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1

INTRODUCTION

1.1 Artificial Neural Networks

Artificial neural networks attempt to understand the essential computa-
tions that take place in the dense networks of interconnected neurons
making up the central nervous systems in living creatures (see also “On
Networks of Artificial Neurons”). Originally, McCulloch and Pitts (1943)
proposed a model based on simplified “binary” neurons, where a single
neuron implements a simple thresholding function: a neuron’s state is ei-
ther “active” or “not active”, and this is determined by calculating the
weighted sum of the states of neurons it is connected to. For this purpose,
connections between neurons are directed (from neuron i to neuron j), and
have a weight (wij). If the weighted sum of the states of the neurons i con-
nected to a neuron j exceeds some threshold, the state of neuron j is set to
active, otherwise it is not.

Remarkably, networks of such simple, connected computational elements,
can implement a range a mathematical functions relating input states to
output states, and, with algorithms for setting the weights between neu-
rons, these artificial neural networks can “learn” many such functions.

However, the limitations of these early artificial neural networks were am-
ply recognized, i.e. see Minsky and Papert (1969). To alleviate these issues,
the original binary thresholding computation in the neuron has often been
replaced by the sigmoid: the sum of the weighted input into a neuron is
mapped onto a real output value via a sigmoidal transformation-function,
thus creating a graded response of a neuron to changes in its input. Ab-
stracted in this transformation-function is the idea that real neurons com-
municate via firing rates: the rate at which a neuron generates action po-
tentials (spikes). When receiving an increasing number of spikes, a neuron
is naturally more likely to emit an increasing number of spikes itself.
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On Networks of Artificial Neurons
The human brain consists of an intricate
web of billions of interconnected cells called
“neurons”. The study of neural networks
in computer science aims to understand
how such a large collection of connected el-
ements can produce useful computations,
such as vision and speech recognition.
A “real” neuron receives pulses from many
other neurons. These pulses are processed in
a manner that may result in the generation
of pulses in the receiving neuron, which are
then transmitted to other neurons (fig. A).
The neuron thus “computes” by transform-
ing input pulses into output pulses.
Artificial Neural Networks try to capture
the essence of this computation: as de-
picted in figure B, the rate at which a neu-
ron fires pulses is abstracted to a scalar
“activity-value”, or output, assigned to the
neuron. Directional connections determine
which neurons are input to other neurons.
Each connection has a weight, and the out-
put of a particular neuron is a function of
the sum of the weighted outputs of the neurons it receives input from. The
applied function applied is called the transfer-function, F (Σ). Binary “thresh-
olding” neurons have as output a “1” or a “0”, depending on whether or not
the summed input exceeds some threshold. Sigmoidal neurons apply a sig-
moidal transfer-function, and have a real-valued output (inset fig. B, solid
resp. dotted line). Neural networks are sets of connected artificial neurons. Its
computational power is derived from clever choices for the values of the con-
nection weights. Learning rules for neural networks prescribe how to adapt
the weights to improve performance given some task. An example of a neural
network is the Multi-Layer Perceptron (MLP, fig. C). Learning rules like error-
backpropagation (Rumelhart et al., 1986) allow it to learn and perform many
tasks associated with intelligent behavior, like learning, memory, pattern recog-
nition, and classification (Ripley, 1996; Bishop, 1995).

With the introduction of sigmoidal artificial neurons, and learning rules
for training networks consisting of multiple layers of neurons (Werbos,
1974; Rumelhart et al., 1986), some of the deficiencies of the earlier neural
networks were overcome: the most prominent example was the ability to
learn to compute the XOR function in an artificial neural network.
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Since then, multi-layer networks of sigmoidal neurons have been shown
to accommodate many useful computations, such as pattern classification,
pattern recognition, and unsupervised clustering.

However, a problem referred to as “dynamic binding”, has at best re-
mained elusive to implement in neural networks. In 1949, Hebb already
hypothesized that, to achieve sufficient flexibility and productivity in a
neural network, it would be useful have the network dynamically “link”
neurons that detect different properties of an object into assemblies. The
purpose of an assembly would be to signal that its constituent neurons,
each coding for different properties, are in fact part of the same object
(Hebb, 1949). Objects composed of different “atomic” parts could thus
be efficiently detected. An example would be to have a neuron that de-
tects the color “red”, and another neuron that detects a contour “apple-
shaped”. When linked together in an assembly, these neurons would indi-
cate the presence of a “red apple”. By having neurons that can each detect
a particular “atomic” property, a linking mechanism allows the system to
be productive, in the sense that by just having a limited set of detectors for
atomic properties, any combination of these properties can be expressed:
linking separate “red”, “green”, “yellow”, “apple”, “banana” and “pear”
detectors allows the expression of nine differently colored objects.

In the presence of a single object composed of a number of properties, a
simple “on-off” detector-signal for each property is sufficient to correctly
signal the particular composition. However, in the presence of multiple
objects this simple compositional signaling scheme is ambiguous (von der
Malsburg, 1999), and more powerful means of “linking” atomic elements
into composite structures (like “red apple”) in neural networks have so far
remained elusive at best (von der Malsburg, 1999), even though the use-
fulness of such schemes has been well recognized: e.g. for vision (Rosen-
blatt, 1961), speech recognition (von der Malsburg & Schneider, 1986), and
the representation and manipulation of symbolic information (von der
Malsburg, 1999). This led some even to arguing that the representation
of compositional information is impossible in neural networks (Fodor &
Pylyshyn, 1988).

The starting point of this thesis is the notion originally put forward by
Von der Malsburg (1981), that a novel type of neural network, based on
more detailed models of actual “real”, spiking neurons, could help solve
the binding-problem. Von der Malsburg proposed that in order to signal
the binding of neurons coding for features that belong to the same ob-
ject, these neurons would synchronize the times at which they emit spikes
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(the “synchrony-hypothesis”). Neurons coding for features belonging to
different objects would then fire out of phase, allowing for multiple com-
positional objects to be represented simultaneously. The discovery of ap-
parently assembly-dependent correlations between neurons by Gray et al.
(1989) was interpreted as support for this idea, and much research into the
temporal properties of spiking neurons has ensued since, both in neuro-
science, as well as in computational modeling.

Although the synchrony-hypothesis has since come under increasing crit-
icism (Shadlen & Movshon, 1999), the principal findings of research are
indicating that the precision with which single spikes are emitted by bi-
ological neurons can be quite high, and it now seems very plausible that
the timing of individual spikes conveys information to other neurons (see
also chapter 7).

These findings have led to the proposal of more refined models of neu-
ral computation, such as the Asynchronous Spiking Neural Network by
Maass (1996, 1997) (see also “On Artificial Spiking Neurons”). In this type
of network, the precise process of the generation of a single action poten-
tial by a spiking neuron is modeled. Maass (1997) showed that when for
such spiking neurons the input consists of asynchronously timed spikes
(say a set of spikes {ti, tj , . . . , tk}, with ti the time of a spike from input
neuron i), the precise timing of the output spike can be interpreted as a
computation on the input, just like for sigmoidal neurons. Theoretically,
spiking neurons can perform very powerful computations with precisely
timed spikes, as computational devises have been shown to be at least as
computationally powerful as the sigmoidal neurons traditionally used in
artificial neural networks (Maass, 1997).

1.2 Computing with asynchronous spike-times

The idea of neural computation with precisely timed spikes in networks
of asynchronous spiking neurons is treated in detail in this thesis. We
develop and extend algorithms that allow Asynchronous Spiking Neu-
ral Networks (ASNN’s) to compute in ways traditionally associated with
artificial neural networks, like pattern recognition and unsupervised clus-
tering. Additionally, we investigate how spiking neurons could be used
for solving the binding-problem: we propose a framework for dynamic
feature binding based on the properties of distributed coding with popula-
tions of spiking neurons, and we investigate the most likely nature of the
synchrony measured in biological systems.
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On Artificial Spiking Neurons
As an artificial neuron models the relation-
ship between the inputs and the output of
a neuron, artificial spiking neurons describe
the input in terms of single spikes, and how
such input leads to the generation of output
spikes. The transmission of a single spike
from one neuron to another is mediated by
synapses at the point where the two neurons
interact. An input, or presynaptic spike ar-
rives at the synapse, which in turn releases
neurotransmitter which then influences the state, or membrane potential of the
target, or postsynaptic neuron. When the value of this state crosses some thresh-
old ϑ, the target neuron generates a spike, and the state is reset by a refractory
response. The size of the impact of a presynaptic spike is determined by the
type and efficacy (weight) of the synapse (see accompanying figure). In biol-
ogy, neurons have one of two types of synapses: excitatory, where the synapses
release neurotransmitter that increases the membrane potential of a target cell,
and inhibitory synapses, that decrease this potential.
In Asynchronous Spiking Neural Networks, a model of this chain of events is
taken as the transformation function of the neuron. In particular, given a set of
precisely timed input spikes, say a set of input spikes {t(1)

i , t
(1)
j , . . . , t

(1)
k }, with

t
(n)
i the time of the nth spike from input neuron i, the time of the output spike

is a function of these input spike-times. Changing the weights of the synapses
alters the timing of the output spike for a given temporal input pattern. We can
then interpret the timing of spikes in terms of neural computation (Thorpe &
Gautrais, 1997; Maass & Bishop, 1999). In this thesis in particular, we interpret
the value of input spikes relative to the first spike in a pattern, that is: early and
late spike are associated with respectively a “high” and “low” value. Contrary
to traditional neural networks, for spiking neurons not all input is equal: an
“early” plus a “late” spike is not equal to two “medium” spikes: whether or
not spikes arrive simultaneously can make a significant difference. This prop-
erty of spiking neurons might allow more refined computations, as outlined in
this introduction. Another important property of such spiking neurons is that
as the input pattern is only defined in relative spike times, the computation in
a target neuron can be considered scale-invariant: if say an input pattern is de-
fined by spikes t1 and t2, a less salient version of this pattern would encoded
by “later” input spikes t1 + ∆ and t2 + ∆. Since a receiving neuron is only
triggered by the relative timings, it is effectively invariant to stimulus strength.

In Chapter 2, we present methods to enhance the precision, capacity and
clustering capability of Asynchronous Spiking Neural Networks akin to
(Natschläger & Ruf, 1998), thus overcoming limitations associated with
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the original network architecture. We encode continuous input variables
each with a group of neurons (population coding) where the input neurons
perform a transformation of the input value with Gaussian-type kernels.
We consider high dimensional datasets, and for such datasets, we encode
each input dimension separately. This yields an efficient, linear scaling of
the required number of input neurons with increasing dimensionality of
the input data.

With such encoding, we show that a feedforward, MLP-like spiking neural
network is able to correctly cluster a number of datasets with relatively
few spiking neurons, while enhancing cluster capacity and precision. The
proposed encoding allows for the reliable and flexible detection of clusters
in the data. By extending the network to multiple layers, we show how the
network can correctly separate complex clusters by synchronizing in the
hidden layers the neurons coding for parts of the same cluster. Together,
these results demonstrate that asynchronous spiking neural networks can
effectively perform unsupervised clustering of real-world data.

In Chapter 3, we derive a learning algorithm that changes the weights
of an asynchronous spiking neural network by determining the exact er-
ror that the network makes on each example of a particular task (super-
vised learning). The algorithm is based on error-backpropagation (Wer-
bos, 1974), and is derived analogously to that by Rumelhart et al. (1986)
for sigmoidal neural networks. To overcome the discontinuous nature of
spiking neurons, we approximate the point-process of spike-generation.
We show that the algorithm is capable of learning complex non-linear
tasks in asynchronous spiking neural networks with similar accuracy as
traditional sigmoidal neural networks. This is demonstrated experimen-
tally for the classical XOR classification task, as well as for a number of
real-world datasets.

Chapter 4 is concerned with the design of a neural network architecture
that is able to efficiently detect conjunctions of primitives (features) any-
where on a – large – input grid. This is a particular form of the binding-
problem previously explained.

We propose a framework that can detect multiple conjunctions of features
on an input-grid simultaneously, in an efficient, position-invariant man-
ner. Our approach is based on the use of the properties of distributed
representations in local nodes of the network: local distributed representa-
tions. Distributed representations refer to the idea that a collection of rela-
tively a-specific features, when taken together, can be considered a unique
identifier for an object that exhibits these features: features like a bit red,
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somewhat green, spherical like, and shiny, could fairly accurately identify an
apple for instance.

Local distributed representations allow us to design a-specific detectors
that locally detect the presence of a conjunction, like a color, and a shape.
This local conjunction is then encoded in the distributed output of the lo-
cal conjunction-detector. The outputs of all local detectors are aggregated
in respective global, position-invariant detector, from which the specific
feature-conjunctions are detected.

We show that this framework can be implemented in a feed-forward asyn-
chronous spiking neural network, and that this network is capable of cor-
rectly detecting up to four simultaneously present feature-conjunctions.

Chapter 5 gives a formal definition of the framework introduced in Chap-
ter 4, for neural nodes that process vector-like spiking activity. A set of
n local spiking neurons each emitting a spike-train is defined as a tuple
of spike-trains. Operators acting on this data-structure are defined for
feature-detection, conjunction-detection, aggregation of multiple tuples to
obtain respective position-invariant detector, and the feature-conjunction
detector. The formal framework is illustrated in an example outlining the
formal procedure for detecting a feature conjunction.

In Chapter 6, we examine the relationship between the expected spiking
behavior of a group of spiking neurons, and a value that is typically mea-
sured in electro-physiological experiments: the pair-wise correlation.

It has been proposed that the precisely timed synchronous firing of neu-
rons in the cortex could convey important information like whether differ-
ent neurons are responding to the same object (von der Malsburg, 1981).
Electro-physiological experiments have been argued to support this no-
tion (Singer & Gray, 1995). These experiments recorded the correlation ρ
between the firing-times of pairs of neurons. Such pair-wise correlations
between neurons however do not uniquely determine the type of synchro-
nized firing in the group of neurons as a whole.

We develop a framework in order to calculate the amount of synchronous
firing that should exist in a neural network in which the (identical) neu-
rons have known pair-wise correlations and higher order correlations are
absent. We find that for the distribution with maximal entropy, events in
which a large proportion of the neurons fire synchronously should exist,
even for small (ρ < 0.05) values of the pair-wise correlation. We show that
network simulations also exhibit these highly synchronous events in the
case of weak pair-wise correlations.
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In Chapter 7, we consider the biological background that serves as moti-
vation for studying asynchronous spiking neural networks. In particular,
we find that recent studies of neural information processing increasingly
suggest that the precise timing of single spike is important in neural sys-
tems.

The fact that real neurons communicate via action-potentials – or spikes –
is effectively undisputed. Whether or not these neurons – or neural sys-
tems in general – exhibit use the timing of single spikes is a fundamen-
tal question that is much debated, but has so far remained unresolved
(Mainen & Sejnowski, 1995; Singer, 1999). Neuro-physiological experi-
ments with neurons cultured in a dish have shown that the integration
of impinging spikes in individual neurons is in principle reliable enough
to support precise spike-time coding (Mainen & Sejnowski, 1995), and
there are well known examples of specialized neural systems in animals
for which the relevance of precise spike-times has been clearly demon-
strated. Prominent examples are the electro-sensory system of the electric
fish (Heiligenberg, 1991), the echolocation-system of bats (Kuwabara &
Suga, 1993), and the auditory system of barn-owls (Carr & Konishi, 1990).
Recent neurophysiological work has also uncovered that in the hippocam-
pus of the brain, a precisely relationship can be found between the firing-
rate of a neuron, and the timing of the first spike relative to the (slow) theta
rhythm oscillations of the brain. The precision of these spikes is compa-
rable to those we employ in our asynchronous spiking neural networks.
It is proposed that in particular in the hippocampus this conversion of
rate coding into temporal coding enables the compression of temporal se-
quences on a long (>1000ms) time scale into temporal spike-time patterns
on the scales we consider (≈ 10ms).

As demonstrated by these examples, and others summarized in Chapter
7, there are most certainly cases where the precise timing of single spikes
is important in the neural systems of animals. Precise spike-times seem to
be found in particular when the relevant information in the animal’s envi-
ronment has a high temporal resolution (30-300ms). Notably, when neural
systems that have to process information from such a fast environment are
studied in an artificially slow environment, the temporal precision of sin-
gle spikes is quickly lost, e.g. (de Ruyter van Steveninck, Borst, & Bialek,
2001).

From the collected evidence, the prediction seems to emerge that fast neu-
ral systems use fast neural coding, where the precise timing of single
spikes is important. Tellingly, the human visual system has been shown to
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be capable of performing very fast classification (Thorpe, Fize, & Marlot,
1996), where a participating neuron can essentially fire at most one spike.
On the time-scales involved, the relevant input of neurons further along
the processing pathway thus consists of at most one spike per input neu-
ron. The speed involved in decoding auditory information, and even the
generation of speech also suggest that most crucial neural systems of the
human brain operate fast.

These findings are only gradually altering the traditional belief that neu-
ronal firing rate is the main means by which neurons communicate infor-
mation. The success of traditional artificial neural networks that model
firing-rates clearly contributes to this persistent notion. We demonstrate
in this thesis that spiking neurons operating on precisely timed spikes can
perform essentially the same types of computation as traditional artificial
neural networks, and we also propose an architecture based on spiking
neural networks that can perform computations that are particularly hard
to implement in traditional, sigmoidal artificial neural networks which
merely model neuronal firing-rates.
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UNSUPERVISED CLUSTERING
WITH SPIKING NEURONS BY

SPARSE TEMPORAL CODING AND
MULTI-LAYER RBF NETWORKS

ABSTRACT We demonstrate that spiking neural networks
encoding information in the timing of single spikes are capa-
ble of computing and learning clusters from realistic data. We
show how a spiking neural network based on spike-time cod-
ing and Hebbian learning can successfully perform unsuper-
vised clustering on real-world data, and we demonstrate how
temporal synchrony in a multi-layer network can induce hier-
archical clustering. We develop a temporal encoding of con-
tinuously valued data to obtain adjustable clustering capacity
and precision with an efficient use of neurons: input variables
are encoded in a population code by neurons with graded and
overlapping sensitivity profiles. We also discuss methods for
enhancing scale-sensitivity of the network and show how the
induced synchronization of neurons within early RBF layers al-
lows for the subsequent detection of complex clusters.

2.1 Introduction

Hopfield (1995) presents a model of spiking neurons for discovering clus-
ters in an input space akin to Radial Basis Functions. Extending on Hop-
field’s idea, Natschläger and Ruf (1998) propose a learning algorithm that
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performs unsupervised clustering in spiking neural networks using spike-
times as input. This model encodes the input patterns in the delays across
its synapses and is shown to reliably find centers of high-dimensional clus-
ters. However, as we argue in detail in section 2.2, this method is limited
in both cluster capacity as well as in precision.

We present methods to enhance the precision, capacity and clustering ca-
pability of a network of spiking neurons akin as in (Natschläger & Ruf,
1998), in a flexible and scalable manner, thus overcoming limitations asso-
ciated with the network architecture. Inspired by the local receptive fields
of biological neurons, we encode continuous input variables by a popula-
tion code obtained from neurons with graded and overlapping sensitivity
profiles. In addition, each input dimension of a high dimensional dataset
is encoded separately, avoiding an exponential increase in the number of
input neurons with increasing dimensionality of the input data. With such
encoding, we show that the spiking neural network is able to correctly
cluster a number of datasets at low expense in terms of neurons while en-
hancing cluster capacity and precision. The proposed encoding allows for
the reliable detection of clusters over a considerable and flexible range of
spatial scales, a feature that is especially desirable for unsupervised classi-
fication tasks as scale-information is a-priori unknown.

By extending the network to multiple layers, we show how the tempo-
ral aspect of spiking neurons can be further exploited to enable the correct
classification of non-globular or interlocking clusters. In a multi-layer RBF
network, it is demonstrated that the neurons in the first layer center on
components of extended clusters. When all neurons in the first RBF layer
are allowed to fire, the (near) synchrony of neurons coding for nearby com-
ponents of the same cluster is then distinguishable by a subsequent RBF
layer, resulting in a form of hierarchical clustering with decreasing granu-
larity. Building on this idea, we show how the addition of lateral excitatory
connections with a SOM-like learning rule enables the network to correctly
separate complex clusters by synchronizing the neurons coding for parts
of the same cluster. Adding lateral connections thus maintains the low
neuron count achieved by coarse coding, while increasing the complexity
of classifiable clusters.

Summarizing, we show that temporal spike-time coding is a viable means
for unsupervised computation in a network of spiking neurons, as the net-
work is capable of clustering realistic and high-dimensional data. Ad-
justable precision and cluster capacity is achieved by employing a 1-
dimensional array of graded overlapping receptive fields for the encoding
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of each input variable. By introducing a multi-layer extension of the archi-
tecture we also show that a spiking neural network can cluster complex,
non-Gaussian clusters. Combined with our work on supervised learn-
ing in spiking neural networks (chapter 3), these results show that single
spike-time coding is a viable means for neural information processing on
real-world data within the novel paradigm of artificial spiking neural net-
works.

This chapter is organized as follows: we describe the spiking neural net-
work and limitations in section 2.2. In section 2.3 we introduce a means of
encoding input-data to overcome these limitations, and clustering exam-
ples using this encoding are given in section 2.4. In section 2.5 we show
how the architecture can be extended to a multi-layer RBF network capa-
ble of hierarchical clustering, and in section 2.6 we show how the addition
of lateral connections enables the network to classify more complex clus-
ters via synchronization of neurons within an RBF layer. A discussion of
the results and conclusions are given in section 2.7.

2.2 Networks of delayed spiking neurons

In this section, we describe the spiking neural network as introduced for
unsupervised clustering in (Natschläger & Ruf, 1998), as well as the results
and open questions associated with this type of network.

The network architecture consists of a feedforward network of spiking
neurons with multiple delayed synaptic terminals (figure 2.1). As briefly
explained in chapter 1, spiking neurons generate action potentials, or
spikes, when the internal neuron state variable, called ‘membrane poten-
tial’, crosses a threshold ϑ. The relationship between input spikes and the
internal state variable is described by the Spike Response Model (SRM), as
introduced by Gerstner (1995). Depending on the choice of suitable spike-
response functions, one can adapt this model to reflect the dynamics of a
large variety of different spiking neurons.

Formally, a neuron j, having a set Γj of immediate predecessors (‘pre-
synaptic neurons’), receives a set of spikes with firing times ti, i ∈ Γj .
Any neuron generates at most one spike during a simulation interval (the
presentation of an input pattern), and fires when the internal state variable
reaches a threshold ϑ. The dynamics of the internal state variable xj(t) are
determined by the impinging spikes, whose impact is described by the
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Figure 2.1: (a) Network connectivity and a single connection composed of mul-
tiple delayed synapses. Neurons in layer J receive connections from neurons
Γj in layer I . Inset: a single connection between two neurons consists of m de-
layed synaptic terminals. A synaptic terminal k is associated with a weight wkij ,
and delay dk. A spike from neuron i thus generates m delayed spike-response
functions (ε(t− (ti + dk)), the sum of which generates the membrane-potential in
neuron j. (b) Graph of the learning function L(∆t). The parameter ∆t denotes
the time-difference between the onset of a PSP at a synapse and the time of the
spike generated in the target neuron.

spike-response function ε(t) weighted by the synaptic efficacy (“weight”)
wij :

xj(t) =
∑

i∈Γj

wijε(t− ti). (2.1)

In this chapter, all weights are strictly positive (excitatory), in other chap-
ters, we take some neurons to be excitatory, and some to be inhibitory,
meaning that the connections projecting from these neurons all have
strictly positive, respectively strictly negative weights.

The spike-response function ε(t− ti) in (2.1) models how the arrival of a
single (unweighted) spike changes the membrane-potential of the target
neuron as a function of time-since-impact. This function is referred to as
the post-synaptic potential (PSP). The height of the PSP is modulated by
the synaptic weight wij to obtain the effective post-synaptic potential at
a neuron j due to a spike from neuron i. The spike-response function as
used in our experiments is defined in (2.3).

In an extension on the basic spiking neuron model described above, an
individual connection consists of a fixed number of m synaptic terminals,
where each terminal serves as a sub-connection that is associated with a
different delay and weight (after (Natschläger & Ruf, 1998), see also figure
2.1A, inset). The delay dk of a synaptic terminal k is defined by the dif-
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ference between the firing time of the pre-synaptic neuron, and the time
the post-synaptic potential starts rising . We describe a pre-synaptic spike
at a synaptic terminal k as a PSP of standard height with delay dk. The
unweighted contribution yki (t) of a single synaptic terminal to the state
variable is then given by

yki (t) = ε(t− ti − dk), (2.2)

with ε(t) a spike-response function shaping a PSP, with ε(t) = 0 for t < 0.
The time ti is the firing time of pre-synaptic neuron i, and dk the delay
associated with the synaptic terminal k. The spike-response function de-
scribing a standard PSP is of the form:

ε(t) =
t

τ
e1− t

τ , (2.3)

modeling a simple α-function (e.g. (Natschläger & Ruf, 1998)) for t >
0 (else 0), thus implementing a leaky-integrate-and-fire spiking neuron.
The parameter τ models the membrane potential decay time constant that
determines the rise and decay-time of the PSP.

Extending (2.1) to include multiple synapses per connection and inserting
(2.2), the state variable xj of neuron j receiving input from all neurons i can
then be described as the weighted sum of the pre-synaptic contributions:

xj(t) =
∑

i∈Γj

m∑

k=1

wkijy
k
i (t), (2.4)

where wkij denotes the weight associated with synaptic terminal k . The
firing time tj of neuron j is determined as the first time when the state
variable crosses the threshold ϑ: xj(t) ≥ ϑ. Thus, the firing time tj is a
non-linear function of the state-variable xj : tj = tj(xj). The threshold ϑ is
constant and equal for all neurons in the network.

Input patterns can be encoded in the synaptic weights by local Hebbian
delay-learning where, after learning, the firing time of an output neuron
reflects the distance of the evaluated pattern to its learned input pattern
thus realizing a kind of RBF neuron (Natschläger & Ruf, 1998). For unsu-
pervised learning, a Winner-Take-All learning rule modifies the weights
between the input neurons and the neuron first to fire in the output layer
using a time-variant of Hebbian learning: if the start of a PSP at a synapse
slightly precedes a spike in the output neuron, the weight of this synapse is
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increased, as it had significant influence on the spike-time via a relatively
large contribution to the membrane potential. Earlier and later synapses
are decreased in weight, reflecting their lesser impact on the output neu-
ron’s spike time. For a weight with delay dk from neuron i to neuron j we
use

∆wkij = ηL(∆t) = η(1− b)e−
(∆t−c)2
β2 + b, (2.5)

after (Natschläger & Ruf, 1998) (depicted in figure 2.1b), where the param-
eter b determines the effective size of the integral over the entire learning
window (usually negative), β sets the width of the positive part of the
learning window, and c determines the position of this peak. The value
of ∆t denotes the time difference between the onset of a PSP at a synaptic
terminal and the time of the spike generated in the winning output neu-
ron. The weight of a single terminal is limited by a minimum and maxi-
mum value, respectively 0 and wmax, where learning drives the individual
weights of the synaptic terminals to one of the extremes.

