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Abstract. We introduce a unifying model to study the impact of worst-
case latency deviations in non-atomic selfish routing games. In our model,
latencies are subject to (bounded) deviations which are taken into ac-
count by the players. The quality deterioration caused by such deviations
is assessed by the Deviation Ratio, i.e., the worst case ratio of the cost
of a Nash flow with respect to deviated latencies and the cost of a Nash
flow with respect to the unaltered latencies. This notion is inspired by the
Price of Risk Aversion recently studied by Nikolova and Stier-Moses [9].
Here we generalize their model and results. In particular, we derive tight
bounds on the Deviation Ratio for multi-commodity instances with a
common source and arbitrary non-negative and non-decreasing latency
functions. These bounds exhibit a linear dependency on the size of the
network (besides other parameters). In contrast, we show that for gen-
eral multi-commodity networks an exponential dependency is inevitable.
We also improve recent smoothness results to bound the Price of Risk
Aversion.

1 Introduction

In the classical selfish routing game introduced by Wardrop [12], there is an (in-
finitely) large population of (non-atomic) players who selfishly choose minimum
latency paths in a network with flow-dependent latency functions. An assump-
tion that is made in this model is that the latency functions are given deter-
ministically. Although being a meaningful abstraction (which also facilitates the
analysis of such games), this assumption is overly simplistic in situations where
latencies are subject to deviations which are taken into account by the players.

In this paper, we study how much the quality of a Nash flow deteriorates
in the worst case under (bounded) deviations of the latency functions. More
precisely, given an instance of the selfish routing game with latency functions
(la)a∈A on the arcs, we define the Deviation Ratio (DR) as the worst case ratio
C(fδ)/C(f0) of a Nash flow fδ with respect to deviated latency functions (la +
δa)a∈A, where (δa)a∈A are arbitrary deviation functions from a feasible set, and
a Nash flow f0 with respect to the unaltered latency functions (la)a∈A. Here the



social cost function C refers to the total average latency (without the deviations).
Our motivation for studying this social cost function is that a central designer
usually cares about the long-term performance of the system (accounting for the
average latency or pollution). On the other hand, the players typically do not
know the exact latencies and use estimates or include “safety margins” in their
planning. Similar viewpoints are adopted in [7, 9].

In order to model bounded deviations, we extend an idea previously put
forward by Bonifaci, Salek and Schäfer [1] in the context of the restricted network
toll problem: We assume that for every arc a ∈ A we are given lower and upper
bound restrictions θmin

a and θmax
a , respectively, and call a deviation δa feasible if

θmin
a (x) ≤ δa(x) ≤ θmax

a (x) for all x ≥ 0.

Our notion of the Deviation Ratio is inspired by and builds upon the Price of
Risk Aversion (PRA) recently introduced by Nikolova and Stier-Moses [9]. The
authors investigate selfish routing games with uncertain latencies by considering
deviations of the form δa = γva, where γ ≥ 0 is the risk-aversion of the players
and va is the variance of some random variable with mean zero. They derive
upper bounds on the Price of Risk Aversion for single-commodity networks with
arbitrary non-negative and non-decreasing latency functions if the variance-to-
mean-ratio va/la of every arc a ∈ A is bounded by some constant κ ≥ 0. It is not
hard to see that their model is a special case of our model if we choose θmin

a = 0
and θmax

a = γκla (see Section 2 for more details).

Our contributions. The main contributions presented in this paper are as follows:

1. Upper bounds: We derive a general upper bound on the Deviation Ratio for
multi-commodity networks with a common source and arbitrary non-negative
and non-decreasing latency functions (Theorem 3).

In order to prove this upper bound, we first generalize a result by Bonifaci
et al. [1] characterizing the inducibility of a fixed flow by δ-deviations to multi-
commodity networks with a common source (Theorem 2). This characterization
naturally gives rise to the concept of an alternating path, which plays a crucial
role in the work by Nikolova and Stier-Moses [9] and was first used by Lin,
Roughgarden, Tardos and Walkover [6] in the context of the network design
problem.

