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Abstract. This paper surveys recent findings in neuroscience regarding the behav-
ioral relevancy of the precise timing with which real spiking neurons emit spikes.
The literature suggests that in almost any system where the processing-speed of a
neural (sub)-system is required to be high, the timing of single spikes can be very
precise and reliable. Additionally, new, more refined methods are finding precisely
timed spikes where previously none where found. This line of evidence thus provides
additional motivation for researching the computational properties of networks of
artificial spiking neurons that compute with more precisely timed spikes.
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1. Neural Brains Spike

The human brain consists of a vast number of neurons: estimates range
from 10 to 100 billion. These neurons are spread over a number of
anatomically different structures, like brain-stem, cerebellum, and cor-
tex. Within each of these structures, different types of neurons exist,
with different connectivity-patterns, different typical responses to ac-
tivity on the inputs, and ultimately different tasks. What all (at least
most) of these neurons share, is a network of connections to and from
other neurons. Through these connections, neurons communicate with
each other (mostly) by transmitting action potentials, or spikes. The
mechanisms governing spike generation in a neuron are understood
reasonably well: impinging spikes generate a change in the membrane
potential of the target neuron, and when this potential crosses some
threshold, a spike is (probabilistically) generated (e.g. figure 1); more
details can be found in e.g. (Kandel, Schwartz, & Jessell, 1991).

Although we can argue that at a local level the workings of indi-
vidual neurons is understood reasonably well, full understanding of the
information processing that networks of these spiking neurons engage
in – the “neural code” – remains elusive. Rather, with the development
of increasingly sophisticated methods in neuroscience, it is becoming
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Figure 1. Generation and transmission of spikes: a neuron j generates an action
potential when the membrane potential x crosses the threshold ϑ at time tj . After
generating a spike, the membrane-potential of neuron j is reset by the spike-after
potential (SAP), described by η(t − tj). The spike evokes a response at the postsy-
naptic neuron i described by the spike-response function εij(t− tj). The time-course
of the voltage response to inhibitory or excitatory synapses is described by the IPSP
and EPSP, respectively (after Gerstner (1998)).

clear that the most widely held believe regarding “the neural code” is
almost certainly too simply: we now know that neurons do not com-
municate just by the frequency with which they spike (rate coding).
At least part of the information is transmitted in the precise timing
of individual spikes. These findings are still quite controversial, and
when and how the precise timing of spikes is important for neuronal
information processing is a topic of intense debate.

Clearly, precisely timing of spikes would allow neurons to commu-
nicate much more information than with essentially random spikes.
However, apart from the question whether there is precise spiking,
ideas on how such precisely timed spikes can be used are very diverse:
from latency coding, where the exact timing of a set of spikes relative to
each other contains the information (Maass, 1997b), or, as a variant by
rank-coding, where the order of the spikes carries the information (De-
lorme, Gautrais, VanRullen, & Thorpe, 1999) (Fig. 2A), to coding by
synchrony, where neurons that encode different bits of information on
the same object fire synchronously (Fig. 2B), to resonant burst coding,
where the frequency of a burst determines which downstream neurons
are affected (via resonance) (Izhikevich, Deai, Walcott, & Hoppen-
steadt, 2003) (Fig. 2C), and many other variations. Different types of
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Figure 2. Temporal information coding with precise spike times A) precise spike
time patterns over a set of different neurons are the information. Less precise spikes
support the notion of rank-coding. B) synchrony coding. Neurons that code infor-
mation for the same object fire synchronously. C) Burst coding. The frequency of
the burst determines which downstream neurons are affected via resonance.

neural coding, including temporal coding, may also coexist on different
timescales, e.g. (Oram, Xiao, Dritschel, & Payne, 2002).

