communication and
much shared randomness or entanglement. We give an ex-
ample in Section 2.3.

1.3 Characterization and weaknesses of
quantum fingerprinting

The results above show some of the strengths of quantum
fingerprinting protocols. What about its weaknesses? For
instance, is it possible that quantum SMP protocols based
on repeated fingerprinting are equal in power to arbitrary
quantum SMP protocols? In Section 3 we show that for
most functions they are much weaker.

Our main tool is a tight characterization of quantum fin-
gerprinting systems in terms of the optimal margin achiev-
able by realizations of the computational problem via an
arrangement of homogeneous halfspaces (Theorem 6). The
latter mouthful has been well studied in machine learning,
and forms the basis of maximal-margin classifiers and sup-
port vector machines. This connection between quantum
fingerprints and these embeddings is straightforward, but
allows us to tap into some of the strong theorems known
about such margins, particularly a result of Forster [6] and
its recent strengthening by Linial et al. [14]. The upshot is
that repeated quantum fingerprinting protocols are exponen-
tially worse than general quantum and even classical SMP
protocols for almost all functions.

This three-way connection between quantum communi-
cation complexity, margin complexity, and learning theory
allows us to make other connections as well. For exam-
ple, good learning protocols give good lower bounds on



margins, which give new upper bounds for repeated finger-
printing protocols. In the other direction, an efficient multi-
round quantum protocol for some Boolean function implies
lower bounds on the margin of the corresponding matrix.
We give an example of this in Section 3.2. Finally, since
our positive result above relates quantum fingerprinting to
generalQent-complexity, we can also use known results
about margin complexity to obtain some new lower bounds
on Qent(f). We explore the latter direction in Section 3.3.
There we showQent(f) = Ω(log(1/γ(f)), whereγ(f) is
the “maximal margin” among all embeddings off . This
bound was independently obtained by Linial and Shraib-
man [15] in a recent manuscript, which also shows the beau-
tiful new result that margin complexity anddiscrepancyare
linearly related.

2 Simulating Arbitrary Quantum Protocols

In this section we show how to extend Yao’s simula-
tion from classical SMP protocols with shared randomness
to multi-round quantum protocols with shared randomness
(Section 2.1), and then even to arbitrary multi-round quan-
tum protocols with sharedentanglement(Section 2.2).

2.1 Simulating shared-randomness multi-
round quantum protocols

Let f : {0, 1}n × {0, 1}n → {0, 1} be a communica-
tion complexity problem. Our construction also works for
promise functions, but for simplicity we describe it here for
a total function. LetP be the2n × 2n matrix of accep-
tance probabilities of a bounded-error quantum protocol for
f . We first assume the protocol communicatesq qubits and
doesn’t use prior shared entanglement or shared random-
ness. It is well known [21, 13] that we can decompose
P = AB† whereA, B are2n × 22q−2 matrices, each of
whose entries has absolute value at most 1, andB† is the
conjugate transpose ofB. Let a(x) be thex-th row of A
andb(y) be they-th row ofB. Then for allx, y we have

P (x, y) = 〈a(x)|b(y)〉 and‖ a(x) ‖, ‖ b(y) ‖ ≤ 2q−1.

Now consider a quantum protocol that uses shared random-
ness. By Newman’s theorem [16], we can assume without
loss of generality that the shared random stringr is picked
uniformly from a setR of O(n) elements. Then we can
decompose

P =
1

|R|
∑

r∈R

Pr,

wherePr is the matrix of probabilities if we run the protocol
with shared stringr. EachPr induces vectorsar(x), br(y)

as above, and we have

f(x, y) ≈ P (x, y) =
1

|R|
∑

r∈R

〈ar(x)|br(y)〉,

where ‘≈’ means thatf(x, y) and P (x, y) differ by at
most the error probability of the protocol. Define pure
(q + log n + O(1))-qubit states as follows

|α′
x〉 =

1
√

|R|
∑

r∈R

|r〉 ⊗
|ar(x)〉 +

√

22q−2 − ‖ ar(x) ‖2|junka〉
2q−1

|αx〉 =
1√
2

(|0〉 + |α′
x〉)

and

|β′
y〉 =

1
√

|R|
∑

r∈R

|r〉 ⊗
|br(y)〉 +

√

22q−2 − ‖ br(y) ‖2|junkb〉
2q−1

|βy〉 =
1√
2

(

|0〉 + |β′
y〉

)

where ‘0’, ‘junka’ and ‘junkb’ are distinct special basis
states. Note that

〈α′
x|β′

y〉 =
1

|R|
∑

r∈R

〈ar(x)|br(y)〉
22q−2

=
P (x, y)

