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Abstract. We develop a learning rule for networks of spiking neurons
where signals are encoded using fractionally predictive spike-coding. In
this paradigm, neural output signals are encoded as a sum of shifted
power-law kernels. Simple greedy thresholding can compute this encod-
ing, and spike-trains are then exactly the signal’s fractional derivative.
Fractionally predictive spike-coding exploits natural statistics and is con-
sistent with observed spike-rate adaptation in real neurons; its multiple-
timescale properties also reconciles notions of spike-time coding and
spike-rate coding. Previously, we argued that properly tuning the de-
coding kernel at receiving neurons can implement spectral filtering; the
applicability to general temporal filtering was left open. Here, we present
an error-backpropagation algorithm to learn decoding these filters, and
we show that networks of fractionally predictive spiking neurons can then
implement temporal filters such as delayed responses, delayed match-to-
sampling, and temporal versions of the XOR problem.

1 Introduction

Real biological neurons compute in continuous time via the exchange of electrical
pulses or spikes, and algorithmic descriptions of neural information processing
in terms of spikes likely holds the key to resolving the scientific question of how
biological spiking neurons work. The interest in the computational properties
of spiking neurons was boosted in particular by findings from experimental and
theoretical neuroscience [12,16], which suggested that the precise timing of in-
dividual spikes can be important in neural information processing. This has led
to great debate, as the general assumption in neuroscience has always been that
it is the neuron’s spike rate that encodes information.

The notion of neural spike-time coding has resulted in the development of a
number of spiking neural network approaches demonstrating that spiking neu-
rons can compute using precisely times spikes similar to traditional neurons in
neural networks [14, 3,13]. Still, in spite of the successes of spiking neural net-
works, and the theoretical appeal of spike-time coding, it has remained a chal-
lenge to extend spike-based coding to computations involving longer timescales.
Recurrent spiking neural network approaches can achieve longer memory, though
they are notoriously hard to train [21]; edge-of-stability dynamical systems meth-
ods like reservoir computing show promise [11,4], although they require many
neurons and spikes, and mostly disregard notions of spike-time coding.
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Fig. 1. (A) Power-law kernel (dashed blue) for 8 = 0.8, and Guassian components
(B) Signal (black) approxiamated with a sum of power-law kernels (dashed blue).

Based on recent neuroscience findings [10], and reconciling the notions of both
spike-time coding and spike-rate coding, we proposed a novel scheme for spike-
based neural coding based on the observation that a mild derivative — a fractional
derivative — of a signal can under certain conditions be a series of spikes [2]. In
this framework, neural spiking is a statistically efficient means of encoding time-
continuous signals. It does so by approximating the internally computed neural
signal as sum of shifted kernels, where these kernels decay following a power-law
(e.g. figure 1A). Power-law kernels provide much longer traces of past signals as
compared to exponentially decaying kernels [6], and are thus much more suitable
for computing temporal functions over behaviorally relevant timescales.

In this paper, we exploit key properties of the fractional-spike coding frame-
work to learn functions over behaviorally relevant timescales. We capitalize
on the fact that power-law kernels can be approximated for example using a
weighted sum of exponential functions. We show that useful temporal filters can
be learned by adapting these composite weights when decoding spike-trains at
the receiving synapse. For this task, we derive error-backpropagation in the frac-
tional spike-coding paradigm. With this learning rule we show that networks
of fractionally predictive neurons can learn functions through time like delayed
timer-functions and recall tasks like delayed-match-to-sample.

2 Fractionally Predictive Spiking Neurons

Starting from the standard Linear-nonlinear neuron model [1], an artificial neu-
ron j computes an internal variable y;(t) as a function over the weighted sum of
filtered inputs ;(t): y;(t) = F(x;(t)) and x;(t) = X, 7 wij fi(yi(t)), where J is
the set of presynaptic neurons 4 to neuron j, and f;(y;(t)) denotes the (temporal)
filter that computes (f; * v;)(t)-

As defined in [2], a fractionally predictive spiking neuron j approximates the
internal signal y;(t) with ¢;(¢) as a sum of shifted power-law kernels centered at
spike-times {t;}:

yi(t) ~ g(t) = D Kt —t)).

tj<t



Fractionally Predictive Spiking Error-backpropagation 3

The fractional derivative of order « of this approximation g;(t) is just the spike-
train {t;} when the kernel x(t) decays proportional to a power-law x(t)oc t=7
when a =1- 3 [2]:

aOL
yﬂ = > a(t—t))
t<t
Such signal approximation §;(¢) can be achieved by computing the difference
between the current signal estimation and the (emitted) future estimation (pre-
diction) ¢(t), adding a spike ¢; when this difference exceeds a threshold ¢:

z(t) = y(t) — 9(t)
ti=t if z2(t)>9

With a single, positive threshold only positive signal deviations are trans-
mitted, and for negative deviations the transmitted signal decays as t—# (closely
matching actual spiking neuron behavior [15]). Such signal approximation is
shown in figure 1B, where the height of the kernel x is set to two times the
threshold 1. Alternatively, the signal approximation can be precise up to ¢ if
we use positive and negative spikes to signal respectively positive and negative
deviations, for instance using two tightly coupled spiking neurons [2].

