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Abstract. The classical Yao principle states that the complexity Re(f)
of an optimal randomized algorithm for a function f with success proba-
bility 1—e equals the complexity max, D! (f) of an optimal deterministic
algorithm for f that is correct on a fraction 1 — € of the inputs, weighed
according to the hardest distribution p over the inputs. In this paper we
investigate to what extent such a principle holds for quantum algorithms.
We propose two natural candidate quantum Yao principles, a “weak”
and a “strong” one. For both principles, we prove that the quantum
bounded-error complexity is a lower bound on the quantum analogues
of max, D¥(f). We then prove that equality cannot be obtained for the
“strong” version, by exhibiting an exponential gap. On the other hand,
as a positive result we prove that the “weak” version holds up to a con-
stant factor for the query complexity of all symmetric Boolean functions.

1 Introduction

1.1 Motivation

In classical computing, the Yao principle [17] gives an equivalence between two
kinds of randomness in algorithms: randomness inside the algorithm itself, and
randomness on the inputs. Let us fix some model of computation for computing
a Boolean function f, like query complexity, communication complexity, etc. Let
R.(f) be the minimal complexity among all randomized algorithms that compute
f(z) with success probability at least 1 — e, for all inputs x. Let D(f) be the
minimal complexity among all deterministic algorithms that compute f correctly
on a fraction of at least 1 — € of all inputs, weighed according to a distribution
1 on the inputs. The Yao principle now states that these complexities are equal
if we look at the “hardest” input distribution u:

R.(f) = max DL ()

It is a special case of Von Neumann’s minimax theorem in game theory [10].
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Since its introduction, the Yao principle has been an extremely useful tool
for deriving lower bounds on randomized algorithms from lower bounds on de-
terministic algorithms: choose some “hard” input distribution u, prove a lower
bound on deterministic algorithms that compute f correctly for “most” inputs,
weighed according to p, and then use R.(f) > D¥(f) to get a lower bound
on R.(f). This method is used very often, because it is usually much easier to
analyze deterministic algorithms than to analyze randomized ones.

In recent years quantum computation received a lot of attention. Here quan-
tum mechanical principles are employed to realize more efficient computation
than is possible with a classical computer. Famous examples are Shor’s efficient
quantum factoring algorithm [15] and Grover’s search algorithm [8]. However,
the field is still young and open questions abound. In particular, there has been
a search for good techniques to provide lower bounds on quantum algorithms,
particularly in the query model of computation. Two general methods in this di-
rection are the polynomial method introduced by Beals, Buhrman, Cleve, Mosca,
and de Wolf [3] and the quantum adversary method of Ambainis [2]. In this pa-
per we investigate the possibility of a third method, a quantum Yao principle.
It is our hope that such a principle will prove itself useful as a link between
techniques for lower bounds on exact and bounded-error quantum algorithms.

The first difficulty one runs into when investigating a quantum version of the
Yao principle, is the question what the proper quantum counterparts of R.(f)
and D#(f) are. Let us fix the error probability at e = % here (any other value in
(0, §) would do as well). The quantum analogue of Ry 3(f) is straightforward: let
Q@2(f) denote the minimal complexity among all quantum algorithms that com-
pute f(z) with probability at least %, for all inputs z. However, the inherently
“random” nature of quantum algorithms prohibits a straightforward definition
of “deterministic” quantum algorithms in analogy of deterministic classical al-
gorithms. We therefore propose two different definitions, a weak and a strong
one. In the following, let f : D — {0,1} be some function that we want to
compute, with D C {0,1}N.If D = {0,1}" then f is a total function, otherwise
f is a promise function. Let A be a quantum algorithm, P4 (z) the acceptance
probability of A on input z (the probability of outputting 1 on input z), and
u: D — [0, 1] a probability distribution over the inputs.

Definition 1. A is weakly Z-exact for f with respect to p iff p({z | Pa(z) =
f@)}) > 3.