22q−2

and

〈αx|βy〉 =
1

2
+

〈α′
x|β′

y〉
2

=
1

2
+

P (x, y)

22q−1
.

Accordingly, if we start with a protocol with error probabil-
ity at mostε, then we obtain quantum states|αx〉 and|βy〉
such that

|〈αx|βy〉|











≤ 1

2
+

ε

22q−1
if f(x, y) = 0

≥ 1

2
+

1 − ε

22q−1
if f(x, y) = 1

Note that the difference between thesquaresof the two
above inner products isΘ(1/22q). HenceO(24q) indepen-
dent swap tests (see the introduction) suffice to distinguish
the two cases with high probability. Thus we get a repeated
quantum fingerprinting protocol that computesf with small
error probability and sendsO(24q log n) qubits of commu-
nication, without shared randomness.

Theorem 1 Q‖(f) = O(24Qpub(f) log n).



Note that we putlog n insteadq + log n for the last
factor. That is clearly correct ifq < (log n)/4; and if
q ≥ (log n)/4 then the righthand side is more thann, which
is a trivially true upper bound onQ‖(f).

We can get a better exponent in the case of classical one-
way protocols. Suppose Alice’s classical message isc =
R1,pub(f) bits. Letar(x) ∈ {0, 1}2c

have a 1 only in the
coordinate corresponding to the message Alice sends given
inputx and random stringr. Let br(y) ∈ {0, 1}2c

be 1 on
the messages of Alice that lead Bob to output 1 (giveny
andr). ThenPr(x, y) = 〈ar(x)|br(y)〉, ‖ ar(x) ‖ = 1 and
‖ br(y) ‖ ≤

√
2c. The above fingerprinting construction

now gives a protocol withO(2c log n) qubits.

Theorem 2 Q‖(f) = O(2R1,pub(f) log n).

Analogously we can simulate classical shared-
randomness SMP protocols. Suppose Alice’s messages
are c ≤ 1

2R‖,pub(f) bits long. This gives rise to a re-
peated quantum fingerprinting protocol withO(2c log n)
qubits of communication: definear(x) as before and
let br(y) ∈ {0, 1}2c

be 1 on the possible messagesa of
Alice that would lead the referee to accept givena and the
message Bob would send (on inputy and random stringr).

Theorem 3 Q‖(f) = O(2
1

2
R‖,pub(f) log n).

2.2 Simulating shared-entanglement
multi-round quantum protocols

Now consider the case where our multi-round quantum
protocol usesq qubits of communication and some entan-
gled starting state. Our proof for this most general case is
inspired by Shi’s resultR‖,pub(f) = 2O(Qent(f)) [20, The-
orem 1.2]. The following lemma is due to Razborov [19,
Proposition 3.3] and is similar to earlier statements in [21,
13]. It can be proved by induction onq.

Lemma 1 (Kremer-Razborov-Yao) Let |Ψ〉 denote the
(possibly entangled) starting state of the protocol. For all
inputsx andy, there exist linear operatorsAh(x), Bh(y),
h ∈ {0, 1}q−1, each with operator norm≤ 1, such that the
acceptance probability of the protocol is

P (x, y) = ‖
∑

h∈{0,1}q−1

(Ah(x) ⊗ Bh(y))|Ψ〉 ‖
2
.

We will derive vectorsa(x) andb(y) from this charac-
terization. Assume without loss of generality that the prior
entanglement is

|Ψ〉 =
∑

e∈E

λe|e〉|e〉,

with {|e〉} an orthonormal set of states and
∑

e λ2
e = 1.

