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Abstract

We study the close connection between rational functions that approximate some Boolean function,
and quantum algorithms that compute the same function using postselection. We show that the minimal
degree of the former equals (up to a factor of 2) the minimal query complexity of the latter. We give
optimal (up to constant factors) quantum algorithms with postselection for the majority function, slightly
improving upon an earlier algorithm of Aaronson. Finally we show how Newman’s classic theorem about
low-degree rational approximation of the absolute-value function follows from our algorithm.

1 Introduction

1.1 Background: low-degree approximations from efficient quantum algorithms

Since the introduction of quantum computing in the 1980s [Fey82, Deu85], most research in this area has
focused on trying to find new quantum algorithms, quantum cryptography, communication schemes, uses
of entanglement etc. One of the more surprising applications of quantum computing in the last decade
has been its use, in some way or other, in obtaining results in classical computer science and mathematics
(see [DW11a] for a survey). One direction here has been the use of quantum query algorithms to show the
existence of low-degree polynomial approximations to various functions. This direction started with the
observation [FR99, BBC+01] that the acceptance probability of a T -query quantum algorithm with N -bit
input can be written as an N -variate multilinear polynomial of degree at most 2T . For example, Grover’s
O(
√
N)-query algorithm for finding a 1 in an N -bit input [Gro96] implies the existence of an N -variate

degree-O(
√
N) polynomial that approximates the N -bit OR-function, and (by symmetrization) of a single-

variate polynomial p such that p(0) = 0 and p(i) ≈ 1 for all i ∈ {1, . . . , N}. Accordingly, one way
to design (or prove existence of) a low-degree polynomial with a certain desired behavior, is to design an
efficient quantum algorithm whose acceptance probability has that desired behavior. Some results based on
this approach are tight bounds on the degree of low-error approximations for symmetric functions [Wol08],
a new quantum-based proof of Jackson’s theorem from approximation theory [DW11b], and tight upper
bounds for sign-approximations of formulas [Lee09].

In this paper we focus on a related but slightly more complicated connection, namely the use of quantum
query algorithms with postselection to show the existence of low-degree rational approximations to various
functions. We will define both terms in more detail later, but for now let us just state that postselection is
the unphysical ability of an algorithm to choose the outcome of a measurement, thus forcing a collapse of
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the state to the corresponding subspace; and a rational function is the ratio of two polynomials (its degree
is the max of the degrees of numerator and denominator polynomial). This connection was first made by
Aaronson. In [Aar05], he provided a new proof of the breakthrough result of Beigel et al. [BRS95] that the
complexity class PP is closed under intersection. He did this in three steps:

1. Define a new class PostBQP, corresponding to polynomial-time quantum algorithms augmented with
postselection.

2. Prove that PP = PostBQP.

3. Observe that PostBQP is closed under intersection, which is obvious from its definition.

While very different from the proof of Beigel et al. (at least on the surface), Aaronson noted that his proof
could actually be viewed as implicitly constructing certain low-degree rational approximations to the Ma-
jority function1; the fact that the resulting polynomial has low degree follows from the fact that Aaronson’s
algorithm makes only few queries to the input of Majority. Such rational approximations also form the key
to the proof of Beigel et al.

Our goal in this paper is to work out this connection between rational functions and postselection-
algorithms in much more detail, and to apply it elsewhere.

1.2 Definitions

In order to be able to state our results, let us be a bit more precise about definitions.

Polynomial approximation. An N -variate polynomial is a function P : SN → R that can be written as
P (x1, . . . , xn) =

∑
d1,...,dn

cd1,...,dn
∏N
i=1 x

di
i with real coefficients cd1,...,dn . In our applications, the domain

S of each input variable will be either R or {0, 1}. The degree of P is max{
∑N

i=1 di | cd1,...,dn 6= 0}. When
we only care about the behavior of the polynomial on the Boolean cube {0, 1}N , then xdi = xi for all d ≥ 1,
so then we can restrict to multilinear polynomials, where the degree in each variable is at most 1. Let
ε ∈ [0, 1/2) be some fixed constant. A polynomial P ε-approximates f : SN → R if |P (x) − f(x)| ≤ ε
for all x ∈ SN . The ε-approximate degree of f (abbreviated degε(f)) is the minimal degree among all such
polynomials P . The exact degree of f is deg(f) = deg0(f).