Definition 2. A is strongly %—exact for f with respect to p iff A is weakly
%—ewact for f with respect to u and Pa(z) € {0,1} for all inputs x € {0, 1}V,

The second definition most closely mimics the behavior of a classical determin-
istic algorithm: the input z fully determines the output bit (even on z ¢ D)
and the algorithm gives correct output f(z) for “most” z. The first definition
is more liberal: here we only require this “input-determines-output” behavior to
occur for a p-fraction of at least 2 of the inputs where the algorithm gives the
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correct output f(z). Note that a strongly 2-exact algorithm for f with respect



to u actually computes some total function g : {0,1}¥ — {0,1} with success
probability 1, namely the function g(z) = Pa(x).

These two definitions lead to a weak and a strong quantum counterpart to
the classical distributional complexity le/3(f): let Qfy 5 (f) and Q5 (f) denote

the minimal complexity among all weakly and strongly %—exact algorithms for
[ with respect to p, respectively. Note that Qfy 5(f) < Qg (f) for all f and p.
We can now state two potential quantum versions of the Yao principle:

— Weak quantum Yao principle: Q2 (f) < max Qwr(f)
m

— Strong quantum Yao principle: Q2 (f) L max QSr(f)
1

In this paper we investigate to what extent these two principles hold.

1.2 Results

Our results are threefold. First, we prove that both principles hold in the ‘<’-
direction, for all f:

- Q2(f) < mﬁLXQ’{fVE(f) < max Qsp(f)

The proof of the first inequality is analogous to the classical game-theoretic
proof. We emphasize that this result is perfectly general, and applies to all
computational models to which the classical Yao principle applies.

In order to investigate to what extent the ‘>’-directions of these two quan-
tum Yao principles hold, we instantiate our complexity measures to the query
complexity setting. Our second result is an exponential gap between Q2(f) and

& (f) for the query complexity of Simon’s problem [16]:

— There exist f and g such that Q»(f) is exponentially smaller than Q%5 (f).

This shows that the strong quantum Yao principle is false.
Thirdly, we prove that the weak quantum Yao principle holds up to a constant
factor for the query complexity of all symmetric functions:

- Q:2(f) =0 (m,ilx Q‘V‘VE(f)> for all symmetric f

For this result we first construct a quantum algorithm that can determine the
N-bit input z with certainty in O(v/kN) queries if k is a known upper bound on
the Hamming weight of z. We then use that algorithm to construct, for every
symmetric function f and distribution u, a quantum algorithm that computes
f(z) with certainty for “most” inputs z. In addition to this result for symmetric
functions, we also show that for a particular monotone non-symmetric function
[ (the AND-OR tree), the max, Q¥ ;(f) complexity lies in between the best
known bounds for Q2(f). The gist of this third batch of results is that most
known quantum algorithms that are somehow based on Grover’s algorithm can
be made weakly %-exact. This may actually be the main contribution of this

paper.



2 Preliminaries

In this section we formalize the notion of query complexity, define several com-
plexity measures, and state Von Neumann’s minimax theorem.

2.1 Query Complexity

We assume familiarity with classical computation theory and briefly sketch the
basics of quantum computation; an extensive introduction may be found in the
book by Nielsen and Chuang [12]. Quantum algorithms operate on qubits as
opposed to bits in classical computers. The state of an m-qubit quantum system
can be written as [¢) = ;1o 13m @i|i), where |i) denotes the basis state i, which
is a classical m-bit string. The «;’s are complex numbers known as the amplitudes
of the basis states [i) and we require } ;g 1ym la;|?> = 1. Mathematically, the
state of a system is thus described by a 2™-dimensional complex unit vector. If we
measure the value of |¢), then we will see the basis state |i) with probability |a;|?,
after which the system collapses to |i). Operations that are not measurements
correspond to unitary transformations on the vector of amplitudes.