Note that|E| may be huge. Now we can write

P (x, y) = ‖
∑

h∈{0,1}q−1

(Ah(x) ⊗ Bh(y))|Ψ〉 ‖
2

=

∑

h,h′,e,e′

λe′〈e|Ah(x)†Ah′(x)|e′〉 · λe〈e|Bh(y)†Bh′(y)|e′〉.

Definea(x) to be the|E|222q−2-dimensional vector with
complex entriesλe′〈e|Ah(x)†Ah′(x)|e′〉, indexed by tu-
ples (h, h′, e, e′), and similarly defineb(x) with entries
λe〈e|Bh(y)†Bh′(y)|e′〉. Then

P (x, y) = 〈a(x)|b(y)〉.

Using that the set of|e〉-states is an orthonormal set in the
space in whichAh(x)†Ah′(x)|e′〉 lives, and the fact that
‖ Ah(x)†Ah′(x) ‖ ≤ ‖ Ah(x) ‖ · ‖ Ah′(x) ‖ ≤ 1 we have

‖ a(x) ‖2
=

∑

h,h′,e,e′

λ2
e′ |〈e|Ah(x)†Ah′(x)|e′〉|2

≤
∑

h,h′,e′

λ2
e′‖ Ah(x)†Ah′(x)|e′〉 ‖2

≤
∑

h,h′,e′

λ2
e′ = 22q−2.

Similarly ‖ b(y) ‖ ≤ 2q−1.
The norms and inner products of thea(x) andb(y) vec-

tors are thus as before. It remains to reduce their dimension
D = |E|222q−2, which may be very large. For this we
use the Johnson-Lindenstrauss lemma (proved in [11], see
e.g. [4] for a simple proof).

Lemma 2 (Johnson & Lindenstrauss) Letε > 0 andd ≥
4 ln(N)/(ε2/2− ε3/3). For every setV of N points inR

D

there exists a mapp : R
D → R

d such that for allu, v ∈ V

(1−ε)‖ u − v ‖2 ≤ ‖ p(u) − p(v) ‖2 ≤ (1+ε)‖ u − v ‖2
.

To get the above mapp, it actually suffices to project the
vectors onto a randomd-dimensional subspace and rescale
by a factor of

√

D/d. With high probability, this approx-
imately preserves all distances. Note that if the setV in-
cludes the 0-vector, then also the norms of allv ∈ V will be
approximately preserved. Since

〈u|v〉 =
‖ u ‖2

+ ‖ v ‖2 − ‖ u − v ‖2

2
,

the mapf also approximately preserves the inner products
between all pairs of vectors inV , if ε is sufficiently small.

We assume for simplicity that our vectorsa(x) andb(y)
are real. Let our setV contain alla(x) and b(y) as well
as the 0-vector (soN = 2 · 2n + 1). Applying the



Johnson-Lindenstrauss lemma withε = 1/(10 · 22q) and
d = O(log(N)/ε2) = O(n24q) gives usd-dimensional
vectorsp(a(x)) andp(b(y)) of norm at most2q such that

|〈p(a(x))|p(b(y))〉 − 〈a(x)|b(y)〉| ≤ 1/10.

We fix these vectors once and for all before the protocol
starts; note that we are not using shared randomness in the
protocol itself.1

Now define quantum states ind + 2 dimensions by

|α′
x〉 =

|p(a(x))〉 +

√

22q − ‖ p(a(x)) ‖2|junka〉
2q

and

|β′
y〉 =

|p(b(y))〉 +

√

22q − ‖ p(b(y)) ‖2|junkb〉
2q

.

Note that

〈α′
x|β′

y〉 =
〈p(a(x))|p(b(y))〉

22q
≈ 〈a(x)|b(y)〉

22q
=

1

22q
P (x, y).

Hence, as before, we can construct a repeated fingerprinting
protocol with fingerprints oflog(d + 2) = O(q + log n)
qubits andO(24q) repetitions.

Theorem 4 Q‖(f) = O(24Qent(f) log n).

