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t. The 
lassi
al Yao prin
iple states that the 
omplexity R�(f)of an optimal randomized algorithm for a fun
tion f with su

ess proba-bility 1�� equals the 
omplexity max�D�� (f) of an optimal deterministi
algorithm for f that is 
orre
t on a fra
tion 1� � of the inputs, weigheda

ording to the hardest distribution � over the inputs. In this paper weinvestigate to what extent su
h a prin
iple holds for quantum algorithms.We propose two natural 
andidate quantum Yao prin
iples, a \weak"and a \strong" one. For both prin
iples, we prove that the quantumbounded-error 
omplexity is a lower bound on the quantum analoguesof max�D�� (f). We then prove that equality 
annot be obtained for the\strong" version, by exhibiting an exponential gap. On the other hand,as a positive result we prove that the \weak" version holds up to a 
on-stant fa
tor for the query 
omplexity of all symmetri
 Boolean fun
tions.1 Introdu
tion1.1 MotivationIn 
lassi
al 
omputing, the Yao prin
iple [17℄ gives an equivalen
e between twokinds of randomness in algorithms: randomness inside the algorithm itself, andrandomness on the inputs. Let us �x some model of 
omputation for 
omputinga Boolean fun
tion f , like query 
omplexity, 
ommuni
ation 
omplexity, et
. LetR�(f) be the minimal 
omplexity among all randomized algorithms that 
omputef(x) with su

ess probability at least 1� �, for all inputs x. Let D�� (f) be theminimal 
omplexity among all deterministi
 algorithms that 
ompute f 
orre
tlyon a fra
tion of at least 1� � of all inputs, weighed a

ording to a distribution� on the inputs. The Yao prin
iple now states that these 
omplexities are equalif we look at the \hardest" input distribution �:R�(f) = max� D�� (f):It is a spe
ial 
ase of Von Neumann's minimax theorem in game theory [10℄.? Partially supported by EU �fth framework proje
t QAIP, IST{1999{11234, andgrant 612.055.001 from the Netherlands Organization for S
ienti�
 Resear
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Sin
e its introdu
tion, the Yao prin
iple has been an extremely useful toolfor deriving lower bounds on randomized algorithms from lower bounds on de-terministi
 algorithms: 
hoose some \hard" input distribution �, prove a lowerbound on deterministi
 algorithms that 
ompute f 
orre
tly for \most" inputs,weighed a

ording to �, and then use R�(f) � D�� (f) to get a lower boundon R�(f). This method is used very often, be
ause it is usually mu
h easier toanalyze deterministi
 algorithms than to analyze randomized ones.In re
ent years quantum 
omputation re
eived a lot of attention. Here quan-tum me
hani
al prin
iples are employed to realize more eÆ
ient 
omputationthan is possible with a 
lassi
al 
omputer. Famous examples are Shor's eÆ
ientquantum fa
toring algorithm [15℄ and Grover's sear
h algorithm [8℄. However,the �eld is still young and open questions abound. In parti
ular, there has beena sear
h for good te
hniques to provide lower bounds on quantum algorithms,parti
ularly in the query model of 
omputation. Two general methods in this di-re
tion are the polynomial method introdu
ed by Beals, Buhrman, Cleve, Mos
a,and de Wolf [3℄ and the quantum adversary method of Ambainis [2℄. In this pa-per we investigate the possibility of a third method, a quantum Yao prin
iple.It is our hope that su
h a prin
iple will prove itself useful as a link betweente
hniques for lower bounds on exa
t and bounded-error quantum algorithms.The �rst diÆ
ulty one runs into when investigating a quantum version of theYao prin
iple, is the question what the proper quantum 
ounterparts of R�(f)and D�� (f) are. Let us �x the error probability at � = 13 here (any other value in(0; 12 ) would do as well). The quantum analogue of R1=3(f) is straightforward: letQ2(f) denote the minimal 
omplexity among all quantum algorithms that 
om-pute f(x) with probability at least 23 , for all inputs x. However, the inherently\random" nature of quantum algorithms prohibits a straightforward de�nitionof \deterministi
" quantum algorithms in analogy of deterministi
 
