
Quantum Zero-Error Algorithms Cannot be Composed�Harry BuhrmanCWI and U. of Amsterdambuhrman�wi.nl Ronald de WolfCWIrdewolf�wi.nlAbstratWe exhibit two blak-box problems, both of whih have an eÆient quantum algorithm withzero-error, yet whose omposition does not have an eÆient quantum algorithm with zero-error.This shows that quantum zero-error algorithms annot be omposed. In orale terms, we givea relativized world where ZQPZQP 6= ZQP, while lassially we always have ZPPZPP = ZPP.Keywords: Analysis of algorithms. Quantum omputing. Zero-error omputation.1 IntrodutionWe an de�ne a \zero-error" algorithm of omplexity T in two di�erent but essentially equivalentways: either as an algorithm that always outputs the orret value with expeted omplexity T(expetation taken over the internal randomness of the algorithm), or as an algorithm that outputsthe orret value with probability at least 1=2, never outputs an inorret value, and runs in worst-ase omplexity T . Expetation is linear, so we an ompose two lassial algorithms that havean eÆient expeted omplexity to get another algorithm with eÆient expeted omplexity. Ifalgorithm A uses an expeted number of a appliations of B and an expeted number of a0 otheroperations, then using a subroutine for B that has an expeted number of b operations gives A anexpeted number of a � b+ a0 operations. In terms of omplexity lasses, we haveZPPZPP = ZPP;where ZPP is the lass of problems that an be solved by a polynomial-time lassial zero-erroralgorithm. This equality learly relatives, i.e., it holds relative to any orale A.In this paper we show that this seemingly obvious omposition fat does not hold in the quantumworld. We exhibit blak-box (query omplexity) problems g and h that are both easy to quantumompute in the expeted sense, yet whose omposition f = g(h; : : : ; h) requires a very large expetednumber of queries. In omplexity terms, we exhibit an orale A whereZQPZQPA 6= ZQPA;where ZQP is the lass of problems that an be solved by a polynomial-time quantum zero-erroralgorithm. This result is somewhat surprising, beause exat quantum algorithms an easily beomposed, and so an bounded-error quantum algorithms. Moreover, it is also easy to use aquantum zero-error algorithm as a subroutine in a lassial zero-error algorithm. That isEQPEQP = EQP and BQPBQP = BQP and ZPPZQP = ZQP;relativized as well as unrelativized.�Partially funded by projets QAIP (IST{1999{11234) and RESQ (IST-2001-37559) of the IST-FET programmeof the EC. 1



2 PreliminariesWe assume familiarity with omputational omplexity theory [9℄ and quantum omputing [8℄. Inthis setion we briey introdue the \modes of omputation" that we are onsidering. Let f besome (possibly partial) Boolean funtion with set of inputs X = X0 [ X1, where f(X0) = 0 andf(X1) = 1. Let Pb(x) be the probability that algorithm A outputs bit b on input x. We de�ne fourmodes of omputation:1. A is an exat algorithm for f if P1(x) = 1 for all x 2 X1 and P0(x) = 1 for all x 2 X02. A is a zero-error algorithm for f if P1(x) � 1=2 and P0(x) = 0 for all x 2 X1 (assume thereis a third possible output \don't know"), and P0(x) � 1=2 and P1(x) = 0 for all x 2 X03. A is a bounded-error algorithm for f if P1(x) � 2=3 for all x 2 X1, and P0(x) � 2=3 for allx 2 X04. A is a nondeterministi algorithm for f if P1(x) > 0 for all x 2 X1, and P1(x) = 0 for allx 2 X0Note that an exat algorithm is a zero-error algorithm, and a zero-error algorithm is a bounded-erroralgorithm as well as a non-deterministi algorithm.In the setting of query omplexity, f is an N -bit Boolean funtion, so X0 [ X1 � f0; 1gN . Wean only aess the input x 2 f0; 1gN by making queries to its bits. A query is the appliation ofthe unitary transformation Ox that mapsOx : ji; b; zi 7! ji; b� xi; zi;where i 2 [N ℄ and b 2 f0; 1g. The z-part orresponds to the workspae, whih is not a�eted bythe query. A T -query quantum algorithm has the form A = UTOxUT�1 � � �OxU1OxU0, where theUk are �xed unitary transformations independent of x. The �nal state Aj0i depends on x via theT appliations of Ox. The output of the algorithm is determined by measuring the two rightmostqubits of the �nal state. Let's say that if the rightmost bit is 1 then