2.3 An example problem

Here we apply Theorem 4 to obtain an efficient SMP
protocol for a particular problem; we do not know how
to obtain an efficient protocol for this problem without us-
ing Theorem 4. More precisely, we give an example of a
Boolean functionf for which there exists a 4-round quan-
tum protocol that usesq = O(log log n) qubits of commu-
nication andO(log n) bits of shared randomness. Our sim-
ulation implies the existence of an efficient quantum SMP
protocol forf :

Q‖(f) ≤ 2O(log log n) log n = (log n)O(1).

The problem uses many small copies of Raz’s 2-round com-
munication problem from [18], and is defined as follows.

Alice’s input: string x ∈ {0, 1}k, unit vectors
v1, . . . , vk ∈ R

m, and m/2-dimensional sub-
spacesS1, . . . , Sk of R

m

Bob’s input: string y ∈ {0, 1}k, and m-
dimensional unitariesU1, . . . , Uk

Promise: |x ⊕ y| = k/ log log k, and either
(f = 0) Uivi ∈ Si for eachi wherexi ⊕ yi = 1,
or
(f = 1) Uivi ∈ S⊥

i for eachi wherexi ⊕ yi = 1

1Using shared randomness gives us the resultR‖,pub(f) =

2O(Qent(f)) of [20, Theorem 1.2].

As stated this is a problem with continuous input, but we
can easily approximate the entries of the vectors, unitaries,
and subspaces byO(log m)-bit numbers. Thus the input
length isn = O(km2 log m) and we choosem = log k.

Here’s a simple 4-round protocol for this problem. First,
Alice and Bob use shared randomness to pickO(log log k)
indicesi ∈ [k]. Alice sends the correspondingxi to Bob,
Bob sends the correspondingyi to Alice. They pick the first
index i such thatxi ⊕ yi = 1 (there will be such ani in
their O(log log k)-set with high probability). Then Alice
sendsvi to Bob as alog m-qubit state. Bob appliesUi and
sends back the resultUivi, which is anotherlog m qubits.
Alice measures with subspaceSi versusS⊥

i and outputs the
result (0 or 1). The overall communication is2 log log k +
2 logm = O(log log n).

Note that we need both shared randomness and multi-
round quantum communication to achieveQpub(f) =
O(log log n), and hence to achieveQ‖(f) = (log n)O(1)

via our simulation. In contrast, Yao’s simulation from [22]
cannot give us an efficientQ‖-protocol. This is because ev-
ery classical many-round protocol (including SMP shared-
randomness ones) for even one instance of Raz’s problem
needs about

√
m ≈

√
log n bits of communication [18].

The same lower bound then also holds for the classical SMP
model with shared randomness. Hence the bestQ‖-protocol
that Yao’s simulation could give is2O(

√
m) log n ≈ 2

√
log n.

Finally, note that there is an efficient one-round classi-
cal protocol forf : Alice randomly choosesO(log log k)
indicesi between 1 andk, and for each suchi sends overi,
vi, andSi (the latter as anm × m projection matrix, with
entries truncated to sufficient precision). This takes roughly
log log k · (log k + m + m2) = (log n)O(1) bits of commu-
nication, and with high probability gives Bob enough infor-
mation to computef . Thus the above discussion is relevant
only when we care about SMP protocols.

3 Characterizing Quantum Fingerprinting

As mentioned, all nontrivial and nonclassical quantum
SMP protocols known are based on repeated fingerprinting.
Here we will analyze the power of protocols that employ
this technique, and show that it is closely related to a well
studied notion from computational learning theory. This ad-
dresses the 4th open problem Yao states in [22]. In partic-
ular, we will show that such quantum fingerprinting proto-
cols cannot efficiently compute many Boolean functions for
which there is an efficient classical SMP protocol.

3.1 Embeddings and realizations

We now define two geometrical concepts.

Definition 1 Let f : D → {0, 1}, with D ⊆ X × Y , be



a (possibly partial) Boolean function. Consider an assign-
ment of unit vectorsαx ∈ R

d, βy ∈ R
d to all x ∈ X and

y ∈ Y .
This assignment is called a(d, δ0, δ1)-threshold embed-

ding of f if |〈αx|βy〉|2 ≤ δ0 for all (x, y) ∈ f−1(0) and
|〈αx|βy〉|2 ≥ δ1 for all (x, y) ∈ f−1(1).