If an input neuron were to precede the firing of the output-neuron by a
fixed amount ∆tij , the set of connecting delayed terminals that is posi-
tively reinforced is determined by the width of the positive part of the
learning window: consider a single connection with n delays, {d1 . . . dn}.
For an input with a fixed ∆tij , the width of the learning window, as deter-
mined by β, will increase the weights of a minimal number of m consec-
utive delayed synaptic weights: {dj . . . dj+m} (for some j). When learn-
ing with this time difference ∆tij is repeated, ultimately all m weights
are driven to wmax. The process of learning a cluster thus results in a
minimal value for the effective weight (efficacy) between an input neu-
ron that codes for part of a cluster, and the corresponding output neuron,
both in length of time, as well as in size. Larger efficacies can be learned
when a cluster extends over a larger temporal width (i.e., ∆tij varies over
some range [ts, ts+u]), and more weights are thus driven to the maximal
value. If the temporal variation becomes too large, the average delayed
weight adjustment due to (2.5) becomes negative, as the integral over the
learning-window is then negative, and all weights converge to zero. This
effect allows neurons in the network to ignore inputs that only contribute
“noise” (see also (Natschläger & Ruf, 1998)). This dynamic recruitment of
delayed terminals negates the need for overall weight normalization (see
also the delay selection in (Gerstner et al., 1996)).

An input (data-point) to the network is coded by a pattern of firing times
within a coding interval T∆ and each input neuron is allowed to fire at
most once during this interval. In our experiments, following (Natschläger
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& Ruf, 1998), we set T∆ to [0 – 9] ms and the delays dk to {1, . . . , 15} [ms]
in 1 ms intervals (m = 16). For the experiments, the parameter values for
the learning function L(∆t) are set to: b = −0.2, c = −2.85, β = 1.67, and
η = 0.0025. We use the α-function with τ = 3.0 ms. The parameter values
are taken from (Natschläger & Ruf, 1998); deviations from these defaults
in experiments are noted.

To clarify the rationale behind the selection of the respective parame-
ters, we briefly discuss their effects. Contrary to the experiments in
(Natschläger & Ruf, 1998), the majority of the input-neurons in our net-
work does not fire: we found that a larger value of c was required to se-
lect a stable subset of synaptic terminals. Values between approximately 2
and 3(ms) yielded stable results. For smaller and in particular larger val-
ues, the selected delayed terminals tended to drift either to zero or out of
range, effectively negating the connection. In the experiments, any value
of β that selected a minimum of three consecutive delayed terminals typ-
ically yielded better results than other settings. Provided that the value c
results in stable weight selection, the values of b and β determine the min-
imal extent of the clusters learned. Despite this minimal extend, we do
not lose generality with these fixed parameters, provided that we use the
input-encoding as outlined in Section 2.3.

Previous Results and Open Questions. In Natschläger and Ruf (1998) it
was shown that artificially constructed clusters of inputs firing within the
encoding interval are correctly clustered in an unsupervised manner, but
the type of clusters they consider limits applicability. ForN input neurons,
a cluster C in (Natschläger & Ruf, 1998) is of dimensionality M ≤ N ,
with M -dimensional location {s1, . . . sM}, si being the spike-time of input
neuron i. For such a setup it was found that the RBF neurons converged
reliably to the centers of the clusters, also in the presence of noise and
randomly spiking neurons.

In practice, problems arise when applying this scheme to more realistic
data. A first issue concerns the coding of input: following the aforemen-
tioned method, we were not able to successfully cluster data containing
significantly more clusters than input-dimensions, especially in the case of
low dimensionality. This problem is associated with the minimum width β
of the learning function L(∆t), leading to a fixed minimal spatial extent of
a learned cluster, potentially (much) larger than the actual cluster size. In
fact, for 2-dimensional input containing more than two clusters, the above
algorithm failed in our experiments for a wide range of parameters. Fur-
thermore, the finite width of the learning rule effectively inhibits the detec-
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tion of multiple nearby clusters of smaller size relative to the width of the
learning function, requiring advance knowledge of the effective cluster-
scale. Hence, to achieve practical applicability, it is necessary to develop
an encoding that is scalable in terms of cluster capacity and precision and
that is also efficient in terms of the number of input-neurons required. In
the following section, we present improvements to the architecture that
address these issues.

2.3 Encoding continuous input variables in spike-times

To improve the encoding precision and clustering capacity, we introduce
a method for encoding input-data by population coding. The aim of this
encoding is to increase the temporal distance between the temporal input-
patterns associated with respective (input) data-points. Since we use de-
layed terminals with a resolution of 1 ms, the discriminatory power of the
unsupervised learning rule is naturally limited to approximately this reso-
lution. The encoding increases the temporal distance between points, and
thus the separability of clusters. Although our encoding is simple and el-
egant, we are not aware of any previous encoding methods for transform-
ing continuous data into spike-time patterns and therefore, we describe
the method in detail.

As a means of population coding, we use multiple local receptive fields to
distribute an input variable over multiple input neurons. Such a popula-
tion code where input variables are encoded with graded and overlapping
activation functions is a well-studied method for representing real-valued
parameters (Eurich & Wilke, 2000; Baldi & Heiligenberg, 1988; Snippe &
Koenderink, 1992; Zhang et al., 1998; Zhang & Sejnowski, 1999; Pouget
et al., 1999). In these studies, the activation function of an input-neuron
is modeled as a local receptive field that determines the firing rate. A
translation of this paradigm into relative firing-times is straightforward:
an optimally stimulated neuron fires at t = 0, whereas a value up to say
t = 9 is assigned to less optimally stimulated neurons (depicted in figure
2.2).

For actually encoding high-dimensional data in the manner described
above, a choice has to be made with respect to the dimensionality of the
receptive-fields of the neurons. We observe that the least expensive en-
coding in terms of neurons is to independently encode each of the respec-
tive input variables: each input-dimension is encoded by an array of 1-
dimensional receptive fields. Improved representation accuracy for a par-
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Figure 2.2: Encoding with overlapping Gaussian receptive fields. An input value
a is translated into firing times for the input-neurons encoding this input-variable.
The highest stimulated neuron (5), fires at a time close to 0, whereas less stimu-
lated neurons, as for instance neuron 7, fire at increasingly later times.

ticular variable can then be obtained by sharpening the receptive fields
and increasing the number of neurons (Zhang & Sejnowski, 1999). Such
coarse coding has been shown to be statistically bias-free (Baldi & Heili-
genberg, 1988) and in the context of spike-time patterns we have applied
it successfully to supervised pattern classification in spiking neural net-
works (Bohte, Kok, & La Poutré, 2002b).

In our experiments, we determined the input ranges of the data, and en-
coded each input variable with neurons covering the whole data-range.
For an input variable n with minimum value Inmin and maximum value
Inmax, m neurons were used with Gaussian receptive fields. For the
ith neuron coding for variable n, the center of the Gaussian was set to
Inmin + 2i−3

2 ·
{Inmax−Inmin}

m−2 (m > 2), positioning one input neuron outside the

data-range at both ends. The width was set to σ = 1
γ
{Inmax−Inmin}

m−2 (with
m > 2). For γ, a range of values was tried, and, unless stated otherwise,
for the experiments a value of 1.5 was used, as it produced the best results.
For each input pattern, the response values of the neurons encoding the
respective variables were calculated, yielding N ×m(n) values between 0
and 1 (N : dimension of data, m(n): number of neurons used to encode
dimension n). These values were then converted to delay times, associat-
ing t = 0 with a 1, and increasingly later times up to t = 10 with lower
responses. The resulting spike-times were rounded to the nearest internal
time-step, and neurons with responses larger than t = 9 were coded to not
fire, as they were considered to be insufficiently excited. The encoding of
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a single input-value a by receptive field population coding is depicted in
figure 2.2.

The temporal encoding of input-variables thus obtained has two impor-
tant properties: by assigning firing times to only a small set of significantly
activated neurons we achieve a sparse coding, enabling us to process
only a list of “active” connections, instead of all connections (event-based
network simulation, Delorme, Gautrais, VanRullen, and Thorpe (1999)).
Also, by encoding each variable independently, we achieve a coarse cod-
ing where each variable can be encoded by an optimal number of neurons
while maintaining an efficient use of neurons.

2.4 Clustering with Receptive Fields

We investigate the clustering capabilities of spiking neural networks
where the input is encoded with receptive fields. With such encoding,
each data-point is translated into a multi-dimensional vector of spike-
times (spike-time vector). Clustering relies on a single output neuron fir-
ing earlier than the other output neurons for data-points from a single
cluster. The optimal activation of such an output neuron is achieved when
the spikes of input neurons arrive at the output neuron simultaneously.
This is what the Hebbian learning-rule (2.5) accomplishes, provided that
the input lies within a particular cluster. If the distance between clusters is
sufficient, the winner-takes-all competition between output neurons tunes
these output neurons to the spike-time vectors associated with the centers
of the respective clusters. The activation of a neuron for a given pattern
then depends on the distance between the optimal and actual spike-time
vector, resulting in increasingly later firing times (or none) with increasing
distance from the cluster-center. We will use this diverging temporal firing
pattern later for subsequent multi-layer clustering.

The encoding described in section 2.3 enhances capacity and precision as
compared to the original architecture in (Natschläger & Ruf, 1998). In this
section, we show this for a number of artificial and real-world datasets,
both for low- as well as for high-dimensional input. In section 2.4.1,
we show examples of improved capacity and precision, in section 2.4.2
a method for enhanced scale-sensitivity is shown, and in section 2.4.3 a
examples of real-world clustering tasks are given.
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2.4.1 Capacity In this section, we report on experiments that show how
the outlined encoding allows for increased capacity, e.g. by encoding vari-
ables with more neurons, many different clusters can be separated.

In experiments, we cluster input consisting of two separately encoded
variables, and found that a network with 24 input neurons (each vari-
able encoded by 12 neurons) was easily capable of correctly classifying
17 evenly distributed clusters, demonstrating a significant increase in the
clustering capacity (figure 2.3a). After presenting 750 randomly chosen
data-points, all 1275 cluster points were correctly classified. In figure 2.3b
the correct clustering of less regular input is shown. In general, we found
that for such single layer RBF networks, capacity was only constrained by
cluster separability. By decreasing the width of the receptive fields while
increasing the number of neurons, increasingly narrowly separated clus-
ters could be distinguished (just as predicted by theoretical work on the
properties of receptive field encodings, e.g. (Zhang & Sejnowski, 1999)).

Figure 2.3: (a) Some 17 clusters in 2-d space, represented by two one-dimensional
input variables, each variable encoded by 12 neurons (5 broadly tuned, 7 sharply
tuned).(b) Classification of 10 irregularly spaced clusters. For reference, the dif-
ferent classes as visually extractable were all correctly clustered, as indicated by
the symbol/graylevel coding.

2.4.2 Scale sensitivity Encoding input variables with local receptive
fields incorporates an inherent choice of spatial scale sensitivity by fixing
the width of the Gaussian; using a mix of neurons with varying receptive
field widths proved to significantly enhance the range of detectable detail.
In experiments, we found that the use of a mixture of receptive field sizes
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increased the range of spatial scales by more than an order of magnitude
on a number of artificially generated datasets, and in general the cluster-
ing reliability improved.

Figure 2.4: (a) Three clusters (upper left and upper right) of different scale with
noise (crosses). (b,c) Insets: actual classification. Respective classes are marked
with diamonds, squares, and circles. Noise outside the boxes or points marked
by x’s did not elicit a spike and were thus not attributed to a class. Side panels:
graded receptive fields used.

The multi-scale encoding was implemented by assigning multiple sets of
neurons to encode a single input dimension n. For different scales, say
I and J , each scale was encoded with increasingly less neurons, scale I
encoded with ni neurons and scale J with nj neurons, with ni < nj . As
a set of neurons is evenly spread out over the data range, the width of
the receptive field scales inversely proportional to the number of neurons,
achieving multi-scale sensitivity as illustrated in the clustering example
in figure 2.4. Data consisted of one large (upper left) and two small (up-
per right) Gaussian clusters. The input variables were encoded with 15
neurons for the variable along the x-axis, and 10 input neurons for the y-
variable. These neurons were given a mixture of receptive field widths, 3
broad and 7 tight Gaussians for the y-variable, and 5 broad and 10 tight
Gaussians for the x-variable (depicted in the side panels). The width σt of
the tight Gaussians was set to 1

γ (Imax − Imin)/(m− 2), with γ = 1.5. The
width σb of the broad Gaussians was set to 1

γ (Imax − Imin)/(m+ 1), with
γ = 0.5. This results in widths of respectively σb = 4.5 and σt = 1.2 (y-axis),
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and σb = 3 and σt = 0.5 (x-axis). The tight Gaussians were distributed
along the respective axes as outlined in section 2.3, the broad Gaussians
were all evenly placed with their centers inside the respective data-ranges,
with center i placed at Inmin + i · {I

n
max−Inmin}
m+1 . Note that the width of the

small clusters is still substantially smaller than the receptive field sizes of
the tight Gaussians. As the spike-time vectors for a particular data-point
are derived from the activation values of the population of neurons, the
spike-time vectors corresponding to the respective cluster centers are still
sufficiently distant to make discrimination possible.

The learning-rule successfully centered the output-neurons on the clus-
ters, even though the large cluster is almost an order of magnitude larger
than the two small clusters combined. When using a uniform receptive
field size, the same size network often failed for this example, placing
two neurons on the large cluster and one in between the two small clus-
ters. Similar configurations with other datasets showed the same behavior,
demonstrating increased spatial scale sensitivity when encoding the input
with multiple sets of receptive field sizes.

In an unsupervised setting, scale is typically not, or not well, known (e.g.
(Guedalia, London, & Werman, 1999)). Encoding the input with a mixture
of receptive widths thus adds multi-scale sensitivity while maintaining the
network architecture and learning rule.

2.4.3 Clustering of realistic data Good results were also obtained
when classifying more realistic and higher dimensional data. As an ex-
ample of relatively simple but realistic data, we clustered Fisher’s 4-
dimensional Iris data-set. The input was encoded in 4× 8 input neurons,
classification yielded 92.6 ± 0.9 % correct classification (over 10 runs, with
1 failing clustering removed and with parameter settings as outlined in
section 2.2). Alternative clustering methods, like k-means1 and a Self-
Organizing Map (SOM)2, yielded somewhat worse results, see table 2.1.
Since our SOM and k-Means methods can probably be improved upon,
this result indicates that the clustering capability of the RBF network is at
least competitive with similar methods.

To assess the feasibility of using the RBF network for clustering in high-
dimensional data, a number of artificial data-sets (10-D+) were generated

1from SOMToolbox at www.cis.hut.fi/projects/somtoolbox/.
2from Matlab R12.
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Iris clustering
method error training-set

Spiking RBF 92.6% ± 0.9%
k-Means 88.6% ± 0.1%

SOM 85.33% ± 0.1%

Table 2.1: Unsupervised clustering of Fisher’s Iris-dataset. The k-Means method
was set to k = 3, SOM was run with 3 output neurons.

(not shown). In all experiments, the spiking RBF network correctly classi-
fied these datasets.

To show the viability of clustering with spiking neural networks on a more
“real-life” unsupervised clustering task, we trained the network to classify
a set of remote sensing data. This task is a more realistic example of un-
supervised clustering in the sense that the data consists of a large number
of data-points, has non-Gaussian classes, and probably contains consid-
erable noise. The distribution of the data-points over the classes is also
ill-balanced: some classes have many data-points and others only a few
(e.g. grasslands vs. houses). As an example, we took a 103× 99 = 10197
data-points of the full 3-band RGB image shown in figure 2.5a, and com-
pared the classification obtained by the RBF network of spiking neurons
to that of a SOM-network, both for the detection of 17 classes. As a bench-
mark, we use the results obtained by the UNSUP clustering algorithm for
remote sensing (Kemenade, La Poutré, & Mokken, 1999) on the entire
image (figure 2.5b). Figure 2.5c shown the classification of the area with a
SOM-network, and figure 2.5d shows the classification by the spiking neu-
ral network. Note that both methods required approximately the same
amount of computer runtime. When comparing figures 2.5c and 2.5d to
the UNSUP classification, visual inspection shows that the respective clas-
sifications do not differ much, although some clusters detected by the RBF
network are due to multiple neurons centered on the same class: both
RBF and SOM classifications seem reasonable. Although the correctness
of remote sensing classifications is notoriously difficult to determine due
to lack of ground evidence (labeled data), the results show that our RBF
network is robust with respect to ill-balanced, non-Gaussian and noisy
real-world data.

Summary. The experiments show that capacity and precision in spik-
ing RBF networks can be enhanced such that they can be used in practice.
The simulation of spiking neurons in our implementation is quite compu-
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Figure 2.5: (a) The full image. Inset: image cutout actually clustered. (b) Clas-
sification of the cutout as obtained by clustering the entire image with UNSUP.
(c) Classification of the cutout as obtained by clustering with SOM algorithm. (d)
Spiking neural network RBF classification of the cutout image after learning from
70,000 randomly drawn data-points from the 103x99 image.

tationally intensive as compared to the optimized clustering by UNSUP
(minutes vs. seconds), but takes approximately the same amount of time
as SOM methods, and is only somewhat slower than k-Means (though
run in Matlab). Possible speedups could be accomplished by using more
computationally efficient spiking neural network models, for instance by
taking a spike as an “event” and interpolating all deterministic effects be-
tween these events, e.g. the time-evolution of the membrane-potential un-
der a set of preceding PSP’s (Mattia & Giudice, 2000).
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2.5 Hierarchical clustering in a multi-layer network

With a few modifications to the original network, we can create a multi-
layer network of spiking neurons that is capable of hierarchical clustering
based on temporal cluster distance. Cluster boundaries in real data are
often subjective, and hierarchical classification is a natural approach to this
ambiguity, e.g. (Koenderink, 1984). By classifying data with increasing
or decreasing granularity based on a cluster-distance measure, multiple
“views” of a dataset can be obtained. To enable hierarchical clustering
in spiking RBF neurons, we observe that the differential firing times of
output neurons are a monotonic decreasing function of spatial separation,
e.g. the further a data-point lies from the center of a neuron, the later the
neuron fires. This could serve as a cluster-distance measure.

To achieve such hierarchical clustering, we created a multi-layer network
of spiking neurons. Given a suitable choice of neurons within the lay-
ers, respective layers yield the classification of a data-point at a decreasing
level of granularity as compared to the classification in a previous layer.
The combined classification of all layers then effectively achieves hierar-
chical classification. To enable hierarchical classification with decreasing
granularity, the size of the neural population decreases for subsequent lay-
ers, and all n neurons within a layer are allowed to fire such that the next
layer with m neurons can extract up to m clusters from “input” n neu-
rons firing, with m < n. The clustering mechanism is maintained by only
modifying the weights for the winning neuron within a layer.

To implement hierarchical clustering in such a fashion, we added a second
RBF layer to the network as described above, and successfully trained this
network on a multitude of hierarchically structured datasets. An exam-
ple is shown in figure 2.6: the data contained two clusters each consisting
of two components. The winner-take-all classification found in the first
RBF layer is shown in figure 2.6a, and correctly identifies the components
of the two clusters. For a configuration as in figure 2.6a, the receptive
field of any RBF neuron extends over the accompanying component. In
this case, the evaluation of a single data point elicits a response from both
neurons in the cluster, albeit one somewhat later than the other. The neu-
rons centered on the other cluster are insufficiently stimulated to elicit a
response. This disparate response is sufficient for the second layer to con-
catenate the neurons in the first layer into two clusters (figure 2.6b). Thus,
as we extend the network with subsequent RBF layers comprising of fewer
neurons, in effect we achieve hierarchical clustering with decreasing gran-



HIERARCHICAL CLUSTERING IN A MULTI-LAYER NETWORK 27

ularity: nearby components are compounded in the next layer based on
relative spatial proximity as expressed in their temporal distance.

Figure 2.6: Hierarchical clustering in a 2 layer RBF network. (a) Clustering in
the first layer consisting of 4 RBF neurons. Each data-point is labeled with a
marker designating the winning neuron (squares, circles, crosses, and dots). (b)
Clustering in the second layer, consisting of 2 RBF neurons. Again each data-
point is labeled with a marker signifying the winning neuron (crosses and dots).

In unsupervised learning, the determination of the number of classes
present in the dataset is a well-known problem in competitive winner-
take-all networks, as it effectively is determined a-priori by the number
of output neurons, e.g. (Zurada, 1992). In the hierarchical clustering ex-
ample, we tuned the number of neurons to the number of components
and clusters. In an RBF layer with more units than clusters or com-
ponents, typically multiple output-neurons will become centered on the
same cluster (experiments not shown), especially when clusters consisted
of multiple components. Correct classification is only reliably achieved
when the number of RBF neurons matches the number of clusters, see also
(Natschläger & Ruf, 1998). However, in the case of more neurons than
components/clusters the same hierarchical clustering principle holds, as
multiple neurons centered on the same component are identifiable by their
strong synchrony. Hence the relative synchronization of nearby neurons is
an important clue when reading the classification from a layer, as well as
an effective means of coding for further (hierarchical) neuronal process-
ing. Note that the problem is rather one of extraction than of neuronal
information processing, as multiple synchronized neurons are effectively
indiscriminable downstream and can hence be considered to be one neu-
ron.
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2.6 Complex clusters

In this section, we show how temporal synchrony can be further exploited
for separating interlocking clusters by binding multiple correlated RBF
neurons via the addition of reciprocal excitatory lateral connections to the
first RBF-layer, thus enhancing the network clustering capabilities.

Cluster boundaries in real data are often subjective. Hierarchical cluster-
ing is only part of the solution, as some measure for grouping components
into subsequent clusters has to be implemented. For complex clusters, sep-
arate parts of the same cluster can easily be spatially separated to the point
where the neuronal receptive fields no longer overlap: a neuron coding for
one part will no longer respond when a data-point belonging to another
part of the same cluster is presented. Another issue relates to the mea-
sure for concatenating components into clusters: only those components
that have a certain density of data points “in between” should be concate-
nated, as implemented for instance in the UNSUP clustering algorithm
(Kemenade et al., 1999). The situation is depicted in figure 2.7. The analo-
gous problem exists when discriminating different clusters that are nearby.
In both cases, when such clusters are covered by multiple neurons that are
concatenated in a next layer, they might suffer from the fact that some
of these neurons belonging to different clusters are in fact closer together
than to other neurons in the same cluster (and thus fire closer together).

We present a SOM-like addition to the network to overcome this prob-
lem: by adding excitatory lateral connections to an RBF-layer and using
a competitive SOM-like rule for modifying connections, nearby neurons
become tightly coupled and are in effect bound together as they synchro-
nize their firing times. As only the weights between temporally proximate
neurons are augmented, ultimately neurons centered on the same cluster
are synchronized due to the data points that lie “in between” neighboring
neurons. These points elicit approximately the same time-response from
the nearest neurons, strengthening their mutual connections. This pro-
cess does not take place for neurons coding for different clusters, due to
the relative lack of “in between” points (figure 2.7). As a set of neurons
synchronize their respective firing-times when a data-point lying within a
cluster-structure is presented to the network, the temporal response from
the first RBF layer enables a correct classification in the second layer.

We implemented such lateral connections in a multi-layer network and
successfully classified a number of artificial datasets consisting of inter-
locking clusters. The lateral connections were modeled as the feedforward
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Figure 2.7: Weights connecting different part of a single cluster. Given two clus-
ters of data-points (solid circles) classified by three RBF neurons (elliptic recep-
tive fields), data-points between two RBF neurons strengthen the mutual lateral
connections (solid arrows), whereas the connections to the equidistant third RBF
neuron are not due to the lack of points “in between”.

connections, albeit with only one delay d1 = 1 ms. The lateral connections
from the winning neuron are adapted using a “difference of Gaussians
(DOG)” or “Mexican hat” learning function:

L(∆t) = e−∆t2/b2{(1− c)e−∆t2/β2

+ c}, (2.6)

with b = 4.5, c = −0.2, β = 0.8. The “Mexican hat” learning functions
defines the temporal difference for which connections are strengthened or
weakened, where β determines the temporal width of the positive part of
the learning function, and b determines the width of the weight depress-
ing trough. During learning, the maximal allowed strength of the lateral
connections is slowly increased from 0 to a value sufficiently strong to
force connected neurons to fire. Experiments with these connections in-
corporated in the multi-layer network yielded the correct classification of
complex, interlocking clusters. An example is shown in figure 2.8.

Summarizing, the addition of lateral excitatory connections with compet-
itive SOM-learning synchronizes spatially correlated neurons within an
RBF layer. This temporal property then enables the correct clustering of
complex non-linear clusters in a multi-layer network, without requiring
additional neurons.
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Figure 2.8: Clustering of two interlocking clusters in a multi-layer RBF network.
(a) classification in the first layer: 11 outputs, the two clusters are spread over
respectively 5 (upper cluster) and 6 neurons (lower cluster). The respective clas-
sifications are denoted by different markers and gray levels. (b) Incorrect cluster-
ing in the second layer with two RBF neurons and input from (a), without lateral
connections. (c) Incorrect classification as obtained in a single-layer network. (d)
Correct classification (100%) in the second layer, with lateral connections. Each
input variable was encoded by 12 input neurons (3 broadly and 9 sharply tuned).

2.7 Discussion and Conclusions

We have shown that temporal spike-time coding in a network of spiking
neurons is a viable paradigm for unsupervised neural computation, as the
network is capable of clustering realistic and high-dimensional data. We
investigated clustering for continuously valued input and found that our
coarse coding scheme of the input data was effective and efficient in terms
of required neurons. In a test on “real-life” data, our coarse coding ap-
proach proved to be effective on the unsupervised remote-sensing classifi-
cation problem. Working from our findings, Goren (Goren, 2001) obtained
similar results for slightly different problems.
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To detect non-globular or complex interlocking clusters we introduced
an extension of the network to allow for multiple RBF-layers, enabling
hierarchical clustering. When we added excitatory lateral connections
we showed that a competitive SOM-like lateral learning rule enhances
the weights between neurons that code for nearby, uninterrupted cluster-
parts. This learning leads to synchronization of neurons coding for the
same cluster and was shown to enable the correct classification of larger
cluster-like structures in a subsequent layer. Hence the combination of
multi-layer RBF and competitive SOM-like lateral learning adds consider-
ably to the clustering capabilities, while the number of neurons required
remains relatively small. Also, we demonstrated how a local Hebbian
learning-rule can both induce and exploit synchronous neurons resulting
in enhanced unsupervised clustering capabilities, much as theorized in
neurobiology.