We then specialize our bound to the case of so-called (α, β)-deviations, where
θmin
a = αla and θmax

a = βla with −1 < α ≤ 0 ≤ β. We prove that the Deviation
Ratio is at most 1+(β−α)/(1+α)d(n−1)/2er, where n is the number of nodes
of the network and r is the sum of the demands of the commodities (Theorem 3).
In particular, this reveals that the Deviation Ratio depends linearly on the size
of the underlying network (among other parameters).

By using this result, we obtain a bound on the Price of Risk Aversion (The-
orem 6) which generalizes the one in [9] in two ways: (i) it holds for multi-
commodity networks with a common source and (ii) it allows for negative risk-
aversion parameters (i.e., capturing risk-taking players as well). Further, we show
that our result can be used to bound the relative error in social cost incurred by
small latency perturbations (Theorem 7), which is of independent interest.
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2. Lower bounds: We prove that our bound on the Deviation Ratio for (α, β)-
deviations is best possible. More specifically, for single-commodity networks we
show that our bound is tight in all its parameters. Our lower bound construction
holds for arbitrary n ∈ N and is based on the generalized Braess graph [10]
(Example 1). In particular, this complements a recent result by Lianeas, Nikolova
and Stier-Moses [5] who show that their bound on the Price of Risk Aversion is
tight for single-commodity networks with n = 2j nodes for all j ∈ N.

Further, for multi-commodity networks with a common source we show that
our bound is tight in all parameters if n is odd, while a small gap remains if n
is even (Theorem 4). Finally, for general multi-commodity graphs we establish a
lower bound showing that the Deviation Ratio can be exponential in n (Theorem
5). In particular, this shows that there is an exponential gap between the cases
of multi-commodity networks with and without a common source. In our proof,
we adapt a graph structure used by Lin, Roughgarden, Tardos and Walkover [6]
in their lower bound construction for the network design problem on multi-
commodity networks (see also [10]).

3. Smoothness bounds: We improve (and slightly generalize) recent smoothness
bounds on the Price of Risk Aversion given by Meir and Parkes [7] and inde-
pendently by Lianeas et al. [5]. In particular, we derive tight bounds for the
Biased Price of Anarchy (BPoA) [7], i.e., the ratio between the cost of a devi-
ated Nash flow and the cost of a social optimum, for arbitrary (0, β)-deviations
(Theorem 8).3 Note that the Biased Price of Anarchy yields an upper bound on
the Deviation Ratio/Price of Risk Aversion. We also derive smoothness results
for general path deviations (which are not representable by arc deviations). As
a result, we obtain bounds on the Price of Risk Aversion (Theorem 9) under the
non-linear mean-std model [5, 9] (see Section 2).

It is interesting to note that the smoothness bounds on the Biased Price of
Anarchy [7] and the Price of Risk Aversion [5] are independent of the network
structure (but dependent on the class of latency functions). In contrast, the
bound on the Deviation Ratio depends on certain parameters of the network.4

Our results answer a question posed in the work by Nikolova and Stier-Moses
[9] regarding possible relations between their Price of Risk Aversion model [9],
the restricted network toll problem [1], and the network design problem [10]. In
particular, our results also show that the analysis in [9] is not inherent to the
used variance function, but rather depends on the restrictions imposed on the
feasible deviations.

Related work. The modeling and studying of uncertainties in routing games has
received a lot of attention in recent years. An extensive survey on this topic is
given by Cominetti [2].

3 We remark that for certain types of (0, β)-deviations, e.g., scaled marginal tolls,
better bounds can be obtained (see, e.g., [7]).

4 For example, there are parallel-arc networks for which the Biased Price of Anarchy
is unbounded, whereas the Deviation Ratio is a constant.
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As mentioned above, our investigations are inspired by the study of the Price
of Risk Aversion by Nikolova and Stier-Moses [9]. They prove that for single-
commodity instances with non-negative and non-decreasing latency functions
the Price of Risk Aversion is at most 1 + γκd(n − 1)/2e. We elaborate in more
detail on the connections to their work in Section 2.