the algorithm laims ignorane(\don't know"), and if it is 0 then the next-to-rightmost bit is the output bit. We refer to thesurvey [3℄ for more details about lassial and quantum query omplexity.We will use QE(f), Q0(f), Q2(f), NQ(f) to denote the minimal query omplexity of a quantumalgorithm for f in the four above modes, respetively. Aordingly, QE(f) is the exat quantumquery omplexity of f , Q0(f) is zero-error quantum query omplexity, Q2(f) is bounded-errorquantum query omplexity, and NQ(f) is nondeterministi quantum query omplexity. Note thatby de�nition we immediately haveQ2(f) � Q0(f) � QE(f) and NQ(f) � Q0(f) � QE(f):Our proofs will use the lose onnetion between quantum query omplexity and polynomials [2℄.An N -variate multilinear polynomial p is a funtion of the form p(x) = PS�[N ℄ aSxS , where aSis real and xS = Qi2S xi. Its degree deg(p) = maxfjSj : aS 6= 0g is the largest degree among itsmonomials. The next lemma [6, 11℄ onnets nondeterministi omplexity with polynomials:Lemma 1 The nondeterministi quantum query omplexity NQ(f) of f equals the minimal degreeamong all multilinear polynomials p suh that1. p(x) 6= 0 for all x 2 X1 2



2. p(x) = 0 for all x 2 X0This lemma improves the query omplexity lower bound by a fator of 2, ompared to the\standard" polynomial method [2℄.The setting of omputational omplexity an be de�ned either in terms of Turing mahines or ofuniform iruit families. Here we de�ne EQP, ZQP, BQP, and NQP to be the lasses of languagesfor whih there exist polynomial-time quantum algorithms in the above four modes, respetively.We restrit attention to algebrai amplitudes for these lasses.For example, NQP (\quantum NP") is taken to be the lass of languages L for whih there existsan eÆient quantum algorithm that has positive aeptane probability on input x i� x 2 L [1℄. Thislass was shown to be equal to the lassial ounting lass oC=P [5, 12℄. There is an alternativede�nition of quantum NP based on veri�ation of quantum erti�ates [7, Chapter 14℄ whih wewill not disuss here. We similarly de�ne the lasses EQPA, et., when we have aess to an oraleA for some language, and EQPS = [A2SEQPA, et., when S is a set of orales. By de�nition weimmediately have EQP � ZQP � BQP and EQP � ZQP � NQP;and these inlusions also hold relative to any orale A.3 The problemLet m and n be even numbers. We �rst de�ne the partial Boolean funtions g on n bits and h on2m bits, and then their omposition f on N = 2mn bits.The funtion g is just the onstant vs. balaned problem of Deutsh and Jozsa [4℄. Using w(x)to denote the Hamming weight of x 2 f0; 1gn, we de�ne:g(x) = 8<: 1; if w(x) = 0 (onstant)0; if w(x) = n=2 (balaned)unde�ned otherwiseIt is well known that there exists an exat 1-query quantum algorithm for this problem [4℄, whileany lassial deterministi or even zero-error algorithm needs n=2 + 1 queries.The funtion h is a zero-error sampling problem. LetA1 = f0mx : x 2 f0; 1gm;m=2 � w(x) � mgA0 = fx0m : x 2 f0; 1gm;m=2 � w(x) � mgh(x) = 8<: 1; if x 2 A10; if x 2 A0unde�ned otherwiseClearly h has a lassial algorithm that always outputs the orret answer and whose expetednumber of queries is small. The algorithm just queries a random point in the �rst m bits of itsinput and one in the seond m bits, and outputs where it �nds a 1 (if it does so). With probability� 1=2 it will indeed �nd a 1, so the expeted number of repetitions before termination is � 2.Let f on 2mn bits be the partial Boolean funtion that is the omposition of g and h. In otherwords, de�ning the set of promise inputs byX1 = A0 � � � � � A0| {z }n timesX0 = [fAy1 � � � � � Ayn : y = y1 : : : yn 2 f0; 1gn; w(y) = n=2g3