The assignment is called ad-dimensional realization of
f with marginγ > 0 if 〈αx|βy〉 ≥ γ for all (x, y) ∈ f−1(0)
and〈αx|βy〉 ≤ −γ for all (x, y) ∈ f−1(1).

Our notion of a “threshold embedding” is essentially
Yao’s [22, Section 6, question 4], except that we square
the inner product instead of taking its absolute value, since
it is the square that appears in the swap test’s probability.
Clearly, threshold embeddings and repeated fingerprinting
protocols are essentially the same thing (with fingerprintsof
log d qubits, andO(1/(δ1 − δ0)

2) repetitions). The notion
of a “realization” is computational learning theory’s notion
of the realization of a concept class by an arrangement of
homogeneous halfspaces.

These two notions are essentially equivalent:

Lemma 3 If there is a(d, δ0, δ1)-threshold embedding of
f , then there is a(d2 +1)-dimensional realization off with
marginγ = (δ1 − δ0)/(2 + δ1 + δ0).

Conversely, if there is ad-dimensional realization off
with marginγ, then there is a(d + 1, δ0, δ1)-threshold em-
bedding off with δ0 = (1 − γ)2/4 andδ1 = (1 + γ)2/4.

Proof. Let αx, βy be the vectors in a(d, δ0, δ1)-threshold
embedding off . For a = (δ1 + δ0)/(2 + δ1 + δ0),
define new vectorsα′

x = (
√

a,
√

1 − a · αx ⊗ αx) and
β′

y = (
√

a,−
√

1 − a · βy ⊗ βy). These are unit vectors
of dimensiond2 + 1. Now

〈α′
x|β′

y〉 = a − (1 − a)|〈αx|βy〉|2.

If (x, y) ∈ f−1(1), then |〈αx|βy〉|2 ≥ δ1 and hence
〈α′

x|β′
y〉 ≤ a − (1 − a)δ1 = −γ. Similarly, 〈α′

x|β′
y〉 ≥ γ

for (x, y) ∈ f−1(0).
For the converse, letαx, βy be the vectors in ad-

dimensional realization off with margin γ. Define new
(d + 1)-dimensional unit vectorsα′

x = (1, αx)/
√

2 and
β′

y = (1,−βy)/
√

2. Now

|〈α′
x|β′

y〉|2 =
1

4
(1 − 〈αx|βy〉)2 .

If (x, y) ∈ f−1(1), then 〈αx|βy〉 ≤ −γ and hence
|〈α′

x|β′
y〉|2 ≥ 1

4 (1 + γ)
2

= δ1. A similar argument shows

|〈α′
x|β′

y〉|2 ≤ 1
4 (1 − γ)2 = δ0 for (x, y) ∈ f−1(0). 2

The tradeoffs between dimensiond and marginγ have
been well studied [6, 7, 8, 14]. In particular, we can in-
voke a very strong bound on the best achievable margin of

realizations due to very recent work by Linial et al. [14,
Section 3.2] (ourγ is their1/mc(M)).

Theorem 5 (Linial et al.) For f : X × Y → {0, 1}, define
the|X | × |Y |-matrixM byMxy = (−1)f(x,y). Every real-
ization off (irrespective of its dimension) has marginγ at
most

γ ≤
KG · ‖ M ‖ℓ∞→ℓ1

|X | · |Y | ,

where the norm‖ M ‖ℓ∞→ℓ1
is given by‖ M ‖ℓ∞→ℓ1

=
sup‖v‖ℓ∞=1 ‖ Mv ‖ℓ1

and 1 < KG < 1.8 is
Grothendieck’s constant.