In the query model of computation, the goal is to compute some function
f:D —{0,1} on an input z € D C {0,1}", using as few accesses (“queries”)
to the IV input bits as possible. It is by now standard to formalize a quantum
query as an application of a unitary transformation O that acts as Oli, b, z) =
li,b® z;,2). Herei € {1,...,N}, b € {0,1}, @ denotes the exclusive-or function,
and z denotes the workspace of the algorithm, which is not affected by O. A T-
query quantum algorithm A then has the form A = UprOUr_10 - - - U;OUy, with
each U; a fixed unitary transformation independent of the input z. Algorithm
A is assumed to start in the all-zero state |0...0), and its output (0 or 1) is
obtained by measuring the rightmost bit of its final state A|0...0). The accep-
tance probability P(z) of a quantum algorithm A is defined as the probability
of getting output 1 on input x. Its success probability Sa(z) is the probability
of getting the correct output f(z) on input z.

A quantum algorithm A computes a function f : D — {0,1} ezactly if
Sa(z) = 1 for all inputs z € D. Algorithm A computes f with bounded-error
if Sa(z) > 2 for all z € D. We use Qg(f) and @2(f) to denote the minimal
number of queries required by exact and bounded-error quantum algorithms
for f, respectively. These complexities are the quantum versions of the classi-
cal deterministic and bounded-error decision tree complexities D(f) and Ra(f),
respectively. For completeness, we repeat our two alternative quantum versions
of the classical distributional complexity D*(f) from the introduction. Let u be
a probability distribution on the set of all possible inputs. An algorithm A is
weakly 2-ezact for f with respect to p if p({z | Pa(z) = f(z)}) > %, and A is
strongly %—ewact for f with respect to p if A is weakly %—exact for f with respect
to p and Pa(z) € {0,1} for all z € {0,1}. By Q%5 (f) and Q% (f) we denote
the minimal number of queries needed by strongly and weakly %-exact quantum
algorithms for f with respect to u, respectively. Note that Q1 (f) < QS (f)
for all f and g, hence in particular max, Q% 5 (f) < max, Q%5 (f).



One of the first quantum algorithms operating in the query model is Grover’s
search algorithm [8,4]. Let |z| denote the Hamming weight (number of 1’s) in
the input z, and let z; denote the ith bit of z. If ¢ = |z| > 0 then Grover’s
algorithm uses 7+/N/t queries and with high probability outputs an i such that
xz; = 1. If |z] = 0 then the algorithm always outputs ‘no solutions’. Brassard,
Hgyer, Mosca, and Tapp [4] gave an exact version of Grover’s algorithm that
accomplishes the same task with probability 1 if |z| is known.

A function f : {0,1}N — {0, 1} is symmetric if its value f(z) depends only on
|z|. For such f, define fi = f(z) where || = k. In [3] it is proven that Q2(f) =
O(/N(N - I'(f))), where I'(f) = min{|2k = N — 1| | fr # fr+1 and 0 < k <
N — 1}. Informally, the quantity I'(f) (introduced by Paturi [14]) measures
the length of the interval around Hamming weight % where f is constant. A
symmetric function f is a threshold function if there is a 0 < ¢t < N, such that
f(z) = 1iff |z| > t. Note that for t < N/2 we have Q»(f) = O(VtN) as a direct
consequence of the bound for symmetric functions. A function f : {0,1}V —
{0,1} is monotone if (Vi z; < y;) = f(z) < f(y).

2.2 Von Neumann’s Minimax Theorem

The book by Owen [13] provides an excellent introduction to game theory. Here
we only state Von Neumann’s famous minimax theorem [10]. Consider a two-
player, zero-sum game with payoff matrix P. Player 1 wants to maximize the
payoff, player 2 wants to minimize. Both players have available a finite set of
pure strategies. If player 1 plays pure strategy 7 and player 2 plays pure strategy
J. then the payoff is P;; = eiTPej, where e; and e; are the appropriate unit
vectors and superscript-7' denotes vector transposition. In addition, they may
also use a mized strategy. This is a probability distribution over the set of pure
strategies, modeled by a vector of non-negative reals that sum to 1. If player 1
plays mixed strategy p and player 2 plays mixed strategy u, then the expected
payoff of the game is p” Pu. The minimax theorem states that the maximal
payoff that player 1 can assure if he can base p on u, equals the minimal payoff
that player 2 can assure if he can base p on p:

min max p? Py = max min p? Pp.
moop poon
Without loss of generality the “inner” choices can be assumed to be pure strate-

gies, hence

min max e} Py = max min pTPej.
oo P

As mentioned in the introduction, the classical Yao principle is an easy conse-
quence of this theorem. In the next section we use it to prove one half of the
quantum Yao principle.

3 Proof of One Half of the Quantum Yao Principle

Here we prove Q»(f) < max, Q% (f). The proof is similar to the derivation of
the classical Yao principle, but the details are a bit more messy.



Theorem 1. For all f: D — {0,1}, with D finite, Q>(f) < max Q% 5(f)-
1

Proof. Consider the (infinite) set of all quantum algorithms of complexity <
max, Qy (f). Let ¢ be any algorithm from this set, and 2 € D an input.
Consider the quantity |S;(z)|, which is 1 if algorithm i computes f(z) with
success probability 1, and which is 0 otherwise. Call algorithms i and j similar
it [S;(z)] = [Sj(z)] for all z € D. In this way, similarity is an equivalence
relation on the set of all quantum algorithms of complexity < max, Q¥ 5(f).
Note that similarity partitions this set into at most 2/ equivalence classes.
From each equivalence class, we choose as a representative an algorithm from
that class with the least complexity.

Now consider the game in which player 1 wants to compute f, and as pure
strategies he has available the (finite) set of representatives of the equivalence
classes. Player 2 is an adversary that chooses hard inputs z € D to f. Let S
be the matrix of success probabilities (S;; = S;(z)). Define the payoff matrix
as Pi; = |Siz|. Now consider the quantity max; e] Pu. This represents the u-
fraction of inputs on which the best weakly %—exact quantum algorithm for f
with respect to that u is correct. This quantity is at least % for all p, since we’ve
been considering all quantum algorithms of complexity up to max, Q¥ 5(f).
From the minimax theorem we now obtain

2 : T . T T

— < minmaxe; Py = maxminp" Pe, < maxminp" Se,.
3 n i p P
Here the last term can be interpreted as the success probability of a quantum
algorithm formed by a probability distribution p over the set of representatives
of the equivalence classes (such a distribution can be easily realized in a quan-
tum algorithm using a superposition). By the above inequality, this algorithm
has success probability > % for all inputs = € D. Since it is a probability distri-
bution over algorithms of complexity < max, Qfy ;(f), its complexity is at most
max, Q4 (f). Hence Q2(f) < max, Qfy x(f). O

Corollary 1. For all f: D — {0,1}, with D finite, Q2(f) < max Q% p(f).
1

We again emphasize that this result applies to all computational models
where the classical Yao principle applies.

4 A Counterexample for the Strong Quantum Yao
Principle

From here on, we will instantiate our complexity measures to the query complex-
ity setting. Ambainis [1] has proven that for almost all Boolean functions f we
have Q2(f) = 2(N). This result immediately implies that both the strong and
weak quantum Yao principle hold up to a constant factor for almost all Boolean
functions in the query complexity setting.



However, the strong quantum Yao principle does not hold in general. Below
we exhibit a function f and distribution u where Qa(f) is exponentially less
than Q% (f). The function is Simon’s problem [16], and our separation is based
on Simon’s classical lower bound combined with the result that classical and
quantum query complexity are polynomially related for all total functions [3].

Theorem 2. There exist a problem f on N = n2" bits and a distribution

such that Q2(f) = O(n®) and Q' (f) = 2(2%).

