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Abstract. We consider the problem of designing mechanisms for hiring
a matroid base without money. In our model, the elements of a given
matroid correspond to agents who might misreport their actual costs
that are incurred if they are hired. The goal is to hire a matroid base
of minimum total cost. There are no monetary transfers involved. We
assume that the reports are binding in the sense that an agent’s cost
is equal to the maximum of his declared and actual costs. Our model
encompasses a variety of problems as special cases, such as computing a
minimum cost spanning tree or finding minimum cost allocation of jobs
to machines.
We derive a polynomial-time randomized mechanism that is truthful
in expectation and achieves an approximation ratio of (m − r)/2 + 1,
where m and r refer to the number of elements and the rank of the
matroid, respectively. We also prove that this is best possible by showing
that no mechanism that is truthful in expectation can achieve a better
approximation ratio in general. If the declared costs of the agents are
bounded by the cost of a socially optimal solution, we are able derive
an improved approximation ratio of 3

√
m. For example, this condition is

satisfied if the costs constitute a metric in the graphical matroid.
Our mechanism iteratively extends a partial solution by adding feasible
elements at random. As it turns out, this algorithm achieves the best
possible approximation ratio if it is equipped with a distribution that
is optimal for the allocation of a single task to multiple machines. This
seems surprising given that matroids allow for much richer combinatorial
structures than the assignment of a single job.

1 Introduction

The task of designing algorithms that are resilient to manipulations of strategic
agents in large, distributed systems (such as the Internet) has become a major
challenge in recent years. For example, in online marketplaces (such as eBay or
eBid) auction formats are desired that incentivize truth revelation of the bidders’
valuations for the items on auction. In online workplaces (like Elance, oDesk or
Guru) that match freelance experts to clients mechanisms are sought to prevent
unjustified declarations of costs.



The classical approach to incite truth telling in strategic environments is to
use mechanism design (see, e.g., [15, 14]). Here the basic idea is to issue payments
to the agents in order to convince them to behave truthfully. Typically, these
payments are used to compensate for the advantage that an agent could obtain
by lying. Mechanism design is a powerful approach that gave rise to several
enlightening results in the past and still is a very active research area with many
intriguing open questions.

However, there are many applications in which monetary transfers (as used in
the traditional setting) are infeasible. As a result, researchers have more recently
started to look into what is known as mechanism design without money. Here the
basic question one asks is: Can one incite agents to behave truthfully without
the use of monetary transfers? Unfortunately, classical results in voting theory
show that the answer to this question is “No!” in general. In particular, the
well-known Gibbard-Satterthwaite theorem [9, 18] states that for unrestricted
domains and at least three outcomes the only mechanism enforcing truthfulness
without monetary transfers is dictatorial, i.e., the outcome is determined by a
single agent. In particular, this also rules out the possibility of approximating
any interesting objective in such a setting.

In light of this strong intractability result, there has recently been a large in-
terest in studying more restrictive settings of mechanism design without money.
A partial list of proposals that have been addressed in the literature includes
the limitation of the agents’ preferences [17], changing the social choice model
using imposition [16] or binding reports [11, 3, 2].

Our model In this paper, we study the problem of selecting a minimum cost
matroid base in a strategic environment. Here the elements of the matroid corre-
spond to agents who might misreport their actual costs. The intuition behind our
model is that a certain task can be accomplished only through the collaboration
of certain groups of agents. These groups correspond to the bases of the given
matroid. Each agent i declares a cost ci for performing the task, which is not
necessarily equal to his actual cost. Based on the declared costs, the mechanism
designer wants to “hire” a matroid base at the cheapest possible cost. There are
no monetary transfers between the mechanism designer and the agents.

As an example, suppose that the mechanism designer wants to hire a spanning
tree in a given network in order to establish connectivity between all nodes at the
lowest possible cost. Here the agents are the edges and each edge declares a cost
that it incurs for establishing connectivity between its endpoints. This problem
falls into our matroid model simply by using the graphic matroid whose bases
correspond to the spanning trees of the given graph.

Another example is the problem of scheduling n jobs onm unrelated machines
(possibly with restrictions). Every machine i declares for each job j ∈ [n] it can
execute a processing time pij . The goal is to determine an assignment of jobs
to machines such that the total processing time is minimized. It is not hard
to see that this problem is a special case of finding a minimum cost basis in a
partitioning matroid and is therefore captured by our matroid model.