The topic of this paper is a survey of the available neuroscience
evidence where precise spike timing is found, and an attempt is made
to distill features that these neural systems have in common. Given
the accumulated research surveyed, it seems clear that when arguing
on behalf of the simple rate-coding scheme for neurons, one now has
to demonstrate convincingly beneficial “network externalities” of this
scheme, since temporal coding in spiking neurons can achieve most
typical neural network tasks much more efficiently. That is, when im-
plemented in spiking neurons, as is the case in the brain. That is not to
say that the brain exclusively uses temporal coding, however the final
story is clearly not a simple rate-coding one. Additionally, this survey
suggests areas and functions of biological neural computation where
nature is clearly using the temporal aspect of spiking neural networks,
and hence a first direction for building artificial spiking neural networks
for practical uses.

2. Precision and Reliability of Real Spikes

Whether or not real, biological spiking neurons – or neural systems is
general – exhibit a fine temporal precision in their action-potentials
is a fundamental question that is much debated but has so far re-
mained unresolved (Bialek, Rieke, Steveninck, & Warland, 1991; Softky
& Koch, 1993; Shadlen & Newsome, 1994, 1995; Softky, 1995; Hopfield,
1995; Shadlen & Newsome, 1998; Mainen & Sejnowski, 1995; Laurent,
1999; Singer, 1999; Gray, 1999; Shadlen & Movshon, 1999). Neuro-
physiological experiments with in vitro cultures of neural tissue have

spikeNeuronsNC.tex; 5/02/2004; 14:44; p.3



4 Sander M. Bohte

shown that the integration process of individual cortical neurons is in
principle reliable enough to support precise spike-time coding (Mainen
& Sejnowski, 1995), and here we survey some of the evidence for precise
and reliable spiking by real neurons that recent in vivo experiments
have uncovered.

When it comes to real, behaving animals, there are specialized sub-
systems in some animals for which the relevance of temporal infor-
mation in the spike-times has been clearly demonstrated. Prominent
examples are the electro-sensory system of the electric fish (Heiligen-
berg, 1991), the echolocation-system of bats (Kuwabara & Suga, 1993),
and the auditory system of barn owls (Carr & Konishi, 1990). In each
of these instances, the relative timing of input spikes is used for the
computation of the relative direction of the respective sources (Ag-
monSnir, Carr, & Rinzel, 1998). Additionally, in the olfactory system
of the locust, Laurent et al. have found that odor-recognition is associ-
ated with increased spike-time precision (Laurent, Wehr, & Davidowitz,
1996; Stopfer & Laurent, 1999), and that modification of the fine tem-
poral structure of spike-trains disrupts the correct odor-classification
(Laurent, 1999).

Improving methods. In recent work, DeWeese and Zador (2002) demon-
strate precise spike timing in the auditory cortex of the awake behaving
monkey: when presenting a fixed tone to the monkey, they describe
highly reliable single (binary) spike generation, where these neurons
are silent for up to hundreds of milliseconds after generating this one
spike. Since the individual neuronal mechanisms cannot account for
this “silencing”, it almost certainly is a network effect, that is: the cor-
tical networks specifically enforce reliable, binary coding with precisely
timed spikes.

An important feature of these findings is that for their measure-
ments, they employ a novel method for recording from in vivo neurons,
and they argue that through this method, spikes can be attributed
with much higher reliability to specific neurons as compared to tra-
ditional multi-unit recordings. With traditional methods, the precise
spikes would not have been uncovered.