The intuitive approach to within-layer synchronization as an aide for clus-
tering is inspired by efforts to implement image-segmentation in neural
networks via dynamic synchronization of spiking neurons that code for
those parts of an image that are part of the same object, e.g. (König &
Schillen, 1991; Chen & Wang, 1999; Campbell, Wang, & Jayapraksh, 1999).
Clustering entails the classification of a data-point in terms of other data-
points with “similar” properties in some, potentially high-dimensional,
input-space, and is not necessarily concerned with the spatial organiza-
tion of the data (e.g. the UNSUP remote sensing method used for figure
2.5). As such, clustering is essentially a different problem. For cluster-
ing, it is important that the number of neurons involved scales moderately
with increasing dimensionality of the data, whereas image-segmentation
is inherently two or three dimensional and is not, or less, subject to this
restriction. However, our results lend further support for the use of pre-
cise spike timing as a means of neural computation and provide common
ground in terms of the coding paradigm for these different problems.
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ERROR-BACKPROPAGATION IN
TEMPORALLY ENCODED
NETWORKS OF SPIKING

NEURONS

ABSTRACT For a network of spiking neurons that encodes
information in the timing of individual spike-times, we derive
a supervised learning rule, SpikeProp, akin to traditional error-
backpropagation. With this algorithm, we demonstrate how
networks of spiking neurons with biologically reasonable ac-
tion potentials can perform complex non-linear classification
in fast temporal coding just as well as rate-coded networks.
We perform experiments for the classical XOR-problem, when
posed in a temporal setting, as well as for a number of other
benchmark datasets. Comparing the (implicit) number of spik-
ing neurons required for the encoding of the interpolated XOR
problem, the trained networks demonstrate that temporal cod-
ing is an effective code for fast neural information process-
ing, and as such requires less neurons than instantaneous rate-
coding. Furthermore, we find that reliable temporal computa-
tion in the spiking networks was only accomplished when us-
ing spike-response functions with a time constant longer than
the coding interval, as has been predicted by theoretical con-
siderations.
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3.1 Introduction

In chapter 2, we demonstrated successful unsupervised classification with
asynchronous spiking neural networks. To enable useful supervised learn-
ing with the temporal coding paradigm, we develop a learning algorithm
for single spikes that keeps the advantages of spiking neurons while al-
lowing for at least equally powerful learning as in sigmoidal neural net-
works. We derive an error-backpropagation based supervised learning
algorithm for networks of spiking neurons that transfer the information
in the timing of a single spike. The method we use is analogous to the
derivation by Rumelhart et al. (1986). To overcome the discontinuous na-
ture of spiking neurons, we approximate the thresholding function. We
show that the algorithm is capable of learning complex non-linear tasks
in spiking neural networks with similar accuracy as traditional sigmoidal
neural networks. This is demonstrated experimentally for the classical
XOR classification task, as well as for a number of real-world datasets.

We believe that our results are also of interest to the broader connection-
ist community, as the possibility of coding information in spike times has
been receiving considerable attention. In particular, we demonstrate em-
pirically that networks of biologically reasonable spiking neurons can per-
form complex non-linear classification in a fast temporal encoding just as
well as rate-coded networks. In this chapter, we present, to the best of our
knowledge, the first spiking neural network that is trainable in a super-
vised manner and as such demonstrates the effectiveness and efficiency of
a functional spiking neural network as a function-approximator.

We also present results that support the prediction that, in order to allow
for reliable temporal computation in a receiving neuron, the length of the
rising segment of the post-synaptic potential needs to be longer than the
length in time over which relevant spikes arrive (Maass, 1996). For spik-
ing neurons, the post-synaptic potential describes the dynamics of a spike
impinging onto a neuron, and is typically modeled as the difference of two
exponentially decaying functions (Gerstner, 1998). The effective rise and
decay time of such a function is modeled after the membrane-potential
time constants of biological neurons. As noted, from a computational
point of view, our findings support the theoretical predictions in (Maass,
1996). From a biological perspective, these findings counter the common
opinion among neuroscientists that fine temporal processing in spiking
neural networks is prohibited by the relatively long time constants of bi-
ological cortical neurons (as noted for example by Diesmann, Gewaltig,
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and Aertsen (1999)).

This chapter is organized as follows: in section 3.2, we derive the error-
backpropagation algorithm. In section 3.3 we test our algorithm on the
classical XOR example, and we also study the learning behavior of the al-
gorithm. By encoding real-valued input-dimensions into a temporal code
by means of receptive fields, we show results for a number of other bench-
mark problems in section 3.4. The results of the experiments are discussed
in section 3.5.

3.2 Error-backpropagation

We derive error-backpropagation, analogous to the derivation by Rumel-
hart et al. (1986). Equations are derived for a fully connected feedfor-
ward spiking neural network with layers labeled H(input), I(hidden) and
J(output), where the resulting algorithm applies equally well to networks
with more hidden layers. The spiking neural network is modeled as ex-
plained in chapter 2, section 2.2.

The target of the algorithm is to learn a set of target firing times, de-
noted {tdj}, at the output neurons j ∈ J for a given set of input patterns
{P [t1..th]}, where P [t1..th] defines a single input pattern described by sin-
gle spike-times for each neuron h ∈ H . We choose as the error-function
the least mean squares error function, but other choices like entropy are
also possible. Given desired spike times {tdj} and actual firing times {taj},
this error-function is defined by:

E =
1

2

∑

j∈J
(taj − tdj )2. (3.1)

For error-backpropagation, we treat each synaptic terminal as a separate
connection k with weight wkij . Hence, for a backprop-rule, we need to
calculate:

∆wkij = −η ∂E
∂wkij

(3.2)

with η the learning rate and wkij the weight of connection k from neuron i
to neuron j. As tj is a function of xj , which depends on the weights wkij ,
the derivative in the right hand part of (3.2) can be expanded to:
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∂E

∂wkij
=

∂E

∂tj
(taj )

∂tj

∂wkij
(taj ) =

∂E

∂tj
(taj )

∂tj
∂xj(t)

(taj )
∂xj(t)

∂wkij
(taj ). (3.3)

In the last two factors on the right, we express tj as a function of the thresh-
olded post-synaptic input xj(t) around t = taj . We assume that for a small
enough region around t = taj , the function xj can be approximated by a
linear function of t, as depicted in figure 3.1. For such a small region, we
approximate the threshold function δtj(xj) = −δxj(tj)/α, with ∂tj

∂xj(t)
the

derivative of the inverse function of xj(t). The value α equals the local
derivative of xj(t) with respect to t, that is α =

∂xj(t)
∂t (taj ).

Figure 3.1: Relationship between δxj and δtj for an ε space around tj .

The second factor in (3.3) evaluates to:

∂tj
∂xj(t)

(taj ) =
∂tj(xj)

∂xj(t)

∣∣∣∣
xj=ϑ

=
−1

α
=

−1
∂xj(t)
∂t (taj )

=
−1

∑
i,l w

l
ij
∂yli(t)
∂t (taj )

. (3.4)

In further calculations, we will write terms like
∂xj(t

a
j )

∂taj
for ∂xj(t)

∂t (taj ).

We remark that this approximation only holds when the weights to a neu-
ron are not altered such that the membrane potential no longer reaches
threshold, and the neuron hence no longer fires. This is a potential prob-
lem, but can be countered by encoding input into the network in such
a way that early spikes are automatically “more important” than later
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spikes. The encoding we outlined in chapter 2, section 2.3 is consistent
with such spike-time evolution and should in general alleviate the prob-
lem: in our experiments it proved an effective solution. Note however
that once a neuron no longer fires for any input pattern, there is no mecha-
nism to “prop-up” the weights again. In our experiments, we set the initial
weights such that each neuron in the network responded to at least part of
the input-pattern. With this additional provision, we did not experience
any problems with “silent” neurons.

Note also that the approximation might imply that for large learning rates
the algorithm can be less effective. We will consider this issue in the appli-
cation of the algorithm in section 3.3.1.

The first factor in (3.3), the derivative of E with respect to tj , is simply:

∂E(taj )

∂taj
= (taj − tdj ). (3.5)

We have:
∂xj(t

a
j )

∂wkij
=
∂{∑n∈Γj

∑
l w

l
njy

l
n(taj )}

∂wkij
= yki (taj ). (3.6)

When we combine these results, (3.2) evaluates to:

∆wkij(t
a
j ) = −η

yki (taj ) · (tdj − taj )
∑

i∈Γj

∑
l w

l
ij

∂yli(t
a
j )

∂taj

. (3.7)

For convenience, we define δj :

δj ≡
∂E

∂taj

∂taj
∂xj(taj )

=
(tdj − taj )

∑
i∈Γj

∑
l w

l
ij

∂yli(t
a
j )

∂taj

, (3.8)

and (3.3) can now be expressed as:

∂E

∂wkij
= yki (taj )

∂E

∂taj

∂taj
∂xj(taj )

= yki (taj )δj , (3.9)

yielding:
∆wkij = −ηyki (taj )δj . (3.10)
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Equations (3.8) and (3.10) yield the basic weight adaptation function for
neurons in the output layer.

We continue with the hidden layers: for error-backpropagation in other
layers than the output layer, the generalized delta error in layer I is de-
fined for i ∈ I with actual firing times tai :

δi ≡
∂tai

∂xi(tai )

∂E

∂tai

=
∂tai

∂xi(tai )

∑

j∈Γi

∂E

∂taj

∂taj
∂xj(taj )

∂xj(t
a
j )

∂tai

=
∂tai

∂xi(tai )

∑

j∈Γi

δj
∂xj(t

a
j )

∂tai
, (3.11)

where Γi denotes the set of immediate neural successors in layer J con-
nected to neuron i.

As in (Bishop, 1995), in (3.11) we expand the local error ∂E(tai )
∂tai

in terms of
the weighted error contributed to the subsequent layer J . For the expan-
sion, the same chain rule as in (3.3) is used under the same restrictions,
albeit for t = ti.

The term ∂tai
∂xi(t

a
i ) has been calculated in (3.4), while for

∂xj(t
a
j )

∂tai
:

∂xj(t
a
j )

∂tai
=

∂
∑

l∈I
∑

k w
k
ljy

k
l (taj )

∂tai

=
∑

k

wkij
∂yki (taj )

∂tai
. (3.12)

Hence,

δi =

∑
j∈Γi δj{

∑
k w

k
ij
∂yki (taj )

∂tai
}

∑
h ∈ Γi

∑
l w

l
hi
∂ylh(tai )
∂tai

. (3.13)

Thus, for a hidden layer and by (3.10),(3.11),(3.12) and (3.13), the weight
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adaptation rule compounds to:

∆wkhi = −ηykh(tai )δi = −η
ykh(tai )

∑
j{δj

∑
k w

k
ij
∂yki (taj )

∂tai
}

∑
n∈Γi

∑
l w

l
ni
∂yln(tai )
∂tai

. (3.14)

Analogous to traditional error-backpropagation algorithms, the weight
adaptation rule (3.14) above generalizes to a network with multiple hid-
den layers I numbered J − 1, . . . , 2 by calculating the delta-error at layer i
from the delta-error in layer i+ 1, in effect back-propagating the error.

The algorithm derived above, termed SpikeProp, is summarized in the fol-
lowing table:

SpikeProp Algorithm
Calculate δj for all outputs according to (3.8)
For each subsequent layer I = J − 1 . . . 2

Calculate δi for all neurons in I according to (3.13)
For output layer J , adapt wkij by ∆wkij = −ηyki (tj)δj (3.10)
For each subsequent layer I = J − 1 . . . 2

Adapt wkhi by ∆wkhi = −ηykh(ti)δi (3.14)

A simple modification of this scheme would be to include a momentum
term:

∆wkij = −η∆wkij(t) + pwkij(t− 1), (3.15)

with p the momentum variable. In a follow up to our work, Xin et al. (Xin
& Embrechts, 2001) have shown that such modifications of the Spikeprop
algorithm do indeed significantly speed up convergence.

3.3 The XOR-problem

In this section, we will apply the SpikeProp algorithm to the XOR-problem.
The XOR function is a classical example of a non-linear problem that re-
quires hidden units to transform the input into the desired output.

To encode the XOR-function in spike-time patterns, we associate a 0 with a
“late” firing time and a 1 with an “early” firing time. With specific values
0 and 6 for the respective input times, we use the following temporally
encoded XOR:
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Input Patterns Output Patterns
0 0 → 16
0 6 → 10
6 0 → 10
6 6 → 16

The numbers in the table represent spike times, say in milliseconds. We
use a third (bias) input neuron in our network that always fired at t = 0 to
designate the reference start time (otherwise the problem becomes trivial).
We define the difference between the times equivalent with “0” and “1” as
the coding interval ∆T , which in this example corresponds to 6ms.

For the network we use the feed-forward network architecture described
in section 2.2. The connections have a delay interval of 15 ms; hence the
available synaptic delays are from 1 to 16 ms. The PSP is defined by an α
function as in (2.3) with a decay time τ = 7 ms. Larger values up to at least
15 ms result in similar learning (see section 3.3.1).

The network was composed of three input neurons (2 coding neurons and
1 reference neuron), 5 hidden neurons (of which one inhibitory neuron
generating only negative sign PSP’s) and 1 output neuron. Only posi-
tive weights were allowed. With this configuration, the network reliably
learned the XOR pattern within 250 cycles with η = 0.01. In order to
“learn” XOR, 16 x 3 x 5 + 16 x 5 x 1 = 320 individual weights had to be
adjusted.

While using the algorithm, we found that it was necessary to explicitly
incorporate inhibitory and excitatory neurons, with inhibitory and exci-
tatory neurons defined by generating respectively negative and positive
PSP’s using only positive weights. In fact, the Spikeprop algorithm would
not converge if the connections were allowed to contain a mix of both posi-
tive and negative weights. We suspect that the cause of this problem lies in
the fact that in the case of mixed weights, the effect of a single connection
onto the target neuron is no longer a monotonically increasing function (as
it is for sufficiently large time-constants, see also the discussion in section
3.3.1). We remark that the introduction of inhibitory and excitatory neu-
rons is not a limitation: by expanding the network in such a way that each
excitatory neuron has an inhibitory counterpart, in effect a mixed sign con-
nection is implemented. In the experiments though, the inclusion of one
or two inhibitory neurons was sufficient to enable learning.

We also tested the network on an interpolated XOR function f(x1, x2) :
[0, 1]2 → [0, 1], like in (Maass, 1999). We translate this function to spike
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Figure 3.2: Interpolated XOR function f(t1, t2) : [0, 6]2 → [10, 16]. A) Target func-
tion. B) Network output after training. The network reached the sum squared
error-criterion of 50.0 after learning 12996 randomly drawn examples from the
961 data-points.

times f(t1, t2) : [0, 6]2 → t3 : [10, 16], with times t1, t2 and t3 in milliseconds
(figure 3.2A). Using 3 input, 5 hidden and 1 output neurons, 961 input-
output pairs of this function were presented to the network. The result of
learning with Spikeprop is shown in figure 3.2B. The network can learn the
presented input with an accuracy of the order of the internal integration
time-step of the Spikeprop algorithm: 0.1 ms (for the target sum squared
error of 50.0 the average error per instance was 0.2ms).

3.3.1 Error gradient and learning rate In this section, we consider the
influence of the learning rate η and the time-constant τ on the learning
capabilities of the Spikeprop algorithm in a network of spiking neurons.

As noted in section 3.2, the approximation of the dependence of the fir-
ing time taj on the post-synaptic input xj is only valid for a small region
around taj . We found indeed that for larger learning rates the probability
of convergence decreased, although for learning rates up to 0.01, larger
learning rates were associated with faster learning times. This can be seen
in figure 3.3, where the average number of learning iterations required for
the XOR function are plotted for a number of time-constants τ .

In figure 3.4, the reliability of learning for different values of the time-
constant τ is plotted. The plot shows that for optimal convergence, the
most reliable results are obtained for values of the time-constant that are
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Figure 3.3: Learning XOR: Average number of required learning iterations to
reach the sum squared error target (SSE) of 1.0. The average was calculated for
those runs that converged.

(somewhat) larger than the time interval ∆T in which the XOR-problem is
encoded (here: ∆T = 6).

The convergence graphs for different values of the coding interval ∆T are
plotted in figure 3.5A-B and show the same pattern. These results confirm
the results as obtained by Maass (1996), where it was shown that theo-
retically the time-constant τ needs to be larger than the relevant coding
interval ∆T. This observation can also be made for the results presented
in section 3.4: a substantial speedup and somewhat better results were ob-
tained if the time constant τ was slightly larger than the coding interval.

3.4 Other Benchmark Problems

In this section, we perform experiments with the SpikeProp algorithm on a
number of standard benchmark problems: the Iris-dataset, the Wisconsin
breast-cancer dataset and the Statlog Landsat dataset.

The datasets are encoded into temporal spike-time patterns by population
coding by the type of population coding we outlined in chapter 2, section
2.3. We independently encode the respective input variables: each input-
dimension is encoded by an array of 1-dimensional receptive fields.

Output classification was encoded according to a winner-take-all
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Figure 3.4: Learning XOR: Number of runs out of 10 that converged.

paradigm where the neuron coding for the respective class was desig-
nated an early firing time, and all others a considerably later one, thus
setting the coding interval ∆T . A classification was deemed to be correct
if the neuron that fired earliest corresponded to the neuron required to fire
first. To obtain a winner in the case where multiple neurons fired at the
same time step, a first-order approximation to the real-value firing time
was performed based on the current and previous membrane-potentials.

We tested our framework on several benchmark problems in which this
temporal encoding is used for the conversion of the datasets to translate
them into temporal patterns of discrete spikes.

Iris dataset
The Iris data-set is considered to be a reasonably simple classification
problem. It contains three classes of which two are not linearly separa-
ble. As such, it provides a basic test of applicability of our framework.
The dataset contains 150 cases, where each case has 4 input-variables.
Each input variable was encoded by 12 neurons with gaussian receptive
fields. The data was divided in two sets and classified using two-fold
cross-validation. The results are presented in table 3.1. We also obtained
results on the same dataset from a sigmoidal neural network as imple-
mented in Matlab v5.3, using the default training method (Levenberg-
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Figure 3.5: Number of runs out of 10 that converged for different values of τ . A)
For a coding interval t = 0 . . . 3, [0, 3]2 → [7, 10]. Target was an SSE of 0.7. B) For
a coding interval t = 0 . . . 10, [0, 10]2 → [15, 25]. Target was an SSE of 3.0.

Marquardt, LM) and simple gradient descent (BP). The input presented
to both networks is preprocessed in the same way, so both methods can be
compared directly.

Wisconsin Breast Cancer data-set
The breast cancer diagnosis problem is described in (Wolberg, 1991). The
data is from the University of Wisconsin Hospitals and contains 699 case
entries, divided into benign and malignant cases. Each case has nine mea-
surements, and each measurement is assigned an integer between 1 and
10, with larger numbers indicating a greater likelihood of malignancy. A
small number of cases (16) contain missing data. In these cases, the neu-
rons coding for the missing variable did not fire at all. For our experiment,
we encoded each measurement with 7 equally spaced neurons covering
the input range. The dataset was divided in two equal parts, and we used
two-fold cross-validation. The results are summarized in table 3.1. The
results as we obtained them are on par with values reported in literature
for BP learning on this dataset: for instance, in a benchmark study by Roy,
Govil, and Miranda (1995) on an earlier version of this dataset contain-
ing 608 cases an error-rate of 2.96% was obtained on the test-set, using a
multi-layer-perceptron with standard error-backpropagation learning.

Landsat data-set
To test the algorithm’s performance on a larger data-set, we investigated
the Landsat dataset as described in the StatLog survey of machine learning
algorithms (Michie, Spiegelhalter, & Taylor, 1994). This dataset consists
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the Landsat dataset as described in the StatLog survey of machine learning
algorithms (Michie, Spiegelhalter, & Taylor, 1994). This dataset consists
of a training set of 4435 cases and a test set of 2000 cases and contains 6
ground cover-types (classes). For classification of a single pixel, each case
contains the values of a 3x3-pixel patch, with each pixel described by 4
spectral bands, totaling 36 inputs per case. For the classification of the
central pixel, we averaged the respective spectral bands in the 3x3 patch
and then encoded each separate band with 25 neurons. Results are shown
in table 3.1. The results obtained by the Statlog survey are summarized in
table 3.2.

Again, the results with SpikeProp are similar to the Matlab LM results,
though even for twice the number of iterations, the Matlab LM results
are somewhat worse. Compared to the best machine learning methods as
reported in (Michie et al., 1994), the SpikeProp results are nearly identical
to those reported for traditional BP, even though we reduced the input-
space 9-fold by taking as input the average of the 3x3 pixels in the environ-
ment. Note though that in (Michie et al., 1994) the Multi-Layer-Perceptron
BP results lag other ML methods for this particular classification prob-
lem. After extended learning however, the Matlab LM training-method
produces results that are significantly better than the reported values in
(Michie et al., 1994) for MLP-BP learning. Such extended learning was
not feasible for the SpikeProp algorithm due to time-constraints, although
the results show increasing classification accuracy with extended learning.

From the results, we conclude that the application of the SpikeProp algo-
rithm on temporally encoded versions of benchmark problems yields sim-
ilar results compared to those obtained from the Levenberg-Marquardt
(LM) learning algorithm on sigmoidal neural networks. Typically, less
learning epochs were required with SpikeProp, however, in a single epoch
16 times more weights were adjusted. The results reported for the default
Matlab LM routine were comparable or better as compared to those re-
ported in literature.

3.5 Discussion

We discuss two kinds of implications: the computational implications of
the algorithm we presented, and some considerations regarding biological
relevance.
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Iris dataset
accuracy

algorithm in hidden out iterations training-set test-set
SpikeProp 50 10 3 1,000 97.4% ± 0.1 96.1% ± 0.1
Matlab BP 50 10 3 2.6·106 98.2% ± 0.9 95.5% ± 2.0
Matlab LM 50 10 3 3,750 99.0% ± 0.1 95.7% ± 0.1

Wisconsin Breast Cancer dataset
algorithm in hidden out iterations training-set testset
SpikeProp 64 15 2 1500 97.6% ± 0.2 97.0% ± 0.6
Matlab BP 64 15 2 9.2·106 98.1% ± 0.4 96.3% ± 0.6
Matlab LM 64 15 2 3,500 97.7% ± 0.3 96.7% ± 0.6

Statlog Landsat set
algorithm in hidden out iterations training-set test-set
SpikeProp 101 25 6 60,000 87.0% ± 0.5 85.3% ± 0.3

Matlab LM 101 25 6 110,078 83.6% ± 1.3 82.0% ± 1.5
Matlab LM 101 25 6 1,108,750 91.2% ± 0.5 88.0% ± 0.1

Table 3.1: The Iris data set was split into two sets of 75 items each for cross-
validation. The Matlab LM routine was run for 50 epochs, or 1500 iterations.
The Wisconsin Breast Cancer dataset was split in two for cross-validation. For
the Statlog Landsat, we trained for 25 epochs, or 100,000+ iterations as well as
for 250 epochs, or 1,000,000+ iterations. All results are averaged over 10 runs
on each cross-validation set, with the exception of the Landsat database where
no cross-validation was used (as in the original Statlog experiment). The Spike-
Prop experiments were run with a coding interval of 4ms and a time constant τ
of 7ms in order to reduce learning time. The learning rate η was set to 0.0075.
Error-backpropagation in a 3-layer MLP was simulated with the Matlab v5.3
“TRAINLM” (LM) or “TRAINGD” (BP) routine.

Statlog data
method error training-set error test-set

BackProp 88.8% 86.1%
RBF 88.9% 87.9%

k-NN 91.11% 90.06%

Table 3.2: Benchmark results on Landsat database from literature. Results on
the k-Nearest Neighbor algorithm are given because it is the best classification
method in the Statlog survey.
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Computational Implications
The results obtained for the XOR-problem show that our SpikeProp algo-
rithm works reliably when used with smaller learning rates and time con-
stants that are larger than the coding interval. The results demonstrate that
in order to reliably learn patterns of temporal width ∆T, the time-constant
used to define the PSP is important: the time-constant has to be larger than
the pattern that is being learnt.

For machine learning purposes, the event nature of spikes allows for
efficient implementations of spiking neural networks (Delorme et al.,
1999; Mattia & Giudice, 2000), especially in the case of sparse activity as
achieved by the channel encoding (chapter 2.3). Our current implementa-
tion of the algorithm is computationally somewhat intensive as we simu-
late the temporal evolution of the system with a large number of (small)
time-steps. Switching to an event-based system however should enhance
system performance.

The number of learning iterations used in our simulation was compara-
ble to those required for Levenberg-Marquardt learning in Multi-Layer-
Perceptrons (LM-MLP) on the same pre-processed datasets. We did not
attempt much parameter tuning or convergence optimizations like adding
a momentum-term. The time for a single learning iteration was clearly
longer, as in the simulations each connection consisted of 16 delayed ter-
minals each with their own weight. Hence the number of weights that
needed to be tuned in any of the experiments was quite large. Conver-
gence in our network seemed to be more reliable compared to the Matlab
experiments: in experiments with spiking neural networks on the real-
world datasets, the SpikeProp algorithm always converged, whereas the
comparative LM-MLP experiments occasionally failed (<10%). Research
into optimal parameters would be a logical step for future investigations.

Given the explicit use of the time domain for calculations, we believe that
a network of spiking neurons is intrinsically more suited for learning and
evaluating temporal patterns than sigmoidal networks, as the spiking
neural network is virtually time-invariant in the absence of reference
spikes. Applications of this type will be the subject of future research;
a first application of the SpikeProp algorithm depending on this feature
has been used in a handwritten-character recognition task. In this task,
the spiking neural network was able to get better recognition rates for
a subset of characters as compared to simple statistical methods (Pieri,
2001).
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Biological Implications
Within the broader connectionist community, the real-valued output of a
neuron is generally assumed to be its average firing-rate. In spite of the
success of this paradigm in neural network modeling and the substan-
tial electrophysiological support, there has been an increasing number of
reports where the actual timing of action potentials (spikes) carries signif-
icant information (e.g., in the bat (Kuwabara & Suga, 1993), the barn owl
(Carr & Konishi, 1990) and the electric fish (Heiligenberg, 1991)). As noted
in chapter 7, a respectable amount of neurophysiological evidence now
suggests that such neuronal activation with millisecond precision most
likely transmits important information.