lassi
al al-gorithms. We therefore propose two di�erent de�nitions, a weak and a strongone. In the following, let f : D ! f0; 1g be some fun
tion that we want to
ompute, with D � f0; 1gN . If D = f0; 1gN then f is a total fun
tion, otherwisef is a promise fun
tion. Let A be a quantum algorithm, PA(x) the a

eptan
eprobability of A on input x (the probability of outputting 1 on input x), and� : D ! [0; 1℄ a probability distribution over the inputs.De�nition 1. A is weakly 23 -exa
t for f with respe
t to � i� �(fx j PA(x) =f(x)g) � 23 .De�nition 2. A is strongly 23 -exa
t for f with respe
t to � i� A is weakly23 -exa
t for f with respe
t to � and PA(x) 2 f0; 1g for all inputs x 2 f0; 1gN .The se
ond de�nition most 
losely mimi
s the behavior of a 
lassi
al determin-isti
 algorithm: the input x fully determines the output bit (even on x 62 D)and the algorithm gives 
orre
t output f(x) for \most" x. The �rst de�nitionis more liberal: here we only require this \input-determines-output" behavior too

ur for a �-fra
tion of at least 23 of the inputs where the algorithm gives the
orre
t output f(x). Note that a strongly 23 -exa
t algorithm for f with respe
t



to � a
tually 
omputes some total fun
tion g : f0; 1gN ! f0; 1g with su

essprobability 1, namely the fun
tion g(x) = PA(x).These two de�nitions lead to a weak and a strong quantum 
ounterpart tothe 
lassi
al distributional 
omplexity D�1=3(f): let Q�WE(f) and Q�SE(f) denotethe minimal 
omplexity among all weakly and strongly 23 -exa
t algorithms forf with respe
t to �, respe
tively. Note that Q�WE(f) � Q�SE(f) for all f and �.We 
an now state two potential quantum versions of the Yao prin
iple:{ Weak quantum Yao prin
iple: Q2(f) ?= max� Q�WE(f){ Strong quantum Yao prin
iple: Q2(f) ?= max� Q�SE(f)In this paper we investigate to what extent these two prin
iples hold.1.2 ResultsOur results are threefold. First, we prove that both prin
iples hold in the `�'-dire
tion, for all f :{ Q2(f) � max� Q�WE(f) � max� Q�SE(f)The proof of the �rst inequality is analogous to the 
lassi
al game-theoreti
proof. We emphasize that this result is perfe
tly general, and applies to all
omputational models to whi
h the 
lassi
al Yao prin
iple applies.In order to investigate to what extent the `�'-dire
tions of these two quan-tum Yao prin
iples hold, we instantiate our 
omplexity measures to the query
omplexity setting. Our se
ond result is an exponential gap between Q2(f) andQ�SE(f) for the query 
omplexity of Simon's problem [16℄:{ There exist f and � su
h that Q2(f) is exponentially smaller than Q�SE(f).This shows that the strong quantum Yao prin
iple is false.Thirdly, we prove that the weak quantum Yao prin
iple holds up to a 
onstantfa
tor for the query 
omplexity of all symmetri
 fun
tions:{ Q2(f) = ��max� Q�WE(f)� for all symmetri
 fFor this result we �rst 
onstru
t a quantum algorithm that 
an determine theN -bit input x with 
ertainty in O(pkN) queries if k is a known upper bound onthe Hamming weight of x. We then use that algorithm to 
onstru
t, for everysymmetri
 fun
tion f and distribution �, a quantum algorithm that 
omputesf(x) with 
ertainty for \most" inputs x. In addition to this result for symmetri
fun
tions, we also show that for a parti
ular monotone non-symmetri
 fun
tionf (the AND-OR tree), the max�Q�WE(f) 
omplexity lies in between the bestknown bounds for Q2(f). The gist of this third bat
h of results is that mostknown quantum algorithms that are somehow based on Grover's algorithm 
anbe made weakly 23 -exa
t. This may a
tually be the main 
ontribution of thispaper.