The Blowfly. In an enlightening study, De Ruyter van Steveninck and
Bialek et al. have extensively studied the time-response of the blowfly’s
motion sensitive neurone H1 during flight (Bialek et al., 1991; de Ryter
van Steveninck, Lewen, Strong, Koberle, & Bialek, 1997; de Ruyter
van Steveninck, Borst, & Bialek, 2001). Bialek et al. have developed a
decoding method for reconstructing the (known) original environment
as experienced by the blowfly (the input) from the signals measured
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from the H1 neurone. They find that when decoding the signal of H1,
individual spikes contribute significantly to their velocity estimate at
each point in time. The accuracy of the decoded signal was found to
increase as the spikes were observed with greater temporal precision. In
fact, patterns of spikes that differ only by millisecond shifts of the in-
dividual spikes could correspond to distinguishable velocity waveforms
(Brenner, Strong, Koberle, Bialek, & de Ruyter van Steveninck, 2000).
Furthermore, the timing relationships between neural responses and
stimulus events were found to be preserved with millisecond precision,
even as signals pass through four stages of neural circuitry. A partic-
ular spike, distinguishable in a certain sequence, proved impressively
reproducible, with a standard deviation on the onset time of 0.78ms.
The spike directly following is reported to be even more precise, with
a standard deviation of only 0.18ms (de Ruyter van Steveninck et al.,
2001). In fact, the precision of spikes seems to be directly related to
the efficiency and noisiness of photoreceptors rather than noisy neurons
(Lewen, Bialek, & de Ruyter van Steveninck, 2001). Bialek et al. remark
that the natural environment of the fly while airborne is characterized
by signals with high temporal frequencies, and too cope, it seems that
the fly’s neural systems is efficient up to the physical limits of neural
spike-timing.

Summarizing these findings, Fairhall et al. (2001) suggest that neu-
rons in the fly’s visual system employ a multilayered coding scheme,
where the emitted spikes convey information in several ways: “the
timing of individual spikes or short spike-patterns encodes stimulus
features that are normalized to the stimulus ensemble, the statistics of
interspike intervals on slightly longer timescales encode the stimulus
ensemble, and the spike rate can carry information about the changes
in ensemble on yet longer timescales.”(from Fairhall et al. (2001)).

Vertebrates. In a study of the cat’s LGN, Liu et al. (2001) found neural
responses that were highly reproducible in their spike timing (± 1-2ms).
They further remark: “This degree of precision only became apparent
when an adequate length of the stimulus sequence was specified to
determine the neural response, emphasizing that the variable relevant
to a cell’s response must be controlled to observe the cell’s intrinsic
response precision.” Similarly, Reinagel and Reid (2000) observe high
precision in the cat’s LGN when subjecting it to stimuli representing
“natural scenes”, which are typically fast moving sequences of high-
contrast images.

Bair and Koch (1996) report that the response of neurons in area
MT of the macaque to a repeated stimulus was replicable with high
temporal precision (< 2ms), but only under certain conditions. Bu-
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racas, Zador, DeWeese, and Albright (1998) confirm and extend this
finding, and suggest that the high temporal precision can be attributed
to the fine temporal structure of the stimulus. The spike-time precision
is then of the same magnitude as observed in the rabbit retina (Liu
et al., 1997).

A study by Beierholm, Nielsen, Ryge, Alstrom, and Kiehn (2001)
adds to this theme: for spikes generated by spinal neurons from the
neonatal rat spinal cord, they report a reliable precision of singe spike in
the order of 2–3ms, but only when the input into these cell’s has a high
frequency and amplitudes (3-30 Hz, 30-200 pA). They attribute this
somewhat worse temporal precision of spinal neurons as compared to
cortical neurons to the broad spikes in the former. Fellous et al. (2001)
also report that spike-time reliability is highly dependent on the input
frequency, with highest reliability obtained in the frequency range of
the typical membrane potential oscillations (4-20 Hz for pyramidal cells
in the rat’s cortex).