Against the coding of information with a temporal code on very short
time-scales, it has been argued that this is unlikely due to the relatively
long time constants of cortical neurons. The theoretical work by Maass
(1996) already refuted this notion (as also argued in (Diesmann et al.,
1999)), but the results presented here demonstrate networks of spiking
neurons with biologically plausible (relatively long) time constants capa-
ble of performing complex non-linear classification tasks. This was fea-
sible for spike times encompassing a temporal coding interval up to this
time-constant. Indeed, the XOR results suggest that short time constants
impede the integration of information over time-periods longer than this
value.

A temporal code for transmitting information between neurons is espe-
cially interesting as it has been shown theoretically that it is very efficient
in terms of spiking neurons required in the case of fast processing of infor-
mation (Maass, 1999). Due to the all-or-nothing nature of the action poten-
tials generated by individual neurons, a rate-code on a time scale of 10ms
is only available to downstream neurons by deriving the instantaneous fir-
ing rate from a population of neurons activated by the same stimulus. This
is problematic to achieve, as it has been noted that a reliable estimation of
the instantaneous firing rate on a time-scale of 10 ms requires on the order
of 100 pooled neurons (Maass, 1999; Shadlen & Newsome, 1994). It has
also been reported that pooling the activity of more than 100 neurons does
not increase accuracy due to correlated input noise (Shadlen & Newsome,
1998).

With our supervised learning algorithm, we demonstrated that efficient
spiking neural networks based on temporal coding can be build and
trained in the same way as traditional sigmoidal MLP networks. We have
demonstrated a spiking neural network trained to approximate XOR that
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requires an order of magnitude less spiking neurons than networks based
on instantaneous rate-coding, albeit with less robustness, as less neurons
are involved. However, as neurons may come at considerable expense,
this may be more desirable in many situations. We note however that
other representational schemes may be devised that are equally efficient
under these circumstances.

3.6 Conclusion

In this chapter, we derived a learning rule for feedforward spiking neu-
ral networks by back-propagating the temporal error at the output. By
linearizing the relationship between the post-synaptic input and the resul-
tant spiking time, we were able to circumvent the discontinuity associated
with thresholding. The result is a learning rule that works well for smaller
learning rates and for time-constants of the post-synaptic potential larger
than the maximal temporal coding range. This latter result is in agreement
with the theoretical predictions.

The algorithm also demonstrates in a direct way that networks of spiking
neurons can carry out complex, non-linear tasks in a temporal code. As
the experiments indicate, the SpikeProp algorithm is able to perform cor-
rect classification on non-linearly separable datasets with accuracy com-
parable to traditional sigmoidal networks, albeit with potential room for
improvement.
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A FRAMEWORK FOR
POSITION-INVARIANT

DETECTION OF
FEATURE-CONJUNCTIONS

ABSTRACT The design of neural networks that are able to
efficiently encode and detect conjunctions of features is an im-
portant open challenge that is also referred to as “the binding-
problem”. In this chapter, we propose a framework for the effi-
cient position-invariant detection of such feature conjunctions.
For features placed on an input grid, the framework requires
a constant number of neurons for detecting a conjunction of
features, irrespective of the size of the input grid (retina). We
implement the framework in a feedforward spiking neural net-
work, and in an experiment, we demonstrate how the imple-
mentation is able to correctly detect up to four simultaneously
present feature-conjunctions.

4.1 Introduction

The representation of structured information in neural networks has so far
remained elusive at best, though it is thought to be required for efficiently
solving a number of notoriously hard problems (Minsky & Papert, 1969;
von der Malsburg, 1999). In a linguistic sentence like The red apple and the
green pear, grammar implies the structuring of elements “red”, “green”,
“apple”, and “pear” into semantic composites, e.g. structure denoted with
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brackets: {{red,apple}, {green,pear}}. The binding-problem refers to the prob-
lem of how to encode and detect such structured representations in neural
networks. We can easily identify elements like red, green, apple, and pear
each with a neuron that is activated when the element is used. However,
the embodiment of the structural brackets has been much debated, as far
back as Hebb (1949). Some have even argued that such structural repre-
sentation is impossible in neural networks (Fodor & Pylyshyn, 1988).

Figure 4.1: Position-invariant conjunction detection via aggregation of activity in
local feature detectors.

The classical binding-problem was originally posed in the context of vi-
sual perception, e.g. Rosenblatt (1961). Here the main concern is how to
efficiently detect feature conjunctions on a retina, such as red and apple.
Importantly, this conjunction of features can essentially appear anywhere
on an input-grid (retina). Creating a red apple detector for every location
on the retina seems too expensive, at least for every sensible conjunction
of features (von der Malsburg, 1999). The straight-forward solution would
seem to first create position-invariant apple and red detectors by combining
the responses of the respective local detectors. These position-invariant
detectors thus respond to the feature irrespective of its location. The con-
junction of red and apple can then be gleaned from the co-activation of these
position-invariant detectors to efficiently detect the red apple. However,
this architecture is prone to errors in the presence of multiple conjunc-
tions – red apple and green pear – since there are no structuring “brackets”
present in the encoding by neural activation (von der Malsburg, 1999): the
implicit links between red and apple, and green and pear are not represented,
and the representation is ambiguous in the sense that the same detectors
are activated in the presence of a green apple and a red pear.
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The same perceptual binding-problem occurs when binding shape-
primitives into compositional shapes based on relative position, e.g.
triangle-on-top-of-square→ “house-shape”. Without “brackets” that sig-
nal the relative positions, the presence of multiple shapes in different
places might lead to the incorrect detection of composites in position-
invariant detectors. For example, the presence of a “triangle-star” and a
“diamond-square” conjunction on the grid of figure 4.1 would activate
the position-invariant “triangle” and “square” neurons, and would subse-
quently wrongly activate the position-invariant “triangle-next-to-square”
neuron. (“ghosting”). The loss of local structure information in position-
invariant detectors (the “brackets”) is also referred to as the “superposition
catastrophe”.

Recently, progress has been reported on structured representation of
symbolic structures in neural networks (Plate, 1995; Kanerva, 1996;
Rachkovskij & Kussul, 2001). Such structured representations use vec-
tors of binary neural activity as the primary data-structure, and binding
is achieved via manipulation of these vectors to signify structure. To ap-
ply these results to the perceptual binding-problem, we need to solve the
specific problem of position-invariant detection of feature conjunctions.
Additionally, we remark that the solution should work in a feed-forward
neural network, as the (human) detection of whole objects (e.g. red apple)
is a very fast process (Thorpe et al., 1996), suggesting that the combina-
tion of local features into wholes, e.g. {red},{apple} → {red apple}, can be
achieved in a feed-forward type network.

In this chapter, we propose a framework that addresses these issues. It en-
ables efficient position-invariant conjunction detection in a feed-forward
neural architecture. We then outline an implementation of the framework
in spiking neural networks. We use spiking neural networks, since we ex-
plicitly exploit particular properties of these neurons, such as the ability to
act as a comparator, or “coincidence detector”.

The key idea we present is to separate the detection of local feature-
conjunctions into two parts: we locally detect the presence of a
feature-conjunction in a local universal conjunction-detector, where these
conjunction-detectors do not identify the features, but responds to the
presence of any conjunction. A local universal conjunction-detector uses a
fixed procedure to encode the local conjunction in its output vector. The
vector output of all the local universal conjunction detectors is then aggre-
gated to yield a position-invariant universal conjunction detector. The cor-
rect – position-invariant – identification of the feature-conjunction is then
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possible from the position-invariant universal conjunction detectors in a
specific conjunction detector – through the structure that was encoded lo-
cally in the vector outputs, and that survives aggregation. In experiments,
we show that the framework can detect conjunctions of features, also in
the presence of multiple other conjunctions.

The superposition of the output-vectors of local detectors in position-
invariant detectors is aided by the use of spiking neural networks, that we
argue are more suitable for this task than traditional sigmoidal neurons:
a spiking neuron that receives single timed spikes from n input locations
can superimpose these n inputs by emitting n timed spikes (unless some
spikes occur simultaneously). Thus, in principle all n values are preserved,
whereas a sigmoidal neuron would squash the n values into a single out-
put value. We use this property in combination with a local procedure for
encoding the (local) presence of conjunction of two features, like red and
apple, or green and pear.

Rachkovskij and Kussul (2001) describe a procedure for encoding feature-
binding via Context Dependent Thinning (CDT) operating on vectors of neu-
ral activity. We design a feed-forward CDT procedure for vectors of timed-
spikes via conditional shunting. This procedure is implemented in local
universal conjunction-detectors that locally encode feature-binding. In the
architecture, the local presence of a feature is presented as input to the sys-
tem as a vector of timed-spikes. The detectors process these vectors as the
neural data-structure. The local universal conjunction detector receives
two such vectors as input. It generates an output-vector via the CDT-
procedure, if the input vectors indicate the presence of any local feature-
conjunction (without identifying the actual features). In effect, the local
CDT-procedure “binds” the two conjunctive features together (the “brack-
ets” considered earlier). The specific contents of the feature-conjunctions
are decoded at a global, or position-invariant level in specialized feature-
conjunction detectors.

We demonstrate our architecture in an example that binds features based
on relative proximity, as on the grid of fig. 4.1. In this architecture, a
position-invariant detector for the conjunction of say {triangle,square}
consists of some N neurons, a value independent of the number of in-
put locations. With such position-invariant detectors, we can detect up
to about 4 or 5 similar conjunctions simultaneously. We note that visual
processing seems to be limited in the same way (Luck & Vogel, 1997).

This chapter is organized as follows: we outline the architecture in section
4.2. The implementation of this framework in networks of spiking neurons
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is given in section 4.3, and the detection of conjunctions is demonstrated
in section 4.4. We discuss and conclude the architecture in sections 4.5 and
4.6. A formal definition of the framework is developed in chapter 5.

4.2 Local Computation with Distributed Encodings

In this section, we outline a feedforward architecture for the global detec-
tion of feature-conjunctions, and present the idea of local computation with
distributed encodings: local network nodes process vectors of neural activ-
ity. The local information is thus distributed over the elements of a vector:
a local distributed encoding. The proposed architecture is implemented in
spiking neural networks in section 4.3.

4.2.1 Architecture. We propose an architecture as shown in figure 4.2.
We introduce two local universal conjunction-detectors, denoted (X|Y )R
and (Y |X)L, in addition to the local feature-detectors, denoted A, B, C,
etc. . . The local conjunction-detectors detect and encode the presence of a
conjunction of any two features. In our example, we consider the bind-
ing of shape-right-next-to-shape; the same framework can be applied to
binding say color-to-shape. The signals of the local detectors are aggre-
gated in respective global feature and conjunction detectors, denoted ΣA,
ΣB, etc..., and Σ(X|Y )R, Σ(Y |X)L. The presence of particular feature-
conjunctions is then detected from the combined information of the global
universal conjunction and feature-detectors in dedicated, global detectors
(ΣAB, ΣCA, ΣBA etc..). As we will show, the vector nature of the neural
activity processed in these detectors enables the detection of the correct
feature-conjunctions, also in the presence of multiple other conjunctions.

The local detection of features can easily be considered in terms of activity-
vectors. We assume that all (discrete) locations on an input-grid are popu-
lated with identical sets of diversely tuned basic neurons (e.g. grid in fig.
4.1). The presence of a feature like A is then characterized in distributed
fashion by the activity (spikes) it elicits in such a set of some N basic neu-
rons. The timings of the spikes of the neurons for each set are collected
in a vector, where each vector-element contains the activity of one neuron.
The detectors in the proposed architecture process such spike-time vectors.

At the level of local detectors, we have local feature-detectors that look for
a specific feature, say A, B, C etc. . .. Each such detector looks at one set of
basic neurons. If it detects that the local input vector sufficiently matches
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Figure 4.2: Architecture for global detection of conjunctions.

the preferred vector, it propagates the input-vector, with some delay due
to computation: e.g., only if presented with input A, a local A-detector
outputs A.

We also have local detectors that detect and signal the conjunction of any
two features. These detectors consider two sets of basic neurons. The
idea is that they detect the presence of features in both locations by only
considering the actual amount of activity. In our example, these nodes look
at two locations next to each other in the grid. We have complementary
right-facing and left-facing detectors (X|Y )R and (Y |X)L. In the presence
of say A-next-to-B, these detectors respectively output vectors A\b and
B\a, vectors that each look like A respectively B (we define this in section
4.2.4).

The next level in the architecture combines the results of the local detec-
tors. Here we exploit a specific property of spiking neurons: suppose we
have two neurons each emitting a spike-train containing k spikes. These
two spike-trains can be combined into one spike-train which then contains
2k spikes (if the spikes all have different times).

The vectors from the respective local detectors are combined to the
output-vectors of global feature detectors (“there is a triangle”) and global
conjunction-presence detectors (“there are two active consecutive loca-
tions”). In the output-vector of a global detector, an element contains a
spike-train obtained from the concatenation of the spike-times of (active)
spikes in the corresponding elements from the local detector-vectors (an
element i in the global vector contains the timed spikes from all elements



LOCAL COMPUTATION WITH DISTRIBUTED ENCODINGS 57

i in the local vectors). Thus, we can obtain global aggregate vectors by
combining the local vectors, where the use of spiking neurons alleviates
the “superposition catastrophe” encountered with sigmoidal neurons (von
der Malsburg, 1999).

Finally, the activity vectors from the global detectors are used to detect the
presence of specific consecutive features in a global feature-conjunction de-
tector. The detection of the specific-features next-to-each-other from the
global detectors is possible, because at the local level, we make use of
a special procedure: the output vector of a local universal conjunction-
detector resembles the vector associated with one of the two features, but
this vector is “watermarked” with the vector associated with the other
feature. This “watermarking” entails the removal of some spikes in one
feature-vector due to the presence of the other feature-vector. The detector
and “watermarking”-details are given below, the idea of global conjunc-
tion detection via (conditional) vector-propagation is depicted in figure
4.3, with detector outputs denoted as vectors.

Figure 4.3: Vector propagation in a vector-based architecture: correct global con-
junction detection.
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4.2.2 Neural data-structure. The presence of feature like triangle is char-
acterized by the distributed activity vector that its presence elicits in the
local set of basic neurons. We let these basic neurons each emit at most
one, precisely timed spike. The collected spikes of N neurons then yield a
spike-time vector: S =< t1, t2, . . . , tn >, with ti the time of the spike emitted
by neuron i. Should a neuron emit multiple spikes, then the spike-time
vector generalizes to a spike-train vector: S(t) =< t1, t2, . . . , tn >, where ti

is a vector of spike-times. Detectors in the architecture operate on these
spike-train vectors: this is the neural data-structure of the network.

4.2.3 Local Feature Detection. A local feature detector like A in figure
4.2 detects the local presence of a feature A. It receives the local activity
vector S, and, if input vector sufficiently corresponds to the activity vector
A associated with the presence of a feature A, the local activity vector is
propagated, albeit with some delay due to computation. Otherwise, no
activity is propagated.

4.2.4 Local Feature Binding. The local universal conjunction detectors
(X|Y )R and (Y |X)L in figure 4.2 perform local universal feature bind-
ing, and are the first step in enabling correct global detection of feature-
conjunctions. These detectors detect and signal “there are two active loca-
tions next to each other”. To signal the local conjunction, we adapt the idea
of Context Dependent Thinning(CDT) as in (Rachkovskij & Kussul, 2001). In
(Rachkovskij & Kussul, 2001), it is observed that the binding of one vector,
say A, and another vector, say B, can be signaled by setting part of the ac-
tive elements (“1’s”) in the vector A to inactive (“0’s”), as a function of B.
This contextually thinned vector, denoted by A\b is then indicative for the
AB conjunction.

We design a feed-forward CDT procedure using spiking neurons based
on shunting inhibition, e.g. (Thorpe & Gautrais, 1997). A local universal
conjunction-detector (X|Y )iR receives as input two spike-time vectors, in
our example the spike-time vectors from two consecutive locations, i and
i+ 1. We denote these spike-time vectors with X and Y respectively. The
detector determines whether there are sufficient spikes present in X and
Y to assume the presence of two features (a conjunction). In that case, it
propagates X, with part of X shunted by Y. Shunting is defined as follows:
a spike in an element j of Y inhibits the propagation of later spikes in
a set Γij of elements in X, where Γij is fixed via inhibitory connections.
With inputs X =< tx1 , . . . , t

x
n > and Y =< ty1, . . . , t

y
n >, the spike in txi is
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propagated if not shunted, i.e. if ∀k ∈ Γij : txi < tyk. The complementary
detector (Y |X)iL shunts Y with X.

Importantly, different thinned spike-time vectors can be superim-
posed without losing the different vector-patterns, thus alleviating the
superposition-catastrophe (up to some point). For two vectors containing
(sparse) random spikes, first half the spikes in each vector are removed,
and then the two shunted vectors are superimposed. In the new vector,
say Σ, an aggregate element Σi will thus contain all spikes from local el-
ements i, but most of these local elements will be empty. In the rare case
that more than one spike has to be superimposed, it is very unlikely that
these spikes will occur simultaneously, and hence the corresponding ag-
gregate element will simply contain both (all) these spikes.

This idea also works in the worst case, when the conjunctions are similar
in at least one component: say in one location, a vector like A is shunted
by a vector B (A\b), and in another location, a vector like A is shunted by
a vector C: A\c. When these two shunted versions of an A-vector are su-
perimposed, the following happens: part of the two input vectors are the
same; a part of the original “A”-activity is present only inA\b; and another
part only in A\c. Hence, a part of the removed spikes in A\b is also not
present in A\c, and these absent spikes are specific for the combination of
vectors A\b and A\c. Note that increasingly adding more “similar” con-
junctions (A\d, A\e, etc. . .) will ultimately fill in all the removed spikes.
Since a conjunction is signaled by two complementary parts aggregated
in different global detectors (e.g. AB by A\b and B\a), this limit is only
reached when similar complementary conjunctions are provided. The ca-
pacity for simultaneous representation is then some 4–5 similar conjunc-
tions (an example of such a situation is depicted – and tested – in section
4.4).

4.2.5 Conjunction detection. A global conjunction detector ΣAB forA-
left-next-to-B (AB) consists of an input-layer for detecting correspondence
of the input to the conjunction AB, and an output-layer that propagates
the activity in the input-layer if this activity is larger than some thresh-
old (fig 4.4, dark detector). The input-layer is set to consist of N ordered
elements, corresponding to the length of the spike-time vector. Input el-
ements are exclusively connected to the corresponding elements in either
the ΣA and ΣX|YR detector, or to ΣB and Σ(Y |X)L. A connection to a
pair is made based on the following. When the architecture is presented
with AB, elements are activated in ΣA, ΣB, Σ(X|Y )L and Σ(Y |X)R. The
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output vectors of ΣA and ΣB then correspond to respectively A and B
(when A signals feature A, same for B); due to shunting by B, Σ(X|Y )R
contains a particular fraction of the vector A, and vice versa Σ(Y |X)L a
particular fraction of B. Thus, for these fractions, corresponding elements
i fire coincidently in the output vector of both ΣA and Σ(X|Y )R, or ΣB
and Σ(Y |X)L. An element i in the input layer of the ΣAB detector is con-
nected to elements i in a Σ-detector pair, if the pulses from these elements
i would be coincidental when presented with AB. The threshold for the
ΣAB input-elements is set to two coincident pulses, the threshold of the
ΣAB output-elements equals the number of elements that are activated in
this input-layer if the conjunction AB is presented. An example of such
connectivity is depicted in figure 4.4A,B. When an active vector contains
n active elements/spikes, the presence of an AB-conjunction activates n/2
elements in ΣX|YR and in ΣY |XL, which then activate n elements in the
input-layer of AB (e.g. 4.4A). This n-element pattern is then propagated
by the output-layer. For a BA conjunction however, the active elements in
the global universal conjunction-detectors are interchanged, and no input-
elements in ΣAB receive coincidental spikes (fig 4.4B).

Figure 4.4: A) Connectivity for detecting global feature conjunctions. Dark el-
ements are active. B) Active elements in same global conjunction-detector for
interchanged feature positions.

With the conjunction AB present, the presence of additional conjunc-
tions on the input-grid yields additional spikes in the global conjunction-
detectors, but these added spikes do not disturb the AB spikes that re-
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main present. With the correct features present in non-related conjunctions
(“ghosting”), the spike-patterns in the global conjunction-detectors only
partially match the AB pattern, and less input elements are activated in
the input layer of AB: hence the AB output-elements do not reach thresh-
old and the conjunction-detector is not turned “on”.

These conjunction-detectors can correctly detect the conjunction in the
presence of up to some M other, similar conjunctions on the grid: the
presence of conjunctions AC, AD, AE, etc. . ., gives rise to the additional
superposition of local vectors A\c, A\d, and A\e in Σ(X|Y )L, which will
increasingly “fill in” the locally shunted spikes in A\b (and similarly for
B\a in Σ(Y |X)R). The value of M depends on the amount of shunting, i.e.
section 4.4.

Spiking neurons can learn this connectivity via temporal Hebbian learning
rules as in (Natschläger & Ruf, 1998): presented with single AB conjunc-
tion, such a learning rule would translate the synchronous activation of
neurons in either of the detector pairs into selectively enhanced weights.

4.3 Implementation

In this section, we outline the implementation of the neural detectors out-
lined in section 4.2 in networks of spiking neurons. Previous research has
demonstrated that these neurons operating on timed spikes can perform
a number of required tasks, such as pattern detection (Hopfield, 1995;
Natschläger & Ruf, 1998; Bohte, Kok, & La Poutré, 2002c; Bohte et al.,
2002b; Thorpe & Gautrais, 1997; Ruf & Schmitt, 1998), and an effective
means of comparing simultaneously active inputs through coincidence
detection. The spiking neurons we use are leaky-integrate-and-fire neu-
rons modeled as Spike Response Neurons (Maass & Bishop, 1999). These
neurons sum incoming spikes as post-synaptic potentials (PSPs) to calcu-
late an internal variable called “membrane potential”. When this potential
reaches a threshold θ, a spike is generated and a refractory (negative) re-
sponse is added to the potential. The PSP’s are parameterized by the decay
constant τ and is set to 7ms, unless stated otherwise (a detailed description
of spiking neural networks is given in chapter 2, section 2.2).

In our setup, each location on the input grid is populated withN diversely
tuned basic neurons. We denote a basic neuron j by Sj . When presented
with a local feature, some n ≤ N basic neurons emit a spike, generating a
spike-time vector S with elements sj .
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A local feature-detector A aims to detect the presence of a spike-time vec-
tor A in the input vector S, and, conditional on this presence, then trans-
mits input vector S. The feature detector consists of N spiking neurons.
Each detector neuron, Ai, receives equally weighted input from all ele-
ments in the input vector S that are active if S would correspond to the de-
sired vector A. The connection between neuron Ai and the input-elements
sj have a delay such that when an input vector S equals vector A, all input
spikes arrive at the detector-neuron simultaneously, e.g. for an input ele-
ment sj that would fire at time aj if vector A is present, the delay between
input neuron sj and detector neuron Ai, dij , is set such that aj + dij = ci,
with ci constant for all connections from any input neuron sj to detec-
tor neuron Ai. This effectively detects the specific temporal pattern that
makes up vector A, e.g. (Natschläger & Ruf, 1998). The constant ci is set to
ci = c+ ai, with c some constant. The result is that an input vector resem-
bling A is effectively propagated (fig. 4.7A). Additionally, the A detector
responds in a graded manner to “A-ish” vectors, as increasingly different
vectors are propagated with increasing delay and decreasing activity (see
also (Natschläger & Ruf, 1998; Bohte et al., 2002c)).

Figure 4.5: A)Local feature detector (dark box): each sphere is a spiking neuron,
dark neurons are active. Horizontal ticks are timed spikes. B) Top: weights and
delays of connections to input. The different lengths of the connections to the
neuron depict the delay of the connection: tuning the delays allows a neuron to
be sensitive to only a specific temporal pattern in the input. Bottom: time-course
of membrane-potential for preferred feature.

A local universal conjunction-detector (X|Y ) (fig. 4.6A) receives input
from two consecutive locations. The respective sets of basic neurons are
denoted by S and T , with activity vectors S and T and neurons Si and Ti.
The detector has to detect the presence of features in both locations, i.e. at
least some n spikes in S, and at least some n spikes in S. If this condition is
met, part of the spike-time vector that is S has to be propagated as output
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for downstream detectors. Which part is propagated is determined by the
shunting operation where the presence of the vector T inhibits part of the
vector S from being propagated.

A local universal detector, say (X|Y )L, receiving input from consecutive
locations S and T , consists of N spiking neurons (X|Y )i, where each neu-
ron is connected to all basic neurons in S and T . To (selectively) propagate
a timed spike from Si in detector neuron (X|Y )i, this neuron first has to
establish that sufficient activity is present in both input locations S and T .
This can be done by setting the weights to all input elements from S and
T such that if both input locations contain sufficient spikes, these “back-
ground” spikes generate at least a potential ϑb for some duration of time.
The value of ϑb is such that the PSP evoked by the additional presence
of a spike in Si pushes the membrane potential of (X|Y )i through thresh-
old and generates a spike. To implement CDT, the weights from shunting
inputs Tj ∈ Γij are set such that they strongly inhibit (X|Y )i, effectively
shunting (X|Y )i if spikes from these elements Tj ∈ Γij precede a spike
from Si (fig. 4.6B, bottom).

To propagate the temporal structure in the input vector S, we arrange the
connections from the “background” inputs such that for sufficient activity
in both locations, the resulting membrane potential from these inputs in an
element (X|Y )i first steeply rises, and then remains flat some time before
falling off again. The idea is that if a (strongly weighted) input spike from
Si is added to this elevated flat potential, it causes a spike (X|Y )i some
fixed ∆t after si. Thus, the timing of a spike in Si only incurs a fixed delay.
In our experiments, the flat effective membrane potential is achieved by
modifying the shape of the PSPs evoked by the background neurons to this
shape (this can be thought of as to model a wide distribution of weighted
synaptic delays from these background neurons).

For such a construction, the input/output spike-times for a (X|Y )L de-
tector for some randomly generated input vectors S and T are shown in
figure 4.7B: most of the non-shunted part of the input spike-time vector is
generated as output by the local conjunction-detector (with a fixed delay
added to the original input vector). As can be seen however, late spikes
are more likely to be shunted, and the relative spike times of early spikes
are somewhat delayed due to the still increasing membrane potential early
on.