Proof. Consider Simon’s problem: given a function ¢ : {0,1}" — {0,1}" with
the promise that there is an s € {0,1}" such that ¢(a) = ¢(b) iff a® b = s,
decide whether s = 0 or not. This function ¢ is given as an input z of N = n2"
bits, using n 1-bit entries for each function value ¢(-). The input bits can be
queried in the usual way. Using Simon’s bounded-error quantum algorithm, this
problem can be solved in O(n?) queries, and hence Q2(Simon) = O(n?). Now
define a distribution g which uniformly places half the total weight on inputs
with s = 0 and half the total weight on inputs with s # 0. Simon proved
that under this distribution, any classical algorithm that is correct on a fraction
> % requires .Q(\/Z_”) queries. Now take any strongly %-exact T-query quantum
algorithm A for this problem, then A computes some total function g. Since
D(g) = O(Qr(g)*) [3], there exists a deterministic classical algorithm that com-
putes g using O(T*) queries. But this classical algorithm is then correct on a
p-fraction % of all Simon inputs. Simon’s lower bound on classical algorithms

now implies that O(T*) = 2(v/2"), and hence Q% (Simon) = 2(2%). O

5 A Positive Result for the Weak Quantum Yao Principle

In this section we show that the weak quantum Yao principle holds for all sym-
metric functions. We start with the special case of threshold functions.

5.1 Equality up to a Constant Factor for Threshold Functions

Consider a threshold function with threshold ¢ < N/2. For every distribution
u, we will exhibit a weakly %—exact quantum algorithm for f with respect to u
with O(vVtN) queries. This, together with Theorem 1 and the known fact that
Q2(f) = O(VtN) for threshold functions f [3], gives the desired result.

Note that given a threshold function f : {0,1}® — {0, 1} with threshold ¢, in
order to be sure that f(z) = 1, it suffices to find at least ¢ 1’s in the input. The
crucial idea behind our algorithm is that if the number of 1’s in the input is large
enough, then for each distribution p over the inputs, we can pick a substantially
smaller part of the input such that there are between ¢ and 100¢ 1’s in this
sub-part for a large u-fraction of the inputs. This idea is formally stated in the
following technical lemma.!

! We need the condition 4 > 10 in this lemma in order to be able to approximate the
hypergeometric distribution by a binomial distribution with sufficient accuracy.



Lemma 1. Lett be a threshold, u a probability distribution over the x € {0, 1}V,

and i an integer such that 10 < i < log N — logt — 1. Denote the event 12! <

|z| < 127+ by I, and let z Ay denote the bitwise AND of = and y. There is a

y € {0, 1} with |y| = min{23Y, N'}, such that Pr,[t < [z Ay| < 100t | I] > 0.7.

Proof. We assume 12X < N, for otherwise the lemma trivially holds. Consider

any z € {0, 1} with ¢2¢ < |z| < 21!, We claim that if we pick a y € {0,1}"
10N

with |y| = 5= uniformly at random, then Pr[t < |z Ay| < 100¢] > 0.7. To prove

this claim, note that |z A y| is hypergeometrically distributed, with expected
value E(|z A y|) = % € [10t,20¢]. By Markov’s inequality it follows directly
that Pr{jz A y| > 100¢] < 0.2.

We can approximate the above distribution with a binomial distribution since
the number of draws is small compared to the size of the sample space, see
e.g. [11], and we shall henceforth treat |z Ay| as if it were binomially distributed,
with success probability 6 = % and number of draws n = |y|. To bound Pr[|z A
y| < t], we use the Chernoff bound as explained in [9, pp.67-73]:

—62E(J2Ay))
2

Prllz Ayl < (1 - )B(lz Ay])] <

Choosing § = %, we obtain Pr[lz Ay| < 1] < e~ 20 < 0.1. Combining the

previous two inequalities, it then follows that Pr[¢t < |z Ay| < 100¢] > 0.7, which
proves the above claim.

