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Abstract third party, usually called the “referee”. The referee twold
no input himself, but is supposed to infer some function
We study the power of quantum fingerprints in the simul- f(x,y) from the messages he receives. The goal is to min-
taneous message passing (SMP) setting of communicatiofimize the amount of communication sent for the worst-case
complexity. Yao recently showed how to simulate, with ex-input z, y. In this model there is no direct communication
ponential overhead, classical shared-randomness SMP pro-between Alice and Bob themselves, unlike in the standard
tocols by means of quantum SMP protocols without sharedmodel of one-way or multi-round two-party communication
randomness@!-protocols). Our first result is to extend complexity. The SMP model is arguably the weakest setting
Yao'’s simulation to the strongest possible model: every of communication complexity that is still interesting.
many-round quantum protocol with unlimited shared en-  We will consider SMP quantum protocols where Alice
tanglement can be simulated, with exponential overhead,sends a;-qubit state|«,;), Bob sends @-qubit state|s, ),
by Ql-protocols. We apply our technique to obtain an effi- and the referee does the 2-outcome “swap test” [3]. This
cientQ!l-protocol for a function which cannot be efficiently test outputs 0 with probability
solved through more restricted simulations. Second, we
tightly characterize the power of the quantum fingerprint- 1, (0w |By) |2
ing technique by making a connection to arrangements of 2 2 '
homogeneous halfspaces with maximal margin. These ar-_ .. . e L
rangements have been well studied in computational Iearn-ESt'm""tlng this probab_ﬂﬂy Is tantamount to estimating th
ing theory, and we use some strong results obtained in thisab.solu.te val_ue of the inner produgts|5,). T_hey repeat
area to exhibit weaknesses of quantum fingerprinting. In this r times in pargllel, the referee uses théits that are
particular, this implies that for almost all functions, qua the outcomes of his swap tests to estimaté. |f5,)|, and

tum fingerprinting protocols are exponentiallyorsethan bases his outpu_t on thi_s (_astimate. We will call such proto-
classical deterministic SMP protocols. cols *repeated fingerprinting protocols”.
A quantum protocol of this form can only work effi-

ciently if we can ensure thdta.|3,)|> < d, whenever
f(z,y) = 0 and|{a;|B,)|> > &1 wheneverf(z,y) = 1.
Here §y < ¢, should be reasonably far apart, otherwise
r would have to be too large to distinguish the two cases
with high probability. A statistical argument shows that
r = ©(1/(61 — do)?) is necessary and sufficient for this.
In total, such a protocol us€gr = O(q/ (61 — dp)?) qubits

1 Introduction
1.1 Setting

This paper studies the power of quantum fingerprinting

protocols in commt_mication complexity._ In the simultane_- of communication. Generally a protocol is considered “ef-
ous message passing (SMP) setting, Alice and Bob hold "Nficient” if its communication cost is polylogarithmic in the

putsz andy, respectively, and each send a message to ainput length. Even though quantum fingerprinting is a re-
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complexity in the standard two-party model without the ref- the resulting)(1)-dimensional vectors to the referee in suf-
eree. Adding superscripts ‘pub’ or ‘ent’ indicates thato&li  ficient precision Q(logr) bits per entry suffices), and re-
and Bob share unlimited amounts of shared randomness opeat thisO(r) times to approximate the inner product be-
shared entanglement. These shared resources do not coutween the original vectors with sufficient precision. Hence
towards the communication cost. Replacing by ‘Q’ our construction implies Shi’s result [20]

gives the variants of these measures where the communi-

cation consists of qubits instead of classical bits. Rlbpeb(f) = 20@ WD),

L. This is not too surprising, because our derivation of the ap-

1.2 Strengths of quantum fingerprinting propriate vectors (fingerprints) from th@°"*-protocol is
inspired by some of the techniques in Shi's paper—though

Quantum fingerprints have surprising power. They were we avoid his use of tensor norms.