Rational approximation. A rational function is a ratio P/Q of two N -variate polynomials P,Q : SN →
R, whereQ is required to be nonzero everywhere on SN to prevent division by 0. Its degree is the maximum
of the degrees of P and Q. A rational function P/Q ε-approximates f if |P (x)/Q(x) − f(x)| ≤ ε for all
x ∈ SN . The ε-approximate rational degree of f (abbreviated rdegε(f)) is the minimal degree among all
such rational functions. The exact rational degree of f is rdeg0(f).

Quantum query algorithms with postselection. A quantum query algorithm with postselection (short:
postselection-algorithm) is a regular quantum query algorithm [BW02] with two output bits a, b ∈ {0, 1}.
We say the postselection-algorithm computes a Boolean function f : {0, 1}N → {0, 1} with error probabil-
ity ε if for every x ∈ {0, 1}N , we have Pr[a = 1] > 0 and Pr[b = f(x) | a = 1] ≥ 1− ε. The idea is that
we can compute f(x) with error probability ε if we could postselect on measurement outcome a = 1. In

1The N -bit Majority is the Boolean function defined by MAJN (x) = 1 iff the Hamming weight |x| :=
∑N

i=1 xi is ≥ N/2.
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other words, the second output bit b computes the function when the first is forced to output 1. This “forc-
ing” is the postselection step, which is not something we can actually implement physically; in that respect
the model of postselection is mostly a tool for theoretical analysis, not a viable model of actually-doable
computation. The postselection query complexity PostQε(f) of f is the minimal query complexity among
such algorithms.2

1.3 Our results

Rational degree ≈ quantum query complexity with postselection. Our first result in this paper (Sec-
tion 2) is to give a very tight connection between rational approximations of a Boolean function f :
{0, 1}N → {0, 1} and potselection-algorithms computing f with small error probability. We show that
the minimal degree needed for the former equals the minimal query complexity needed for the latter, to
within a factor of 2:

1

2
rdegε(f) ≤ PostQε(f) ≤ rdegε(f).

In other words, minimal rational degree is essentially equal to quantum query complexity with postse-
lection. This should be contrasted with the better-studied case of polynomial approximation, where the
approximate degree degε(f) equals the bounded-error quantum query complexity to within a polynomial
factor [BBC+01], and there are actually polynomial gaps [Amb03].

Optimal postselection-algorithm for Majority. Our second result in this paper is to optimize Aaronson’s
construction, modifying his postselection algorithm for Majority to have minimal query complexity up to a
constant factor (and hence the induced rational approximation for majority will have minimal degree):

PostQε(MAJN ) = O (log(N/ log(1/ε)) log(1/ε)) .

This reproves the upper bound of Sherstov [She14, Theorem 1.7]. In fact, we could just have combined Sher-
stov’s upper bound with the equivalence between rational degree and postselection-complexity mentioned
above, but our derivation of minimal-degree polynomials by means of a postselection-algorithm is very dif-
ferent from Sherstov’s proof. Sherstov’s matching lower bound for the degree of rational approximations
shows that also our algorithm is optimal (up to a constant factor).

Newman’s Theorem. One of the most celebrated results in rational approximation theory is Newman’s
Theorem [New64]. This says that there is a degree-d rational function that approximates the absolute-value
function |x| on the interval x ∈ [−1, 1] up to error 2−Ω(

√
d). In contrast, it can be shown that the smallest

error achievable by degree-d polynomials is Θ(1/d). The proof of Newman’s Theorem is not extremely
complicated:

Define a = e−1/
√
d, p(x) =

∏d−1
k=0(ak + x), and degree-d rational function r(x) = p(x)−p(−x)

p(x)+p(−x) .
Half a page of calculations shows that r(x) ε-approximates the sign-function on the interval
[−1,−ε] ∪ [ε, 1], for ε = e−Ω(

√
d). We have r(x) ∈ [−1, 1] and sgn(x) = sgn(r(x)) on the

whole interval [−1, 1], hence the degree-(d + 1) rational function x · r(x) ε-approximates the
absolute-value function on the whole interval [−1, 1].