2 PreliminariesIn this se
tion we formalize the notion of query 
omplexity, de�ne several 
om-plexity measures, and state Von Neumann's minimax theorem.2.1 Query ComplexityWe assume familiarity with 
lassi
al 
omputation theory and brie
y sket
h thebasi
s of quantum 
omputation; an extensive introdu
tion may be found in thebook by Nielsen and Chuang [12℄. Quantum algorithms operate on qubits asopposed to bits in 
lassi
al 
omputers. The state of an m-qubit quantum system
an be written as j�i =Pi2f0;1gm �ijii; where jii denotes the basis state i, whi
his a 
lassi
alm-bit string. The �i's are 
omplex numbers known as the amplitudesof the basis states jii and we require Pi2f0;1gm j�ij2 = 1. Mathemati
ally, thestate of a system is thus des
ribed by a 2m-dimensional 
omplex unit ve
tor. If wemeasure the value of j�i, then we will see the basis state jii with probability j�ij2,after whi
h the system 
ollapses to jii. Operations that are not measurements
orrespond to unitary transformations on the ve
tor of amplitudes.In the query model of 
omputation, the goal is to 
ompute some fun
tionf : D ! f0; 1g on an input x 2 D � f0; 1gN , using as few a

esses (\queries")to the N input bits as possible. It is by now standard to formalize a quantumquery as an appli
ation of a unitary transformation O that a
ts as Oji; b; zi =ji; b�xi; zi: Here i 2 f1; : : : ; Ng, b 2 f0; 1g, � denotes the ex
lusive-or fun
tion,and z denotes the workspa
e of the algorithm, whi
h is not a�e
ted by O. A T -query quantum algorithm A then has the form A = UTOUT�1O � � �U1OU0, withea
h Ui a �xed unitary transformation independent of the input x. AlgorithmA is assumed to start in the all-zero state j0 : : : 0i, and its output (0 or 1) isobtained by measuring the rightmost bit of its �nal state Aj0 : : : 0i. The a

ep-tan
e probability PA(x) of a quantum algorithm A is de�ned as the probabilityof getting output 1 on input x. Its su

ess probability SA(x) is the probabilityof getting the 
orre
t output f(x) on input x.A quantum algorithm A 
omputes a fun
tion f : D ! f0; 1g exa
tly ifSA(x) = 1 for all inputs x 2 D. Algorithm A 
omputes f with bounded-errorif SA(x) � 23 for all x 2 D. We use QE(f) and Q2(f) to denote the minimalnumber of queries required by exa
t and bounded-error quantum algorithmsfor f , respe
tively. These 
omplexities are the quantum versions of the 
lassi-
al deterministi
 and bounded-error de
ision tree 
omplexities D(f) and R2(f),respe
tively. For 
ompleteness, we repeat our two alternative quantum versionsof the 
lassi
al distributional 
omplexity D�(f) from the introdu
tion. Let � bea probability distribution on the set of all possible inputs. An algorithm A isweakly 23 -exa
t for f with respe
t to � if �(fx j PA(x) = f(x)g) � 23 , and A isstrongly 23 -exa
t for f with respe
t to � if A is weakly 23 -exa
t for f with respe
tto � and PA(x) 2 f0; 1g for all x 2 f0; 1gN . By Q�SE(f) and Q�WE(f) we denotethe minimal number of queries needed by strongly and weakly 23 -exa
t quantumalgorithms for f with respe
t to �, respe
tively. Note that Q�WE(f) � Q�SE(f)for all f and �, hen
e in parti
ular max�Q�WE(f) � max�Q�SE(f).