first used by Buhrman et al. [3] to sho®!(EQ) = The fact that our simulation has exponential overhead is
O(logn) for the n-bit equality function. In contrast, unfortunate but unavoidable. For instance, for Raz's func-

it is known that RI(EQ) = ©(y/n) [1, 17, 2], while  tion [18] we haveQ(f) = O(logn) via a two-round pro-
RIPv(EQ) = O(1). Subsequently, Yao [22] showed that  tocol while it is easy to see that any quantum fingerprint-

ing protocol needs to communicaté)) qubits: by the

Qll(f) = 20BN 10g . argument of the last paragraph, a quantum fingerprinting
protocol implies a classical shared-randomness protdcol o
In particular, if RI-74 () = O(1) thenQ!l(f) = O(logn). roughly the same complexity, and Raz proved that all classi-

The quantum fingerprinting protocol for equality is a spe- cal protocols for his problem require*(") bits of commu-
cial case of this result. Yao’s exponential simulation can nication. Despite the exponential overhead, our simufatio
be extended to relational problems, and recently Gavinskystill gives nontrivial efficien!-protocols when simulating
et al. [9] showed that it is essentially optimal by exhihitin ~ protocols withO(loglogn) quantum communication and
a relational problen®; for which RI'?“*(P;) = O(logn) much shared randomness or entanglement. We give an ex-
andQll(P) = Q(n'/3). Whether there exist exponential ample in Section 2.3.
gaps for functional problems remains open.
In this paper we show that Yao’s simulation can be ex- 1.3 Characterization and weaknesses of
tended far beyond classical SMP protocols. Given any quantum fingerprinting
bounded-error two-party quantum protocol witlgubits of
communication, no matter how many rounds of commu-  The results above show some of the strengths of quantum
nication, and no matter how much entanglement it startsfingerprinting protocols. What about its weaknesses? For
with, we show how to construct a repeated quantum finger-instance, is it possible that quantum SMP protocols based
printing protocol that communicat@$(?) log n qubits and ~ on repeated fingerprinting are equal in power to arbitrary
computes the same function with small error probability. In quantum SMP protocols? In Section 3 we show that for
symbols: most functions they are much weaker.
Q! (f) = 90(Q™(£)) log n. qu main tool is a.tight characterizat.ion of qua_ntum fin—
gerprinting systems in terms of the optimal margin achiev-
Thus, the exponential simulation still works even if we add able by realizations of the computational problem via an
interaction, quantum communication, and entanglement toarrangement of homogeneous halfspaces (Theorem 6). The
the RI-P“*-model that Yao considered. When we restrict to latter mouthful has been well studied in machine learning,
simulatingR!l-*“>-protocols, we get a bound that is quadrat- and forms the basis of maximal-margin classifiers and sup-
ically better than Yao’s. A similar quadratic improvement port vector machines. This connection between quantum
over Yao's has been obtained independently by Golinsky fingerprints and these embeddings is straightforward, but
and Sen [10]. allows us to tap into some of the strong theorems known
Actually, the vectors that we construct for our quantum about such margins, particularly a result of Forster [6] and
simulation can also be used to obtain a classical SMP pro-its recent strengthening by Linial et al. [14]. The upshot is
tocol with shared randomness atdr) bits of communi- that repeated quantum fingerprinting protocols are exponen
cation ¢ being the number of repetitions of the quantum tially worse than general quantum and even classical SMP
protocol), as follows. Alice and Bob use their shared ran- protocols for almost all functions.
domness to pick a®@(1)-dimensional random subspaceand  This three-way connection between quantum communi-
each projects her/his vector onto that space and renormalcation complexity, margin complexity, and learning theory
izes. The expectation of the inner product of the two pro- allows us to make other connections as well. For exam-
jected vectors equals their original inner product. Theydse ple, good learning protocols give good lower bounds on



margins, which give new upper bounds for repeated finger- as above, and we have

printing protocols. In the other direction, an efficient il

round quantum protocol for some Boolean function implies flz,y) ~ P(z,y) = 1 Z(ar(dr)lbr(y)%

lower bounds on the margin of the corresponding matrix. IR reR

We give an example of this in Section 3.2. Finally, since

our positive result above relates quantum fingerprinting to where =’ means thatf(z,y) and P(z,y) differ by at
generalQ°"t-complexity, we can also use known results most the error probability of the protocol. Define pure
about margin complexity to obtain some new lower bounds (¢ + logn + O(1))-qubit states as follows

on Q" (f). We explore the latter direction in Section 3.3.