We use the fact that a power-law kernel x(t) can be approximated as a sum
(or cascade) of different, weighted exponentially decaying functions x(t) [6]:

t) ~ ) k1),
k

as illustrated in figure 1A. This lets us rewrite §;(t) as a sum of components

v (b):
= 3 N kelt—t) = k)
k

ti<t k

At a receiving neuron j, a temporal filter x;; of the signal §;(¢) from neuron
j can then be created by weighing these components with weights w . at the

receiving synapse:
i (0) = 2w

and the neuron’s input is thus computed as:
)= > kit —t) = Y whyl(t),
ieJ ti<t €eJ

Note that for wfj = w;;V k, the input at neuron j decodes a weighted version of
the output of presynaptic neurons i.

3 Learning in Networks of Fractionally Predictive
Spiking Neurons

We consider a standard fully connected feedforward neural network, with input
layer Z, hidden layer H, and output layer O, populated with neurons i, j and
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m. We derive standard error-backpropagation learning rules for adjusting the
components wy; of the filtering kernels r;;(t) for each connection in the network.

Given desired output activation pattern sg(t) for each output neuron k, we
define a standard quadratic error measure in terms of the output g:

E(t)= ) (sm(t) = m(1))?
meQ@

The goal is to adjust each weight wfj (and wfm) in the network so as to minimize
the error over some time-period [T, T"]:

oy B & o
AU}ZOC— Zt—Tk ():Z (k)’
owg; = ow;
(as the error-contributions are conditionally independent).
For the output layer, we have:

OE(t) _ OE(t) 0§m(t) dxm(t)
owk, 0gm(t) 0x(t) Owk,

gm

= (8m () = G () F' (@ ()] (2),

where F'(zy,(t)) denotes the derivative 04, /0zm (t).
For weights in the hidden layer, the error-contributions become:

Z () Zaxmt yi () 0y, (t) 0x;(t)

= 6ym m(t) 6yj (t) 09;(t) 0x;(t) 6wfj
= > | Gm() —ym (1)) Zw 1 (0)yy (1)
meQ

Here, we take the transfer-function § = F(z(t)) to be piece-wise linear, with
F(x(t)) =0 for z(t) <0, and F(z(t)) ~ ax(t) otherwise; a lack of input signals
then automatically maps to a lack of output signals.

4 Experiments

We illustrate the efficacy of the derived error-backpropagation learning rule with
some examples of behaviorally relevant temporal computations. Given a de-
fined input-output relationship, we computed the respective approximation ¢(t)
with power-law kernels, obtaining corresponding input-output spike-trains. We
trained the network to minimize the error between the actual output and the
desired output, both in terms of the respective power-law kernel approximation.

In all experiments, we use a power-law kernel with 8 = 0.8 (after [10]), which
we approximate with 40 Gaussians, with centers py distributed evenly over the
log of the timeframe [5, 10000]ms, increasing variance oy as pg/5. We used a
greedy search heuristic to find the weighing of the individual gaussians such that
their sum closely approximated the desired power-law decay. The learning rate
was set at 0.01, and we considered the error over a time range of (0,2000]ms (as
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Fig. 2. Neural timers. Left: learning a 300ms delay directly from input. Top: input-
target spike pattern. Bottom: Learned response after 400 epochs, with the kernel ap-
proximation §(t) matching the target output. Target (green dashed) and internal signal
y(t) (solid black) and signal kernel approximation §(t) (dashed blue). Right: learning a
larger response at At = 1000ms, with an additional hidden neuron. Top: input-target
spike pattern. Bottom: Learned response after 900 epochs, for the hidden neuron (cen-
ter) and the output neuron (right). Shown in red is the developed temporal filter.

all relevant patterns were defined within this range). It should be noted that in
both hidden and output layer, the signal-approximation incurs a delay on the
computed signal approximation equal to the rise-time of the kernel; in all figures
(and in the error-computations), we subtracted this fixed delay for clarity. Setting
the maximum kernel height x3; = 0.1, we used a threshold ¥ = 0.5k);. Weights
were initialized such that input elicited some spikes in each hidden neuron. We
trained the networks until the error was less than one “misplaced” spike.