This bound is the strongest known upper bound for the
margin of a sign matrix. It strengthens the previously known
bound due to Forster [6]:

Corollary 1 (Forster) Every realization off (irrespec-
tive of its dimension) has marginγ at most γ ≤
‖ M ‖/

√

|X | · |Y |, where ‖ M ‖ is the operator norm
(largest singular value) ofM . In particular, if f : {0, 1}n×
{0, 1}n → {0, 1} is the inner product function, then
‖ M ‖ =

√
2n and henceγ ≤ 1/

√
2n.

Combining this with Lemma 3, we see that a(d, δ1, δ0)-
threshold embedding of the inner product function has
δ1 − δ0 = O(1/

√
2n). In repeated fingerprinting protocols,

we then needr ≈ 2n different swap tests to enable the ref-
eree to reliably distinguish 0-inputs from 1-inputs! Henceif
we consider the functionf(x, y) defined by the inner prod-
uct function on the firstlog n bits of x andy, there is an
efficient classical SMP protocol forf (Alice and Bob each
send their firstlog n bits), but even the best quantum fin-
gerprinting protocol needs to sendΩ(n) qubits. The same
actually holds for almost all functions defined on the first
log n bits. This indicates an essential weakness of quantum
fingerprinting protocols.

In general, the preceding arguments show that we cannot
have an efficient repeated fingerprinting protocol iff can-
not be realized with large margin. If the largest achievable
margin isγ, the protocol will needΩ(1/γ2) copies of|αx〉
and|βy〉. We now show that this lower bound is close to op-
timal. Consider a realization off : X × Y → {0, 1} with
maximal marginγ. Its vectors may have very high dimen-
sion, but nearly the same margin can be achieved in fairly
low dimension if we use the Johnson-Lindenstrauss lemma
[11]. Assume without loss of generality that|X | ≥ |Y | and
let n = log |X |.

Lemma 4 A D-dimensional realization off with marginγ
can be converted into anO(n/γ2)-dimensional realization
of f with marginγ/2.

Using Lemma 3, this gives us a(d, δ1, δ0)-threshold em-
bedding off with d = O(n/γ2), δ0 = (1 − γ/2)2/4 and



δ1 = (1+γ/2)2/4. Note thatδ1−δ0 = γ/2. This translates
directly into a repeated fingerprinting protocol with states
|αx〉 and|βy〉 of d dimensions, henceO(log(n/γ2)) qubits,
andr = O(1/γ2). For example, iff is equality thenγ is
constant, which implies anO(log n)-qubit repeated finger-
printing protocol for equality (of course, we already had one
with r = 1). In sum:

Theorem 6 For f : X × Y → {0, 1} with 2n = |X | ≥
|Y |, define the|X | × |Y |-matrixM byMxy = (−1)f(x,y),
and letγ denote the largest margin among all realizations
of M . There exists a repeated fingerprinting protocol for
f that usesr = O(1/γ2) copies ofO(log(n/γ2))-qubit
states. Conversely, every repeated fingerprinting protocol
for f needsΩ(1/γ2) copies of its|αx〉 and|βy〉 states.

3.2 Application: margin lower bounds
from communication protocols

The connection between repeated fingerprinting and
maximum margin of a realization can be exploited in the
reverse direction as well, by deriving new lower bounds on
margin complexity from known communication protocols.
Yao [22] considered the following Hamming distance prob-
lem onn-bit stringsx andy:

HAM (d)
n (x, y) = 1 iff the Hamming distance be-

tweenx andy is ∆(x, y) ≤ d.

For d = 0, this is just the equality problem. Yao showed
R‖,pub(HAM (d)

n ) = O(d2) (actually, a better classical pro-
tocol may be derived from the earlier paper [5]). We can
derive a threshold embedding directly from Yao’s classical
construction in [22, Section 4]. There, the length of the
messages sent by the parties ism = Θ(d2). The referee ac-
cepts only if the Hamming distance between the messages
is below a certain thresholdt = Θ(m). Let arx be Alice’s
message on random stringr and inputx, arxi be thei-th
bit of this message, and similarly for Bob. Again we may
assumer ranges over a set of sizen′ = O(n) [16]. Yao
shows that for uniformly randomr andi,

Pr[arxi = bryi]

{

≤ t/m − Θ(1/d) if ∆(x, y) ≤ d
≥ t/m + Θ(1/d) if ∆(x, y) > d

Heret/m = Θ(1). Now define the following(log(n′) +
2 log(d) + 1)-qubit states:

|αx〉 =
1√
mn′

∑

r

|r〉
∑

1≤i≤m

|i〉|arxi〉

and

|βy〉 =
1√
mn′

∑

r

|r〉
∑

1≤i≤m

|i〉|bryi〉.