2The way we defined it here, a postselection-algorithm involves only one postselection-step, namely selecting the value a = 1.
However, we can also allow intermediate postselection steps without changing the power of this model, see [DW11a, Section 4.3].
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In fact the optimal error ε achievable by degree-d rational functions is known much more precisely [PP87,
Theorem 4.2]: it is Θ(e−π

√
d). The proof of this tighter bound is substantially more complicated.3

In Section 4 we show how our postselection-algorithm for Majority can be used to derive Newman’s
Theorem. While this proof is not easier than Newman’s by any reasonable standard, it (like the reproof of
Sherstov’s result mentioned above) is still interesting because it gives a new, quantum-algorithmic perspec-
tive on these known results that may have other applications.

2 Query complexity with postselection ≈ degree of rational approximation

We first show that rational approximation degree and quantum query complexity with postselection are
essentially the same for all Boolean functions.

Theorem 1 For all ε ∈ [0, 1/2) and f : {0, 1}N → {0, 1} we have rdegε(f) ≤ 2PostQε(f).

Proof. Consider a postselection-algorithm for f with T = PostQε(f) queries and error ε. Then
by [BBC+01], the probabilities Q(x) = Pr[a = 1] and P (x) = Pr[a = b = 1] can be written as poly-
nomials of degree ≤ 2T . Their ratio P/Q is a rational function that equals the conditional probability
Pr[b = 1 | a = 1]. By definition, the latter is in [1 − ε, 1] for inputs x ∈ f−1(1), and is in [0, ε] for
x ∈ f−1(0). Hence P/Q is a rational ε-approximation for f of degree ≤ 2T = 2PostQε(f). 2

Theorem 2 For all ε ∈ [0, 1/2) and f : {0, 1}N → {0, 1} we have PostQε(f) ≤ rdegε(f).

Proof. Consider an ε-approximate rational approximation P/Q for f of degree d = rdegε(f). It will
be convenient to convert f to a ±1-valued function. Define F (x) = 1 − 2f(x) ∈ {±1} and R(x) =
Q(x)− 2P (x), then R/Q = 1− 2P/Q is in [−1− 2ε,−1 + 2ε] if F (x) = −1, and in [1− 2ε, 1 + 2ε] if
F (x) = 1. We will write R and Q in their Fourier decompositions:

R(x) =
∑
S⊆[N ]

R̂(S)(−1)x·S and Q(x) =
∑
S⊆[N ]

Q̂(S)(−1)x·S .

Now set up the following (N + 1)-qubit state (up to a global normalizing constant):

|0〉
∑
S

Q̂(S)|S〉+ |1〉
∑
S

R̂(S)|S〉,

where |S〉 is the N -bit basis state corresponding to the characteristic vector of S. Note that R̂(S) and Q̂(S)
are 0 whenever |S| > d. Hence by making d queries to x, we can add the phases

|0〉
∑
S

Q̂(S)(−1)x·S |S〉+ |1〉
∑
S

R̂(S)(−1)x·S |S〉.

3In fact, in the 19th century Zolotarev [Zol77] already gave the optimal polynomial for each degree d. Later, Akhiezer [Akh29]
worked out the asymptotical decrease of the error as a function of d, stating Newman’s Theorem much before the paper of Newman
(who was apparently unaware of this Russian literature).
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Now a Hadamard transform on each of the n qubits of the second register gives a state proportional to

|0〉

(∑
S

Q̂(S)(−1)x·S |0N 〉+ · · ·

)
+ |1〉

(∑
S

R̂(S)(−1)x·S |0N 〉+ · · ·

)
= |0〉

(
Q(x)|0N 〉+ · · ·

)
+ |1〉

(
R(x)|0N 〉+ · · ·

)
,

where the · · · indicates all the basis states other than |0N 〉. Postselect on measuring |0N 〉 in the second
register (more precisely, set the bit a to 1 only for basis state |0N 〉). What is left in the first register is the
following qubit:

|βx〉 = c(Q(x)|0〉+R(x)|1〉) = cQ(x)