There are several papers that study the problem of imposing tolls (which
can be viewed as latency deviations) on the arcs of a network to reduce the cost
of the resulting Nash flow. Conceptually, our model is related to the restricted
network toll problem by Bonifaci et al. [1]. The authors study the problem of
computing non-negative tolls that have to obey some upper bound restrictions
(θa)a∈A such that the cost of the resulting Nash flow is minimized. This is
tantamount to computing best-case deviations in our model with θmin

a = 0 and
θmax
a = θa. In contrast, our focus here is on worst-case deviations. As a side

result, we prove that computing such worst-case deviations is NP-hard, even for
single-commodity instances with linear latencies (Theorem 1).

Roughgarden [10] studies the network design problem of finding a subnetwork
that minimizes the latency of all flow-carrying paths of the resulting Nash flow.
He proves that the trivial algorithm (which simply returns the original network)
gives an bn/2c-approximation algorithm for single-commodity networks and that
this is best possible (unless P = NP). Later, Lin et al. [6] show that this algorithm
can be exponentially bad for multi-commodity networks. The instances that we
use in our lower bound constructions are based on the ones used in [6, 10].

Meir and Parkes [7] and independently Lianeas et al. [5] show that for non-
atomic network routing games with (1, µ)-smooth5 latency functions it holds that
PRA ≤ BPoA ≤ (1 + γκ)/(1 − µ). An advantage of such bounds is that they
hold for general multi-commodity instances (but depend on the class of latency
functions). These bounds stand in contrast to the topological bounds obtained
here and by Nikolova and Stier-Moses [9] which hold for arbitrary non-negative
and non-decreasing latency functions.

2 Preliminaries

Bounded deviation model. Let I = (G = (V,A), (la)a∈A, (si, ti)i∈[k], (ri)i∈[k]) be
an instance of a non-atomic network routing game. Here, G = (V,A) is a directed
graph with node set V and arc set A ⊆ V × V , where each arc a ∈ A has a non-
negative, non-decreasing and continuous latency function la : R≥0 → R≥0. Each
commodity i ∈ [k] is associated with a source-destination pair (si, ti) and has
a demand of ri ∈ R>0. We assume that ti 6= tj if i 6= j for i, j ∈ [k]. If all
commodities share a common source node, i.e., si = sj = s for all i, j ∈ [k], we
call I a common source multi-commodity instance (with source s). We assume
without loss of generality that 1 = r1 ≤ r2 ≤ · · · ≤ rk and define r =

∑
i∈[k] ri.

5 Meir and Parkes [7] define a function l to be (1, µ)-smooth if xl(y) ≤ µyl(y) + xl(x)
for all x, y ≥ 0 (which is slightly different from Roughgarden’s original smoothness
definition [11]). Lianeas et al. [5] only require local smoothness where y is taken fixed.
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We denote by Pi the set of all simple (si, ti)-paths of commodity i ∈ [k]
in G, and we define P = ∪i∈[k]Pi. An outcome of the game is a feasible flow
f : P → R≥0, i.e.,

∑
P∈Pi

fP = ri for every i ∈ [k]. Given a flow f = (f i)i∈[k],

we use f ia to denote the total flow on arc a ∈ A of commodity i ∈ [k], i.e.,
f ia =

∑
P∈Pi:a∈P fP . The total flow on arc a ∈ A is defined as fa =

∑
i∈[k] f

i
a.

The latency of a path P ∈ P with respect to f is defined as lP (f) :=
∑
a∈P la(fa).

The social cost C(f) of a flow f is given by its total average latency, i.e., C(f) =∑
P∈P fP lP (f) =

∑
a∈A fala(fa). A flow that minimizes C(·) is called (socially)

optimal. We use A+
i = {a ∈ A : f ia > 0} to refer to the support of f i for

commodity i ∈ [k] and define A+ = ∪i∈[k]A
+
i as the support of f .