The global feature-detectors and the global universal conjunction-
detectors each consist of a single layer of N spiking neurons. One such
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Figure 4.6: A)The local universal conjunction detector (dark box) deletes and
propagates parts of input S. B) Top: weights and delays of connections to input.
Open weights are inhibitory, solid weights are excitatory. Bottom: time-course of
membrane-potential (the sum of all inputs, ΣPSP ), given the presence of some
two features. Background input spikes cause “flat” raised potential, in the ab-
sence of a spike from input si (denoted as si = ∅). An additional spike from
input si (denoted as si 6= ∅) will generate a spike; earlier spikes from the set of
shunting elements from T (denoted (Tj < Si evoke inhibitory PSP’s, preventing
a spike from si from propagating.

a neuron, Σi, is connected only to corresponding neurons i in the respec-
tive local detectors (fig. 4.8A), and its membrane time-constant τ is set to
4ms. The weights are such that the threshold is reached by a single spike
(fig. 4.8B).

A global feature-conjunction detector consists of an input-layer of N spik-
ing neurons, with τ set to 4ms, and an output-layer of N spiking neurons,
with τ set to 7ms. The input neurons are connected to global feature and
global universal conjunction detectors, as outlined in section 4.2, and fig.
4.4A. The neurons in the output layer are connected to all neurons in the
input-layer, like a feature-detector, and detect the presence of the n active
spikes.

4.4 Experiments

In this section, we show the ability of the proposed architecture, im-
plemented as outlined in section 4.3, to correctly detection conjunctions
of features. We tested the architecture with a conjunction-detector se-
lective for the feature-conjunction triangle-next-to-square, i.e. our “AB”-
conjunction. In the experiments, we placed a number of feature-
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Figure 4.7: Vector propagation: input vs. output times. Circles: actual output,
dots: delayed input, for: A) local feature detector A, presented with A, B) local
universal conjunction detector, presented with some S and T.

Figure 4.8: A) Dark box: global feature or universal conjunction detector. B)
Top: weights and delays of connections to input vector. Bottom: time-course of
membrane-potential for impinging spike.

conjunctions on a grid, and we measured the number of activated neurons
in the input-layer of AB. The different feature-conjunctions placed on the
grid are shown in figure 4.10. Scenes (a) and (b) reflect the uncluttered
conjunction-detection problem. Scene (c) would cause “ghosting” without
a special feature-binding operation, (d), (e) and (f) test increasing feature-
conjunction clutter without and with the target conjunction present.

In the experiments, the neural input vectors were of length N = 500, with
n = 100 active (spiking) neurons. Each separate feature was defined in
advance by a randomly drawn set of spike-times from a normal distri-
bution, with σ = 3.5ms. In the local universal conjunction-detectors, ap-
proximately half the input spikes were shunted. The experiment was re-
peated 10 times and the average activations in the input-layer of AB are
shown in figure 4.11A. As can be seen, there is a clear difference between
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Figure 4.9: A) Global conjunction detecting node: dark spheres indicate active
neurons, horizontal ticks the timed spikes. B) Top: weights and delays of con-
nections to input vector. Bottom: membrane-potential due to two synchronous
impinging spikes.

Figure 4.10: (a)-(f) Feature-conjunctions on a grid. (a) and (f) contain the sought-
after triangle-left-of-square conjunction, the other scenes contain the features, as
well as distracter conjunctions, but not the actual conjunction.

conjunction-scenes that do not contain the AB-conjunction, but merely
its constituent features, and those that do contain the conjunction. The
threshold θ for detecting AB was set to θ ≈ n, as determined from the
uncluttered presentation of AB.

We performed a systematic comparison between configurations with and
without AB conjunction. Plotted in figure 4.11B is the AB-activation for
an increasing number of “distracter” conjunctions, with AB present (cir-
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(A) (B)

Figure 4.11: A) Activation in AB detector. B) Activation as a function of scene
clutter. Error-bars indicate min/max activation in 10 simulations.

cles), and absent (diamonds). Distracters are defined as AC, DB, AE, FB
etc... The difference in activation in the conjunction detector becomes too
small to reliably discriminate the two cases for more than 4 conjunctions.
A higher “simultaneous representation capacity” can be obtained by in-
creased local shunting, but at the expense of lowering activation in the
conjunction detector as compared to the original input vectors. Instead,
“attentional” mechanisms could determine a region of interest for a more
reliable detection when presented with too many conjunctions.

At first sight, it might seem expensive to dedicate some 500 neurons to the
detection of a single conjunction, especially since this detection is only re-
liable if no more than 4–5 similar conjunctions are present simultaneously
on the input grid. However, from a computational perspective, under the
restriction of a limitation in the perceptive abilities, the framework incurs
a fixed neural “cost” per conjunction-detector, rather than a neural cost
linear in the size of the input grid, as would be required for a complete
solution where a conjunction detector is placed on every location of the
grid. The complexity of the learning task also scales with the number of
dedicated detectors (the 500 similar neurons in our position-invariant de-
tector can all “learn” at the same time). From a biological perspective,
we remark that the traditional artificial neuron, in the form of a sigmoidal
neuron, implicitly models a group (100–1000) spiking neurons. The in-
creased power of discrimination in our framework results from the added
precision in the spike-timings of single neurons, and the specificity of the
wiring patterns.
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4.5 Discussion

In this paper, we proposed a network architecture that processes activity
vectors rather than single scalars in its nodes. Implicitly, the scalar output of
a sigmoidal neuron in traditional networks is taken to model the activity
of a population of (biological) spiking neurons. The assumption is then
made that the population signal can be described by the scalar value of its
average firing rate. We model a more refined computation in the spiking
neuron population by explicitly computing with vectors of spike-activity.

In the proposed framework, we take the activity of a population of spik-
ing neurons as a (sparse) spike-time vector, and we interpret this activity
as a distributed representation of the local input. Distributed representa-
tions have been extensively studied as a means of encoding and processing
more information in a population of neurons as compared to single neu-
rons, e.g. (Rumelhart, McClelland, & PDP Research Group, 1986; Abbott
& Sejnowski, 1999). Distributed codes have also been shown to be remark-
ably robust and efficient, and suitable for associative memories (Kanerva,
1988).

We use the properties of distributed representations for essentially lo-
cal computation: the local presence of an object generates local activity
vectors that can be processed by local detectors. One important prop-
erty of distributed representations that we exploit is the ability to en-
code compositional structure by combining vectors in a specific way (Kan-
erva, 1996; Plate, 1995; Rachkovskij & Kussul, 2001). In our local feature-
binding detectors, the compositional structure of “somethingX-left/right-
somethingY”, is signaled by a fixed binding-encoding procedure that re-
moves part of the spikes in “somethingX” given the vector “somethingY”
in one detector, and vice versa in a complementary detector. We propose
this specific method, as it allows for a straight-forward aggregation of lo-
cal output into respective position-invariant global detectors. The locally
imposed compositional structure – the encoded feature-binding – is then
recoverable for a specific position-invariant feature-conjunction detector
from position-invariant feature and universal conjunction detectors (up to
some point). The use of local distributed representations thus alleviates
the “superposition catastrophe”.

The proposed local universal binding detectors perform a variant of dy-
namic variable binding (Browne & Sun, 1999): the variable “something-
right-next-to-something” is equated to the vector that becomes its output.
The specific vector itself is not identified at this stage, as the local vari-
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ables are all “copied” to a global variable, where a global detector then
performs the identification. Dynamic variable binding is an important in-
gredient for computing with symbolic structures with neural networks.
This suggests that the ideas proposed in this paper should be extensible
to symbolic-inference type of applications; for now however this remains
“future work”.

We chose the example of feature-binding of consecutive shapes on an in-
put grid, to demonstrate how our framework allows a “natural” feed-
forward network to perform feature-binding. For this particular example
it is especially clear that an extension of the framework to include hier-
archical compositional integration enables the efficient recognition of in-
creasingly complex conjunctions in a global, or position-invariant manner.
Although we have worked out possible solutions, the full implementation
remains as future work. However, keeping this goal in mind, we used
two complementary CDT-detectors, (X|Y )L and (Y |X)R), resulting in two
“bound” vectors, e.g. A \ b and B \a. The combination of these two vectors
preserves the initial (average) number of spikes in a feature-vector for pro-
cessing downstream, that is, if CDT removes about half the active spikes.
The intuition is, that if less spikes are removed, the feature-conjunction is
signaled weaker; if more are removed, the total number of spikes that can
be used downstream decreases. As noted, if CDT shunts about half the
spikes, the number of similar conjunctions that can be detected simulta-
neously is about 4 (sections 4.2.5 and 4.4). We note that the human brain
seems to perform similarly, i.e. Luck & Vogel (Luck & Vogel, 1997).

To detect more than 4 similar conjunctions simultaneously, say for further
integration, a solution would be to use multiple copies of the same de-
tector and assign these copies to a region of the input retina such that it
is unlikely to encounter more than 4 similar conjunctions. The output of
these “localized” detectors can then again be aggregated to achieve a truly
position-invariant conjunction-detector. Importantly, this would only ap-
ply to detectors for features-conjunctions that are often present in numbers
larger than the capacity of our framework. If seen as a biological model,
the prediction then is that the density of feature-detectors sensitive to par-
ticular conjunctions is proportional to the probability of co-occurrence of
multiple such conjunctions. As such, having to allocate and learn multiple
detectors for often occurring conjunctions seems quite feasible.

The “synchrony hypothesis”(von der Malsburg, 1999; Singer & Gray, 1995)
has so far been the main theory on dynamic feature-binding to allow for
the simultaneous representation of multiple feature conjunctions. How-
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ever, criticism with regard to the viability of this scheme has been mount-
ing, e.g. (Shadlen & Movshon, 1999). In particular, if feature-bindings are
to be signaled by the synchronous firing of neurons coding for parts of the
same object, it is not clear how the correct synchronization is determined.
This alone would seem to require solving the binding-problem first: the
particular encoding of the solution then seems non-relevant.

The scheme we propose does explicitly answer the question of how to
detect and encode a local feature-conjunction, and allows for the simul-
taneous detection of multiple feature-conjunctions. It has the advantages
that it uses an inherently distributed code; enables feed-forward spatial
feature-binding, and can be implemented in biologically reasonable spik-
ing neural networks. We also remark that the vector-structure is more a
formalization than a spatially localized necessity. The required connectiv-
ity only connects similarly tuned neurons from different locations to global
neurons. The collective distributed activity of neurons thus connected can
be interpreted as a spike-train vector data-structure.

We need to remark that within neuroscience, an alternative approach is
also being advocated. In this approach, it is argued that only one object
at a time is effectively being processed, and attentional mechanisms al-
low the visual system to switch between attended percepts. Then, only
one object is processed at any one time, and it is argued that the binding-
problem can thus be avoided (Roelfsema, 1998; Shadlen & Movshon, 1999;
Mel & Fiser, 2000; O’Reilly & Busby, 2001). This view has the unfortunate
side-effect that it does not explain the productivity of symbolic structural
representations, such as those expressed by speech, whereas an integra-
tive compositional vision system would go a long way. Some have noted
that using distributed coding in principle allows n local neurons to locally
detect an encode a large number (up to 2n) of features (Pollack, 1990; Mel
& Fiser, 2000; O’Reilly & Busby, 2001). With such a large encoding space,
all relevant local feature conjunctions could be detected. This however still
requires local learning for every local conjunction, a problem that position-
invariant conjunction detection eliminates.

For an integrative compositional vision system, we believe our framework
highlights the importance of overcoming the superposition catastrophe to
enable structured representation in a position-invariant way. Many ap-
proaches to the binding-problem have focused on the issue of structured
representation of symbolic information, e.g. (Pollack, 1990; Hinton, 1990;
Smolensky, 1990; Plate, 1995). With the additional requirement in vision of
achieving some sort of position-invariance, these theories do not seem to
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straightforwardly apply, as they describe procedures for signaling a local
binding. For these procedures, it is unclear how multiple local bindings
could be superimposed to “extract” the binding at a position-invariant
level. We explicitly solve this problem by separating the detection of a
specific feature-conjunction (e.g. red apple) into the local detectors for re-
spectively: apple, red, and a-color-and-a-shape. The information encoded in
the output of these detectors can be aggregated in respective position in-
variant apple, red, and a-color-and-a-shape detectors, from which a special-
ized, position-invariant red apple detector can correctly extract whether or
not the particular conjunction is present.

In the experiments, we used biologically reasonable spiking neurons im-
plemented in the Spike-Response Model (SRM) as defined in (Gerstner,
1995). These neurons were used for three reasons: firstly, their ability to
emit multiple spikes to implement the global universal conjunction detec-
tors. Secondly, the global feature-conjunction detector uses their ability to
detect coincident timing of spike-trains from a pair of global feature and
universal conjunction detectors. Thirdly, they can implement the feed-
forward CDT procedure via shunting inhibition. Opposed to traditional
sigmoidal neurons, all these (different) tasks could be implemented by
spiking neurons only differing by threshold and time-constant τ . Note
though that we had to (implicitly) take into account the limitations of the
neurons with regard to temporal precision and limited firing-frequency.
To this end we used sparse vectors and presented only a limited number
of conjunctions simultaneously. Thus, global neurons only had to super-
impose a limited number of spikes, keeping the firing-rate low, and the
subsequent coincidence detection was not required to be too precise. We
note that using sparse codes is generally considered efficient both from
an information-theoretical (robustness of signal transfer) as well as from a
metabolic point of view (low energy expenditure) (Földiák, 1990; Földiák
& Young, 1995; Olshausen & Field, 1996).

4.6 Conclusions

In this chapter, we proposed an architecture for the position-invariant de-
tection of feature-conjunctions. We have described the main idea of locally
using the properties of distributed coding, and given a formal definition
the proposed architecture. We have thus argued how the temporal dimen-
sion of individual spikes combined with the introduction of a novel local
feature-binding operator can be employed to detect feature-conjunctions
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from position-invariant (aggregate) feature-detectors, in the presence of
other conjunctions. In the actual implementation of the framework in net-
works of spiking neurons, the weights for feature detection were set sim-
ilar to those obtained with temporal Hebbian learning in (Natschläger &
Ruf, 1998; Bohte et al., 2002c), suggesting that the architecture could thus
be learned. The incorporation of unsupervised learning in the framework
is thus a logical addition. As noted by Von der Malsburg (1999), the is-
sue of dynamic binding and structured representations is important in the
field of neural networks and (sub)symbolic AI. We believe that as such,
the framework developed should enable new ways of dealing with these
issues.



5

FORMAL SPECIFICATION OF
POSITION-INVARIANT

DETECTION OF
FEATURE-CONJUNCTIONS

ABSTRACT. In chapter 4, we proposed a framework for the
efficient position-invariant detection of feature conjunctions.
In this chapter, we formally define this framework for neural
nodes that process activity in the form of tuples of spike-trains.
It describes the framework in terms of well defined operators
and data-structures.

5.1 Introduction

The efficient detection of feature-conjunctions on an input-grid (like the
retina) is an important open issue in neural networks, with particular im-
portance for the field of computer-vision. In chapter 4, we proposed a
framework for detecting local feature-conjunctions in specialized position-
invariant detectors. We used the properties of distributed coding to lo-
cally encode a feature-conjunction, and then decode, and detect, the spe-
cific content of this feature-conjunction at a position-invariant level. We
showed how the proposed framework is able to correctly represent and
detect multiple feature-conjunctions simultaneously.

In this chapter, we give a formal definition of the local type of encoding
proposed, and the operations that are carried out on this code to ascertain
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the presence of specific feature-conjunction in a position invariant manner.
This chapter describes these network operations in terms of well defined
operations.

5.2 Formal Description

The presence of a particular feature on the input grid is characterized by
the spike-trains it elicits in a set of basic neurons. For the purpose of a
formal definition, we collect the timings of the spike trains for each set in
a tuple, where each tuple element describes the spike train of one neuron.
The local “nodes” of the architecture outlined in chapter 4 process tuples of
spike-trains (TST’s). The formal operations that nodes of the architecture
can perform on TST’s are defined in the following.

In the remainder, we use the notation like (d, e, . . . ∈)D to introduce a do-
main D and some typical elements d, e. That is, for the subsequent use of
a variable d or e, one can assume that it is an element of D.

DEFINITION 1 Let (a, b, . . . ∈)R be the domain of single spikes.
Let (s, t, u, v, . . . ∈)ST ⊆ R∗ be the domain of spike-trains with as elements the
strictly monotonically increasing sequences denoting the timing of single spikes.
An empty sequence is denoted by ε. The concatenation operator is denoted by ¯:
given single spike a and spike-train s, concatenation yields the new spike-train
a¯ s, which is the same as s, except that the element a is added in front.

The set TST of tuples of n spike-trains is defined by: (S, T, U, V, . . . ∈)TST =∏n
i=1R∗. By Si we denote the projection of S on the i-th component. An empty

TST is denoted by E (i.e. E = (ε, . . . , ε)).

An example of the use of the concatenation operator: 1¯ < 2.6, 4 >=<
1, 2.6, 4 >. A neuron may produce a spike-train s =< 3.1, 7, 12.34 > or
an empty spike-train ε. Some n neurons together produce a tuple S of
spike-trains, e.g. (S1, S2, . . . , Sn).

DEFINITION 2 The combination of two TST’s is defined as S ‖ T = (S1 ‖
T1, . . . , Sn ‖ Tn), with ε ‖ s = s, s ‖ ε = s, and with s and t non-empty:

(a¯ s) ‖ (b¯ t) =





a¯ (s ‖ (b¯ t)) if a < b

b¯ ((a¯ s) ‖ t) if b < a

a¯ (s ‖ t) if a = b.

The operator Σ extends ‖ and denotes the combination of more than two TST’s.
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EXAMPLE The combination S ‖ T of two TST’s S = (<
2, 3.1, 4 >,< 2.5, 3.1 >) and T = (< 3.9, 4.2 >, ε) equals
(< 2, 3.1, 3.9, 4, 4.2 >,< 2.5, 3.1 >).

DEFINITION 3 For spike-trains s, t, we have s ⊆ t if there is a spike train u such
that s ‖ u = t. We say S ⊆ T if for all projections Si ⊆ Ti, i = 1, . . . , n.

EXAMPLE For example, < 1, 2, 3 >⊆< 0.5, 1, 1.3, 2, 3 > because
< 1, 2, 3 >‖< 0.5, 1.3 > =< 0.5, 1, 1.3, 2, 3 >.

Now, we define the watermarking-operator (Context-Dependent Thinning,
CDT).

DEFINITION 4 A CDT operation C for binding is defined by: S C T = (S1 C
T1, . . . , SnC Tn), with: tC ε = t, εC t = ε, and for non-empty spike-trains:

(a¯ s)C (b¯ t)
{
a¯ (sC (b¯ t)) if a < b

ε otherwise.

Note that for all i, either (S C T )i = ε or (T C S)i = ε (or both equal ε).
Another interesting property is that for all S, T , U , we have S C (T ‖ U) =
(S C T )CU .

EXAMPLE The CDT operation on spike-trains s =< 1, 2, 3 > and t =<
2.5, 3.5, 4.6 >, results in a spike-train sC t =< 1, 2 >. The operation S C T
removes some spikes in S due to the presence of spikes in T , that is (S C T ) ⊆ S.

DEFINITION 5 We define Γm(S) = T , with

Ti =
i+m∑

k=i−m

{
Sn if k mod n = 0

Sk mod n otherwise.

We abbreviate S C (Γm(T )) by S Cm T . For TST’s with some n elements,
it is possible to select m such that the CDT procedure removes approxi-
mately half the non-empty elements, see section 4.3.

For the construction of networks, we next define local feature-detectors,
local binding-detectors and conjunction-detectors.
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DEFINITION 6 A local feature-detector lfd for feature S in T is defined by:

lfd(S, T ) =

{
T if S ⊆ T

E otherwise.

DEFINITION 7 A generic local binding-operator glb is defined by:

glb(S, T ) =

{
S Cm T if |S| · |T | > θ

E otherwise.

Here, the number of spikes |S| in S is defined by |S| = |S1|+ . . . + |Sn|,
with |s| = length(s) and |ε| = 0. The threshold θ is the required input-
activation.

The idea is that a non-empty TST, S, is partially propagated by the glb op-
erator if there is also a non-empty TST, T , present (a conjunction). The
CDT operation is then performed on S using T , resulting in a TST like
S, except for that some elements from the spike-trains in S are removed.
We use two complementary glb operators, denoted (X C Y ) and (Y CX).
When presented with any non-empty TSTs S and T , these operators yield
watermarked versions of S or T , respectively. For global conjunction de-
tection, the presence of the correct watermarked TST is determined by the
Ω operator:

DEFINITION 8 We define the presence operator Ω by:

Ω(S, T ) = (Ω(S1, T1), . . . ,Ω(Sn, Tn)), where Ω(s, t) =

{
s if s ⊆ t

ε otherwise.
.

The Ω(S, T ) operation checks which spike trains of S are present in T and
outputs those spike-trains that are present.

DEFINITION 9 The conjunction detector cd(S, T, U, V ) for the S, T conjunction
is defined by:

cd(S, T, U, V ) =





Ω((S Cm T ), U) ‖ Ω((T Cm S), V ) if |Ω((S Cm T ), U)|+
|Ω((T Cm S), V )| ≥ α

E otherwise.

The threshold α detects matching, we set it to to |S Cm T |+ |T Cm S|.
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The conjunction detector propagates a specific mix of the input TST’s if
both sufficiently match the patterns. It checks whether watermarked ver-
sions of S and T are present in U and V , respectively.

Now we have all the (feed-forward) elements for our three-level architec-
ture:

1. a first level in which we have:
– for each location i local feature detectors lfd(A,U i), lfd(B,U i) look-
ing for specific patterns A,B ∈ TST in the activity U i of the local set
of neurons.
– for pairs of locations next to each other generic local binding oper-
ators glb(U i, U i+1) and glb(U i+1, U i) that look for pairs of sufficient
activation, and then output watermarked features U i Cm U i+1 and
U i+1Cm U i.

2. a second level combining local feature and generic binding detectors
via ‖ into respective global feature and generic binding detectors:
Σilfd(A,U i), Σilfd(B,U i), Σiglb(U i, U i+1), Σiglb(U i+1, U i).

3. a third level, for conjunction detection. A cd-operator connects to
two global feature detectors and two global generic binding detec-
tors:
cd(Σilfd(A,U i),Σilfd(B,U i),Σiglb(U i, U i+1),Σiglb(U i+1, U i)).

Up to now we have abstracted from the fact that computations take time.
In order to detect a feature a node can only produce output if it has seen
the feature. Therefore, to actually implement the network, one has to build
in a delay in all nodes in the network. This can be done by using a constant
∆, which models the maximal computation time.

DEFINITION 10 For a number ∆ ∈ R the operation of delayed propagation ∆
of a TST S, is defined as: ∆(S) = (∆(S1), . . . ,∆(Sn)), with the propagation of
an empty sequence ε defined as ∆(ε) = ε, and the propagation on a non-empty
spike-train is recursively defined as: ∆(a¯ s) = (a+ ∆)¯ (∆(S)).

EXAMPLE A the ∆-operator applied to a TST S with ∆ = 1, S1 =< 1, 2.1, 3 >
and S2 =< 1.5, 2.1 >, yields 1(S) = (< 2, 3.1, 4 >,< 2.5, 3.1 >).

As an example we go through the detection of conjunctions BA and CD of
features A,B,C,D, when both conjunction are simultaneously presented
on an input grid. The corresponding TST’s are shown in table 5.1. We



78 FORMAL SPECIFICATION OF POSITION-INVARIANT...

A = (< 2.1 >,< 3.4 >)
B = (< 4.2 >,< 1.1 >)
C = (< 1.0 >,< 4.1 >)
D = (< 3.0 >,< 1.2 >)

UL = Σiglb(U i, U i+1) = (B CA) ‖ (C CD) = (< 1.0 >,< 1.1 >)
UR = Σiglb(U i+1, U i) = (ACB) ‖ (DCC) = (< 2.1 >,< 1.2 >)

Σilfd(A,U i) = A = (< 2.1 >,< 3.4 >)
Σilfd(B,U i) = B = (< 4.2 >,< 1.1 >)
Σilfd(C,U i) = C = (< 1.0 >,< 4.1 >)
Σilfd(D,U i) = D = (< 3.0 >,< 1.2 >)

cd(Σilfd(B,U i),Σilfd(A,U i), UL, UR) = (< 2.1 >,< 1.1 >)
cd(Σilfd(C,U i),Σilfd(D,U i), UL, UR) = (< 1.0 >,< 1.2 >)
cd(Σilfd(C,U i),Σilfd(A,U i), UL, UR) = (< ε >,< ε >)
cd(Σilfd(B,U i),Σilfd(D,U i), UL, UR) = (< ε >,< ε >)

Table 5.1: Output of operators when only the conjunctions BA and CD are
present. Detectors for BA and CD output a TST, detectors for “ghosts” CA and
BD do not.

see that there is only output from the cd-detectors for the existing conjunc-
tions. For simplicity, we took TST’s with very few elements, and we left
out the delays.

5.3 Conclusion

Summarizing, we have formally defined the spike-time vector as a data-
structure (the TST), and defined the operations on such a data-structure
that, when put together, enable the correct detection of simultaneously
present feature conjunctions.



6

THE EFFECTS OF PAIR-WISE AND
HIGHER ORDER CORRELATIONS

ON THE FIRING RATE OF A
POST-SYNAPTIC NEURON

ABSTRACT Coincident firing of neurons projecting to a
common target cell is likely to raise the probability of firing
of this post-synaptic cell. Therefore synchronized firing consti-
tutes a significant event for post-synaptic neurons and is likely
to play a role in neuronal information processing. Physiologi-
cal data on synchronized firing in cortical networks is primar-
ily based on paired recordings and cross-correlation analysis.
However, pair-wise correlations among all inputs onto a post-
synaptic neuron do not uniquely determine the distribution of
simultaneous post-synaptic events. We develop a framework
in order to calculate the amount of synchronous firing that,
based on maximum entropy, should exist in a homogeneous
neural network in which the neurons have known pair-wise
correlations and higher order structure is absent. According
to the distribution of maximal entropy, synchronous events in
which a large proportion of the neurons participates should ex-
ist, even in the case of weak pair-wise correlations. Network
simulations also exhibit these highly synchronous events in the
case of weak pair-wise correlations. If such a group of neurons
provides input to a common post-synaptic target, these net-
work bursts may enhance the impact of this input, especially
in the case of a high post-synaptic threshold. Unfortunately,
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the proportion of neurons participating in synchronous bursts
can be approximated by our method only under restricted con-
ditions. When these conditions are not fulfilled, the spike trains
have less than maximal entropy, which is indicative of the pres-
ence of higher order structure. In this situation, the degree
of synchronicity cannot be derived from the pair-wise corre-
lations.