Now imagine a matrix whose rows are indexed by the z satisfying 2! <

|z| < #2i*! and whose columns are indexed by the M = (‘JZ‘) different y of weight

ly| = 12~ We give the (z,y) entry of this matrix value p(z|I) if t < [zAy| < 100t
and value 0 otherwise. By the above claim, each row will contain at least 70% non
zero entries, so the sum of the entries of the z-row is at least 0.7M u(z|I). Hence,
the sum of all entries in the matrix is equal to ), 0.7M p(z|I) = 0.7M. But then
there must be a column with (- | I)-weight at least 0.7. The y corresponding

to this column is the y we are looking for in this lemma. O

We will use the fact stated in the previous lemma to successively search
for t 1’s in exponentially smaller parts of the inputs, assuming the presence of
increasingly more 1’s in the original input. The following lemma states that this
searching can be done efficiently:

Lemma 2. There exists a quantum algorithm that can find all the 1’s in an
input = of size N with probability 1, using at most TVEN queries, if k is a
known upper bound on the number of 1’s in x.

Proof. Assume an upper bound k on the number of 1’s in 2. Suppose we run the
exact version of Grover’s algorithm assuming |z| = k. Either we find a solution,
in which case we can remove that solution from the search space, lower our upper
bound £ by 1 and continue; or we do not find a solution, in which case we know
that |z| must be less than k, so we can safely lower our upper bound k by 1



and continue. Accordingly, it easily follows by induction on k that Algorithm 1
below finds all |z| solutions with certainty. The number of queries it uses is

k k .
™ [N _w di T
—\/—.<—\/N/ — = —VkN.
12214 i — 4 0 \/{ 2

Algorithm 1
for i = k down to 1 do
Apply the exact version of Grover’s algorithm, assuming
there are ¢ solutions.
if a solution has been found then
mark its index as a zero in the search space
end if
end for
output the positions of all solutions found

We are now ready to prove an upper bound on QY ;(f):

Lemma 3. For threshold function f with threshold t, and for every distribution
w, we have QY (f) = O(VtN).

Proof. Fix a distribution p. Invoking Lemmas 1 and 2, our algorithm (Algorithm
2 below) is as follows. First we count the number of 1’s in the input using
Algorithm 1, assuming an upper bound of 2'% 1’s. If after that we haven’t
found at least ¢ 1’s yet, then we successively assume that there are between 2!
and #2°+1 1’s in the input, with 4 going up from 10 to log N —logt — 1. For each
of these assumptions, we search a smaller part of the input. If we have reached
the i for which #2¢ < |z| < #27+1 then Lemma 1 guarantees that for a large
p-fraction of those inputs we can find a small sub-part containing between ¢ and
100t 1’s. We then count the number of 1’s in this sub-part using Algorithm 1.

This algorithm will be correct on all inputs z with |z| < ¢ and will produce
a correct answer on at least a p-fraction 0.7 of all inputs z with |z| > ¢ as
guaranteed by Lemma 1. Hence it will be correct on a u-fraction at least u({z |
|z| < t}) +0.7(1 — u({x | |z| < t}) > 0.7. Furthermore, its query complexity is

log N—logt—1
oW+ S o(@) _ OWiR),

i=10

where the first term corresponds to the cost of searching the entire space once
with a small upper bound, and the summation corresponds to searching consec-
utively smaller sub-parts y(*. O



Algorithm 2
Count the number of 1’s in the input using Algorithm 1, assuming an upper bound
of 2'% 1’s
if at least ¢t 1’s are found then
output 1
end if
for : =10 to log N —logt — 1 do
Let 4 € {0,1}" be a string of weight min{N, 1ng} satisfying Lemma 1
Using Algorithm 1, count the number of solutions in the sub-part
of the input induced by y(i), assuming an upper bound of 100¢ 1’s.
if at least ¢ 1’s are found then
output 1
end if
end for
output 0

Recall that for threshold functions f : {0,1}" — {0,1} with threshold ¢ <
N/2, we have Q»(f) = @(VtN). By Theorem 1 it then follows that max, Q4 z(f) =
2(v/tN). In combination with Lemma 3, this yields:

Lemma 4. For all threshold functions f : {0,1}" — {0, 1} with t < N/2

Qu(f) = & (maxQlys()) = € (ViR).