One of the �rst quantum algorithms operating in the query model is Grover'ssear
h algorithm [8, 4℄. Let jxj denote the Hamming weight (number of 1's) inthe input x, and let xi denote the ith bit of x. If t = jxj > 0 then Grover'salgorithm uses �4pN=t queries and with high probability outputs an i su
h thatxi = 1. If jxj = 0 then the algorithm always outputs `no solutions'. Brassard,H�yer, Mos
a, and Tapp [4℄ gave an exa
t version of Grover's algorithm thata

omplishes the same task with probability 1 if jxj is known.A fun
tion f : f0; 1gN ! f0; 1g is symmetri
 if its value f(x) depends only onjxj. For su
h f , de�ne fk = f(x) where jxj = k. In [3℄ it is proven that Q2(f) =�(pN(N � � (f))), where � (f) = minfj2k �N � 1j j fk 6= fk+1 and 0 � k �N � 1g. Informally, the quantity � (f) (introdu
ed by Paturi [14℄) measuresthe length of the interval around Hamming weight N2 where f is 
onstant. Asymmetri
 fun
tion f is a threshold fun
tion if there is a 0 < t � N , su
h thatf(x) = 1 i� jxj � t. Note that for t � N=2 we have Q2(f) = �(ptN) as a dire
t
onsequen
e of the bound for symmetri
 fun
tions. A fun
tion f : f0; 1gN !f0; 1g is monotone if (8i xi � yi)) f(x) � f(y).2.2 Von Neumann's Minimax TheoremThe book by Owen [13℄ provides an ex
ellent introdu
tion to game theory. Herewe only state Von Neumann's famous minimax theorem [10℄. Consider a two-player, zero-sum game with payo� matrix P . Player 1 wants to maximize thepayo�, player 2 wants to minimize. Both players have available a �nite set ofpure strategies. If player 1 plays pure strategy i and player 2 plays pure strategyj, then the payo� is Pij = eTi Pej , where ei and ej are the appropriate unitve
tors and supers
ript-T denotes ve
tor transposition. In addition, they mayalso use a mixed strategy. This is a probability distribution over the set of purestrategies, modeled by a ve
tor of non-negative reals that sum to 1. If player 1plays mixed strategy � and player 2 plays mixed strategy �, then the expe
tedpayo� of the game is �TP�. The minimax theorem states that the maximalpayo� that player 1 
an assure if he 
an base � on �, equals the minimal payo�that player 2 
an assure if he 
an base � on �:min� max� �TP� = max� min� �TP�:Without loss of generality the \inner" 
hoi
es 
an be assumed to be pure strate-gies, hen
e min� maxi eTi P� = max� minj �TPej :As mentioned in the introdu
tion, the 
lassi
al Yao prin
iple is an easy 
onse-quen
e of this theorem. In the next se
tion we use it to prove one half of thequantum Yao prin
iple.3 Proof of One Half of the Quantum Yao Prin
ipleHere we prove Q2(f) � max�Q�WE(f). The proof is similar to the derivation ofthe 
lassi
al Yao prin
iple, but the details are a bit more messy.



Theorem 1. For all f : D ! f0; 1g, with D �nite, Q2(f) � max� Q�WE(f).Proof. Consider the (in�nite) set of all quantum algorithms of 
omplexity �max�Q�WE(f). Let i be any algorithm from this set, and x 2 D an input.Consider the quantity bSi(x)
, whi
h is 1 if algorithm i 
omputes f(x) withsu

ess probability 1, and whi
h is 0 otherwise. Call algorithms i and j similarif bSi(x)
 = bSj(x)
 for all x 2 D. In this way, similarity is an equivalen
erelation on the set of all quantum algorithms of 
omplexity � max�Q�WE(f).Note that similarity partitions this set into at most 2jDj equivalen
e 
lasses.From ea
h equivalen
e 
lass, we 
hoose as a representative an algorithm fromthat 
lass with the least 
omplexity.Now 
onsider the game in whi
h player 1 wants to 
ompute f , and as purestrategies he has available the (�nite) set of representatives of the equivalen
e
lasses. Player 2 is an adversary that 
hooses hard inputs x 2 D to f . Let Sbe the matrix of su