There we showQ“"!(f) = Q(log(1/~(f)), wherey(f) is lal) =

the “maximal margin” among all embeddings 6f This I 5.
bound was independently obtained by Linial and Shraib- e |ar(f€)> + \/2 12 — || ay(z) [|"[junk,)
man [15] in a recent manuscript, which also shows the beau- /|R ~ 2¢-1
tiful new result that margin complexity ardiscrepancyare "€
linearly related. o) = E (10) + |a))
2 Simulating Arbitrary Quantum Protocols and

18,) =

In this section we show how to extend Yao’s simula-
tion fro_m classical SMP protocols W_lth shared randomness b, (1)) + \/QQH — | b () |I?|junk,)
to multi-round quantum protocols with shared randomness Z )
(Section 2.1), and then even to arbitrary multi-round quan- v |R r€R
tum protocols with shareentanglemen{Section 2.2).

P glements Y B =5 (0 +18)

where ‘0’, ‘junk,’” and ‘junk,’ are distinct special basis
states. Note that

2.1 Simulating shared-randomness multi-
round quantum protocols

Let f : {0,1}" x {0,1}* — {0,1} be a communica- (@]B) Z (ar(2)[br(y)) _ P(z,y)
tion complexity problem. Our construction also works for %o |R| 22q 2 22q-2
promise functions, but for simplicity we describe it here fo
a total function. LetP be the2” x 2" matrix of accep-  gpg
tance probabilities of a bounded-error quantum protocol fo
f. We first assume the protocol communicategibits and < w8, 1 P(x,y)
doesn’t use prior shared entanglement or shared random- {azlby) = 5 T 9 T 9 922¢—1 °

ness. It is well known [21, 13] that we can decompose ) ) ) ) _
P — AB' where A. B are2™ x 229—2 matrices. each of  Accordingly, if we start with a protocol with error probabil

whose entries has absolute value at most 1, Ahds the Ity at moste, then we obtain quantum statgs,) and|3,)
conjugate transpose @. Let a(x) be thez-th row of A such that
andb(y) be they-th row of B. Then for allz, y we have

< tgmr [ Iy) =0
P(z,y) = (a(z)|b(y)) and| a(z) ||, || b(y) || < 297 [z |By)! 1 1-¢
=3 W if f(xvy) =1

Now consider a quantum protocol that uses shared random-

ness. By Newman's theorem [16], we can assume withoutNote that the difference between tequaresof the two
loss of generality that the shared random string picked above inner products i®(1/229). HenceO(2%7) indepen-
uniformly from a setR of O(n) elements. Then we can dent swap tests (see the introduction) suffice to distifguis

decompose the two cases with high probability. Thus we get a repeated
guantum fingerprinting protocol that computéewith small
|R| Z Fr, error probability and send9(2%? log n) qubits of commu-
rekt nication, without shared randomness.

whereP.,. is the matrix of probabilities if we run the protocol .
with shared string.. EachP, induces vectors,.(z), b, (y) Theorem 1 QI (f) = 0(2*Q""" (N logn).



Note that we puflogn insteadq + logn for the last
factor. That is clearly correct if < (logn)/4; and if
q > (logn)/4 then the righthand side is more thaywhich
is a trivially true upper bound 0@/ (f).