Then

〈αx|βy〉 =
1

mn′

∑

r

∑

1≤i≤m

δarxi,bryi
= Pr[arxi = bryi].

This is a threshold embedding of HAM(d)
n with δ1 −

δ0 = Θ(1/d), so the margin complexity of this problem
is γ(HAM (d)

n ) = Ω(1/d). We have not found this result
anywhere else in the literature on maximum margin realiza-
tions and believe it is novel.

3.3 Application: a margin-based lower
bound on Qent(f)

Let us consider again the unit vectors (a.k.a. quantum
states)αx andβy constructed in Section 2.2 from a quan-
tum protocol for functionf with q = Qent(f) qubits of
communication. These states form a(d, δ0, δ1)-threshold
embedding off with δ1−δ0 = Θ(2−2q). By Lemma 3, this
in turn implies that the maximal achievable margin among
all realizations off is γ(f) = Ω(2−2q), which translates
into a lower bound on quantum communication complexity
in terms of margins:

Theorem 7 Qent(f) ≥ 1
2 log(1/γ(f)) − O(1).

Since almost allf have exponentially small maximal
margin [14, Section 5], it follows that almost allf have lin-
ear communication complexity even for multi-round proto-
cols with unlimited prior entanglement. As far as we know,
this is a new result (albeit not a very surprising one).

The last theorem has been independently obtained by
Linial and Shraibman [15] (with a slightly worse factor
1/4 instead of 1/2). Even more interestingly, they actu-
ally showed a linear relation between margin complexity
1/γ(f) and discrepancy. Hence they extend the discrep-
ancy lower bound toQent(f). It was already known to hold
for Q(f) without entanglement [13].

4 Discussion

Our simulation is relevant for the longstanding open
question regarding the power of quantum entanglement in
communication complexity: how much can we reduce com-
munication complexity by giving the parties access to un-
limited amounts of EPR-pairs? No good upper bounds
are known on the largest amount of entanglement (shared
EPR-pairs) that is “still useful”. This is in contrast to the
situation with shared randomness, where Newman’s theo-
rem shows that in the standard one-round or multi-round
setting,O(log n) shared coin flips suffice [16], and hence
shared randomness can save at mostO(log n) communica-



tion.2 Like Shi’s result [20], our result does not give an
upper bound on the amount of prior entanglement that is
needed, but it does imply that adding large amounts of prior
entanglement can reduce the communication no more than
exponentially.

An interesting direction is to tap into the vast liter-
ature on maximal-margin classification and support vec-
tor machines (SVM’s) to find more natural communication
problems having efficient quantum fingerprinting protocols.
Currently, the only natural and nontrivial example we have
of this is the equality problem from [3] and its variations in
Section 3. Every learning problem involving a concept class
C over the set ofn-bit strings corresponds to a|C|×2n com-
munication complexity problem. If the learning problem
can be embedded with large margin (γ ≥ 1/(logn)O(1),
say), the communication problem has an efficient quantum
fingerprinting protocol.

A fascinating line of research which combines our main
results is the following. Theorem 4 together with the char-
acterization of repeated fingerprinting in Theorem 6 opens
the possibility to derive new lower bounds on the maximum
margin of a sign matrix. It is sufficient to give an efficient
multi-round quantum communication protocol (even with
unlimited pre-shared entanglement) for a Boolean function
to show that the corresponding concept class can be learned
efficiently—yet another interesting possibility of proving
classical results the quantum way. Conversely, strong upper
bounds on maximum margin, like the one of Linial et al. in
Theorem 5, give lower bounds on the communication com-
plexity in the multi-round quantum communication model
with unlimited shared entanglement.
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