Spiking neuron as timer. In figure 2, we show how a single fractionally
predictive neuron can learn to give a precise delayed response. Given three in-
put spikes at the start of the trial, the neuron responds with three carefully
timed spikes some 300ms later. Such a direct input-output relation however was
not sufficient to learn a precise mapping for substantially larger delays, such as
1,000ms. In the center and right figure, we show how the addition of a hidden
neuron can help the output neuron to learn a delayed precise response. The
hidden neuron computes a broad delay of about 900ms, and the output neuron
then derives a much more precise response. Shown in red are also the effective
temporal input filters that the respective neurons develop.

Delayed Match To Sample. Many behavioral tasks in some way require
an animal to remember something it had experienced earlier: delayed match-to-
sample tasks. We taught a simple version of this task. One of two input neurons
emits a few spikes, and when the same input neuron spikes some 200ms later,
the output neuron has to respond with an additional 200ms delay (see insets in
figures 3A-D); if the other input neuron spikes, the output neuron has to remain
silent. A network using four hidden neurons can successfully learns this task
(figure 3), also for variations with more spikes and longer delays (not shown).

Delayed XOR. We were also able to train the network on various delayed
temporal XOR problems similar to those in [3] (not shown for lack of space).
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Fig. 3. Learning delayed match-to-sample. (A)-(D): the output neuron in a 2-4-1 net-
work correctly learns the spike-responses §(t) to the four input-output patterns (inset
boxes), in about 2000 epochs. (E)-(F): hidden neuron responses for patterns 3 and 4.

5 Discussion

We developed a learning algorithm for supervised learning in networks of spiking
neurons using the fractionally predictive spike-coding paradigm from [2]. This
coding paradigm allows for a natural signal encoding over multiple timescales,
consistent with the self-similar statistical properties of natural signals [22]. It also
allows for a natural reconciliation of spike-time coding and spike-rate coding as
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expressions of fractionally predictive spike-coding at different timescales. Within
this paradigm, decoding of the fractional spike-code amounts to summing power-
law kernels. As we noted in [2], such decoding allows for straightforward spectral
filtering, as such power-law kernels can be decomposed as a sum of exponential
kernels with different time-constants; spectral filtering is achieved by decoding
only certain parts of such composite kernels. The open question was whether
this could also be exploited for learning temporal patterns.

The derived error-backpropagation algorithm shows that temporal filters can
be learned in networks of fractionally predictive spiking neurons, for a number of
tasks, over behaviorally relevant time-courses. Effectively, the exponentials that
can be composed to a power-law kernel are used as time-delays. Such delays have
been explored before in the context of spike-time coding [14, 3, 18], but only over
small time-courses (tens of milliseconds), consistent with biologically observed
axonal delays between neurons. Behaviorally relevant tasks operate typically
over substantially longer timescales; and it is interesting to note that models
of reinforcement learning [20,9] in fact similarly employ neurons that are the
an array of exponentials to allow standard neural networks to learn sequential
tasks. Izhikevich furthermore showed that resonance-like input-responses can be
modeled within the standard Hodgkin-Huxley neuron [8].

Neural coding over longer timescales is implicit in the fractionally predictive
spike-coding paradigm, and corresponds at the encoding side to the physiolog-
ically well-established phenomenon of spike-rate adaptation. Our learning rule
effectively conjectures that similar multiple-timescale machinery is effective and
tunable at the receiving part of individual synapses. To some degree this must
be true, as real neurons often have complex temporal receptive field dynamics,
and many neurons exhibit sustained activity in response to a brief activation [7].

The learning rule presented here allows for learning input-output relations
over different timescales: at short timescales, we can exactly learn relative spike-
times; at longer timescales, we are no longer able to learn exact spike-times but
instead learn approximate instantaneous spike-rates.

We used a single positive threshold spiking neuron model to approximate the
internally computed signal into a sum of power-law kernels. This arrangement
by necessity cannot encode signal decreases that are faster than the decay of the
sum of power-law kernels. This could be remedied by arranging two neurons such
that the signal is effectively approximated using both a positive and a negative
threshold, as we did in [2]. We did not use such an arrangement here for three
reasons, the first being simplicity. Secondly, power-law decay of a signal is, under
certain conditions, consistent with an optimal Bayesian observer model [19], and
thirdly the corresponding asymmetric detection of signal changes up versus down
is well known in the psychophysical literature [5].

Having a standard supervised learning algorithm will allow us to further ex-
plore the fractionally predictive spike-coding paradigm in the context of recur-
rent neural networks, in particular reservoir computing. We are also working on
developing the paradigm for reinforcement learning, as that is how most animals
learn, and, as noted, that is also where the closest comparable modeling work has
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already taken place. Importantly, in the latter paradigm, methods like attention-
gated reinforcement learning on average compute the error-backpropagation gra-
dient [17], suggesting a direct link to the presented work.
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