We can get a better exponent in the case of classical one
way protocols. Suppose Alice’s classical message is
RLPub(f) bits. Leta,(z) € {0,1}%" have a 1 only in the

coordinate corresponding to the message Alice sends given

inputz and random string. Letb,.(y) € {0,1}>  be 1 on
the messages of Alice that lead Bob to output 1 (giyen
andr). Thenk, (z,y) = (ar()[b(y)), || ar(2) || = 1 and

| b.(y) || < v/2¢. The above fingerprinting construction
now gives a protocol witlD (2¢ log n) qubits.

Theorem 2 QIl(f) = 02" (D logn).

Analogously we can simulate classical shared-

with {|e)} an orthonormal set of states ahd_\? = 1.
Note that F| may be huge. Now we can write

>

he{0,1}a—1

D AerlelAn(z) Ap()]e’) - Aele Bu(y) B (y)le).
h,h’ e,e’

2

P(z,y) = | (An(z) @ Br(y)I¥) || =

Definea(z) to be the|E|?22¢~2-dimensional vector with
complex entries\. (e| A ()T Ay (x)|e’), indexed by tu-
ples (h,h',e,e’), and similarly defineb(z) with entries
Ae(e|Bu(y)T Bus (y)]e’). Then

P(z,y) = (a(x)[b(y))-

Using that the set of¢)-states is an orthonormal set in the
space in whichAy (z)T Ay (z)]e’) lives, and the fact that

randomness SMP protocols. Suppose Alice’s messaged| 4An () Ap (z) | < || An(z) || - || An(2) || < 1 we have

arec < LRIPu(f) bits long. This gives rise to a re-
peated quantum fingerprinting protocol with(2¢logn)
qubits of communication: define,(z) as before and
let b.(y) € {0,1}*" be 1 on the possible messagesf
Alice that would lead the referee to accept giveand the
message Bob would send (on inguind random string).

Theorem 3 QlI(f) = O(22F"""" (N logn).

2.2 Simulating shared-entanglement
multi-round quantum protocols

Now consider the case where our multi-round quantum
protocol useg; qubits of communication and some entan-
gled starting state. Our proof for this most general case is
inspired by Shi's resull:»ub(f) = 20(Q“ (1) [20, The-
orem 1.2]. The following lemma is due to Razborov [19,
Proposition 3.3] and is similar to earlier statements in, [21
13]. It can be proved by induction an

Lemma 1 (Kremer-Razborov-Yao) Let |¥) denote the
(possibly entangled) starting state of the protocol. Fdr al
inputsz andy, there exist linear operatord,, (), Bx(y),

h € {0,1}9~!, each with operator norns 1, such that the
acceptance probability of the protocol is

>

he{0,1}a—1

2

Pz, y) = | (An(x) ® Bu(y)|¥) |

We will derive vectorsu(x) andb(y) from this charac-
terization. Assume without loss of generality that the prio
entanglement is

T) = Acledle),

ecE

la(@) 1P = > Nl(elAn(@)" Aw ()|}

h,h’ e,e’
2
< Y0 AU An(@)t Ap (@) ||
h,h’ e’
S Z )\gl = 22(]—2.
h,h’ e’

Similarly || b(y) || < 2971

The norms and inner products of thér) andb(y) vec-
tors are thus as before. It remains to reduce their dimension
D = |E|?2%¢=2, which may be very large. For this we
use the Johnson-Lindenstrauss lemma (proved in [11], see
e.g. [4] for a simple proof).

Lemma 2 (Johnson & Lindenstrauss) Lete > 0 andd >
4In(N)/(e%/2 —£3/3). For every se¥ of N points inR”
there exists a map : R — R? such that for allu, v € V

(1= u—v |* < [ p(w) = p(v) | < (1+&) u—v |*

To get the above map it actually suffices to project the
vectors onto a randorit-dimensional subspace and rescale
by a factor of\/D/d. With high probability, this approx-
imately preserves all distances. Note that if the 18ah-
cludes the 0-vector, then also the norms obadl V" will be
approximately preserved. Since

2 2 2
_Nullm+ o ll” = lu—wv]
- 3

(ulo) -

the mapf also approximately preserves the inner products
between all pairs of vectors i, if ¢ is sufficiently small.
We assume for simplicity that our vectarsr) andb(y)
are real. Let our seV contain alla(x) andb(y) as well
as the O-vector (saVv 22" +1). Applying the



Johnson-Lindenstrauss lemma with= 1/(10 - 227) and
d = O(log(N)/e?) = O(n2%) gives usd-dimensional
vectorsp(a(z)) andp(b(y)) of norm at mose? such that

[(p(a(2))Ip(b(y))) — {a(z)[b(y))] < 1/10.