For every arc a ∈ A, we have a continuous function δa : R≥0 → R modeling
the deviation on arc a, and we write δ = (δa)a∈A. We define the deviation of
a path P ∈ P as δP (f) =

∑
a∈P δa(fa). The deviated latency on arc a ∈ A is

given by qa(fa) = la(fa) + δa(fa); similarly, the deviated latency on path P ∈ P
is given by qP (f) = lP (f) + δP (f). We say that f is δ-inducible if and only if it
is a Wardrop flow (or Nash flow) with respect to l + δ, i.e.,

∀i ∈ [k],∀P ∈ Pi, fP > 0 : qP (f) ≤ qP ′(f) ∀P ′ ∈ Pi. (1)

If f is δ-inducible, we also write f = fδ. Note that a Nash flow f for the unaltered
latencies (la)a∈A is 0-inducible, i.e., f = f0.

Let θmin = (θmin
a )a∈A and θmax = (θmax

a )a∈A be given continuous threshold
functions satisfying θmin

a (x) ≤ 0 ≤ θmax
a (x) for all x ≥ 0 and a ∈ A, and let

θ = (θmin, θmax). We define ∆(θ) = {(δa)a∈A | ∀a ∈ A : θmin
a (x) ≤ δa(x) ≤

θmax
a (x), ∀x ≥ 0} as the set of feasible deviations. Note that 0 ∈ ∆(θ) for

all threshold functions θmin and θmax. We say that δ ∈ ∆(θ) is a θ-deviation.
Furthermore, f is θ-inducible if there exists a δ ∈ ∆(θ) such that f is δ-inducible.
For −1 < α ≤ 0 ≤ β, we call δ ∈ ∆(θ) an (α, β)-deviation if θmin = αl and
θmax = βl, and also write θ = (α, β). Throughout the paper, we assume that the
deviated latencies are always non-negative, i.e., la(x) + θmin

a (x) ≥ 0 for all x ≥ 0
and a ∈ A.

We (implicitly) assume that only deviations δ are considered for which a
Nash flow exists. We briefly elaborate on the existence when θmin = 0 and θmax

a

is non-negative, non-decreasing and continuous for all a ∈ A. It is not hard to see
that for a deviated Nash flow fδ there exists some 0 ≤ λa ≤ 1 for every arc a ∈ A
such that δa(fδa) = λaθ

max
a (fδa). In particular, this means that δ′ ∈ ∆(θ) defined

by δ′a = λaθ
max
a also induces fδ. Therefore it is sufficient to consider deviations

of the form δa = λaθ
max
a where 0 ≤ λa ≤ 1 for all a ∈ A. As a consequence,

it follows that qa = la + δa is a non-negative, non-decreasing and continuous
function for all a ∈ A. It is well-known that for these types of functions, the
existence of a Nash flow is guaranteed.

Deviation Ratio. Given an instance I and threshold functions θ = (θmin, θmax),
we define the Deviation Ratio DR(I, θ) = supδ∈∆(θ) C(fδ)/C(f0) as the worst-
case ratio of the cost of a θ-inducible flow and the cost of a 0-inducible flow.
Intuitively, DR(I, θ) measures the worst-case deterioration of the social cost of
a Nash flow due to (feasible) latency deviations.
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We emphasize that the social cost function C is defined as above, i.e., with re-
spect to the latencies (not taking into account the deviations). Note that for fixed
deviations δ ∈ ∆(θ), there might be multiple Nash flows that are δ-inducible.
In this case, we adopt the convention that C(fδ) refers to the social cost of the
worst Nash flow that is δ-inducible.

Our main focus in this paper is on establishing (tight) bounds on the Devia-
tion Ratio. As a side-result, we prove that the problem of determining worst-case
deviations is NP-hard.

Theorem 1. It is NP-hard to compute deviations δ ∈ ∆(θ) such that C(fδ) is
maximized, even for single-commodity networks with linear latencies.