6.1 Introduction

In this chapter, we study the population behavior of groups of intercon-
nected spiking neurons. In particular, we study the (likely) interpretation
of biologically measurements on neural correlations related to the precision
with which single spiking neurons fire. As such, this chapter makes a con-
siderable effort to take biological considerations into careful consideration.

The occurrence of correlations in the spike-trains of neurons responding to
the same object has raised considerable excitement during the last decade
(reviewed by Singer and Gray (1995)). Correlations between pairs of neu-
rons are thought to reflect a high degree of synchronous firing within a
larger assembly of neurons (Singer, 1995; Engel et al., 1992) and can have a
high temporal precision, in the range of a few milliseconds (Eckhorn et al.,
1988; Gray et al., 1989; Konishi, 1991; Roelfsema et al., 1997; Alonso et al.,
1996; Abeles et al., 1993; Gray et al., 1989). Von der Malsburg (1981) sug-
gested that assemblies of neurons might convey additional information
by firing in synchrony, since synchrony could be instrumental in forming
relationships between the members of such an assembly.

However, the possible relevance of fine temporal structure in spike-trains
opposes another widespread belief. In real nervous systems, the irregular
timing of cortical action potentials is often attributed to stochastic forces
acting on the neuron (Bair et al., 1994; Shadlen & Newsome, 1994). In
such a stochastic model, the information is thought to be conveyed to the
next processing stage (cortical layer) by pools of neurons using a noisy
rate code. Each individual neuron is considered to be a slow, unreliable
information processor, reflecting changes in its receptive field by modulat-
ing its average firing rate. Only by pooling the information from a larger
number of neurons, a reliable rate code can be obtained. Obviously, this
scheme does not need precise timing of the individual spikes to convey
information.
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These two opposing views on the role of temporal structure of neuronal
information processing are subject of considerable debate (König, Engel,
& Singer, 1996; Shadlen & Newsome, 1995; Softky & Koch, 1993). This de-
bate has focused on two important questions. First, is the cortical neuron
a coincidence detector (on the millisecond time-scale) and second, how
much coincident input is there?

The first question refers to the relevance of synchronous pre-synaptic
spikes. It has been suggested that synchronous input induces a higher
firing rate in the post-synaptic target cell. Does this assumption hold, es-
pecially on a millisecond time-scale? This question has been amply recog-
nized, and several studies have attempted to answer it. Shadlen and New-
some (1995) argue that, based on physiological considerations, a cortical
neuron is not capable of detecting very tightly synchronized input. How-
ever, others have argued that cortical neurons might have a high sensitiv-
ity for the synchronicity in their input (Softky, 1995; König et al., 1996).
Softky (1995) pointed out that the biological data available leave too many
parameters undetermined to draw any definite conclusions on biological
properties that distinguish the various models. Two further studies on the
impact of synchronized input on a post-synaptic target reinforce this ob-
servation. Using detailed models of groups of neurons, Bernander, Koch,
and Usher (1994), and Murthy and Fetz (1994) studied the impact of coin-
cident input on the firing rate of a post-synaptic neuron. Their conclusions
are similar to Softky’s: within the biologically plausible parameter ranges
synchrony may either increase or decrease the firing rate of post-synaptic
neurons.

In the present study we attempt to shed more light on the second ques-
tion: how much synchrony is there? In general, it is implicitly assumed
that pair-wise correlations provide a good estimate of the amount of syn-
chrony in a pool of neurons from which recordings are obtained. However,
to date there are no direct electrophysiological measurements of large syn-
chronous pools of cortical neurons. Most of the physiological data on neu-
ronal synchronization so far have been obtained using cross-correlation
techniques (with the notable exception of the work of Abeles et al. (1993)).
These techniques merely provide information on the pair-wise correlation:
the probability of finding a pair of neurons that fire at the same time (that
is, within some time-window). Unfortunately, pair-wise correlations only
provide an indirect estimate of the probability of higher-order events, like
the coincident firing of, say, 5 or 50 neurons. Even when the pair-wise
correlations between all neurons of a network are fixed, the probability of
these higher-order events remains undetermined, as is illustrated in figure



82 THE EFFECTS OF PAIR-WISE AND HIGHER ORDER CORRELATIONS . . .

6.1. Pair-wise correlation is defined as the difference between the proba-

Figure 6.1: (A) Three neurons with correlated activity. The pair-wise correlation
coefficients are ρAB, ρAC and ρBC . (B) Examples of different spike configurations
in windows of the same size. The horizontal lines represent the spike trains, and
each tick denotes a spike. Spikes occurring with a time-window (dotted box) are
considered to be coincident. (C) Three examples of correlated spike trains. Pairs
of neurons in the three panels have the same pair-wise correlation. Spike-doublets
are shown as unfilled arrows, and triplets as filled arrows. It can be seen that the
number of triplets differs from panel to panel.

bility of two neurons firing simultaneously, and the product of their firing
rates (the coincidence rate dictated by chance). This value is the same for
any pair of neurons in the three panels of figure 6.1C. However, the num-
ber of spike-triplets differs considerably from panel to panel. Given this
example, it is quite clear that the number of neurons that fire within some
time-window (the measure of coherence) is not exclusively determined by
the pair-wise correlation coefficient. And, although this is an artificial ex-
ample, it is already quite difficult to determine intuitively how many of
these triplets can be attributed to higher-order correlation, and how many
result from two “doublets” that happen to occur at the same time. In a first
attempt to quantify the incidence of higher-order correlations, Martignon,
Hasseln, Grün, Aertsen, and Palm (1995) analyzed data from six cortical
neurons. Unfortunately, we found that their methods cannot be used for
the analysis of large numbers of neurons (as will be discussed). The main
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goal of the present chapter is to study the relationship between pair-wise
correlations and the amount of synchronicity in a pool of neurons, and to
determine the impact of the synchronous events on a post-synaptic target
cell.

6.2 Mathematical Solution of the three-neuron problem

To illustrate the general methodology used for estimation of the probabil-
ity of higher order events, we examine the three neuron network of figure
6.1. We wish to calculate the probability that a triplet (or an N -cluster,
where N equals 3) occurs within a given time-window. The null hypoth-
esis is that no structure is present in the spike-trains other than the pair-
wise correlations. That is, all triplets should be due to the occurrence of
two doublets at the same time, by chance forming a triplet. Csiszar (1975)
has proved the unique existence of a distribution with just this property.
The basic approach for calculating the probability distribution involves
maximizing the informational entropy of the data, while preserving the
pair-wise correlation and the firing rate (see also Martignon et al. (1995)).
This informational entropy is a measure of the “order” in the data: the
more structured the data, the lower the entropy. By measuring the pair-
wise correlations and the firing rates (the first order correlation), a certain
degree of order is fixed. Taking these constraints into account, maximizing
the entropy will minimize all higher-order correlations since higher-order
correlations will add “structure” to the distribution, further lowering the
entropy. Therefore, maximal entropy implies minimal higher-order corre-
lations. Our aim is to obtain the distribution of N -clusters that has maxi-
mal entropy. We will illustrate the procedure by computing this distribu-
tion for three connected neurons.

The neurons are labeled A, B and C, their firing probabilities f1A, f1B and
f1C and the pair-wise correlation coefficients are denoted as ρAB, ρBC and
ρAC (f1i denotes the probability that neuron i fires in a particular time-
window, or time bin. Given the width of the time-bin, division of the firing
probability by the length of the time bin in seconds yields the firing rate of
the neuron. The rationale of the suffix 1 will become clear below). Within
a time bin, we assume that only one possible configuration is realized, i.e.
a neuron fires at most one spike within a time bin. Given these coefficients
as constraints, probabilities Gabc for all 2n possible events within a single
time bin can be calculated. For example G010 designates the probability of
finding a time bin where B is firing and A and C are silent (Fig. 6.1B).
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There are 8 probabilities to solve for. Since firing probabilities and pair-
wise correlation coefficients are fixed, 7 equations can easily be obtained:
The sum of the probabilities of all possible events equals one:

G000 +G001 +G010 +G011 +G100 +G101 +G110 +G111 = 1 (6.1)

The firing-probability of a neuron A is:

G100 +G101 +G110 +G111 = f1A (6.2)

(The equations for f1B and f1C are derived analogously) Let f2AB denote
the probability that A and B fire simultaneously (the suffix now indicates
a cluster of size 2). f2AB is determined by the correlation coefficient ρAB ,
since

ρAB =
f2AB − f1Af1B√

(f1A − f2
1A)(f1B − f2

1B)
(6.3)

This implies that ρAB determines f2AB and since f1A and f1B are fixed, this
yields:

G110 +G111 = f2AB (6.4)

and corresponding equations are derived for ρAC and ρBC. These equa-
tions yield one free parameter (G111, for example), which determines the
entropy of the probability distribution. By calculating the value at which
the distribution has maximal entropy, we fix this last free parameter such
that the probability contains the least structure in terms of higher-order
correlations. The entropy-function is defined as:

S ≡ −
∑

i

Gi ln(Gi) i over all possible spike configurations {0, 1}3

(6.5)
The entropy is maximized by solving the following equation, which has a
unique solution:

∂S

∂G111
= 0. (6.6)

Using this equation the probability distribution of configurations with the
desired zero higher-order correlation can easily be calculated (see also
Martignon et al. (1995)).

6.3 Calculating the Distribution with N Identical Neurons

For more than three neurons, the equations can no longer be solved eas-
ily by analytical means. For instance, for 4 neurons, the same calculations
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yield the entropy as a function of 5 free parameters. Calculating the max-
imum of this function is already quite complicated. Extending this to N
neurons, only 1 +N(N + 1)/2 equations are determined by the pair-wise
correlations and firing-probabilities, with 2N parameters to solve for. To
overcome this problem, an iterative algorithm for calculating the maximal
entropy distribution has been provided by Gokhale and Kullback (1978).
Unfortunately, this algorithm has a serious drawback: the number of cal-
culations increases exponentially with the number of neurons. If one is
interested in the behavior of many correlated neurons, computational re-
strictions prohibit this method of calculating the distribution for more than
20 neurons on a workstation, thus putting the more serious number of
neurons out of reach of even the fastest supercomputers.

To overcome the problem of increasing computation time we made the
additional assumption that all neurons have identical properties, which
implies a major degeneration of the probability-space. Since any two neu-
rons are equal, the same will hold for the probability of all permutations
of spike configurations. In addition, the N firing probabilities and the
N(N − 1)/2 pair-wise correlation coefficients will also be equal. The distri-
bution of spike configurations is described by N + 1 variables, D0 through
DN , whereDi denotes the probability of a particular spike configuration in

which exactly i neurons fire. Note that there are
(
N
i

)
such configurations.

In the case of N = 7: D1 = G1000000 = G0100000 = . . . = G0000001; D2 =
G1100000 = G1010000 = G0010010, etc. For the general case of N neurons
three equations are derived from the pair-wise correlation. Since all per-
mutations of i spiking and N − i silent neurons have the same probability
Di, the requirement is that the firing probability and the sum of all proba-
bilities should add up to 1. First, the probabilities should add up to 1:

1 =
N∑

i=0

(
N
i

)
·Di (6.7)

Second, the firing probability f1 is fixed. For example, in the case that
N = 7 it is easy to see that f1 equals:

f1 =
1∑

i=0

1∑

j=0

1∑

k=0

1∑

l=0

1∑

m=0

1∑

n=0

G1ijklmn =
7∑

i=1

(
6

i− 1

)
·Di (6.8)
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In the general case of N neurons this reads (see also appendix A):

f1 =
N∑

i=1

(
N − 1
i− 1

)
·Di (6.9)

Under the assumption of identical neurons, in (6.3) f1B equals f1A. Rewrit-
ing (6.3), replacing f1A and f1B by f1, and f2AB by f2 yields:

ρ =
f2 − f2

1

f1(1− f1)
(6.10)

Thus, f2 can once again be calculated from the firing probability of a neu-
ron and the correlation. f2, the probability that any two particular neurons
fire at the same time equals:

f2 =
N∑

i=2

(
N − 2
i− 2

)
·Di (6.11)

By maximizing the entropy S, we derive the remaining N − 2 equations:
The entropy is defined as:

S =
N∑

i=0

(
N
i

)
·Di ln(Di) (6.12)

Maximization of entropy yields:

∂S

∂Di
= 0 for i = 3 . . . N (6.13)

We now solve these equations for the maximal entropy.

First, we eliminateD0, D1 andD2 with the relationships fixed in equations
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(6.9)-(6.11):

D0 = 1−
n∑

i=1

(
n
i

)
Di

= 1− nD1 − n
(
n
2

)
D2 −

n∑

i=3

(
n
i

)
Di (6.14)

D1 = f1 −
n∑

i=2

(
n− 1
i− 1

)
Di

= f1 − [n− 1]D2 −
n∑

i=3

(
n− 1
i− 1

)
Di (6.15)

D2 = f2 −
n∑

i=3

(
n− 2
i− 2

)
Di (6.16)

Solving for D0 , D1 and D2:

D0 = 1− nf1 + n(n− 1)f2 −
(
n
2

)
f2 +

+

[(
n
2

)
− n(n− 1)

]
·
n∑

i=3

(
n− 2
i− 2

)
Di +

+n
n∑

i=3

(
n− 1
i− 1

)
Di −

n∑

i=3

(
n
i

)
Di (6.17)

D1 = f1 − (n− 1)f2 + (n− 1)
n∑

i=3

(
n− 2
i− 2

)
Di +

−
n∑

i=3

(
n− 1
i− 1

)
Di (6.18)

D2 = f2 −
n∑

i=3

(
n− 2
i− 2

)
Di (6.19)

With the entropy defined as in eq. (6.12), it is easy to verify that this is a
concave function, and therefore it has a single, unique maximum. Using
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eq. (6.13), and eqs. (6.17)-(6.19), maximization yields:

∂S

∂Di
= −

{[(
n
2

)
− n(n− 1)

](
n− 2
i− 2

)
+ n

(
n− 1
i− 1

)
−
(
n
i

)}
ln(D0) +

−n
{

(n− 1)

(
n− 2
i− 2

)
−
(
n− 1
i− 1

)}
ln(D1) +

+

(
n
2

)(
n− 2
i− 2

)
ln (D2) +

−
(
n
i

)
ln (Di) = 0 (6.20)

We note that the equations (6.17)-(6.19) are linear in Di, and that a concave
function remains concave on a linear subspace. In other words: equations
(6.17)-(6.19) and (6.13) taken together, also have a unique solution. Equa-
tion (6.20) can be rewritten as:

ln(Di) = −(−1

2
i+ 1)(i− 1) ln(D0)− i(i− 2) ln(D1) +

+
1

2
i(i− 1) ln(D2) for i = 3 . . . N (6.21)

Inserting these values for Di into equations (6.17-6.19) yields three equa-
tions with three unknowns (since Di is replaced with functions in D1, D2

and D3) and a unique solution which we approximate using the Newton-
Raphson method, as described in (Press, Flanney, Teukolsky, & Vetterling,
1986).

The maximal entropy distribution, thus defined, depends on only two pa-
rameters, the firing probability f1, and the pair-wise correlation ρ. Figure
6.2 illustrates the shape of the N -cluster distribution with maximal en-
tropy for a network of 150 neurons, and its dependence on f1 and ρ. Fig-
ure 6.2 shows the probability Pi that a particular number of neurons fire
simultaneously, where Pi equals the sum of the probabilities of all config-
urations in which exactly i neurons fire:

Pi =

(
N
i

)
·Di (6.22)

For small values of ρ, the distribution ofN -clusters approaches a binomial
distribution. This determines the first peak of the N -cluster distribution,
corresponding to small cluster sizes. For larger values of ρ, a second peak
appears in the distribution, the amplitude of which grows with increasing
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Figure 6.2: (A-C) Probability of N -clusters (p) as a function of the pair-wise cor-
relation ρ and the cluster size, for three firing probabilities, f1 = 0.05 (A), 0.146
(B) and 0.225 (C). Probabilities are clipped at a value of 10−4. (D-F) Contour plots
of the same data show that the separation between the two peaks becomes larger
with increasing ρ. Contour levels indicate probabilities of 0.001, 0.01 and 0.1.
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ρ. A second influence of increasing ρ is a divergence of the two peaks. This
divergence can be seen most clearly in the contour plots of figure 6.2D-F.
Indeed, in the limiting case of ρ = 1, the first peak approaches a cluster
size of 0, and the second peak a cluster size of 150, since all neurons fire at
exactly the same time.

An increase in f1 shifts the first peak of the distribution to larger values,
as is predicted by the binomial distribution (Fig. 6.2A-C). Remarkably, an
increase in f1 is also associated with a shift of the second peak, to smaller
values. Thus, the maximal entropy distribution predicts that low firing
probabilities are associated with sparse, but highly synchronized bursts
(eg: the average size of the second peak in A at ρ = 0.165 equals 142 vs 110
in C, whereas the cumulative probability increases from 0.009 in A to 0.076
in C. The second peak is defined as all clusters with p > 10−4, starting on
the positive slope after the first peak). With a higher firing probability,
synchronous bursts occur more frequently, but comprise fewer spikes.
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6.4 An artificial neural network

We now compare N -cluster distributions obtained from simulations of an
artificial neural network to the maximal entropy distribution. Any differ-
ence between the two distributions can then be attributed to higher-order
correlations. The network used is based on a network described by Dep-
pisch et al. (1993), which, in turn, is based on the work of MacGregor and
Oliver (1974). This network was chosen since it could easily be adapted to
consist of identical neurons.

6.4.1 The neuron model The chosen neuron model is a less abstract,
biological model when compared to the previously used Spike Response
Models, in that it describes how impacting spikes mediate charged cur-
rents entering and leaving the neuron. This interaction, expressed in cou-
pled partial differential equations, describe the resulting changes in the
membrane potential that (can) result in the generation of an action poten-
tial. In the simple model we use, only the primary charge-carrying cur-
rent (potassium) is modeled. Thus, the neuron model involves four vari-
ables: the neuron’s membrane potential E(t), the potassium current g(t),
the spiking threshold θ(t) and the neuronal output o(t). The dynamics of
a neuron i are described by four coupled equations:

τE
dEi(t)

dt
= −(Ei(t)−E0)− (gi(t)− g0)(Ei(t)−Ek) + ηi(t) +

−


∑

j

wij · oj(t− τij)


 (Ei(t)−Eex) (6.23)

τθ
dθi(t)

dt
= −(θi(t)− θ0) + c(Ei(t)−E0)0 ≤ c ≤ 1 (6.24)

τg
dgi(t)

dt
= −(gi(t)− g0) + τgboi(t) (6.25)

oi(t) =

{
1 if Ei(t) > θi(t)
0 otherwise (6.26)

Without input, the membrane potential Ei(t) is driven towards its resting
value E0 with a time constant τE . An influx of potassium drives the po-
tential towards the potassium equilibrium potential Ek. Excitatory input
moves the potential towards the equilibrium valueEex. In the simulations,
the values used in (Deppisch et al., 1993) were adopted: E0 = 0, τE = 2.5
msec, Ek = −1, Eex = 7. We remark that the membrane time constant
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τE may appear to be rather small, although some have argued that it may
be within the biologically plausible range (König et al., 1996; Bernander
et al., 1991). In the discussion we will address the dependence of our
results on this particular choice. Input to the cells was strictly excitatory,
with synaptic delay τij = 0.5 msec. External input to the network’s neu-
rons is provided by external stochastically spiking neurons and is treated
equivalent to internal input. Internal noise is added by the additive noise
term ηi(t) in (6.23), with a standard deviation of 0.06Ei(t). Equation (6.24)
describes the slow adaptation of the threshold θi to the membrane poten-
tial, modeling an adaptation of the neuron to excitation (θ0 = 1, τθ = 10
msec, c = 0.3). Equation (6.25) describes the dynamics of the potassium
current in response to incoming spikes. The current is driven towards
g0 = 0 with time constant τg (5 msec). In the case of a input spike, the
potassium current rises by an amount b(4.0) corresponding to the outward
potassium current. A spike is generated each time the membrane poten-
tial exceeds the threshold (6.26), after which, due to refraction of the mem-
brane potential, the neuron cannot fire another spike for another 1.5 msec.
In the actual numerical implementation of the neuron model, a discrete
time analogue of (6.23)-(6.26) was used. These equations were iterated
with time-steps corresponding to 0.5 msec of real time.

Each neuron was connected to every other neuron with a fixed homoge-
neous synaptic weight wij = wint

N > 0. Here, wint denotes the sum of the
strengths of all synapses from within the network impinging on a single
cell. External input consisted ofN independent stochastic elements gener-
ating spikes with p = 0.05 per msec (50 Hz), connected in a 1 to 1 fashion
with the network neurons with a constant weight wext = 0.8.

The parameterwint was varied during the simulation. Increasing the value
of the weights drives the network from a stochastic mode of seemingly
random firing into an oscillatory mode of bursts of tightly synchronized
firing (Deppisch et al., 1993). Somewhere within this range of synap-
tic weights the network alternates between the stochastic and oscillatory
mode.

All results are based on simulations with a network with N = 150 neu-
rons, with the exception of the results in section 6.4.6. This was a compro-
mise between a realistic number of neurons, and a network consideration:
the absence of inhibitory neurons makes a network very quickly prone
to saturation, a state where the constant excitation induces a very sharp
oscillation. A further increase in the number of neurons also narrows the
weight-range in which the network is in the alternating state. The network
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output was obtained by recording the output of all 150 neurons. A sample
of the output of 50 neurons is shown in figure 6.3.

Figure 6.3: Upper panel, activity of 50 of the 150 neurons. On the horizontal axis
time is displayed (sampling-time, 0.5 msec). The vertical ticks indicate action po-
tentials. Oscillatory episodes are alternated by periods of more random activity.
In the lower panel the summed activity of all 150 neurons is shown.

6.4.2 Network Simulations In order to vary the average pair-wise cor-
relation, simulations were performed with different values of the synaptic
weight wint. As was noted by Deppisch et al. (1993), the network ex-
hibits three distinct modes, which depend on the value of the synaptic
weight. The first, at low values of the synaptic weights, is the stochas-
tic mode in which the average correlation between pairs of neurons is
near zero. At the other end of the scale is the mode with high values of
internal weight. In this mode the network activity is highly oscillatory.
In between these extremes are synaptic weight values for which the net-
work exhibits episodes in which many neurons fire synchronously, alter-
nated by episodes in which neurons are synchronized to a lesser degree.
Typical activity of the neurons in these three network modes is shown in
figures 6.4A-C. Also plotted are the cross-correlations between a pair of
neurons in the network (Fig. 6.4D-F). As observed in (Deppisch et al.,
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1993), these cross-correlograms show qualitative resemblance to data ob-
tained from electrophysiological recordings (e.g König, Engel, Roelfsema,
and Singer (1995)). Remarkably, the network with intermediate synap-
tic strength (w = 3.875, ρ = 0.03, for 2 msec bin-size) exhibits occasional
population bursts, which hardly show up in the correlation function (Fig.
6.4B,E). Thus, a network state in which a number of highly synchronous
population bursts occur, can be associated with correlation functions in-
dicative of weak pair-wise coupling. When investigating the relationship
between occurrences of N -clusters and the pair-wise correlation, an ad-
ditional assumption has to be made with regard to the maximal time-
difference between two spikes that are considered to be synchronous. As
a first approach we used a time-window of 2 msec. The maximal firing
rate of the neurons is determined by the refractory period (1.5 msec) and
the duration of an action potential (0.5 msec). As all experiments, with the
exception of those described in section 6.4.5, have a bin-width of 2 msec,
the firing rate (in Hz) in these experiments can be obtained by multiplying
the firing probability with a factor of 500. During network bursts, neurons
reach this maximal firing rate, and a single spike occurs in each 2 msec
bin. The effect of changing the bin-width on the distribution of cluster-
sizes will be investigated in section 6.4.5.

Figure 6.5 shows the relationship between the occurrence of N -clusters
and the pair-wise correlation. Plotted is the probability Pi (as defined in
eq. (6.22)) of a particular number of coincident spikes, for simulations with
different pair-wise correlations (different values of wint). As can be seen
in figure 6.5A, most 2 msec bins are occupied by N -clusters containing a
fairly low number of spikes. This corresponds to the stochastic activity
between bursts and the probability of these events is approximated by a
binomial distribution. Synchronous bursts are represented by the second
peak in the probability distribution, as can be seen more clearly in the log-
arithmic plot of figure 6.5B. Between these two peaks is a plateau of time
bins in which an intermediate number of neurons fire. These events are
caused by time bins that are aligned on the onset or end of a burst. In-
creases in the pair-wise correlation are associated with a slightly smaller
first peak, and an enhanced second peak. For very large, and biologically
implausible, pair-wise correlations a third peak containing intermediate
cluster sizes is visible which can be attributed to the onset and offset of
bursts. Let us now consider the impact of this distribution on a post-
synaptic cell, receiving input from all the network neurons. For such a
cell, the exact number of synchronous spikes (the quantity plotted in fig-
ure 6.5A,B) is not important. Rather, for a post-synaptic neuron with a
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Figure 6.4: Network activity for 3 values of the synaptic weight, wint. (A-C)
Summed activity of the 150 neurons. The synaptic weight was 3.5 (A, ρ = 0.003),
3.875 (B, ρ = 0.03) and 4.375 (C, ρ = 0.20) Pair-wise correlations were determined
for coincidences within a window of 2 msec. (D-F) Cross-correlation functions of
2 randomly selected neurons for the same synaptic weights as are plotted on the
left. Even for a low pair-wise correlation (ρ = 0.03) highly synchronous network
bursts occur, but these hardly show up in the cross-correlogram.
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Figure 6.5: (A,B) Probability distribution of N-clusters, plotted on a normal scale
(A) and a logarithmic scale (B). (C) Cumulative probability of N-clusters. Ab-
scissa, cluster-size (θ’). Ordinate, probability of a cluster with a size that is equal
to, or larger than θ’(D) Comparison of the cumulative N-cluster distribution (solid
line) to the firing-probability of a post-synaptic neuron, which receives input from
all 150 neurons in the network. The threshold θ’ is defined as θ/wi,151. (E) Depen-
dence of the firing probability of a neuron receiving input from all 150 neurons
on its relative threshold θ’ and the pair-wise correlation in the network. Different
curves correspond to different values of θ’. Triangles, dependence of the average
firing probability f1 on the pair-wise correlation. (F) Same as (E), but the firing
probability of the post-synaptic cell and f1 are plotted as a function of wint.
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firing-threshold of m EPSP’s the incidence of m or more coincident spikes
is a much more significant quantity, since this determines its firing rate to
a large extent. Therefore, we computed a cumulative probability distribution:
the probability that m or more neurons fire synchronously. The cumula-
tive probability distributions (the cumulatives of Fig. 6.5B) are plotted in
figure 6.5C. Suppose that the membrane-potential of a post-synaptic neu-
ron, which receives input from all cells in our network, equals the resting
potential at time t. The probability that this neuron fires at time t+ 1 is
equal to the probability of θ’ or more coincident spikes, where θ’ is the
ratio between the post-synaptic threshold (θ) and the EPSP amplitude. In
other words, the curves in figure 6.5C illustrate the relation between the
threshold and firing probability of a neuron, which receives input from all
neurons in the network, in the case of a very short membrane time con-
stant. The curve for a very low pair-wise correlation coefficient (ρ = 0.003)
shows the quickly declining probability of higher order events. The curves
for network activity with a larger pair-wise correlation exhibit a plateau
before their decline at very high numbers of synchronized spikes. This
plateau results from the second peak in the N -cluster probability distribu-
tion. It is remarkable that even small changes in the strength of the pair-
wise correlations, which are not physiologically implausible (Gray et al.,
1989; Livingston, 1996), exhibit a strong effect on the firing probability in
case of an intermediate threshold θ’. Indeed, the firing probability of a
neuron with a threshold of, say, 50 EPSP’s is raised by more than an order
of magnitude by an increase in the pair-wise correlation as small as 0.08
(compare the distributions for ρ = 0.03 and ρ = 0.11).