We fix these vectors once and for all before the protocol

As stated this is a problem with continuous input, but we
can easily approximate the entries of the vectors, ungarie
and subspaces b9 (log m)-bit numbers. Thus the input
length isn = O(km? log m) and we choose: = log k.

Here’s a simple 4-round protocol for this problem. First,
Alice and Bob use shared randomness to gi§kog log k)

starts; note that we are not using shared randomness in théndicesi € [k]. Alice sends the corresponding to Bob,

protocol itself!
Now define quantum states dr4- 2 dimensions by

Ip(a(@))) + /220 — || pla(@)) |*junk,)
_ .

o)
and

W) + /22— || plb(y)) [ ljunk,)

18) = . .
Note that
Qm@:@w%gmm%mggm:%ﬁmw

Bob sends the correspondipgto Alice. They pick the first
index: such thatz; ® y; = 1 (there will be such an in
their O(log log k)-set with high probability). Then Alice
sendsy; to Bob as dog m-qubit state. Bob applieS; and
sends back the result;v;, which is anothetog m qubits.
Alice measures with subspasgversusS;- and outputs the
result (0 or 1). The overall communicationdgog log k +
2logm = O(loglogn).

Note that we need both shared randomness and multi-
round quantum communication to achie@“(f)
O(loglogn), and hence to achiev@(f) = (logn)°™
via our simulation. In contrast, Yao’s simulation from [22]
cannot give us an efficied@!-protocol. This is because ev-
ery classical many-round protocol (including SMP shared-

Hence, as before, we can construct a repeated fingerprintingandomness ones) for even one instance of Raz’s problem

protocol with fingerprints ofog(d + 2) = O(q + logn)
qubits andD(249) repetitions.

Theorem 4 QI (f) = O(24Q""" (N logn).
2.3 An example problem

Here we apply Theorem 4 to obtain an efficient SMP
protocol for a particular problem; we do not know how
to obtain an efficient protocol for this problem without us-
ing Theorem 4. More precisely, we give an example of a
Boolean functionf for which there exists a 4-round quan-
tum protocol that useg = O(loglogn) qubits of commu-
nication andJ(log n) bits of shared randomness. Our sim-
ulation implies the existence of an efficient quantum SMP
protocol for f:

Q(f) < 20Usle M logn = (logn).

The problem uses many small copies of Raz’s 2-round com-

munication problem from [18], and is defined as follows.

Alice’s input: stringx € {0,1}*, unit vectors
vy,...,ur € R™, andm/2-dimensional sub-
spacessy, ..., Sy of R™

Bob's input: string y € {0,1}*, and m-
dimensional unitarie#’y, ..., Uy

Promise: |z @ y| = k/loglog k, and either

(f = 0) Ujv; € S; for eachi wherez; @ y; = 1,
or

(f = 1) U;v; € Si- for eachi wherex; © y; = 1

lUsing shared randomness gives us the resBIbPub(f)
20(Q°™ (1)) of [20, Theorem 1.2].

needs about/m =~ +/logn bits of communication [18].
The same lower bound then also holds for the classical SMP
model with shared randomness. Hence the ©ésprotocol
that Yao’s simulation could give B°(V™) logn ~ 2vIeen,
Finally, note that there is an efficient one-round classi-
cal protocol for f: Alice randomly choose® (log log k)
indicesi between 1 and, and for each suchsends ovet,
v;, and.S; (the latter as amn x m projection matrix, with
entries truncated to sufficient precision). This takes royg
loglogk - (log k +m +m?) = (logn)®™) bits of commu-
nication, and with high probability gives Bob enough infor-
mation to computg’. Thus the above discussion is relevant
only when we care about SMP protocols.