2



Binding reports The latter problem was studied by Koutsoupias [11] under
the assumption that the reports are binding. This notion was first considered
by Christodoulou e. al. [3] and Angel et al. [2]. Basically, this means that one
can detect whether an agent overstates his actual cost. The motivation for this
assumption is that in many situations costs are “observable” and thus declaring
a cost that is larger than the actual one can be punished. On the other hand,
if an agent understates his cost then his actual cost remains unaffected through
this false declaration. For example, in the scheduling problem mentioned above
binding reports means that the mechanism can enforce that the machine is busy
for at least the declared processing time.

Koutsoupias [11] settles the problem of assigning one job to m machines com-
pletely. He designs a randomized algorithm that is truthful in expectation and
achieves an approximation ratio of (m+ 1)/2 (which he shows is best possible).
He also extends these results to the case of scheduling n jobs on m machines.
The crucial insight in [11] that enables him to derive these results is a charac-
terization of the distributions for the assignment of a single job that guarantee
truthfulness in expectation. Given this characterization, he then determines a
distribution that achieves the best possible approximation ratio.

Our contributions Here we continue this line of research. We consider the
problem of designing mechanisms without money for the more general model
of hiring a matroid base under binding reports. Our main contributions are as
follows:

1. We give a randomized algorithm that is truthful in expectation and achieves
an approximation ratio of (m− r)/2 + 1, where m and r refer to the number
of elements and the rank of the underlying matroid, respectively.

2. We prove that this approximation ratio is best possible. More specifically, we
show that no (randomized) mechanism that is truthful in expectation can
achieve a better approximation ratio.

3. We then show that an improved approximation ratio of 3
√
m can be achieved

if the declared costs of the agents are bounded by the cost of a socially op-
timal solution. For example, this condition is satisfied if the costs constitute
a metric in the graphic matroid.

Our techniques Our results are based on a natural extension of the greedy
algorithm for the computation of a minimum cost basis of a matroid. The al-
gorithm iteratively extends a partial solution by adding elements that maintain
feasibility. However, because of truthfulness we cannot enforce that a minimum
cost element is chosen in each iteration (as in the standard greedy algorithm).
Instead, we have to ensure that in each iteration each feasible addition of an ele-
ment is chosen with some positive probability such that the resulting probability
of picking an element meets certain monotonicity properties.

Although we have some freedom to choose these distributions, their choice im-
pacts the resulting approximation ratio of the mechanism. Intuitively, we would
like to tailor these distributions in such a way that the minimum cost element is
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chosen with some good probability, while the required monotonicity properties
are still satisfied. Here the insights obtained by Koutsoupias [11] for assigning a
single job to m machines turn out to be very useful.

Our findings show that an appropriate composition of the distribution that
is proven to be optimal for the single task assignment in [11] also delivers the
best possible results in the more general setting of hiring a matroid base. We find
this somewhat surprising because matroids allow for combinatorially much richer
structures than the assignment of a single job. In fact, the problem of optimally
assigning a single job to m machines is equivalent to computing a minimum cost
basis of a 1-uniform matroid (which is one of the most trivial matroids). For this
special case our mechanism coincides with the one of Koutsoupias.

In order to bound the approximation ratio of our mechanism we crucially
exploit properties of the matroid. However, there are many approximation algo-
rithms that follow a similar design paradigm of iteratively extending a partial
solution in a greedy manner (e.g., the greedy algorithm for the set cover prob-
lem). We conjecture that our findings might be extended to a broader context of
greedy-like approximation algorithms which gives rise to some intriguing ques-
tions for follow-up research.

Additional related work The design of mechanism that do not use mone-
tary transfers has recently received considerable attention in the literature on
economics and computation. Procaccia and Tennenholtz [17] initiated the study
of approximate mechanism design without payments for combinatorial problems
by studying facility location problems. Their studies triggered several follow-up
articles on this topic (see, e.g., [1, 13, 12, 6, 7]). Dughmi and Gosh [4] derived
approximate mechanisms without money for several variants of the assignment
problems. Guo and Conitzer [10] studied the problem of selling items without
payments for the case of two agents.

The idea of binding reports is also related to mechanisms with verification,
whose study was first proposed by Nisan and Ronen [15]. However, the notion
of verification is much stronger than the notion of binding reports that we con-
sider here. In particular, mechanisms with verification may defer the issuing of
payments to the agents until they learned the actual outcome. As a result, these
mechanisms can punish misreports a posteriori by imposing very high penalties
for lying.