(
|0〉+

R(x)

Q(x)
|1〉
)
,

where c = 1/
√
Q(x)2 +R(x)2 is a normalizing constant. SinceR(x)/Q(x) ≈ F (x) ∈ {±1}, a Hadamard

transform followed by a measurement will with high probability tell us the sign F (x) of R(x)/Q(x). If
F (x) = 1, the error probability equals

|〈−|βx〉|2 =
(Q(x)−R(x))2

2(Q(x)2 +R(x)2)
=

(1−R(x)/Q(x))2

2(1 + (R(x)/Q(x))2)
≤ (2ε)2

2(1 + (1− 2ε)2)
=

ε2

1− 2ε+ 2ε2
≤ ε,

where the last inequality used that ε ≤ 1 − 2ε + 2ε2 for all ε ∈ [0, 1/2). If F (x) = −1 then an analogous
calculation works. Hence we have found a d-query postselection-algorithm that computes f with error
probability ≤ ε. 2

3 An optimal postselection-algorithm for Majority

In this section we give an optimized postselection-algorithm for Majority, slightly improving Aaronson’s
algorithm from [Aar05].

Theorem 3 For every t ∈ [N ] there exists a postselection-algorithm that computes MAJN with error prob-
ability ≤ 1/3 using O(log N

t + t) queries.

Proof. Assume for simplicity N is a power of 2, N = 2n. Since there is an exact algorithm for MAJN
using N queries, we can assume t � N/2. Our algorithm is a modification of Aaronson’s [Aar05]. He
shows that for any α, β > 0 satisfying α2 + β2 = 1, using one query and some postselection we can
construct the following qubit:

c

(
α|x||0〉+ β

1√
2

(N − 2|x|)|1〉
)
, (1)

where c = 1/
√
α2|x|2 + β2

2 (N − 2|x|)2 is a normalizing constant. Our goal is to decide whether |x| ≥ N/2
or not. Note that if 0 < |x| < N/2 then the above qubit is inside the first quadrant (i.e., both |0〉 and |1〉
have positive amplitude), and if |x| ≥ N/2 then it’s not. In the first case, for some choice of α, β the above
qubit will be close to the state |+〉 = 1√

2
(|0〉 + |1〉), while in the second case it will be far from |+〉 for

any choice of α, β. The algorithm tries out a number of α, β-pairs in order to distinguish between these two
cases. Let A = {−dlog N

t e, . . . ,−1, 0, 1, . . . , dlog N
t e}, and for all i ∈ A let |ai〉 be the above qubit (1) for
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α
β = 2i. Let B = {1, . . . , t − 1} ∪ {N/2 + 1 − t, . . . , N/2 − 1} for t ≥ 2 and B = ∅ otherwise. For all
i ∈ B let |bi〉 be the above qubit for αβ = N−2i√

2i
.

The algorithm is as follows. The intuition is that we are trying to eliminate from A and B all i corre-
sponding to states whose squared inner product with |+〉 is at most 1/2. If |x| ≥ N/2 (i.e., MAJN (x) = 1)
then we expect to eventually eliminate all i, while if |x| < N/2 (i.e., MAJN (x) = 0) then for at least one i,
the squared inner product with |+〉 will be close to 1, and this i will probably not be eliminated by the
process. For simplicity we will assume |x| 6∈ {0, N} (we can ensure this for instance by fixing the first two
bits of x to 01, so then we would be effectively computing MAJN−2).

1. Initialize A1 = A, B1 = B and k = 1.

2. Repeat the following until 558(log N
t + t) queries have been used:

(a) For all i ∈ Ak, create 9k copies of |ai〉 and measure each in the |+〉, |−〉 basis. Set MA
k,i = 1 if

this step resulted in a majority of |+〉 outcomes.
(b) For all i ∈ Bk, create 9k copies of |bi〉 and measure each in the |+〉, |−〉 basis. Set MB

k,i = 1 if
this resulted in a majority of |+〉 outcomes.