Related notions. Nikolova and Stier-Moses [9] (see also [5,8]) consider non-atomic
network routing games with uncertain latencies. Here the deviations correspond
to variances (va)a∈A of some random variable ζa (with expectation zero). The
perceived latency of a path P ∈ P with respect to a flow f is then defined as
qγP (f) = lP (f) + γvP (f), where γ ≥ 0 is a parameter representing the risk-
aversion of the players. They consider two different objectives as to how the de-
viation vP (f) of a path P is defined: vP (f) =

∑
a∈P va(fa), called the mean-var

objective, and vP (f) = (
∑
a∈P va(fa))1/2, called the mean-std objective. Note

that for the mean-var objective there is an equivalent arc-based definition, where
the perceived latency of every arc a ∈ A is defined as qγa(fa) = la(fa) + γva(fa).
They define the Price of Risk Aversion [9] as the worst-case ratio C(x)/C(z),
where x is a risk-averse Nash flow with respect to qγ = l + γv and z is a
risk-neutral Nash flow with respect to l.6 In their analysis, it is assumed that
the variance-to-mean-ratio of every arc a ∈ A under the risk-averse flow x is
bounded by some constant κ ≥ 0, i.e., va(xa) ≤ κla(xa) for all a ∈ A. Under this
assumption, they prove that the Price of Risk Aversion PRA(I, γ, κ) of single-
commodity instances I with non-negative and non-decreasing latency functions
is at most 1 + γκd(n− 1)/2e, where n is the number of nodes.

We now elaborate on the relation to our Deviation Ratio. The main technical
difference is that in [9] the variance-to-mean ratio is only considered for the
respective flow values xa. Note however that if we write for every a ∈ A, va(xa) =
λala(xa) for some 0 ≤ λa ≤ κ, then the deviation function δa(y) = γλala(y) has
the property that x = fδ is δ-inducible with δ ∈ ∆(0, γκ). It follows that for
every instance I and parameters γ, κ, PRA(I, γ, κ) ≤ DR(I, (0, γκ)).

Another related notion is the Biased Price of Anarchy (BPoA) introduced
by Meir and Parkes [7]. Adapted to our setting, given an instance I and
threshold functions θ, the Biased Price of Anarchy is defined as BPoA(I, θ) =
supδ∈∆(θ) C(fδ)/C(f∗), where f∗ is a socially optimal flow. Note that because
C(f∗) ≤ C(f) for every feasible flow f , we have DR(I, θ) ≤ BPoA(I, θ).

Due to space limitations, some material is omitted from this extended abstract
and can be found in the full version of the paper (see [4]).

6 The existence of a risk-averse Nash flow is proven in [8].
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3 Upper bounds on the Deviation Ratio

We derive an upper bound on the Deviation Ratio. All results in this section
hold for multi-commodity instances with a common source.

We first derive a characterization result for the inducibility of a given flow f .
This generalizes the characterization in [1] to common source multi-commodity
instances and negative deviations. We define an auxiliary graph Ĝ = Ĝ(f) =
(V, Â) with Â = A∪ Ā, where Ā = {(v, u) : a = (u, v) ∈ A+}. That is, Â consists
of the set of arcs in A, which we call forward arcs, and the set Ā of arcs (v, u)
with (u, v) ∈ A+, which we call reversed arcs. Further, we define a cost function
c : Â→ R as follows:

ca =

{
l(u,v)(fa) + θmax

(u,v)(fa) for a = (u, v) ∈ A
−l(u,v)(fa)− θmin

(u,v)(fa) for a = (v, u) ∈ Ā. (2)

Theorem 2. Let f be a feasible flow. Then f is θ-inducible if and only if Ĝ(f)
does not contain a cycle of negative cost with respect to c.

Theorem 2 does not hold for general multi-commodity instances. The proof
of Lemma 1 follows directly from Theorem 2.