ess probabilities (Six = Si(x)). De�ne the payo� matrixas Pix = bSix
. Now 
onsider the quantity maxi eTi P�. This represents the �-fra
tion of inputs on whi
h the best weakly 23 -exa
t quantum algorithm for fwith respe
t to that � is 
orre
t. This quantity is at least 23 for all �, sin
e we'vebeen 
onsidering all quantum algorithms of 
omplexity up to max�Q�WE(f).From the minimax theorem we now obtain23 � min� maxi eTi P� = max� minx �TPex � max� minx �TSex:Here the last term 
an be interpreted as the su

ess probability of a quantumalgorithm formed by a probability distribution � over the set of representativesof the equivalen
e 
lasses (su
h a distribution 
an be easily realized in a quan-tum algorithm using a superposition). By the above inequality, this algorithmhas su

ess probability � 23 for all inputs x 2 D. Sin
e it is a probability distri-bution over algorithms of 
omplexity � max�Q�WE(f), its 
omplexity is at mostmax�Q�WE(f). Hen
e Q2(f) � max�Q�WE(f). utCorollary 1. For all f : D ! f0; 1g, with D �nite, Q2(f) � max� Q�SE(f).We again emphasize that this result applies to all 
omputational modelswhere the 
lassi
al Yao prin
iple applies.4 A Counterexample for the Strong Quantum YaoPrin
ipleFrom here on, we will instantiate our 
omplexity measures to the query 
omplex-ity setting. Ambainis [1℄ has proven that for almost all Boolean fun
tions f wehave Q2(f) = 
(N). This result immediately implies that both the strong andweak quantum Yao prin
iple hold up to a 
onstant fa
tor for almost all Booleanfun
tions in the query 
omplexity setting.



However, the strong quantum Yao prin
iple does not hold in general. Belowwe exhibit a fun
tion f and distribution � where Q2(f) is exponentially lessthan Q�SE(f). The fun
tion is Simon's problem [16℄, and our separation is basedon Simon's 
lassi
al lower bound 
ombined with the result that 
lassi
al andquantum query 
omplexity are polynomially related for all total fun
tions [3℄.Theorem 2. There exist a problem f on N = n2n bits and a distribution �su
h that Q2(f) = O(n2) and Q�SE(f) = 
(2n8 ).Proof. Consider Simon's problem: given a fun
tion � : f0; 1gn ! f0; 1gn withthe promise that there is an s 2 f0; 1gn su
h that �(a) = �(b) i� a � b = s,de
ide whether s = 0 or not. This fun
tion � is given as an input x of N = n2nbits, using n 1-bit entries for ea
h fun
tion value �(�). The input bits 
an bequeried in the usual way. Using Simon's bounded-error quantum algorithm, thisproblem 
an be solved in O(n2) queries, and hen
e Q2(Simon) = O(n2). Nowde�ne a distribution � whi
h uniformly pla
es half the total weight on inputswith s = 0 and half the total weight on inputs with s 6= 0. Simon provedthat under this distribution, any 
lassi
al algorithm that is 
orre
t on a fra
tion� 23 requires 
(p2n) queries. Now take any strongly 23 -exa
t T -query quantumalgorithm A for this problem, then A 
omputes some total fun
tion g. Sin
eD(g) = O(QE(g)4) [3℄, there exists a deterministi
 