Mechanism with binding reports are related to the notion of imposition pro-
posed by Nissim et al. [16]. In the context of the facility location problem, agents
might be forced to connect to the facility that is closest to their declared po-
sition instead of the one that is closest to their actual position. This approach
was further pursued by Fotakis and Tzamos [8].

2 Preliminaries

In this section, we give a formal definition of the model that we consider in this
paper and introduce some basic concepts.
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2.1 Matroids

We first formally introduce the notion of a matroid :

Definition 1. A matroid M = (E,F ) is defined by a finite set E of elements
and a set F ⊆ 2E of subsets of E satisfying

1. ∅ ∈ F (non-emptiness),
2. if S ∈ F and S′ ⊆ S then S′ ∈ F (downward closure),
3. if S, T ∈ F and |S| > |T | then there exists some i ∈ S \T such that T +i ∈ F

(exchange property).3

The sets in F are called independent sets. An inclusion-wise maximal indepen-
dent set B ∈ F is a basis of M.4 The common size of all bases of M is called
the rank of M and will be denoted by r(M).5

Throughout this paper, we assume that the matroidM = (E,F ) is implicitly
represented by an independent set oracle: given a set S ⊆ E, the oracle specifies
whether S is an independent set or not. Unless specified otherwise, we identify
the elements in E with the first m natural numbers, i.e., E = [m]. We assume
that every element i ∈ E constitutes and independent set, i.e., i ∈ F .6 Note that
this assumption is without loss of generality because we can remove all elements
from E that do not occur in any independent set.

Example 1. A typical example of a matroid is the graphic matroid. Given a
graph G = (V,E), we let the edges E of G be the elements of the matroid and
each subset S ⊆ E of edges that does not contain a cycle in G constitutes an
independent set in F . It is easy to verify that Properties 1–3 of Definition 1 are
satisfied. The bases of M = (E,F ) correspond to the spanning trees of G. The
rank of M is r(M) = n− 1, where n is the number of vertices in G.

2.2 Hiring a matroid base

Let M = (E,F ) be a matroid. In our model, we associate an agent with each
element i ∈ E of the matroid. Each agent i ∈ E has a non-negative cost c̄i ∈ R+.
Intuitively, by choosing agent i ∈ E a cost of c̄i is incurred. The cost c̄i is
“private” in the sense that it is unknown to us. Our goal is to select (or hire) a
base of the matroid of minimum total cost. The intuition behind our model is
that the bases of the underlying matroid represent groups of agents that together
can perform a certain task.

3 For ease of notation, for a set T ⊆ E and an element i ∈ E we also use T + i and
T − i as a short for T ∪ {i} and T \ {i}, respectively.

4 Subsequently, by “maximal” we mean “inclusion-wise maximal”, i.e., B is maximal
if for every i ∈ E \B, B + i is not an independent set.

5 Using the properties of Definition 1, it is not hard to show that all bases of a matroid
M have the same size.

6 We slightly abuse notation here and write i ∈ F instead of {i} ∈ F for notational
convenience.
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Example 2. In order to establish connectivity among all nodes in a given graph
G = (V,E) one may want to determine a minimum cost spanning tree of G. Here
each edge i ∈ E corresponds to an agent and selecting an edge incurs a cost of
c̄i. Our goal then is to select a minimum cost basis of the graphic matroid.

2.3 Binding reports

We assume that agents might misreport their costs, i.e., each agent i ∈ E declares
a cost ci, which is possibly different from his actual cost c̄i. Based on the matroid
M and the declared costs c = (c1, . . . , cm), the mechanism selects a basis of the
underlying matroid. We consider mechanisms without money, i.e., the mechanism
does not receive/issue any payments from/to the agents.

In order to achieve truthfulness it will turn out to be crucial to allow for
random selections of agents, i.e., we consider randomized mechanisms. Subse-
quently, we use pi(c) to refer to the probability that our (random) mechanism
picks element i ∈ E, given the reported costs c.

We assume that the reports are binding as proposed by Koutsoupias [11].
More precisely, if agent i’s reported cost is ci then his actual cost is max{c̄i, ci}.
That is, if agent i overstates his actual cost by reporting ci > c̄i and agent i is
selected then his actual cost becomes ci. On the other hand, if agent i understates
his actual cost c̄i and is selected then his actual cost remains c̄i because this is
the cost incurred by i. Formally, we assume that each agent i ∈ E strives to
minimize his expected cost

Ci(c) = max{c̄i, ci}pi(c).