6.4.3 Firing-rate of a post-synaptic neuron The question remains how
closely the firing-rate of a post-synaptic neuron with non-zero membrane
time-constant is approximated by the cumulative probability distribution.
There would obviously be a one-to-one relationship for a post-synaptic
neuron that has “zero” memory, i.e. a neuron which is only influenced
by the input in the previous time-step (the bin-size for which spikes are
considered synchronous, as discussed above).

However, typical neurons have parameters with larger time constants, in-
cluding the refractory period, and the time-constant of the membrane. In
order to assess the impact of the “non-zero memory”, an additional 151th

neuron was included in the network. This cell was identical to the other
150 neurons from which it received input, but it did not project back to
them. The pair-wise correlation was fixed at 0.12 and the membrane-time



98 THE EFFECTS OF PAIR-WISE AND HIGHER ORDER CORRELATIONS . . .

constant was fixed to the same value as the other 150 neurons, thus re-
alizing a non-zero memory post-synaptic neuron. Simulations were per-
formed with different values of the post-synaptic threshold θ’, by varying
wi,151 (1 < i < 150), the strength of the synapses projecting onto neuron
151. The dependence of the firing probability on θ’ (θ/wi,151) is shown in
figure 6.5D. Superimposed on this graph is the distribution of N -clusters.
As expected, some minor differences between the firing probability and
the cumulative probability distribution are observed. Most of these differ-
ences can be explained, given the fact that the non-zero average activity in
a pool of neurons keeps the membrane potential of individual neurons at a
somewhat higher level than the resting potential. This lowers the average
number of coincident spikes the neuron would require to cross thresh-
old. On the whole however, the firing probability of the post-synaptic
neuron with a non-zero membrane constant is predicted with good ac-
curacy by the cumulative probability distribution. A remarkable feature
of figure 6.5D is that the firing probability of a neuron with a threshold
of for example 40 does not differ much from that of a neuron with a much
higher threshold (e.g. 130). Most of the spikes of a post-synaptic cell with a
threshold larger than 40 are triggered by synchronous bursts in which the
majority of neurons participate. As these bursts are separated in time by
about 15 msec, a relatively large number compared to the membrane time-
constant, this result shows that regarding the firing rate of a post-synaptic
neuron in our model, the actual time-structure in the cluster-distribution
is of far less importance than the sheer number of bursts.

Using this interpretation of the cumulative probability distribution, the
effect of an increase in the pair-wise correlation in the network on post-
synaptic neurons was investigated by varying the synaptic weight (wint).
Figure 6.5E shows the relationship between the average pair-wise correla-
tion and the firing probability of a hypothetical post-synaptic neuron with
threshold θ’. Calculated were the firing-probabilities for thresholds θ’ = 30,
50 and 100. It can be seen that in the biologically relevant range of pair-
wise correlations (ρ = 0− 0.2), there is a monotonic relationship between
the post-synaptic firing probability and the pair-wise correlation. For val-
ues of ρ below 0.2, changes in the pair-wise correlation are associated with
a relatively large increase in the firing probability of the post-synaptic neu-
ron. Importantly, higher values of ρ are also associated with an enhanced
firing rate of the pre-synaptic network neurons (Fig. 6.5E). This increase
in activity undoubtedly contributes to the enhanced probability of higher
order events. However, it should be noted that the probability of higher
order events exhibits a steeper dependence on ρ than the firing probability
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of the network neurons (Fig. 6.5E). Figure 6.5F illustrates the dependency
of the firing probability of the post-synaptic neuron on wint, the parameter
that was actually varied during the simulations.

6.4.4 Estimation of the N-cluster distribution by entropy maximization
In most electrophysiological experiments only data is available on firing
probabilities and pair-wise correlations. Using the mathematical frame-
work developed in section 6.3, we investigated whether the observed re-
lationship between the probability of N -clusters and the correlation coef-
ficient could have been predicted from these two types of measurements.
For the network behavior at different values of wint (3.5, 3.875 and 4.125),
distributions of N -clusters were calculated which maximized entropy un-
der the constraints of the observed firing probability and pair-wise correla-
tions. A comparison between distributions based on the maximal entropy
calculation and the experimental distribution is shown in figure 6.6A-C.
The distribution that maximized the entropy deviates somewhat from the
observed distribution for larger values of ρ.The maximal entropy calcula-
tion underestimates the incidence of clusters between 60 and 100 spikes,
which occur during start and end of population bursts, as was discussed
above. In addition, the second peak in the maximal entropy distribution is
located at a cluster size of 130, whereas the actual location of this peak is
150. Typically, all neurons fire within a 2 msec window during a network
burst. In order to estimate the effect of these discrepancies on the firing
probability of a neuron receiving input from the network, the cumulative
probability distributions are plotted in figures 6.6D-F. It can be seen that
the underestimation of the incidence of intermediate cluster-sizes by the
maximal entropy calculation is compensated by the overestimation of the
incidence of clusters with a size between 100 and 140. For values of the
threshold θ’ smaller than 130, the largest deviation is about a factor of 2.
This approximation is reasonable, since the maximal entropy calculation
depends on only 2 parameters, which are estimated from the network ac-
tivity: the firing probability and the pair-wise correlation. Nevertheless,
large deviations occur for values of θ’ larger than 130. However, these high
threshold values are physiologically implausible, because they would im-
ply that a post-synaptic neuron would only fire when almost every input
is active within a narrow time-window.

6.4.5 The effects of varying bin-width on the maximal entropy distri-
bution. The results of the maximal entropy calculation described so far,



100 THE EFFECTS OF PAIR-WISE AND HIGHER ORDER CORRELATIONS . . .

Figure 6.6: Comparison of the probability of N -clusters in the network simu-
lation, and their probability based on maximal entropy. (A-C) Probabilities of
N -clusters in the simulation are shown as solid curves for three values of the
synaptic weights. Dashed line: the corresponding maximal entropy probability
distributions with the same firing probability and pair-wise correlation. (D-F)
Relationship between firing probability (ordinate) and threshold (abscissa) of a
neuron with an integration window of 2 msec that receives input from all 150
neurons of the network (cumulatives of A-C).
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were obtained with a bin-width of 2 msec, which equals the minimal inter-
spike interval. Figure 6.7 shows the dependence of the N -cluster distribu-
tion and the maximal entropy estimation on the bin-width. Spike trains
obtained with a synaptic weight (wij) of 4.125 were re-binned, using bin-
widths of 0.5, 1.0, 2.0 and 4.0 msec. The rebinning process influenced the
pair-wise correlation, and f1, the probability of firing in a time-bin (eq.
6.9). Smaller bin-widths reduce f1. This results in a leftward shift in the
location of the first peak in the distribution of cluster-sizes, which repre-
sents stochastic activity between bursts (compare Fig. 6.7A-B to Fig. 6.7C).
A second effect of reducing the binwidth is a disappearance of clusters
with sizes larger than 110. This disappearance is related to the refractory
period, which prohibits neurons from firing in consecutive bins during
population bursts. Spikes fired by different neurons during these bursts
are therefore divided between successive time-bins, and no bins remain
in which all neurons fire simultaneously. This modification of the distri-
bution of cluster-sizes is not captured by the maximal entropy estimation,
which underestimates the incidence of clusters with sizes between 20 and
110, and grossly overestimates the incidence of clusters with a size larger
than 130 (Fig. 6.7A-B). In other words, the refractory period adds structure
to the spike trains, which therefore have less than maximal entropy. When
a bin-width is used that is longer than the refractory period, this addi-
tional structure is lost, and the maximal entropy calculation may provide
a reasonable estimate of the distribution of cluster sizes.

For bin-sizes that are longer than the minimal inter-spike interval, there
are time-windows, during which individual cells fire more than a single
spike. It is possible, in principle, to adapt the maximal entropy estima-
tion to this situation. One approach, in the case of a bin-size that may
include 2 spikes, is to compute the probability that N neurons fire once,
and M neurons fire twice in a bin, for each combination of N and M .
Unfortunately, this increases the number of variables that should be cal-
culated from 151 (D0 to D150) to more than 10.000. The computational
requirements increase further if 3 or more spikes can occur in a single bin.
Therefore, we took an alternative approach in which the state of a neuron
was labeled “off”, in the case of no spike, and labeled “on” in the case
of one or more spikes within a time bin. This keeps the computational
requirements within bounds, but at the cost of losing spikes in the pro-
cess. Figure 6.7D compares the distribution of cluster sizes to the maximal
entropy distribution for a bin-width of 4 msec. The experimental distri-
bution is largely described by a broad first peak, which is shifted to the
right, and a very narrow second peak at a cluster size of 150. An increase
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Figure 6.7: (A-D) Comparison of the maximal entropy distribution to the distri-
bution of N -clusters in the simulation, for bin-sizes ranging from 0.5 msec to 4
msec. The quality of the maximal entropy approximation depends on bin-size,
i.e. on what is considered coincident. In our simulations, a bin-size of 2 msec
yields the best approximation (C). For smaller binsizes (A: 0,5 msec, B: 1 msec),
the actual and predicted distributions deviate considerably. (E-H) The impact of
these deviations on a post-synaptic neuron with threshold θ’.
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in f1 also shifts the first peak of maximal entropy distribution to the right.
However, larger values of f1 are also associated with a leftward shift of the
second peak in the distribution of maximal entropy, as was discussed in
section 6.3. This causes large deviations for cluster sizes between 60 and
120, the incidence of which is overestimated by the maximal entropy esti-
mation. Moreover, the narrow peak at a cluster size of 150 is absent in the
distribution of maximal entropy.

In summary, reasonable estimates of the N -cluster distribution are only
obtained for a bin width, that is equal to the minimal interspike interval.
In the discussion we will address the question whether these results can
be generalized to other network architectures.

6.4.6 The effects of network scaling In order to investigate how the
network behavior and the goodness of fit of the maximal entropy distribu-
tion depends on network size, simulations were run with networks com-
posed of 75, 150 and 200 neurons. Figure 6.8A shows the cumulative distri-
bution of N -clusters for a network of 75 neurons with a wint of 3.55, which
exhibited a pair-wise correlation of 0.07. It should be noted that wint rep-
resents the sum of the synaptic weights wij of all inputs converging onto a
single neuron (section 6.4.1). When the network size is doubled (fig. 6.8B),
each cell receives input from twice as many neurons, and the strength of
the individual synapses wij was reduced accordingly, in order to main-
tain a constant value of wint. Nevertheless, a doubling of the network size
resulted in a clear leftward shift of the distribution of N -clusters, and a re-
duction of the pair-wise correlation to 0.003. This indicates that a constant
value of wint is not sufficient to guarantee a qualitatively similar network
behavior when the network size is increased. Indeed, a larger number of
synapses with reduced weight impinging on a network unit results in a
reduction of the fluctuations in the input, as long as the network is in the
stochastic mode. This reduces the probability of bursts in the network.
Tsodyks and Sejnowski (1995) have suggested that the variance in the in-
put to network units may be kept approximately constant, by reducing
the release probability of the synapses, rather than reducing their strength
wij , when network size is increased. Figure 6.8C shows the cumulative
distribution of N -clusters for a network of 150 neurons, in which the effec-
tive input strength was kept constant by reducing the release probability
to 50%. The pair-wise correlation was 0.12, and the cumulative distribu-
tion of N -clusters was qualitatively similar to that of the smaller network,
in accordance with the findings by Tsodyks and Sejnowski (1995). Figure
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6.8D shows a similar result for a network composed of 200 neurons. In all
cases the estimate based on maximal entropy was reasonable (dashed lines
in Fig. 6.8A-D), which indicates that the quality of the maximal entropy
calculation does not depend critically on the size of the network.

Figure 6.8: Effect of scaling the network size. (A) Continuous line, probability
of N -clusters with a minimal size of θ’, as a function of θ’, for a network with 75
neurons. Dashed line, distribution of maximal entropy with the same firing prob-
ability and pair-wise correlation. Parameters of the simulation: wij = 4.73 ∗ 10−2,
ρ = 0.07. (B) N -cluster distribution for a larger network with 150 neurons. The
total input converging on a neuron, wint, was kept constant by reducing wij to
2.37 ∗ 10−2. Nevertheless, the distribution of N -clusters was shifted to the left,
and the pair-wise correlation was reduced to 0.003. (C) Same as B, but the effec-
tive wint was kept constant by reducing the release probability to 50% rather than
by reducing wij . The synaptic strength wij was 4.73 ∗ 10−2, and ρ = 0.12. (D)
N-cluster distribution for a network of 200 neurons, with a ρ of 0.15. The synap-
tic weight wij was identical to that in (A), but release probability was reduced to
37.5%. Note the similarity of the distributions in (C) and (D) to that in (A).
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6.5 Discussion

In most physiological studies on the synchronization behavior of corti-
cal neurons, recordings are obtained from pairs of neurons, or pairs of
cell clusters. The present results illustrate that these data can only sup-
ply limited information about the probability of higher order events, like
the probability that, for example, 30 or more neurons project that to a tar-
get neuron fire simultaneously. As an approximation for the probabil-
ity of higher order events, we used the distribution of maximal entropy.
This method provides the most unstructured distribution, given the con-
straints supplied by the firing probabilities and the pair-wise correlations.
The N -cluster distribution with maximal entropy for a homogeneous net-
work without higher-order correlations exhibits two peaks. The first peak
represents stochastic activity, and resembles a binomial distribution. This
peak also occurs in the absence of correlations. If the firing probability is
moderate (< 0.25), a second peak occurs at a relatively large cluster size.
The magnitude of this second peak depends on the strength of the pair-
wise correlation. Thus, an absence of higher order correlations dictates that
the network should generate coincidences in a number of tightly synchro-
nized network bursts. The N -cluster distribution observed in the simula-
tions also exhibited two peaks, although the position of the second peak
was different from the second peak in the maximal entropy distribution.
Questions about the generality of these results, and in particular, about
their dependence on the details of the network implementation will have
to await further experimentation.

Previous studies on the impact of correlations among neurons that project
to a common post-synaptic target have used N -cluster distributions with
a drastically different shape (Bernander et al., 1994; Murthy & Fetz, 1994).
In these studies correlations were introduced in the input by forcing a sub-
set of the pre-synaptic neurons to fire in perfect synchrony, but indepen-
dently of the other pre-synaptic neurons. Since the resulting N -cluster
distribution is relatively devoid of highly synchronous events, and has
less than maximal entropy, the generality of the results obtained in these
earlier studies may also be limited.

It is obvious that network-bursts in which a large number of neurons par-
ticipate are rather effective in driving a post-synaptic neuron, especially in
the case of a high post-synaptic threshold. Indeed, a recent study (Alonso
et al., 1996) uncovered tight correlations, with a peak-width in the cross-
corellogram of less than 1 msec, among pairs of neurons in the LGN struc-
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ture of the brain. In cases in which the LGN neurons projected to a com-
mon cortical neuron, the impact of synchronous events was stronger than
that of asynchronous spikes. We observed an orderly relationship between
the incidence of highly synchronous network bursts and the pair-wise cor-
relation. Relatively small increases in the pair-wise correlation, which are
not physiologically implausible, may raise the incidence of highly syn-
chronous events, and thereby the firing rate of a post-synaptic cell, by
more than an order of magnitude (Fig. 6.5C,E).

We will now discuss the limitations of the maximal entropy estimation,
and the way in which these limitations may be overcome by future stud-
ies. First, the quality of the approximation by the distribution of maximal
entropy exhibited a strong dependence on the choice of the binsize. Rea-
sonable results were only obtained for binsizes larger than the refractory
period of the neurons. If the binsize was smaller than the refractory pe-
riod, structure was added to the N -cluster distribution, which therefore
had less than maximal entropy. This limitation is a direct consequence of
the way in which the entropy was defined. The entropy was determined
by the distribution of N -clusters within individual time-bins, and was in-
dependent of the order of N -clusters in successive bins. The equivalent
situation for a cross-correlation study would be to only calculate the cen-
ter bin of the cross-correlation functions, i.e. only the probability that two
neurons fire at exactly the same time. A possible extension of the method
would be to reformulate entropy in order to include 2nd order correla-
tions with a time delay (i.e. the non-central bins in the auto- and cross-
correlation functions) in the calculation. We wish to remark, however, that
such an extension is likely to result in a substantial increase in the number
of variables and equations.

Second, the quality of approximation by the maximal entropy distribution
was also degraded if a binwidth was chosen that was larger than the min-
imal interspike interval (larger than 2 msec in our simulations). In this
situation, multiple spikes of a single neuron occurred within a single time
bin. The membrane time constant of the postsynaptic neuron provides a
natural temporal window over which input is integrated, i.e. the natural
coincidence window. At present, the value of the effective membrane time
constant in cortical neurons is a topic of considerable debate (Bernander
et al., 1991; König et al., 1996; Shadlen & Newsome, 1995). A coincidence
window of 2 msec, as we used, is presumably at the lower end of the
physiologically plausible range. However, it seems likely that an increase
in the width of the bin in which spikes are considered to be coincident to
5 or even 10 msec may be unproblematic in the case of cortical neurons.
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Typical peak firing rates of cortical neurons are around 100 Hz, which im-
plies that the probability of multiple spikes within a 5 or 10 msec bin will
still be rather low. Without multiple spikes, it is easy to see that widening
the time-window than merely corresponds to a simple re-scaling of the
time-axis.

Alternatively, the calculation of the maximal entropy may be adapted to
allow for multiple spikes in a single bin, as was discussed in section 6.4.5.
If a very large binsize is chosen, the distribution of the number of spikes
fired by a single neuron in a bin may approach a normal distribution. In
this case it is relatively easy to calculate the distribution of N-clusters if the
only correlations are of second order.

Third, the method according to which we derived the distribution of
maximal entropy is only valid for a homogeneous network. For a non-
homogeneous network, the number of variables grows exponentially with
the number of neurons (section 6.3). We have, for example, incorporated a
single inhibitory neuron in our network, which received input from all ex-
citatory cells and provided strong inhibitory feedback (data not shown).
The inhibitory neuron added structure to the spike trains by curtailing
population bursts. We did not explicitly incorporate the firing pattern of
the inhibitory neuron in our calculations, which caused a considerable dis-
crepancy between the maximal entropy distribution and the actual distri-
bution of N-clusters.

These limitations, taken together, imply that it will be rather problematic
to predict the probability of highly synchronous events from firing rates
and pair-wise correlations in physiological experiments. In a physiolog-
ical study on higher order events among neurons of the frontal cortex,
Martignon et al. (1995) obtained discrepancies between the probability of
actually occurring events and their probability predicted by entropy maxi-
mization. Unfortunately, even in this study, in which simultaneous record-
ings from 6 neurons were studied, sampling problems occurred which
were caused by the exponentially growing number of spike configura-
tions and the limited recording time available during such experiments.
Another, presumably fruitful way in which the probability of highly syn-
chronous events can be estimated is by direct, in vivo measurements of
the distribution of the post-synaptic potential. A comparison of the post-
synaptic potential to the size of individual excitatory PSPs, with and with-
out blockade of inhibition, could provide valuable insight in the degree of
synchronicity among neurons that project to a common target cell.
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6.6 Conclusion

We conclude that, given the available information, the value of the pair-
wise correlation between neurons can most likely be explained in terms
of the likelihood of tightly synchronized population-bursts. This view is
reinforced by observations of uncorrelated “noisy” neural activity inter-
mittent with sharp synchronization as reported in several experimental
studies (Vaadia & Aertsen, 1992; Riehle et al., 1997). Related theoretical
studies have also supported this finding as a principal property of densely
connected networks of spiking neurons (Deppisch et al., 1993; Tsodyks &
Sejnowski, 1995; Tsodyks et al., 2000). In line with these findings, a recent
study by Steinmetz et al. (2000) reports a distinct relation between syn-
chronous activity between pairs of neurons, as reflected in an increased
pair-wise correlation, and increased firing-rates. These results suggest that
synchrony as measured via cross-correlations is a local network property
of densely connected neuronal networks. Lamme and Spekreijse (1998) for
instance have found that synchrony between neurons in early visual cor-
tex, does not represent texture segregation, at least in this stage. Rather,
the correlations found between neurons seem to reflect local connectivity.

These facts have contributed to the increasing criticism on the “synchrony
hypothesis”, also from theoretical considerations (Shadlen & Movshon,
1999). However, the flurry of research into the specific temporal proper-
ties of the spikes emitted by neurons has uncovered a remarkable preci-
sion in the timing of these spikes in more than a few cases, and it now
seems highly plausible that neurons do transmit information in the timing
of single spikes (Volgushev & Eysel, 2000). The form of this information
processing however remains unclear.



7

THE BIOLOGY OF SPIKING
NEURONS

This chapter provides a background into the biological work-
ings of spiking neurons, and a (non-exhaustive) summary of
recent biological findings regarding the behavioral relevancy
of the precise timing with which real spiking neurons emit
spikes. The literature suggests that in almost any system where
the processing-speed of a neural (sub)-system is required to be
high, the timing of single spikes can be very precise and reli-
able. This line of evidence thus provides additional motiva-
tion for researching the computational properties of networks
of spiking neurons that compute with precisely timed spikes.

7.1 Real Neurons Spike

A description of the full workings of a neuron, as far as they have been
uncovered, would extend even beyond a full book on its own, though
a good start might be the reference work “Principles of Neural Science”
(Kandel, Schwartz, & Jessell, 1991). In this section, a brief outline of the
neuron-features that are used in this thesis is given.

The human brain consists of a vast number of neurons: estimates put it
between 10 and 100 billion. These neurons are spread over a number of
anatomically different structures, like brain-stem, cerebellum, and cortex.
Within each of these structures, different types of neurons exist, with dif-
ferent connectivity-patterns, different typical responses to activity on the
inputs, and ultimately different tasks. What all (at least most) of these neu-



110 THE BIOLOGY OF SPIKING NEURONS

Figure 7.1: Outline of a single neuron, with dendritic and axonal tree fanning out
from the cell body (after Gerstner (1998)).

rons share, is a network of connections to and from other neurons. The
dendritic network of a neuron receives input from other neurons, and its
axonal network delivers output to the dendritic networks of other neurons
(depicted in figure 7.1). The sheer scale of the connectivity of a single neu-
ron is impressive: it is estimated that a single cortical neuron is typically
connected to 1000-10000 other neurons (Douglas & Martin, 1991).

A neuron communicates with other neurons (mostly) through the gener-
ation of action potentials, or spikes (inset figure 7.1). Roughly speaking, a
neuron generates a spike when its internal state, as determined by its mem-
brane potential, reaches some threshold. Connections between neurons are
made at synaptic terminals. At such a site, the output spike of a presynaptic
neuron triggers the release of neurotransmitter, which in turn mediates
a change in the membrane potential of the target (postsynaptic) neuron.
This change in the membrane potential of the postsynaptic neuron can be
described by the Postsynaptic Potential (PSP), and may be negative, for in-
hibitory inputs (as these inputs inhibit the postsynaptic neuron from spik-
ing), or excitatory (as they excite the neuron into spiking). The magnitude
of the postsynaptic potential depends on the strength of the synaptic ter-
minal. Input-spikes thus result in changes of the membrane potential that
are effectively described as the integration of the postsynaptic potentials
by the neuron. Since the contribution of a postsynaptic potential is limited
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Figure 7.2: Generation and transmission of spikes: a neuron j generates an ac-
tion potential when the membrane potential x crosses the threshold ϑ at time
tj . After generating a spike, the membrane-potential of neuron j is reset by the
spike-after potential (SAP), described by η(t− tj). The spike evokes a response
at the postsynaptic neuron i described by the spike-response function εij(t− tj).
The time-course of the voltage response to inhibitory or excitatory synapses is
described by the IPSP and EPSP, respectively (after Gerstner (1998)).

in time and decays with some time-constant, neurons that respond in this
manner to input are referred to as leaky-integrate-and-fire neurons. The gen-
eral idea of the generation and transmission of spikes is depicted in figure
7.2.

The picture is somewhat complicated by the fact that spikes may arrive
at different places on the dendritic tree. The effect of input arriving far
or near to the cell-body is complicated, and differs for different types of
neurons. This is very much an area of current neurophysiological research
(e.g. Williams and Stuart (2002)), and we will not consider this in more
detail, other than observing that the distance to the cell-body can for in-
stance be translated into a delay between the arrival of the input and the
actual effect that it has on the membrane potential of the neuron.

7.2 Precision and Reliability of Real Spikes

An important part of this thesis is concerned with neural networks of spik-
ing neurons that compute with precisely timed action-potentials. In this
section, we examine recent biological studies into the relevance of single
spike-timing for the information processing in real neural systems. This
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section requires a rather intimate knowledge of the concepts and jargon of
neuroscience; a short summary of the main findings can be found in the
Introduction (chapter 1).