we have f(x) = 8<: 1; if x 2 X1 (onstant)0; if x 2 X0 (balaned)unde�ned otherwiseFor later referene, we will give names to the various parts of the 2mn-bit input x:x = input for gz }| {input for hz }| {x(0;1)| {z }mbits x(1;1)| {z }mbits input for hz }| {x(0;2)| {z }mbits x(1;2)| {z }mbits � � � � � � � � � input for hz }| {x(0;n)| {z }mbits x(1;n)| {z }mbitsIn words, f ontains n di�erent h-funtions, eah with its own 2m-bit input. Here x(0;i) and x(1;i)are two m-bit strings that together onstitute the input to the ith h-funtion. The promise saysthat the 2m-bit input x(0;i)x(1;i) always lies in A0 or A1. The n bits h(x(0;i)x(1;i)), i = 1; : : : ; n,oming out of the n h-funtions are then plugged into g to give the value for f . The promise saysthat these n bits are either all 0 (onstant) or half 0 and half 1 (balaned).Our funtion f is just the omposition of the problems g and h, eah of whih needs just a smallexpeted number of queries. Yet below we will show that any quantum zero-error algorithm for fwill need to make many queries. Even stronger, also a nondeterministi quantum algorithm for frequires many queries.4 Lower bound for quantum zero-error algorithmsThe next lemma is our main tehnial tool:Lemma 2 Let p be a 2mn-variate multilinear polynomial suh that1. p(x) 6= 0 for all x 2 X12. p(x) = 0 for all x 2 X0Then deg(p) � min(n=2;m=2) + 1.Proof. We use the names for the various subparts of the 2mn-bit input that we introdued inSetion 3. We assume without loss of generality that for every i 2 [n℄ and every non-zero monomialaSxS in p, the set S does not simultaneously ontain variables from x(0;i) and from x(1;i). Sine thepromise on the inputs sets either x(0;i) or x(1;i) to 0m, a monomial ontaining variables from bothx(0;i) and x(1;i) evaluates to 0 anyway, so removing it from p will not a�et the two properties of p.Suppose, by way of ontradition, that d = deg(p) � min(n=2;m=2). By the �rst property ofthe lemma, p annot be identially zero, so it has to ontain at least one monomial. Consider amonomial M = aSxS in p with maximal degree, so jSj = d. Consider some i 2 [n℄ suh that Sontains variables from x(1;i) (and hene, by the above assumption, no variables from x(0;i)). Wenow �x x(0;i) to 0m and �x all non-S variables in x(1;i) to 1. Sine there are at most m=2 S-variablesin total, this already sets at least m=2 bits in x(1;i) to 1. Aordingly, we have x(0;i)x(1;i) 2 A1for every setting of the S-variables. This fores the ith h-funtion to value 1, without �xing theS-variables. Similarly we fore the other h-funtions whose variables interset with S: if S hasvariables from x(1;j) then we fore the jth h-funtion to 1, and if S has variables from x(0;j) thenwe fore it to 0. Sine jSj � n=2, this fores at most n=2 of the h-funtions. Aordingly, we an4



extend our setting to the other h-funtions (whose variables don't interset with S at all) to reatea setting of the overall 2mn-bit input that is in X0 (balaned), without �xing the S-variables.Let q be the remaining polynomial in the d S-variables. No matter how we vary the S-variables,the overall input to p remains in X0 (balaned). Hene q must be zero on all Boolean settings ofits variables. It is easy to see that the only polynomial satisfying this onstraint is the one withoutany monomials. But q still ontains the monomial M , beause being of degree d, M annot anelagainst other monomials when we �x the non-S variables. This is a ontradition. 2This lemma is exatly tight. First, there is a polynomial with the above properties of degreen=2 + 1. For T a set of n=2 + 1 variables, eah from a di�erent x(0;i), de�ne qT to be the degree-(n=2 + 1) polynomial that is the AND of these variables. If x 2 X0 then qT will be 0 for all T ,and if x 2 X1 then for at least one T we have qT = 1. Hene summing qT over all suh T gives apolynomial p of degree n=2 + 1 suh that p(x) = 0 for x 2 X0 and p(x) > 0 for x 2 X1.Seond, there also is an appropriate polynomial of degreem=2+1. Let qi be the degree-(m=2+1)polynomial that is the OR of the �rst m=2 + 1 bits of x(1;i). Then qi = 1 if x(0;i)x(1;i) 2 A1 andqi = 0 if x(0;i)x(1;i) 2 A0. De�ning p to be the degree-(m=2+1) polynomial n=2�Pni=1 qi, we havep(x) = 0 for x 2 X0 and p(x) = n=2 for x 2 X1.Combining the previous lemma with Lemma 1 gives our main theorem:Theorem 1 NQ(f) = min(n=2;m=2) + 1.Sine nondeterministi query omplexity lower bounds zero-error omplexity, we also obtain thezero-error lower bound Q0(f) � min(n=2;m=2)+1. The best upper bound on Q0(f) that we know,is min(2n;m) so the lower bound is tight up to small onstant fators. First, we know there is alassial zero-error algorithm that omputes an h-funtion using an expeted number of 2 queries;we an use this to ompute the �rst n=2 h-funtions in an expeted