3 Characterizing Quantum Fingerprinting

As mentioned, all nontrivial and nonclassical quantum
SMP protocols known are based on repeated fingerprinting.
Here we will analyze the power of protocols that employ
this technique, and show that it is closely related to a well
studied notion from computational learning theory. This ad
dresses the 4th open problem Yao states in [22]. In partic-
ular, we will show that such quantum fingerprinting proto-
cols cannot efficiently compute many Boolean functions for
which there is an efficient classical SMP protocol.

3.1 Embeddings and realizations

We now define two geometrical concepts.

Definition1 Let f : D — {0,1}, withD C X x Y, be



a (possibly partial) Boolean function. Consider an assign- realizations due to very recent work by Linial et al. [14,

ment of unit vectors,, € R?, 8, € R?to allz € X and
yevY.

This assignment is called @, do, J1 )-threshold embed-
ding of f if |(a.|3,)|> < & for all (z,y) € £71(0) and
(e |3,)]2 = 61 forall (z,y) € £(1).

The assignment is called&dimensional realization of
f with marginy > 0if (a,|3,) > ~forall (z,y) € f~1(0)
and(a,|8,) < —yforall (z,y) € f~1(1).

Our notion of a “threshold embedding” is essentially

Section 3.2] (out is theirl/mec(M)).

Theorem 5 (Linial etal.) For f : X x Y — {0, 1}, define
the|X| x |Y'|-matrix M by M,,, = (—1)/@¥). Every real-
ization of f (irrespective of its dimension) has margjrat
most
Ko - | Mg,
TR

where the normj| M ||, _, isgivenby| M|, _, =
supjyp,_=1 | Mv |, and 1 < Kg < 18 is

Yao's [22, Section 6, question 4], except that we square grothendieck’s constant.

the inner product instead of taking its absolute value,esinc

it is the square that appears in the swap test's probability. This bound is the strongest known upper bound for the
Clearly, threshold embeddings and repeated fingerprintingmargin of a sign matrix. It strengthens the previously known

protocols are essentially the same thing (with fingerpifits
log d qubits, andO(1/(8; — dp)?) repetitions). The notion
of a “realization” is computational learning theory’s rufi

of the realization of a concept class by an arrangement oftivé Of

homogeneous halfspaces.
These two notions are essentially equivalent:

Lemma 3 If there is a(d, do, 91)-threshold embedding of
f, then there is dd* + 1)-dimensional realization of with
marginy = (61 — 00)/(2 + d1 + o).

Conversely, if there is d-dimensional realization of
with margin~, then there is dd + 1, do, 1 )-threshold em-
bedding off with 5y = (1 —)%/4 and§; = (1 + v)%/4.

Proof. Letay, 8, be the vectors in &d, do, 61)-threshold
embedding off. Fora = (61 + d0)/(2 + 61 + o),
define new vectors, = (v/a,v/1—a - a; ® a,) and
B, = (Va,—V1—a- B, ® 3,). These are unit vectors

of dimensiond? + 1. Now
(0 18y) = a— (1 — a)|(az|By) .

If (z,y) € f~1(1), then|(a.|B3,)[* > & and hence
(al]B,) < a— (1 —a)s, = —. Similarly, (a}|5}) > ~
for (z,y) € f71(0).

For the converse, lety,, 3, be the vectors in al-
dimensional realization of with margin~. Define new
(d 4+ 1)-dimensional unit vectors!/, = (1,a,)/v/2 and

B, = (1,—B,)/V2. Now

a1y} 7 = 3 (1= (el

If (z,y) € f~1(1), then(a,|3,) < —v and hence
(1B > 11+ v)? = 8,. A similar argument shows
(I8P < § (1 —9)* = o for (w,y) € f71(0). O

The tradeoffs between dimensidnand marginy have

been well studied [6, 7, 8, 14]. In particular, we can in-

bound due to Forster [6]:

Corollary 1 (Forster) Every realization off (irrespec-
its dimension) has marginy at most vy <

| M ||/+/IX|-1Y], where| M || is the operator norm
(largest singular value) a#/. In particular, if f : {0,1}™ x
{0,1}™ — {0,1} is the inner product function, then
| M || = V2" and hencey < 1/v/2".