Considerable research is uncovering the nature of the relationship
between firing rate and the precise timing of spikes: in particular in the
hippocampus the so-called phase-precession phenomenon is observed,
i.e. (O’Keefe & Recce, 1993). Here, the timing of the pyramidal cell
spikes relative to the theta rhythm is related to the instantaneous firing-
rate (and hence position) of the neuron. Roughly, increasing firing-
rate correlates with earlier spikes (relative to the phase of the theta
rhythm. The theta rhythm is an oscillation in the local field potential
at about 8Hz. The precision with which spikes are emitted relative to
the theta-phase is remarkable: (Harris et al., 2002) report that in their
experiments, mean phase, averaged over all behaviors, shifted from
295◦±7◦ at low instantaneous firing rates (1 spike per 2 cycles, ≈ 4Hz)
to 141◦±9◦ at high instantaneous firing rates (≥ 10 spikes per 2 cycles,
≈ 40Hz). Since the mean is taken as the circular mean ±95% confi-
dence interval, this means that 95% of the spikes are fired within 2ms
and 3.5ms respectively to the average phase. It is suggested that the
phase-precession phenomenon is an effective means for transforming a
rate-code into a temporal code: the proposed underlying mechanism by
Mehta, Lee, and Wilson (2002) would faithfully reproduce the temporal
order of activation of neurons on short (< 10ms) time scales. The idea
is that this would allow temporal sequence learning by compressing
the relevant temporal order of events occurring on long time scales
(>1000ms), into short times scales (≈10ms) relevant for synaptic plas-
ticity mechanisms, such as spike-time dependent plasticity (see below).
Neural networks inspired by such ideas have been proposed by Hopfield
and Brody (2000) for temporal sequence learning.
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Spike-time coding in neural populations. deCharms and Merzenich
(1996) report in a study of the macaque’s primary auditory cortex
that populations of neurons can coordinate the relative timing of their
action potentials such that spikes occur closer together in time during
continuous stimuli. This way, the neurons can signal stimuli even when
their firing rates do not change. deCharms and Merzenich argue that
in this fashion, population coding based on relative spike-timing has
a number of beneficial properties: the population can systematically
signal stimulus features; the signal is topographically mapped; and the
signal follows the stimulus time-course even when the mean firing rate
does not. They also report similar observations in the awake animal
and in the primary somatosensory cortex.

The fact that the rate at which neurons fire does not fully cap-
ture the information content conveyed in the spike-train is becoming
increasingly well established. This also extends to the idea of popu-
lation rate-codes like the pooled-response code: this is the proposed
means for rapidly transmitting changes in firing-rate via the neural
population response, e.g. (Gerstner, 2000). Reich, Mechler, and Victor
(2001) recently showed explicitly that the pooled-response code carries
significantly less information as compared to the code that keeps track
of when which neuron emitted each signal. A significant part of the
information is thus transmitted by means other than the firing-rate.

Precise Learning with Spikes. For learning, that is, for adaptively
changing synaptic strengths, it has been well established that the tem-
poral order of pre- and postsynaptic spikes can determine synaptic
potentiation vs. depression (LTP vs. LTD). A presynaptic spike arriving
before a postsynaptic spike is generated tends to lead to potentation of
the particular connection; arrival after the postsynaptic spike leads to
synaptic depression (Markram, Lübke, Frotscher, & Sakmann, 1997).
Further investigations have revealed that the time-window for such
order-dependent synaptic modification is about 20ms either way: the
arrival of relatively earlier or later presynaptic spikes does not result
in LTP or LTD (Bell, Han, Sugawara, & Grant, 1997; Zhang, Tao,
Holt, Harris, & Poo, 1998; Feldman, Nicoll, Malenka, & Isaac, 1998;
Bi & Poo, 1998). This phenomenon has become known as spike-time-
dependent-plasticity (STDP).

A learning rule similar to STDP was already proposed by Gerst-
ner, Kempter, Hemmen, and Wagner (1996) as a means for modeling
the learning process that leads to the delay-selection for fine temporal
processing by neurons in the auditory system of the barn-owl (as re-
ported by Carr and Konishi (1990)). Such delay selection has also been
reported in cultured hippocampal neurons, presumably allowing the
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conversion of temporal information coded in the timing of individual
spikes into and stored as spatially distributed patterns of persistent
modifications in a neural network (Bi & Poo, 1999). The issue of any
relation between STDP and temporal coding with spiking neurons re-
mains far from resolved (e.g. (Bi & Poo, 2001; Kepecs, van Rossum,
Song, & Tegner, 2002)), and many believe that STDP may possibly
be a by product of learning rules that optimize other neural network
properties (e.g. (Chechik, 2003; Eisele & Miller, 2003; Dayan, Hausser,
& London, 2003)).