5.2 Equality up to a Constant Factor for Symmetric Functions.

With the result about threshold functions in mind, we can easily prove that the
quantum Yao principle holds for all symmetric functions as well.

Theorem 3. For all symmetric functions f : {0,1}¥ — {0,1}

Q1) = 0 (maxQly (1)) = 0 (VIIV - T(7).

We give an informal sketch of the proof whose details are straightforward.
Firstly, note that I'(f) measures the length of the interval around Hamming
weight & where f is constant, so in order to compute f(z) it suffices to know

|z| exactly if |z| € [O,N_Tr(f)) or |z| € (%,N], or to know that |z| €
[Nfg(f), N+F2(f)72] otherwise. Using the threshold algorithm from Section 5.1

twice, we can, at a cost of O(y/N(N — I'(f))) queries, compute which of three
intervals |z| is in. If |2 is in the interval of length I'(f) around £ where f is
constant we are done. In both other cases we now in effect have an upper bound
on the number of 1’s in the input, and we can use Algorithm 1 to exactly count
the number of 1’s, again using O(\/N(N — I'(f))) queries.



5.3 A Result for the AND-OR Tree

Above we proved that the weak quantum Yao principle holds (up to a constant
factor) for all symmetric functions. A similar result might be provable for all
monotone functions. In this section we state a preliminary result in this direction,
namely that the known upper and lower bounds on the Qs(f)-complexity of the
2-level AND-OR tree carry over to weakly %—exact quantum algorithms. This
monotone but non-symmetric function is the AND of v/N independent ORs of
VN variables each. In the sequel, we use AO to denote this N-bit AND-OR tree.

No tight characterization of Q2(AQ) is known, but Buhrman, Cleve, and
Widgerson [5] proved Q»(40) = O(v/Nlog N) via a recursive application of
Grover’s algorithm. Using a result about efficient error-reduction in quantum
search from [6], this can be improved to Q2(AO) = O(v/Nlog N). This nearly
matches Ambainis’ lower bound of 2(v/N) [2]. Note that Ambainis’ bound to-
gether with our Theorem 1 immediately gives the lower bound max,, Q% ;(40) =
2(V/'N). Using the same techniques as in the previous section one can show that
the best known upper bound carries over to weakly %—exact algorithms. Due to
space constraints we omit the proof, which may be found at the Los Alamos
preprint server at http://xxx.lanl.gov/abs/quant-ph/0109070.

Theorem 4. For every distribution p we have Q% ;(AO) = O(y/NlogN).

6 Summary and Open Problems

In this paper we investigated to what extent quantum versions of the classical
Yao principle hold. We formulated a strong and a weak version of the quantum
Yao principle, showed that both hold in one direction, falsified the other direction
for the strong version, and proved the weak version for the query complexity of
all symmetric functions.

The main question left open by this research is the general validity of the
weak quantum Yao principle. On the one hand, we may be able to find a coun-
terexample to the weak principle as well, perhaps based on the query complexity
of the order-finding problem. Shor showed that the order-finding problem can be
solved by a bounded-error quantum algorithm using O(log N) queries [15]. Using
Cleve’s 2(N'/3 /log N) lower bound on classical algorithms for order-finding [7],
we might be able to exhibit a u such that any weakly %—exact quantum algo-
rithm for f with respect to u requires N2 queries, as it seems hard to construct
weakly %—exact quantum algorithms for this problem.

On the other hand, we may try to extend the class of functions for which
we know the weak quantum Yao principle does hold. A good starting point here
might be the class of all monotone functions. We discussed one such function,
the 2-level AND-OR tree, in Section 5.3. Unfortunately, at the time of writing
no general characterization of the Q2(f) complexity of monotone functions is
known.
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