Combining this with Lemma 3, we see that& d;, dp)-
threshold embedding of the inner product function has
51 — 6o = O(1/+/2™). In repeated fingerprinting protocols,
we then need ~ 2™ different swap tests to enable the ref-
eree to reliably distinguish 0-inputs from 1-inputs! Heifce
we consider the functiofi(z, y) defined by the inner prod-
uct function on the firstogn bits of x andy, there is an
efficient classical SMP protocol fof (Alice and Bob each
send their firstlog n bits), but even the best quantum fin-
gerprinting protocol needs to sefit{n) qubits. The same
actually holds for almost all functions defined on the first
log n bits. This indicates an essential weakness of quantum
fingerprinting protocols.

In general, the preceding arguments show that we cannot
have an efficient repeated fingerprinting protocof i€an-
not be realized with large margin. If the largest achievable
margin isv, the protocol will need(1/+?) copies ofla,.)
and|g3,). We now show that this lower bound is close to op-
timal. Consider a realization of : X x Y — {0, 1} with
maximal marginy. Its vectors may have very high dimen-
sion, but nearly the same margin can be achieved in fairly
low dimension if we use the Johnson-Lindenstrauss lemma
[11]. Assume without loss of generality tha | > |Y'| and
letn = log | X]|.

Lemma 4 A D-dimensional realization of with margin-~y
can be converted into af(n/+?)-dimensional realization
of f with margin~/2.

Using Lemma 3, this gives us(d, 41, dp)-threshold em-

voke a very strong bound on the best achievable margin ofbedding off with d = O(n/~?), 6o = (1 — v/2)?/4 and



81 = (1+v/2)?/4. Note that; —Jp = v/2. Thistranslates  Then

directly into a repeated fingerprinting protocol with stte ]

|,y and|3,) of d dimensions, hena®(log(n/v?)) qubits, (ag|By) = — Z Z Oatrgisbryi = Prlarai = bryl.
andr = O(1/+2). For example, iff is equality theny is mn e Sm

constant, which implies a@(log n)-qubit repeated finger-

printing protocol for equality (of course, we already hagon  This is a threshold embedding of H,Aggﬁ with 6, —

with r = 1). In sum: s = ©(1/d), so the margin complexity of this problem

is y(HAM ) = Q(1/d). We have not found this result
Theorem 6 For f : X x Y — {0,1} with 2" = |X| > anywhere else in the literature on maximum margin realiza-
Y|, define the X| x |Y'|-matrix M by M., = (—1)7®¥,  tions and believe it is novel.

and lety denote the largest margin among all realizations
of M. There exists a repeated fingerprinting protocol for
f that usesr = O(1/+?) copies ofO(log(n/~?))-qubit
states. Conversely, every repeated fingerprinting prdtoco
for f need€2(1/~?) copies of it4«,.) and|s3,) states.

3.3 Application: a margin-based lower
bound on Q"(f)

Let us consider again the unit vectors (a.k.a. quantum
states)a, andg, constructed in Section 2.2 from a quan-
tum protocol for functionf with ¢ = Q**(f) qubits of
communication. These states form@ do, 01)-threshold
_ ) o embedding off with §; —dp = ©(2729). By Lemma 3, this

The connection between repeated fingerprinting and;, ¢ implies that the maximal achievable margin among
maximum margin of a realization can be exploited in the g realizations off is v(f) = Q(2249), which translates

reverse direction as well, by deriving new lower bounds on i 5 Jower bound on quantum communication complexity
margin complexity from known communication protocols. i terms of margins:

Yao [22] considered the following Hamming distance prob-

3.2 Application: margin lower bounds
from communication protocols

lem onn-bit stringsz andy: Theorem 7 Q<*(f) > Llog(1/+(f)) — O(1).
HAM (@ (z,y) = 1 iff the Hamming distance be- _ _ _
tweenz andy is A(z,y) < d. Since almost allf have exponentially small maximal

margin [14, Section 5], it follows that almost gllhave lin-
Ford = 0, this is just the equality problem. Yao showed ear communication complexity even for multi-round proto-
RllPub(HAM (D) = O(d?) (actually, a better classical pro-  cols with unlimited prior entanglement. As far as we know,
tocol may be derived from the earlier paper [5]). We can this is a new result (albeit not a very surprising one).
derive a threshold embedding directly from Yao's classical The last theorem has been independently obtained by
construction in [22, Section 4]. There, the length of the Linial and Shraibman [15] (with a slightly worse factor
messages sent by the partiesis= ©(d?). The referee ac-  1/4 instead of 1/2). Even more interestingly, they actu-
cepts only if the Hamming distance between the messageslly showed a linear relation between margin complexity
is below a certain threshold= ©(m). Leta,, be Alice’s 1/4(f) anddiscrepancy Hence they extend the discrep-
message on random stringand inputz, a,.; be thei-th ancy lower bound t@)"*( f). It was already known to hold
bit of this message, and similarly for Bob. Again we may for Q(f) without entanglement [13].
assume- ranges over a set of siz€ = O(n) [16]. Yao

shows that for uniformly randomands, 4 Discussion

Prlare: = b ]{ <t/m-—-0(1/d) if Alz,y) <d _ o _

TR > t/m+0(1/d) i Ax,y) > d Our simulation is relevant for the longstanding open
guestion regarding the power of qguantum entanglement in

Heret/m = ©(1). Now define the followinglog(n’) + communication complexity: how much can we reduce com-
2log(d) 4+ 1)-qubit states: munication complexity by giving the parties access to un-
) limited amounts of EPR-pairs? No good upper bounds
) = —— r i) @i are known on the largest amount of entanglement (shared

(o) vmn! 27; I 1;771' M) EPR-pairs) that is “still useful”. This is in contrast to the
o situation with shared randomness, where Newman’s theo-

and rem shows that in the standard one-round or multi-round

1 . e .
18,) = —— Ir) 1) [Bryi)- setting,O(log n) shared coin flips suffice [16], and hence
Y vmn/ ZT: 1;,” Y shared randomness can save at nig($bg n) communica-



tion.? Like Shi’s result [20], our result does not give an
upper bound on the amount of prior entanglement that is
needed, but it does imply that adding large amounts of prior

entanglement can reduce the communication no more than 5]

exponentially.

An interesting direction is to tap into the vast liter-
ature on maximal-margin classification and support vec-
tor machines (SVM’s) to find more natural communication
problems having efficient quantum fingerprinting protocols
Currently, the only natural and nontrivial example we have
of this is the equality problem from [3] and its variations in
Section 3. Every learning probleminvolving a concept class
C over the set ofi-bit strings corresponds to|&| x 2" com-
munication complexity problem. If the learning problem
can be embedded with large margin & 1/(logn)°™,
say), the communication problem has an efficient quantum
fingerprinting protocol.

A fascinating line of research which combines our main
results is the following. Theorem 4 together with the char-
acterization of repeated fingerprinting in Theorem 6 opens
the possibility to derive new lower bounds on the maximum
margin of a sign matrix. It is sufficient to give an efficient
multi-round quantum communication protocol (even with
unlimited pre-shared entanglement) for a Boolean function

to show that the corresponding concept class can be learned

efficiently—yet another interesting possibility of progin
classical results the quantum way. Conversely, stronguppe
bounds on maximum margin, like the one of Linial et al. in
Theorem 5, give lower bounds on the communication com-
plexity in the multi-round quantum communication model
with unlimited shared entanglement.
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