3. Conclusion

Taking all these data together, it seems clear that the fine temporal
structure of impinging spikes, and their impact on the membrane po-
tential, can carry important information, rather than being just noise.
Intriguingly, Williams and Stuart (2002) recently reported that dis-
tal EPSPs are ineffective sources of background somatic excitation,
but, through coincidence detection on the millisecond-scale, have a
powerful transient signaling role. The traditional idea that membrane
fluctuations should mostly be attributed to the impact of background
excitation is thus at least partially challenged.

It is worth noting that the excitement about spiking neural networks
did not start with the proposed computational function by Von der
Malsburg (1981), but rather by the report of the predicted synchrony –
or rather: correlations – in the monkey brain by Gray, König, Engel, and
Singer (1989). Although the functional relevance of these correlations in
terms of dynamic feature binding are now being questioned (e.g Shadlen
and Movshon (1999)), these findings, and the availability of ever more
sophisticated equipment, have encouraged a close examination of the
significance of single spikes in neuronal systems. As demonstrated by
the sample outlined above, there are most certainly cases where the
timing of single spikes is important. This seems particularly true when
the fine temporal structure of the relevant stimuli encountered in the
environment is high (30-300ms). When neural systems that have to
process information from such a fast environment are studied in a much
slower one, the temporal precision of single spikes is quickly lost, e.g.
(de Ruyter van Steveninck et al., 2001).

The prediction that seems to emerge from the collected evidence
would be that fast systems/responses use fast spike-time coding schemes.
Tellingly, the human visual system has been shown to be capable of per-
forming very fast classification (Thorpe, Fize, & Marlot, 1996), where
a participating neuron can essentially fire at most one spike. On the
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time scales involved, the relevant input is thus contained in at most one
spike per neuron per layer, and, as shown by Stratford, Tarczy-Hornoch,
Martin, Bannister, and Jack (1996), even when successive pairs of spikes
are transmitted from LGN into the visual cortex, only one spike has a
measurable impact on a spiky stellate neuron. The speed involved in
decoding auditory information, and even the generation of speech also
suggest that most crucial neural systems of the human brain operate
quite fast. Very recent research into human fingertip sensory neurons
also support this by demonstrating a remarkable precision in the time-
to-first spikes from primary sensory neurons (Johansson & Birznieks,
2004).

Two important questions are now out there: the first is related
to methods of neurophysiology, as it seems that increasingly sophis-
ticated methods are uncovering increasingly sophisticated patterns in
the spiking behavior of neurons. This almost puts a reverse burden of
proof on conventional evidence and conventional wisdom. The second
question relates to the future of artificial neural networks: the findings
of precise spikes can in principle just mean that the functions of neural
information processing traditionally researched with sigmoidal neurons
are in fact in some parts of the brain implemented with spiking neu-
rons using reliable spike-timing. The functional equivalence has been
amply demonstrated, e.g. (Maass, 1997a; Bohte, Kok, & La Poutré,
2002b, 2002a). However, as artificial spiking neural networks can be
implemented with far fewer biological spiking neurons, the paradigm
of rate-coding underlying sigmoidal neurons would have to explicitly
compensate this in some way, either through increased (and required)
robustness, or through large network effects. The latter idea is of course
a challenge to the traditional neural network community. At the same
time, the challenge for artificial spiking neural networks is to demon-
strate useful functionality that cannot be efficiently implemented using
just rate-coding. This is a large order, but answers either way would
contribute very significantly to cracking the “neural code”.
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