number of n queries, whihsuÆes to ompute f . Terminating this algorithm after 2n steps gives us an algorithm that �ndsthe orret output with probability � 1=2 (Markov's inequality), and laims ignorane otherwise.Seond, there exists an exat quantum algorithm for f that uses m queries. By querying the�rst m=2 bits in an h-input we an deide whether that h takes value 0 or 1. By opying the outputand reversing the omputation we an do this exat omputation leanly (resetting all workspaeto 0) using m queries. Putting the Deutsh-Jozsa algorithm on top of this gives an m-query exatquantum algorithm for f .Using a standard translation of query omplexity results to orales, we obtainTheorem 2 There exists an orale A suh thatEQPZPPA 6� NQPA;hene in partiular ZQPZQPA 6� ZQPA:Proof. For a set A � f0; 1g�, we use A=n to denote the set of all n-bit strings in A, and weidentify this with its 2n-bit harateristi vetor. We will onstrut a set A suh that, for every nwhere 2n = 2m2 for some m (i.e. for every odd n), A=n is a valid input to f (word of warning: the`n' used here is not the `n' used earlier, but the `m' is; the input length of f is now 2m2). This Aindues a language L = f0n j 2n = 2m2 for some m and f(A=n) = 1g:5



Let M1;M2; : : : be an enumeration of all orale NQP-mahines, with inreasing polynomial timebounds (say, Mi has time bound pi(n) = ni + i). Suh an enumeration exists beause we anassume without loss of generality that the mahines only use algebrai amplitudes [1, 5, 12℄. Atthe start of our onstrution, A is the empty set. Going along i = 1; 2; : : :, for eah Mi we will pika spei� input length ni and de�ne A=ni in suh a way that MAi will err on 0ni , and hene it willnot aept L.Consider Mi. Its running time is bounded by the polynomial pi(n) in the input length. Let nibe the smallest input length suh that (1) 2ni = 2m2 for some m, (2) pi(ni) � m=2, and (3) ni isso large that for all j < i we have pj(nj) < ni.1 Sine Mi makes at most p(ni) < m=2+1 = NQ(f)queries to the bits of x = A=ni , Theorem 1 implies that Mi annot be a nondeterministi algorithmfor f . Hene there exists some x 2 X0 [ X1 where Mi errs: either x 2 X0 while Mi has positiveaeptane probability when A=n = x; or x 2 X1 while Mi has zero aeptane probability whenA=ni = x. De�ne A=ni to be that x. This ensures that MAi does not aept L.Doing this for all Mi and �lling the yet-unde�ned levels A=n by arbitrary promise-inputs to f ,we now have a language L that is aepted by none of the MAi , hene L 62 NQPA. On the otherhand, the Deutsh-Jozsa algorithm implies L 2 EQPZPPA , so we have our separation. 25 ConlusionWe proved that the omposition of two problems that are easy for zero-error quantum omputingneed not be easy itself. This ontrasts strongly with the ase of lassial algorithms, and showsthat our lassial intuition about expeted running time does not arry over very well to quantumalgorithms. The problem in using a zero-error algorithm as a subroutine in a quantum algorithmseems to be that we annot reverse the omputation to obtain an answer without additional non-zero workspae. This remaining non-zero workspae then messes up later quantum interferenein the main program. Being able to ompose zero-error algorithms is a desirable property thatobviously holds in the lassial world. Unfortunately, this property does not hold in the quantumworld.Referenes[1℄ L. M. Adleman, J. Demarrais, and M. A. Huang. Quantum omputability. SIAM Journal onComputing, 26(5):1524{1540, 1997.[2℄ R. Beals, H. Buhrman, R. Cleve, M. Mosa, and R. de Wolf. Quantum lower bounds bypolynomials. In Proeedings of 39th IEEE FOCS, pages 352{361, 1998. quant-ph/9802049.[3℄ H. Buhrman and R. de Wolf. Complexity measures and deision tree omplexity: A survey.Theoretial Computer Siene, 288:21{43, 2002.[4℄ D. Deutsh and R. Jozsa. Rapid solution of problems by quantum omputation. In Proeedingsof the Royal Soiety of London, volume A439, pages 553{558, 1992.1This third ondition ensures that when we de�ne A=ni to thwart Mi, the behavior of earlier Mjs on input lengthnj won't be hanged (beause Mj on input length nj doesn't have enough time to query strings of length ni).6
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