lassi
al algorithm that 
om-putes g using O(T 4) queries. But this 
lassi
al algorithm is then 
orre
t on a�-fra
tion 23 of all Simon inputs. Simon's lower bound on 
lassi
al algorithmsnow implies that O(T 4) = 
(p2n), and hen
e Q�SE(Simon) = 
(2n8 ). ut5 A Positive Result for the Weak Quantum Yao Prin
ipleIn this se
tion we show that the weak quantum Yao prin
iple holds for all sym-metri
 fun
tions. We start with the spe
ial 
ase of threshold fun
tions.5.1 Equality up to a Constant Fa
tor for Threshold Fun
tionsConsider a threshold fun
tion with threshold t � N=2. For every distribution�, we will exhibit a weakly 23 -exa
t quantum algorithm for f with respe
t to �with O(ptN) queries. This, together with Theorem 1 and the known fa
t thatQ2(f) = �(ptN) for threshold fun
tions f [3℄, gives the desired result.Note that given a threshold fun
tion f : f0; 1gN ! f0; 1g with threshold t, inorder to be sure that f(x) = 1, it suÆ
es to �nd at least t 1's in the input. The
ru
ial idea behind our algorithm is that if the number of 1's in the input is largeenough, then for ea
h distribution � over the inputs, we 
an pi
k a substantiallysmaller part of the input su
h that there are between t and 100t 1's in thissub-part for a large �-fra
tion of the inputs. This idea is formally stated in thefollowing te
hni
al lemma.11 We need the 
ondition i � 10 in this lemma in order to be able to approximate thehypergeometri
 distribution by a binomial distribution with suÆ
ient a

ura
y.



Lemma 1. Let t be a threshold, � a probability distribution over the x 2 f0; 1gN,and i an integer su
h that 10 � i � logN � log t � 1. Denote the event t2i �jxj � t2i+1 by I, and let x ^ y denote the bitwise AND of x and y. There is ay 2 f0; 1gN with jyj = minf 10N2i ; Ng, su
h that Pr�[t � jx ^ yj � 100t j I ℄ > 0:7.Proof. We assume 10N2i � N , for otherwise the lemma trivially holds. Considerany x 2 f0; 1gN with t2i � jxj � t2i+1. We 
laim that if we pi
k a y 2 f0; 1gNwith jyj = 10N2i uniformly at random, then Pr[t � jx^ yj � 100t℄ > 0:7. To provethis 
laim, note that jx ^ yj is hypergeometri
ally distributed, with expe
tedvalue E(jx ^ yj) = jxjjyjN 2 [10t; 20t℄. By Markov's inequality it follows dire
tlythat Pr[jx ^ yj > 100t℄ � 0:2.We 
an approximate the above distribution with a binomial distribution sin
ethe number of draws is small 
ompared to the size of the sample spa
e, seee.g. [11℄, and we shall hen
eforth treat jx^yj as if it were binomially distributed,with su

ess probability � = jxjN and number of draws n = jyj. To bound Pr[jx^yj < t℄, we use the Cherno� bound as explained in [9, pp.67-73℄:Pr[jx ^ yj < (1� Æ)E(jx ^ yj)℄ < e�Æ2E(jx^yj)2 :Choosing Æ = 910 , we obtain Pr[jx ^ yj < t℄ < e� 810t200 < 0:1. Combining theprevious two inequalities, it then follows that Pr[t � jx^yj � 100t℄ > 0:7, whi
hproves the above 
laim.Now imagine a matrix whose rows are indexed by the x satisfying t2i �jxj � t2i+1 and whose 
olumns are indexed by theM = �Njyj� di�erent y of weightjyj = 10N2i . We give the (x; y) entry of this matrix value �(xjI) if t � jx^yj � 100tand value 0 otherwise. By the above 
laim, ea
h row will 
ontain at least 70% nonzero entries, so the sum of the entries of the x-row is at least 0:7M�(xjI). Hen
e,the sum of all entries in the matrix is equal toPx 0:7M�(xjI) = 0:7M . But thenthere must be a 
olumn with �(� j I)-weight at least 0.7. The y 
orrespondingto this 
olumn is the y we are looking for in this lemma. utWe will use the fa
t stated in the previous lemma to su