(c) Set Ak+1 = {i ∈ Ak |MA
k,i = 1}. Set Bk+1 = {i ∈ Bk |MB

k,i = 1}. Set k to k + 1.

3. Output 0 if |Ak|+ |Bk| ≥ 1, and output 1 otherwise.

By definition, the algorithm uses at most 558(log N
t +t) queries. We will now prove correctness by analyzing

three cases:

Case 1: |x| ∈ B
Because |b|x|〉 = |+〉, index |x| remains in Bk for all k and the algorithm outputs 0 with probability 1.

Case 2: |x| < N/2 but |x| 6∈ B (i.e., t ≤ |x| ≤ N−t
2 )

Note that for these values of |x|, the ratio between |x| and N − 2|x| lies between t/N and N/t.
Hence there exists an i ∈ A such that |ai〉 and |ai+1〉 lie on opposite sides of |+〉. In the worst case,

〈+|ai〉 = 〈+|ai+1〉. In this case, |ai〉 =
√

1
3 |0〉 +

√
2
3 |1〉, so 〈+|ai〉 = 1+

√
2√

6
=: λ. We will show

that this i is likely to remain in all Ak. Each iteration of step 2 will be called a “trial”. Let m be the
number of the trial being executed when the algorithm stops. The algorithm gives the correct output 0
iff |Am|+ |Bm| is at least 1. First, by the Chernoff bound, for every k

Pr[MA
k,i = 0] ≤ exp(−2 · 9k(λ2 − 1

2
)2) ≤ 2−(k+3).

Now by the union bound, the error probability in this case is at most

Pr[i /∈ Am] = Pr[∃ k s.t. MA
k,i = 0] ≤

∞∑
k=1

2−(k+3) ≤ 1

8
.

Case 3: |x| ≥ N/2
We will first show that the algorithm is likely to go through at least 2 logN trials. Since |x| ≥ N/2, for
all i ∈ A we have |〈+|ai〉|2 ≤ 1

2 and hence Pr[MA
k,i = 1] ≤ 1

2 for all k. Similarly Pr[MB
k,i = 1] ≤ 1

2
for all k and i ∈ B. Hence we have

E[|Ak+1|+ |Bk+1|] =
∑
i∈A

k∏
`=1

Pr[MA
`,i = 1] +

∑
i∈B

k∏
`=1

Pr[MB
`,i = 1] ≤ |A|+ |B|

2k
≤

log N
t + t

2k−1
.
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Let Q =
∑2 logN

k=1 9k(|Ak| + |Bk|) be the number of queries used in the first 2 logN trials (with the
number of queries set to 0 for the non-executed trials after the mth). Now:

E[Q] ≤ 9(log
N

t
+ t)

2 logN∑
k=1

k

2k−1
≤ 62(log

N

t
+ t).

By Markov’s inequality, Pr[Q ≥ 558(log N
t + t)] ≤ 1

9 . So with probability at least 8
9 we have

Q < 558(log N
t + t), meaning the algorithm executes at least 2 logN trials before it terminates. In

that case each element of A and B has probability at most 1/22 logN = 1/N2 to remain after 2 logN
trials. Hence, by the union bound

Pr[|A2 logN+1|+ |B2 logN+1| ≥ 1] ≤ |A|+ |B|
N2

≤ 1

4
.

Therefore the final error probability is at most 8
9

1
4 + 1

9 = 1
3 .

2

If we modify step 2(a) using d9k log 1
εe copies instead of 9k, then the error probability is at most ε and

the number of queries is O(log N
t · log(1/ε) + t). Choosing t = log(1/ε) gives

Corollary 1 For every ε ∈ (0, 1/2) there exists a postselection-algorithm that computes MAJN using
O(log(N/ log(1/ε)) · log(1/ε)) queries with error probability ≤ ε.

Sherstov [She14, Theorem 1.7] proved an Ω(log(N/ log(1/ε)) · log(1/ε)) lower bound on the degree of
ε-approximating rational functions for MAJN . Together with our Theorem 1, this shows that the algorithms
of this section have optimal query complexity up to a constant factor.