Subsequently, we use c̄ = (c̄1, . . . , c̄m) ∈ Rm
+ to refer to the vector of actual costs

and c = (c1, . . . , cm) ∈ Rm
+ to refer the vector of declared costs.

2.4 Truthful mechanisms

We are interested in designing mechanisms that are truthful in expectation, which
we define next. To this aim, we first need to introduce some standard notation.
Let c = (c1, . . . , cm) ∈ Rm

+ be a cost vector. Then we denote by c−i, i ∈ [m], the
(m− 1)-dimensional vector with the ith coordinate removed, i.e.,

c−i = (c1, c2, . . . , ci−1, ci+1, . . . , cm).

For a subset T ⊆ [m], we will also use cT to refer to the restriction of c to index
set T , i.e., cT = (ci1 , ci2 , . . . , ci|T |) with T = {i1, . . . , i|T |}.

Definition 2 (Truthful mechanism). A mechanism M is truthful in expec-
tation if for every agent i and every vector c−i, the expected cost of i is minimized
by declaring the actual cost truthfully, i.e., for every i ∈ E,

Ci(c̄i, c−i) = c̄ipi(c̄i, c−i) ≤ max{c̄i, ci}pi(c) = Ci(c).

There are stronger notions of truthfulness (e.g., truthfulness or universal
truthfulness). However, it is easy to see that with these stronger notions of
truthfulness no positive results are possible; see also [11].
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2.5 Approximate social cost

The social cost function that we consider throughout this paper is the sum of the
individual costs, i.e., SC(c) =

∑
i∈E Ci(c). We use OPT(c) to refer to the cost of

a socially optimal solution, i.e., the minimum cost of a base ofM = (E,F ) with
respect to c. Ideally, we would like to derive a truthful mechanism that computes
a socially optimal outcome. However, this is impossible and we therefore relax
the optimality condition and resort to approximate solutions.

Definition 3. A mechanism M is α-approximate with α ≥ 1 if for every vector
c of declared costs, the expected social cost satisfies

SC(c) =
∑
i∈E

Ci(c) =
∑
i∈E

max{c̄i, ci}pi(c) ≤ αOPT(c).

2.6 Koutsoupias’ characterization

Koutsoupias [11] considers the problem of scheduling one job on m available
machines. The actual cost incurred by machine i to schedule job j is p̄i and each
machine wants to minimize his cost. The overall objective is to determine an
assignment of minimum total cost.7 Note that this corresponds to computing a
minimum cost basis in the matroid that consists only of singletons.

Koutsoupias characterizes the set of truthful mechanisms for this problem.

Proposition 1 ([11]). Let pi(c) be the probability that element i is chosen by
mechanism M given the vector of declared costs c. Then M is truthful in expec-
tation if and only if for every i ∈ E:

1. pi(ci, c−i) is non-increasing in ci,
2. cipi(ci, c−i) is non-decreasing in ci.

Based on the above characterization result, Koutsoupias then derives a dis-
tribution that satisfies the above properties and whose expected social cost is at
most (m+1)/2 times the optimal one. He also proves that this is best possible in
the sense that no other truthful in expectation mechanism (without payments)
can achieve a better approximation ratio.

3 Greedy Mechanism and Truthfulness Conditions

In this section, we provide a general framework for constructing truthful mecha-
nisms. Our framework is based on the greedy approach which iteratively extends
a partial solution (i.e., independent set) by adding a least cost element. We pa-
rameterize our mechanism with a collection of distributions: for every T ⊆ E we
are given a distribution dT = {dTi (cT ) | i ∈ T} over the elements i in T .8

7 We note that in [11] also the objective of minimizing the makespan is considered.
8 The assumption that all these distributions are given is a conceptual one. Subse-

quently, it will become clear that we can generate the relevant distributions consid-
ered by the algorithm efficiently.
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Definition 4 (Greedy Mechanism). Given a matroid M = (E,F ) with a
cost vector c and a collection of distributions (dT )T⊆E, the greedy algorithm is
as follows:

1. Let S ← ∅
2. While S is not a base

(a) Let T = {i ∈ E \ S | S + i ∈ F}
(b) Draw i ∈ T with probablity dTi (cT )
(c) Set S ← S + i

3. Output S

Note that the set T in Step 2(a) contains all elements that can be added
to the independent set S without rendering it infeasible. The main difference
of our algorithm to the standard greedy algorithm for matroids is that we do
not require that the element i ∈ T added to S in Step 2(c) is of minimum
cost. Indeed, such a mechanism would not be truthful because it failed to satisfy
Condition (b) of Proposition 1. Instead, here we choose an element i from T
with probability dTi (cT ). In particular, our algorithm coincides with the standard
greedy algorithm if dTi (cT ) > 0 only for the minimum cost elements in T .