Whether or not real spiking neurons – or neural systems is general – ex-
hibit a fine temporal precision in their action-potentials is a fundamen-
tal question that is much debated but has so far remained unresolved
(Bialek, Rieke, Steveninck, & Warland, 1991; Softky & Koch, 1993; Shadlen
& Newsome, 1994, 1995; Softky, 1995; Hopfield, 1995; Shadlen & New-
some, 1998; Mainen & Sejnowski, 1995; Laurent, 1999; Singer, 1999; Gray,
1999; Shadlen & Movshon, 1999). Neurophysiological experiments with
in vitro cultures of neural tissue have shown that the integration process
of individual cortical neurons is in principle reliable enough to support
precise spike-time coding (Mainen & Sejnowski, 1995), and the brief sum-
mary in this section shows some of the evidence for precise and reliable
spiking by real neurons that recent in vivo experiments have uncovered.

When it comes to real, behaving animals, there are a few specialized sub-
systems for which the relevance of temporal information in the spike-
times has been clearly demonstrated. Prominent examples are the electro-
sensory system of the electric fish (Heiligenberg, 1991), the echolocation-
system of bats (Kuwabara & Suga, 1993), and the auditory system of barn-
owls (Carr & Konishi, 1990). In each of these instances, the relative timing
of input spikes is used for the computation of the relative direction of the
respective sources (AgmonSnir, Carr, & Rinzel, 1998). In the olfactory sys-
tem of the locust, Laurent et al. have found that odor-recognition is asso-
ciated with increased spike-time precision (Stopfer & Laurent, 1999), and
that modification of the fine temporal structure of spike-trains disrupts the
correct odor-classification (Laurent, 1999).

De Ruyter van Steveninck and Bialek et al. have extensively studied the
time-response of the blowfly’s motion sensitive neurone H1 during flight
(Bialek et al., 1991; de Ryter van Steveninck, Lewen, Strong, Koberle, &
Bialek, 1997; de Ruyter van Steveninck et al., 2001). Bialek et al. have
developed a decoding method for reconstructing the (known) original en-
vironment as experienced by the blowfly (the input) from the signals mea-
sured from the H1 neurone. They find that when decoding the signal of
H1, individual spikes contribute significantly to their velocity estimate at
each point in time. The accuracy of the decoded signal was found to in-
crease as the spikes were observed with greater temporal precision. In fact,
patterns of spikes that differ only by millisecond shifts of the individual
spikes could correspond to distinguishable velocity waveforms (Brenner,
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Strong, Koberle, Bialek, & Steveninck, 2000). Furthermore, the timing re-
lationships between neural responses and stimulus events were found to
be preserved with millisecond precision, even as signals pass through four
stages of neural circuitry. A particular spike, distinguishable in a certain
sequence, proved impressively reproducible, with a standard deviation
on the onset time of 0.78ms. The spike directly following is reported to be
even more precise, with a standard deviation of only 0.18ms (de Ruyter
van Steveninck et al., 2001). They remark that the natural environment
of the fly while airborne is characterized by signals with high temporal
frequencies, and too cope, it seems that the fly’s neural systems is efficient
up to the physical limits of neural spike-timing.

Summarizing these findings, Fairhall et al. (2001) suggest that neurons in
the fly’s visual system employ a multilayered coding scheme, where the
emitted spikes convey information in several ways: “the timing of indi-
vidual spikes or short spike-patterns encodes stimulus features that are
normalized to the stimulus ensemble, the statistics of interspike intervals
on slightly longer timescales encode the stimulus ensemble, and the spike
rate can carry information about the changes in ensemble on yet longer
timescales.”(from Fairhall et al. (2001)).

In a study of the cat’s LGN, Liu et al. (2001) found neural responses that
were highly reproducible in their spike timing (± 1-2ms). They further
remark: “This degree of precision only became apparent when an ade-
quate length of the stimulus sequence was specified to determine the neu-
ral response, emphasizing that the variable relevant to a cell’s response
must be controlled to observe the cell’s intrinsic response precision.” Bair
and Koch (1996) report that the response of neurons in area MT of the
macaque to a repeated stimulus was replicable with high temporal preci-
sion (< 2ms), but only under certain conditions. Buracas, Zador, DeWeese,
and Albright (1998) confirm and extend this finding, and suggest that the
high temporal precision can be attributed to the fine temporal structure
of the stimulus. The spike-time precision is then of the same magnitude
as observed in the rabbit retina (Liu et al., 1997). A study by Beierholm,
Nielsen, Ryge, Alstrom, and Kiehn (2001) adds to this theme: for gener-
ated by spinal neurons from the neonatal rat spinal cord, they report a
reliable precision of singe spike in the order of 2–3ms, but only when the
input into these cell’s has a high frequency and amplitudes (3-30 Hz, 30-
200 pA). They attribute this somewhat worse temporal precision of spinal
neurons as compared to cortical neurons to the broad spikes in the for-
mer. Fellous et al. (2001) also report that spike-time reliability is highly
dependent on the input frequency, with highest reliability obtained in the
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frequency range of the typical membrane potential oscillations (4-20 Hz
for pyramidal cells in the rat’s cortex).

Considerable research is uncovering the nature of the relationship be-
tween firing rate and the precise timing of spikes: in particular in the
hippocampus the so-called phase-precession phenomenon is observed, i.e.
(O’Keefe & Recce, 1993). Here, the timing of the pyramidal cell spikes rel-
ative to the theta rhythm is related to the instantaneous firing-rate (and
hence position) of the neuron. Roughly, increasing firing-rate correlates
with earlier spikes (relative to the phase of the theta rhythm. The theta
rhythm is an oscillation in the local field potential at about 8Hz. The pre-
cision with which spikes are emitted relative to the theta-phase is remark-
able: (Harris et al., 2002) report that in their experiments, mean phase,
averaged over all behaviors, shifted from 295◦ ± 7◦ at low instantaneous
firing rates (1 spike per 2 cycles, ≈ 4Hz) to 141◦± 9◦ at high instantaneous
firing rates (≥ 10 spikes per 2 cycles, ≈ 40Hz). Since the mean is taken
as the circular mean ±95% confidence interval, this means that 95% of the
spikes are fired within 2ms and 3.5ms respectively to the average phase. It
is suggested that the phase-precession phenomenon is an effective means
for transforming a rate-code into a temporal code: the proposed under-
lying mechanism by Mehta, Lee, and Wilson (2002) would faithfully re-
produce the temporal order of activation of neurons on short (< 10ms)
time scales. The idea is that this would allow temporal sequence learn-
ing by compressing the relevant temporal order of events occurring on
long time scales (>1000ms), into short times scales (≈10ms) relevant for
synaptic plasticity mechanisms, such as spike-time dependent plasticity
(see below). Neural networks inspired by such ideas have been proposed
by Hopfield and Brody (2000) for temporal sequence learning.

For learning, that is, for adaptively changing synaptic strengths, it has
been well established that the temporal order of pre- and postsynaptic
spikes can determine synaptic potentiation vs. depression (LTP vs. LTD).
A presynaptic spike arriving before a postsynaptic spike is generated tends
to lead to potentation of the particular connection; arrival after the post-
synaptic spike leads to synaptic depression (Markram, Lübke, Frotscher,
& Sakmann, 1997). Further investigations have revealed that the time-
window for such order-dependent synaptic modification is about 20ms
either way: the arrival of relatively earlier or later presynaptic spikes does
not result in LTP or LTD (Bell, Han, Sugawara, & Grant, 1997; Zhang,
Tao, Holt, Harris, & Poo, 1998; Feldman, Nicoll, Malenka, & Isaac, 1998;
Bi & Poo, 1998). This phenomenon has become known as spike-time-
dependent-plasticity (STDP).
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A learning rule similar to STDP was already proposed by Gerstner et al.
(1996) as a means for modeling the learning process that leads to the delay-
selection for fine temporal processing by neurons in the auditory system
of the barn-owl (as reported by Carr and Konishi (1990)). Such delay selec-
tion has also been reported in cultured hippocampal neurons, presumably
allowing the conversion of temporal information coded in the timing of
individual spikes into and stored as spatially distributed patterns of per-
sistent modifications in a neural network (Bi & Poo, 1999).

In a study of the macaque’s primary auditory cortex, deCharms and
Merzenich (1996) report that populations of neurons can coordinate the
relative timing of their action potentials such that spikes occur closer to-
gether in time during continuous stimuli. This way, the neurons can sig-
nal stimuli even when their firing rates do not change. deCharms and
Merzenich argue that in this fashion, population coding based on rela-
tive spike-timing has a number of beneficial properties: the population
can systematically signal stimulus features; the signal is topographically
mapped; and the signal follows the stimulus time-course even when the
mean firing rate does not. They also report similar observations in the
awake animal and in the primary somatosensory cortex.

The fact that the rate at which neurons fire does not fully capture the infor-
mation content conveyed in the spike-train is becoming increasingly well
established. This also extends to the idea of population rate-codes like the
pooled-response code: this is the proposed means for rapidly transmitting
changes in firing-rate via the neural population response, e.g. (Gerstner,
2000). Reich, Mechler, and Victor (2001) recently showed explicitly that the
pooled-response code carries significantly less information as compared
to the code that keeps track of when which neuron emitted each signal. A
significant part of the information is thus transmitted by means other than
the firing-rate.

Taking all these data together, it seems clear that the fine temporal struc-
ture of impinging spikes, and their impact on the membrane potential, can
carry important information, rather than being just noise. It is worth not-
ing that this view is now also being voiced in the “perspective” sections
of leading journals like Science and Nature (Volgushev & Eysel, 2000; Hel-
muth, 2001; Richmond, 2001). Intriguingly, Williams and Stuart (2002)
recently reported that distal EPSPs are ineffective sources of background
somatic excitation, but, through coincidence detection on the millisecond-
scale, have a powerful transient signaling role. The traditional idea that
membrane fluctuations should mostly be attributed to the impact of back-
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ground excitation is thus at least partially challenged.

It is worth noting that the excitement about spiking neural networks did
not start with the proposed computational function by Von der Malsburg
(1981), but rather by the report of the predicted synchrony – or rather: cor-
relations – in the monkey brain by Gray et al. (1989). Although the func-
tional relevance of these correlations in terms of dynamic feature binding
are now being questioned, these findings, and the availability of ever more
sophisticated equipment, have encouraged a close examination of the sig-
nificance of single spikes in neuronal systems. As demonstrated by the
small sample outlined above, there are most certainly cases where the tim-
ing of single spikes is important. This seems particularly true when the
fine temporal structure of the relevant stimuli encountered in the envi-
ronment is high (30-300ms). When neural systems that have to process
information from such a fast environment are studied in a much slower
one, the temporal precision of single spikes is quickly lost, e.g. (de Ruyter
van Steveninck et al., 2001).

The important open question is whether or not neurons in the (human)
cortex encode information in the precise timing of spikes so far remains
an unresolved question. The prediction that seems to emerge from the
collected evidence would be that fast systems use fast spike-time coding
schemes. Tellingly, the human visual system has been shown to be capable
of performing very fast classification (Thorpe et al., 1996), where a partic-
ipating neuron can essentially fire at most one spike. On the time scales
involved, the relevant input thus consists of at most one spike, and, as
shown by Stratford, Tarczy-Hornoch, Martin, Bannister, and Jack (1996),
even when successive pairs of spikes are transmitted from LGN into the
visual cortex, only one spike has a measurable impact on a spiky stellate
neuron. The speed involved in decoding auditory information, and even
the generation of speech also suggest that most crucial neural systems of
the human brain operate quite fast.
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Material in this thesis has been published in several journals and confer-
ence proceedings.

• Chapter 2 corresponds to the article “Unsupervised Clustering with
Spiking Neurons by Sparse Temporal Coding and Multi-Layer RBF Net-
works”, by Sander M. Bohte, Joost N. Kok and Han La Poutré, and ap-
peared in IEEE Transactions on Neural Networks, 2002, 13(2), 426-
435 (Bohte et al., 2002c), as well as CWI Technical Report SEN-R0037
(Bohte, Kok, & La Poutré, 2000c). A short paper on this work has
appeared in the proceedings of the IJCNN 2000 conference as “Un-
supervised classification in a layered network of spiking neurons”, 2000,
Como, Italy (Bohte, Kok, & La Poutré, 2000d). An abstract has been
presented at the 11th BNAIC, 1999 (Bohte, La Poutré, & Kok, 1999).

• The results presented in Chapter 3 have been published as “Error-
Backpropagation in Temporally Encoded Networks of Spiking Neurons”,
by Sander M. Bohte, Joost N. Kok and Han La Poutré, in Neuro-
computing, 2002, 48(1–4), 17–37 (Bohte et al., 2002b). An early ver-
sion appeared as CWI Technical Report SEN-R0036 (Bohte, Kok, &
La Poutré, 2000a). A short version has appeared in the proceed-
ings of ESANN 2000, as “Spike-prop: error-backpropagation in multi-
layer networks of spiking neurons”, pp 419–425, Bruge, Belgium (Bohte,
Kok, & La Poutré, 2000b). Abstracts of (parts of) the work have been
presented at the 12th BNAIC, (Bohte, La Poutré, & Kok, 2000), and
the Fifth International Conference on Cognitive and Neural Systems
(Bohte, La Poutré, & Kok, 2001).

• Chapter 4 contains material published as “Implementing Position-
invariant Detection of Feature-conjunctions in a Network of Spiking Neu-
rons”, presented at the IJCNN/WCCI’2002 conference, authored by
Sander M. Bohte, Joost N. Kok and Han La Poutré (Bohte, Kok, &
La Poutré, 2002a). An early abstract of this work has been presented
at the International Workshop on Dynamical Neural Networks and
Applications 2001 (Bohte, Kok, & La Poutré, 2001).

• Chapter 5 contains material published in “Modeling Efficient Conjunc-
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tion Detection with Spiking Neural Networks”, presented at the ESANN
2002 conference, authored by Sander M. Bohte, Joost N. Kok and Han
La Poutré (Bohte, Kok, & La Poutré, 2002).

• The results presented in Chapter 6 have been published in the ar-
ticle “The effects of pair-wise and higher order correlations on the firing
rate of a post-synaptic neuron”, by Sander M. Bohte, Henk Spekrei-
jse, and Pieter R. Roelfsema, Neural Computation, 2000, 12(1), 153-
179 (Bohte, Spekreijse, & Roelfsema, 2000). An abstract has been
presented at the International Workshop on Neural Coding at the
Hanse-Wissenschaftskolleg, Delmenhorst, 1999 (Bohte, Spekreijse, &
Roelfsema, 1999).

Not included in this thesis is joint work with Dr. Pieter Roelfsema on
the detection of connectedness with neural networks (Roelfsema, Bohte, &
Spekreijse, 1999), and publications on adaptive software agents operating
in an electronic market place:

• “Competitive Market-based Allocation of Consumer Attention Space”, by
Sander M. Bohte, Enrico H. Gerding and Han La Poutré. Proceedings
of the 3rd ACM Conference on Electronic Commerce (EC-01), 2001,
pp 202-206 (Bohte, Gerding, & Poutré, 2001). An extended version
of this paper has appeared as CWI Technical Report SEN-R0131 (Bo-
hte, Gerding, & La Poutré, 2001), and has been submitted for jour-
nal publication. An abstract has been presented at the 13th BNAIC
(Bohte, Gerding, & La Poutré, 2002). A joint CWI/KPN patent
has been applied for on the mechanism developed (Bohte, Gerding,
La Poutré, Driessen, & Bomhof, 2001). Related joint work has been
published in the proceedings of the fourth workshop on Agent Me-
diated Commerce (AMEC) (’t Hoen, Bohte, Gerding, & La Poutré,
2002a), and an extended version has appeared as CWI Technical Re-
port SEN-R0217 (’t Hoen, Bohte, Gerding, & La Poutré, 2002b).
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SAMENVATTING

Tussen de netwerken van neuronen in de zenuwstelsels van dieren, en
de computer programma’s die bekend staan als kunstmatige neurale
netwerken zit een belangrijke vertaalslag: het model van hoe echte neu-
ronen informatie verwerken. Echte neuronen communiceren via elec-
trische pulsjes – spikes – die andere neuronen bereiken via een netwerk
van verbindingen, alsmede ook via chemische stoffen. Samen leidt dit
ertoe dat een “gebruiker” van deze netwerken informatie uit de buiten-
wereld (inclusief het lichaam zelf) verwerkt en deze omzet in acties (bv
spierbewegingen) naar de buitenwereld toe. De functie van echte neu-
rale netwerken is met andere woorden redelijk duidelijk. Wat aanzienlijk
minder duidelijk is, is hoe deze neurale netwerken dit precies voor elkaar
krijgen.

Inzichten in hoe biologische neurale netwerken werken wordt vooral
getest door de kennis die er is in een (computer)model te stoppen, en dan
te onderzoeken of dit computermodel ook de functies kan uitvoeren die
echte neurale netwerken aankunnen. Tot vrij recent was het idee dat de in-
formatie die neuronen naar elkaar sturen vooral beschreven wordt door de
frequentie waarmee een neuron spikes naar andere neuronen stuurt. Door
deze frequentie te variëren kan een neuron een analoog getal, bijvoorbeeld
tussen 0 en 1, doorgeven aan andere neuronen. Deze andere neuronen
kunnen dan intern een functie uitrekenen van alle analoge getallen die
ze van andere neuronen krijgen, en daar weer hun eigen analoge getal
mee bepalen, die vervolgens weer doorgestuurd wordt naar andere neu-
ronen. De mate waarin ontvangende neuronen getallen van andere neu-
ronen meenemen in hun berekening wordt bepaald door aan elke bin-
nenkomende verbinding een gewicht toe te kennen.

Traditioneel bestaan kunstmatige neurale netwerken uit netwerken
van modellen van neuronen die op deze manier werken. Door de
gewichten van de verbindingen tussen de neuronen slim te kiezen,
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kunnen dit soort netwerken verrassend veel functies implementeren,
zoals patroon-herkenning (handschriftherkenning, gezichtsherkenning)
en functie-benadering (bijv het leren van de sinus-functie gegeven een
aantal (x,y) punten). De toepassingen van kunstmatige neurale netwerken
zijn duidelijk velerlei, maar ze komen nog lang niet in de buurt van de
flexibiliteit en kracht van de biologische neurale netwerken waar ze model
voor staan.

Juist op dit punt doet een belangrijk inzicht vanuit de biologie op dit mo-
ment opgeld: het model van neuronen die communiceren via een frequen-
tie van pulsjes is duidelijk niet voldoende om te verklaren wat er gebeurt.
Specifiek blijkt steeds duidelijker dat een belangrijk deel van de informatie
die neuronen communiceren verpakt zit in het precieze moment waarop ze
pulsjes versturen. Theoretisch is inmiddels bekend dat deze toevoeging
aan het model neurale netwerken in principe aanzienlijk krachtiger maakt.
Wat in dit proefschrift aan bod komt, zijn methoden om daadwerkelijk
met dit soort nieuwe kunstmatige spiking neurale netwerken functies te im-
plementeren.

In Hoofdstuk 2 wordt een spiking neuraal netwerk gesimuleerd dat uit
zichzelf strukturen ontdekt in informatie die het wordt aangereikt uit
de buitenwereld. Met behulp van regels voor het aanpassen van de
gewichten tussen spiking neuronen, de leerregel – sterk geinspireerd door
wat er daadwerkelijk in echte neuronen wordt gemeten – blijken dit soort
netwerken uitstekend dergelijke strukturen te kunnen herkennen, ook
wanneer er ingewikkelde, hierarchische verbanden tussen de stukjes in-
formatie bestaat.

In Hoofdstuk 3 wordt een leerregel afgeleid die de gewichten van de
verbindingen tussen spiking neuronen verandert zodanig dat het netwerk
van neuronen geleerd kan worden wat de juiste uitkomst is, gegeven in-
formatie van de buitenwereld (supervised learning). De leerregel is een
variant van de error-backpropagation methode zoals die voor traditionele
neurale netwerken is afgeleid, maar dan specifiek voor netwerken van
spiking neuronen. In de praktijk blijken spiking neurale netwerken met
deze leerregel net zo goed te werken als traditionele neurale netwerken.
Een belangrijk verschil is echter dat wanneer we het model terugvertalen
naar de biologie, het spiking neurale netwerk of aanzienlijk minder echte
neuronen nodig heeft, of aanzienlijk sneller werkt (er is een directe trade-
off tussen deze twee eigenschappen). Het literatuuronderzoek naar de
biologie van spiking neurale netwerken, gepresenteerd in Hoofdstuk 7,
concludeert ook dat de relevante publicaties vooral laten zien dat preciese
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timing van spikes vooral gevonden wordt in omstandigheden waar een
dier zeer snel moet reageren op de buitenwereld.

In Hoofdstuk 4 en 5 wordt een spiking neuraal netwerk gepresenteerd dat
laat zien hoe de specifieke eigenschappen van spiking neurons kunnen
worden ingezet om een oud probleem uit de neurale netwerk literatuur
aan te pakken. De winst van de gepresenteerde neurale netwerk archi-
tectuur is dat voor het herkennen van meerdere (visuele) objecten tegelijk
met een neural netwerk, er relatief weinig neuronen nodig zijn.

In Hoofdstuk 6 wordt onderzocht hoe biologische metingen over de pre-
cieze timing van spikes het meest waarschijnlijk geı̈nterpreteerd moeten
worden: of neuronen de neiging hebben precies tegelijkertijd een puls te
vuren wordt in onderzoeken gemeten door de correlatie tussen paren van
neuronen te meten. Voor bijvoorbeeld een correlatie-waarde van 0.5 wordt
hieruit dan impliciet afgeleid dat gemiddeld in een populatie van neuro-
nen (zeg 100) zo’n 50 (0.5 x 100) tegelijkertijd zullen vuren. In dit hoofd-
stuk wordt aangetoond dat, onder een aantal aannames, dit een tamelijk
onwaarschijnlijke situatie is: het is veel aannemelijker dat af en toe alle
100 neuronen tegelijkertijd vuren, en verder meestal slechts enkelen. In
experimenten met een simpel neural netwerkje blijkt dit ook het geval te
zijn.

In Hoofdstuk 7 wordt eerst een kort overzicht gegeven van hoe echte
spiking neuronen nou precies werken, en vervolgens een literatuurstudie
over waar en hoe precies getimede spikes gevonden worden in levende
dieren. Binnen de neurowetenschappen is het onderwerp van preciese
spikes relatief nieuw, en nog steeds controversieel. Toch wordt steeds
meer duidelijk dat de preciese timing van enkele spikes wel degelijk be-
langrijk is, vooral in situaties wanneer een dier (zeer) snel op zijn omgev-
ing moet reageren. Dit suggereert dat het model van kunstmatige neurale
netwerken dat in dit proefschrift is onderzocht een zinnige beschrijving is
van neural netwerken zoals ze in de natuur bestaan.
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sor Han La Poutré, alwaar hij zijn promotieonderzoek verrichtte. Op dit
moment is hij aangesteld als Onderzoeker in deze groep.





Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process
Algebra. Faculty of Mathematics and Com-
puting Science, TUE. 1996-01

A.M. Geerling. Transformational Develop-
ment of Data-Parallel Algorithms. Faculty
of Mathematics and Computer Science,
KUN. 1996-02

P.M. Achten. Interactive Functional Pro-
grams: Models, Methods, and Implementation.
Faculty of Mathematics and Computer Sci-
ence, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing
Science, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation of
Functional Languages on Parallel Machines
with Distrib. Memory. Faculty of Mathe-
matics and Computer Science, KUN. 1996-
05

D. Alstein. Distributed Algorithms for Hard
Real-Time Systems. Faculty of Mathematics
and Computing Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchro-
nization, and Fault-Tolerance. Faculty of
Mathematics and Computer Science, UvA.
1996-07

H. Doornbos. Reductivity Arguments and
Program Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
08

D. Turi. Functorial Operational Semantics
and its Denotational Dual. Faculty of Mathe-

matics and Computer Science, VUA. 1996-
09

A.M.G. Peeters. Single-Rail Handshake Cir-
cuits. Faculty of Mathematics and Com-
puting Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering
Specification Formalism. Faculty of Mechan-
ical Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type In-
ference. Faculty of Mathematics and Com-
puting Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Par-
tition Refinement for Model Checking. Fac-
ulty of Mathematics and Computing Sci-
ence, TUE. 1996-13

M.M. Bonsangue. Topological Dualities in
Semantics. Faculty of Mathematics and
Computer Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of
Small Treewidth. Faculty of Mathematics
and Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transforma-
tions in Context. Faculty of Computer Sci-
ence, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data
Types. Faculty of Mathematics and Com-
puting Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory
in Logic and Mathematics. Faculty of Mathe-
matics and Computing Science, TUE. 1997-
04



C.J. Bloo. Preservation of Termination for Ex-
plicit Substitution. Faculty of Mathematics
and Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Alge-
bra. Faculty of Mathematics and Comput-
ing Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional Ap-
proach to Syntax and Typing. Faculty of
Mathematics and Informatics, KUN. 1997-
07

A.W. Heerink. Ins and Outs in Refusal
Testing. Faculty of Computer Science, UT.
1998-01

G. Naumoski and W. Alberts. A Discrete-
Event Simulator for Systems Engineering.
Faculty of Mechanical Engineering, TUE.
1998-02

J. Verriet. Scheduling with Communication
for Multiprocessor Computation. Faculty of
Mathematics and Computer Science, UU.
1998-03

J.S.H. van Gageldonk. An Asynchronous
Low-Power 80C51 Microcontroller. Faculty
of Mathematics and Computing Science,
TUE. 1998-04

A.A. Basten. In Terms of Nets: System De-
sign with Petri Nets and Process Algebra. Fac-
ulty of Mathematics and Computing Sci-
ence, TUE. 1998-05

E. Voermans. Inductive Datatypes with Laws
and Subtyping – A Relational Model. Fac-
ulty of Mathematics and Computing Sci-
ence, TUE. 1999-01

H. ter Doest. Towards Probabilistic
Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation
of Surface Processes. Faculty of Mathematics
and Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative
Evolutionary Search. Faculty of Mathemat-
ics and Natural Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a Study
on Indecisiveness in Sample Selection. Fac-
ulty of Mathematics and Natural Sciences,
RUG. 1999-05

M.P. Bodlaender. Schedulere Optimization
in Real-Time Distributed Databases. Faculty
of Mathematics and Computing Science,
TUE. 1999-06

M.A. Reniers. Message Sequence Chart:
Syntax and Semantics. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
07

J.P. Warners. Nonlinear approaches to satis-
fiability problems. Faculty of Mathematics
and Computing Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Proto-
cols with Formal Methods. Faculty of Com-
puter Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for
Timed and Stochastic Systems. Faculty of
Computer Science, UT. 1999-10
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