essively sear
hfor t 1's in exponentially smaller parts of the inputs, assuming the presen
e ofin
reasingly more 1's in the original input. The following lemma states that thissear
hing 
an be done eÆ
iently:Lemma 2. There exists a quantum algorithm that 
an �nd all the 1's in aninput x of size N with probability 1, using at most �2pkN queries, if k is aknown upper bound on the number of 1's in x.Proof. Assume an upper bound k on the number of 1's in x. Suppose we run theexa
t version of Grover's algorithm assuming jxj = k. Either we �nd a solution,in whi
h 
ase we 
an remove that solution from the sear
h spa
e, lower our upperbound k by 1 and 
ontinue; or we do not �nd a solution, in whi
h 
ase we knowthat jxj must be less than k, so we 
an safely lower our upper bound k by 1



and 
ontinue. A

ordingly, it easily follows by indu
tion on k that Algorithm 1below �nds all jxj solutions with 
ertainty. The number of queries it uses iskXi=1 �4rNi � �4pN Z k0 dipi = �2pkN: utAlgorithm 1for i = k down to 1 doApply the exa
t version of Grover's algorithm, assumingthere are i solutions.if a solution has been found thenmark its index as a zero in the sear
h spa
eend ifend foroutput the positions of all solutions foundWe are now ready to prove an upper bound on Q�WE(f):Lemma 3. For threshold fun
tion f with threshold t, and for every distribution�, we have Q�WE(f) = O(ptN).Proof. Fix a distribution �. Invoking Lemmas 1 and 2, our algorithm (Algorithm2 below) is as follows. First we 
ount the number of 1's in the input usingAlgorithm 1, assuming an upper bound of 210t 1's. If after that we haven'tfound at least t 1's yet, then we su

essively assume that there are between t2iand t2i+1 1's in the input, with i going up from 10 to logN � log t� 1. For ea
hof these assumptions, we sear
h a smaller part of the input. If we have rea
hedthe i for whi
h t2i � jxj � t2i+1, then Lemma 1 guarantees that for a large�-fra
tion of those inputs we 
an �nd a small sub-part 
ontaining between t and100t 1's. We then 
ount the number of 1's in this sub-part using Algorithm 1.This algorithm will be 
orre
t on all inputs x with jxj < t and will produ
ea 
orre
t answer on at least a �-fra
tion 0.7 of all inputs x with jxj � t asguaranteed by Lemma 1. Hen
e it will be 
orre
t on a �-fra
tion at least �(fx jjxj < tg) + 0:7(1� �(fx j jxj < tg) � 0:7: Furthermore, its query 
omplexity isO(ptN) + logN�log t�1Xi=10 O r tN2i ! = O(ptN);where the �rst term 
orresponds to the 
ost of sear
hing the entire spa
e on
ewith a small upper bound, and the summation 
orresponds to sear
hing 
onse
-utively smaller sub-parts y(i). ut



Algorithm 2Count the number of 1's in the input using Algorithm 1, assuming an upper boundof 210t 1'sif at least t 1's are found thenoutput 1end iffor i = 10 to logN � log t� 1 doLet y(i) 2 f0; 1gN be a string of weight minfN; 10N2i g satisfying Lemma 1Using Algorithm 1, 
ount the number of solutions in the sub-partof the input indu
ed by y(i), assuming an upper bound of 100t 1's.if at least t 1's are found thenoutput 1end ifend foroutput 0Re
all that for threshold fun
tions f : f0; 1gN ! f0; 1g with threshold t �N=2, we haveQ2(f) = �(ptN). By Theorem 1 it then follows that max�Q�WE(f) =
(ptN). In 
ombination with Lemma 3, this yields:Lemma 4. For all threshold fun
tions f : f0; 1gN ! f0; 1g with t � N=2Q2(f) = ��max� Q�WE(f)� = � �ptN� :5.2 Equality up to a Constant Fa
tor for Symmetri
 Fun
tions.With the result about threshold fun
tions in mind, we 
an easily prove that thequantum Yao prin
iple holds for all symmetri
 fun
tions as well.Theorem 3. For all symmetri
 fun
tions f : f0; 1gN ! f0; 1gQ2(f) = ��max� Q�WE(f)� = � �pN(N � � (f))� :We give an informal sket
h of the proof whose details are straightforward.Firstly, note that � (f) measures the length of the interval around Hammingweight N2 where f is 
onstant, so in order to 
ompute f(x) it suÆ
es to knowjxj exa
tly if jxj 2 [0; N�� (f)2 ) or jxj 2 (N+� (f)�22 ; N ℄, or to know that jxj 2[N�� (f)2 ; N+� (f)�22 ℄ otherwise. Using the threshold algorithm from Se
tion 5.1twi
e, we 
an, at a 
ost of O(pN(N � � (f))) queries, 
ompute whi
h of threeintervals jxj is in. If jxj is in the interval of length � (f) around N2 where f is
onstant we are done. In both other 
ases we now in e�e
t have an upper boundon the number of 1's in the input, and we 
an use Algorithm 1 to exa
tly 
ountthe number of 1's, again using O(pN(N � � (f))) queries.