We next establish some sufficient conditions for the distributions used by our
greedy algorithm that ensure truthfulness.

Theorem 1. The greedy mechanism is truthful in expectation if for every T ⊆ E
and every i ∈ T it holds:

1. dTj (ci, cT−i) is non-decreasing in ci for every j ∈ T − i,
2. dTi (ci, cT−i)ci is non-decreasing in ci.

Proof. Fix a collection of distributions (dT )T⊆E that satisfies Properties (1) and
(2). Let pi(c) be the probability of picking element i ∈ E after the execution of
the mechanism. We need to show that Properties (1) and (2) of Proposition 1
are satisfied, i.e.,

1. pi(ci, c−i) is non-increasing in ci,
2. pi(ci, c−i)ci is non-decreasing in ci.

We prove these by induction on the number m of elements in E. If m = 1 then
there is only one element to be picked and the properties clearly hold.

Suppose that the claim holds true for all element sets of size less than m. We
show that it continues to hold for sets of size m. We use M(j) to refer to the
matroid that we obtain from M by contracting element j, i.e., the sub-matroid
that contains only the sets that include j.

Let p
(j)
i (c−j) be the probability of picking element i in the matroid M(j).

Note that p
(j)
i (c−j) is precisely the probability of picking element i conditional

on the event that player j has been picked in the first round.
First property: Using Bayes rule, we obtain

pi(c) = dEi (c) +
∑

j∈E−i
dEj (c)p

(j)
i (c−j) = 1−

∑
j∈E−i

dEj (c) +
∑

j∈E−i
dEj (c)p

(j)
i (c−j)
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= 1 +
∑

j∈E−i
dEj (c)[p

(j)
i (c−j)− 1].

By assumption, dEj (c) is non-decreasing in ci for every j 6= i. Also, by our induc-

tion hypothesis, p
(j)
i (c−j) is non-increasing in ci. Thus, the product dEj (c)[p

(j)
i (c)−

1] is non-increasing in ci. We conclude that pi(c) is non-increasing in ci.
Second property: Using Bayes rule, we obtain

pi(c)ci = dEi (c)ci +
∑

j∈E−i
dEj (c)[p

(j)
i (c−j)ci]

By assumption and our induction hypothesis, dEj (c) and p
(j)
i (c−j)ci are non-

decreasing in ci for every j 6= i. Thus, their product is non-decreasing in ci.
By assumption, also dEi (c)ci is non-decreasing in ci. We conclude that pi(c)ci is
non-decreasing in ci.

4 Optimal Distributions and Approximation Ratio

In this section we identify a distribution that satisfies Properties (1) and (2) of
Theorem 1 and yields a truthful in expecation mechanism with approximation
ratio (m− r)/2 + 1, where r = r(M) is the rank of the underlying matroid M.

4.1 Optimal Distributions

A natural choice for a collection (dT )T⊆E of distributions to be used by the
greedy algorithm is to choose each element i from a given set T with probability
that is inversely proportional to its cost ci. This distribution is also independently
considered in [5]. More precisely, for every T ⊆ E and every i ∈ T , we define

dTi (cT ) =
c−1i∑

k∈T c
−1
k

. (1)

The distribution dT is also called the proportional distribution. It is not hard
to show that these distributions satisfy Properties (1) and (2) of Theorem 1.
However, the problem is that the greedy mechanism equipped with these distri-
butions results in an approximation ratio which is arbitrarily close to m.

The following distribution was introduced by Koutsoupias [11] for scheduling
a single job on m machines. (A similar probability distribution is considered and
analyzed in the Facility Location setting in [7].)

Definition 5 (Optimal Distribution). Let T ⊆ E be a subset of elements
and assume without loss of generality that T = {1, . . . , |T |} such that c1 ≤ c2 ≤
· · · ≤ c|T |. Define probabilities9

dT1 (cT ) =
1

c1

∫ c1

0

∏
k 6=1

(
1− x

ck

)
dx

9 This distribution corresponds to the following experiment: We select uniformly at
random and independently a number xi ∈ [0, ci] for each element i. The distribution
dTi of Definition 5 corresponds to the distribution of the minimum of these xi’s.
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dTj (cT ) =
1

c1cj

∫ c1

0

∫ y

0

∏
k 6=1,j

(
1− x

ck

)
dxdy for j 6= 2.