4 Deriving Newman’s Theorem

We now use the above postselection-algorithm for Majority to derive a good, low-degree rational approxi-
mation for the sign-function:

Theorem 4 For every d there exists a degree-d rational function that ε-approximates the sign-function
sgn(z) on [−1,−ε] ∪ [ε, 1] for ε = 2−Ω(

√
d) (and which lies in [−1, 1] for all z ∈ [−1, 1]).

Proof. Set ε = 2−Ω(
√
d) with a sufficiently small constant in the Ω(·), and N = d2

εe. Consider the
algorithm from Corollary 1 with error ε. It provides two N -variate multilinear polynomials P and Q, each
of degree d = O(log(N/ log(1/ε)) · log(1/ε)) = O(log(1/ε)2), such that for all x ∈ {0, 1}N ,∣∣∣∣P (x)

Q(x)
−MAJN (x)

∣∣∣∣ ≤ ε

2
.

Note that P can be written as
∑

j cj(
∑

i xi)
j , as can Q, because the amplitudes of the states |ai〉 and |bi〉

are functions of |x| =
∑

i xi. To convert P to a univariate polynomial p, replace
∑

i xi with real variable z
to obtain p(z) =

∑
j cjz

j . Similarly convert Q(x) to q(z). Let majN represent the univariate version of
MAJN : majN returns 0 on input x ∈ [0, . . . , N2 ) and returns 1 on x ∈ [N/2, . . . , N ]. We now have:∣∣∣∣p(x)

q(x)
−majN (x)

∣∣∣∣ ≤ ε

2
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for x ∈ {0, . . . , N}. Observe that the above inequality also holds for x ∈ [1, N2 − 1] ∪ [N2 , N ]. This is
because we can modify the analysis of the above algorithm by replacing |x| with x. The analysis for cases 2
and 3 in the proof of Theorem 3 still holds, since these two cases do not require x to be an integer value.
The analysis for case 1 does not hold, but this is not an issue since we set t to 1 which means that B = ∅.
Since sgn(z) = 2majN (N(z+1)

2 )− 1, we have∣∣∣∣∣2p(
N(z+1)

2 )− q(N(z+1)
2 )

q(N(z+1)
2 )

− sgn(z)

∣∣∣∣∣ ≤ ε
for all z ∈ [−1,− 2

N ] ∪ [0, 1]. Since N = d2
εe, we have the desired approximation on [−1,−ε] ∪ [ε, 1]. 2

It is easy to see that multiplying the above rational function by z gives an approximation of the absolute-
value function |z| on the whole interval z ∈ [−1, 1]. Thus we have reproved Newman’s Theorem in a new,
quantum-based way:

Corollary 2 (Newman) For every integer d ≥ 1 there exists a degree-d rational function that approximates
|z| on [−1, 1] with error ≤ 2−Ω(

√
d).

5 Open questions

We mention a few open questions. First, we have very few techniques for quantum algorithms with post-
selection. Basically Aaronson’s techniques from [Aar05] (and our variations thereof) are the only thing we
know. What other algorithmic tricks can we play using postselection?

Second, we showed here how a classical but basic theorem in rational approximation theory (Newman’s
theorem) could be reproved based on efficient quantum algorithms with postselection. Is it possible to prove
new results in rational approximation theory using such algorithms?

Finally, the following is a long-standing open question attributed to Fortnow by Nisan and Szegedy [NS94,
p. 312]: is there a polynomial relation between the exact rational degree of a Boolean function f : {0, 1}N →
{0, 1} and its usual polynomial degree? It is known that exact and bounded-error quantum query complex-
ity and exact and bounded-error polynomial degree are all polynomially close to each other [BW02], so
rephrased in our framework Fortnow’s question is equivalent to the following: can we efficiently simulate
an exact quantum algorithm with postselection by a bounded-error quantum algorithm without postselec-
tion?4 We hope this more algorithmic perspective will help answer his question.

Acknowledgment. We thank André Chailloux for helpful discussions.
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