5.3 A Result for the AND-OR TreeAbove we proved that the weak quantum Yao prin
iple holds (up to a 
onstantfa
tor) for all symmetri
 fun
tions. A similar result might be provable for allmonotone fun
tions. In this se
tion we state a preliminary result in this dire
tion,namely that the known upper and lower bounds on the Q2(f)-
omplexity of the2-level AND-OR tree 
arry over to weakly 23 -exa
t quantum algorithms. Thismonotone but non-symmetri
 fun
tion is the AND of pN independent ORs ofpN variables ea
h. In the sequel, we use AO to denote this N -bit AND-OR tree.No tight 
hara
terization of Q2(AO) is known, but Buhrman, Cleve, andWidgerson [5℄ proved Q2(AO) = O(pN logN) via a re
ursive appli
ation ofGrover's algorithm. Using a result about eÆ
ient error-redu
tion in quantumsear
h from [6℄, this 
an be improved to Q2(AO) = O(pN logN). This nearlymat
hes Ambainis' lower bound of 
(pN) [2℄. Note that Ambainis' bound to-gether with our Theorem 1 immediately gives the lower bound max�Q�WE(AO) =
(pN). Using the same te
hniques as in the previous se
tion one 
an show thatthe best known upper bound 
arries over to weakly 23 -exa
t algorithms. Due tospa
e 
onstraints we omit the proof, whi
h may be found at the Los Alamospreprint server at http://xxx.lanl.gov/abs/quant-ph/0109070.Theorem 4. For every distribution � we have Q�WE(AO) = O(pN logN).6 Summary and Open ProblemsIn this paper we investigated to what extent quantum versions of the 
lassi
alYao prin
iple hold. We formulated a strong and a weak version of the quantumYao prin
iple, showed that both hold in one dire
tion, falsi�ed the other dire
tionfor the strong version, and proved the weak version for the query 
omplexity ofall symmetri
 fun
tions.The main question left open by this resear
h is the general validity of theweak quantum Yao prin
iple. On the one hand, we may be able to �nd a 
oun-terexample to the weak prin
iple as well, perhaps based on the query 
omplexityof the order-�nding problem. Shor showed that the order-�nding problem 
an besolved by a bounded-error quantum algorithm using O(logN) queries [15℄. UsingCleve's 
(N1=3= logN) lower bound on 
lassi
al algorithms for order-�nding [7℄,we might be able to exhibit a � su
h that any weakly 23 -exa
t quantum algo-rithm for f with respe
t to � requiresN
(1) queries, as it seems hard to 
onstru
tweakly 23 -exa
t quantum algorithms for this problem.On the other hand, we may try to extend the 
lass of fun
tions for whi
hwe know the weak quantum Yao prin
iple does hold. A good starting point heremight be the 
lass of all monotone fun
tions. We dis
ussed one su
h fun
tion,the 2-level AND-OR tree, in Se
tion 5.3. Unfortunately, at the time of writingno general 
hara
terization of the Q2(f) 
omplexity of monotone fun
tions isknown.
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