This generalized distribution yields a truthful in expectation greedy mecha-
nism that achieves the best possible approximation ratio.

Theorem 2. The greedy mechanism equipped with the distributions of Defini-
tion 5 is truthful.

All omitted proofs from this and future sections can be found in the full
version of the paper.

4.2 Approximation Ratio

Koutsoupias [11] used the distribution dT given in Definition 5 to handle the
case of allocating a single job to m machines. He showed that the resulting
mechanism achieves an approximation ratio of (m + 1)/2. Here we prove that
our greedy mechanism, equipped with the distributions in Definition 5, has an
approximation ratio of (m− r)/2 + 1, where r is the rank of the matroid.

Theorem 3. The greedy mechanism with distributions dT as defined in Defini-
tion 5 has approximation ratio (m− r)/2 + 1.

5 Lower bound

In this section, we provide a general lower bound on the approximation ratio of
truthful in expectation mechanisms for hiring a matroid base that matches the
upper bound of our greedy algorithm established in the previous section.

We show that for any given parameters m and r, we can always construct a
matroid with m elements and rank r such that no mechanism that is truthful in
expectation can achieve an approximation ratio better than (m− r)/2 + 110.

Using the previous lemma we show that for every choice of m and r our
upper bound is tight in the sense that there exists a matroid instance where any
truthful mechanism has approximation ratio (m− r)/2 + 1.

Theorem 4. Given m and r, there exists a matroid M = (E,F ) with |E| = m
and r(M) = r for which no mechanism that is truthful in expectation can achieve
an approximation ratio better than (m− r)/2 + 1.

Finally, we show a weaker result regarding only graphical matroids. Specif-
ically, we show that there is a family of graphs where the worst case bound of
(m− r)/2 + 1 occurs.

Theorem 5. There is no mechanism that is truthful in expectation that achieves
an approximation ratio better than (m− r)/2 + 1 for graphical matroids.

10 Note this result does not necessarily imply that every truthful mechanism will per-
form poorly given any matroid set system with these parameters.
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6 Improved Approximation Ratio for Metrics

In this section, we show that we can derive an improved approximation ratio
of O(

√
m) for our greedy algorithm if each agent’s declared cost is at most the

cost of a socially optimal solution, i.e., for every agent i ∈ E, ci ≤ OPT(c).
Said differently, this condition requires that the cost of an arbitrary base of the
matroid is at least as large as maxi∈E ci. We call a vector c = (c1, . . . , cm) of
declared costs opt-bounded if it satisfies this condition.

Note that in the case of a graphical matroid this property is trivially sat-
isfied if the declared cost vectors c are restricted to constitute a metric. if the
declared cost vectors c are restricted to constitute a metric then this condition
is trivially satisfied. It is interesting to note that we obtain this result for the
greedy algorithm using the proportional distributions.

Theorem 6. If the declared cost vector is opt-bounded then the greedy mecha-
nism using the proportional distributions as defined in (1) is truthful in expecta-
tion and achieves an approximation ratio of 3

√
m.

7 Future work

There are a lot of open problems that arise from our work. We designed an
algorithm that achieves an approximation ratio based on the size of the matroid
and its rank. In Section 5 we proved a lower bound that was dependent on the
substitutability of elements within the matroid’s bases. It could be possible to
provide a more refined upper bound using this parameter.

Also there are many questions still open in the case of graphical matroids
when the costs constitute a metric. We analyzed only the proportional method
which generally performs worse than the distribution in Definition 5. We also
have no matching lower bounds. Additionally, our iterative algorithm and gen-
erally our framework didn’t depend on the matroid property of the set system
to satisfy truthfulness. Thus, it will be interesting to analyze its performance
in more general settings especially where the classic greedy has good approxi-
mation guarantees. Finally, we only considered social costs and not other social
objectives like a minmax solution concept.
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volume 6992 of Lecture Notes in Computer Science, pages 67–81. Springer, 2011.

6. Dimitris Fotakis and Christos Tzamos. On the power of deterministic mecha-
nisms for facility location games. In Fedor V. Fomin, Rusins Freivalds, Marta Z.
Kwiatkowska, and David Peleg, editors, ICALP (1), volume 7965 of Lecture Notes
in Computer Science, pages 449–460. Springer, 2013.

7. Dimitris Fotakis and Christos Tzamos. Strategyproof facility location for concave
cost functions. In Michael Kearns, R. Preston McAfee, and Éva Tardos, editors,
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