Lemma 1. Let x be θ-inducible and let Xi be a flow-carrying (s, ti)-path for
commodity i ∈ [k] in G. Let χ and ψ be any (s, ti)-path and (ti, s)-path in Ĝ(x),
respectively. Then∑
a∈Xi

la(xa) + θmin
a (xa) ≤

∑
a∈χ∩A

la(xa) + θmax
a (xa)−

∑
a∈χ∩Ā

la(xa) + θmin
a (xa)

∑
a∈Xi

la(xa) + θmax
a (xa) ≥

∑
a∈ψ∩Ā

la(xa) + θmin
a (xa)−

∑
a∈ψ∩A

la(xa) + θmax
a (xa).

The following notion of alternating paths turns out to be crucial. It was first
introduced by Lin et al. [6] and is also used by Nikolova and Stier-Moses [9].

Definition 1 (Alternating path [6, 9]). Let x and z be feasible flows. We
partition A = X ∪ Z, where Z = {a ∈ A : za ≥ xa and za > 0} and X = {a ∈
A : za < xa or za = xa = 0}. We say that πi = (a1, . . . , ar) is an alternating
s, ti-path if the arcs in πi ∩Z are oriented in the direction of ti, and the arcs in
πi ∩X are oriented in the direction of s.

Without loss of generality we may remove all arcs with za = xa = 0 (as they
do not contribute to the social cost). Note that if along πi we reverse the arcs
of Z then the resulting path is a directed (ti, s)-path in Ĝ(z) (which we call the
s-oriented version of πi); similarly, if we reverse the arcs of X then the resulting
path is an (s, ti)-path in Ĝ(x) (which we call the ti-oriented version of πi).

The following lemma proves the existence of an alternating path tree, i.e., a
spanning tree of alternating paths, rooted at the common source node s. It is a
direct generalization of Lemma 4.6 in [6] and Lemma 4.5 in [9].
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Lemma 2. Let z and x be feasible flows and let Z and X be a partition of A as
in Definition 1. Then there exists an alternating path tree.

We now have all the ingredients to prove the following main result.

Theorem 3. Let x be θ-inducible and let z be 0-inducible. Further, let A = X∪Z
be a partition as in Definition 1. Let π be an alternating path tree, where πi
denotes the alternating s, ti-path in π.

(i) Suppose θ = (θmin, θmax). Let Xi be a flow-carrying path of commodity
i ∈ [k] maximizing lP (x) over all P ∈ Pi.7 Then

C(x) ≤ C(z)+
∑
i∈[k]

ri

( ∑
a∈Z∩πi

θmax
a (za)−

∑
a∈X∩πi

θmin
a (za)−

∑
a∈Xi

θmin
a (xa)

)
.

(ii) Suppose θ = (α, β) with −1 < α ≤ 0 ≤ β. Let ηi is the number of disjoint
segments of consecutive arcs in Z on the alternating s, ti-path πi for i ∈
[k].8 Then

C(x)

C(z)
≤ 1 +

β − α
1 + α

·
∑
i∈[k]

riηi ≤ 1 +
β − α
1 + α

·
⌈
n− 1

2

⌉
· r.

Proof (i). We have C(x) =
∑
i

∑
P∈Pi

xiP lP (x) ≤
∑
i ri
∑
a∈Xi

la(xa) by the
choice of Xi. By applying the first inequality of Lemma 1 to the flow x in the
graph Ĝ(x), where we choose χ to be the ti-oriented version of πi, we obtain∑
a∈Xi

la(xa) + θmin
a (xa) ≤

∑
a∈Z∩πi

la(xa) + θmax
a (xa)−

∑
a∈X∩πi

la(xa) + θmin
a (xa).

Let Zi be an arbitrary flow-carrying path of commodity i ∈ [k] with respect
to z. By applying the second inequality of Lemma 1 to the flow z in the graph
Ĝ(z) with θmax = θmin = 0, where we choose ψ to be the s-oriented version of
πi, we obtain ∑

a∈Zi

la(za) ≥
∑

a∈Z∩πi

la(za)−
∑

a∈X∩πi

la(za).

Combining these inequalities and exploiting the definition of X and Z, we obtain∑
a∈Xi

la(xa) + θmin
a (xa) ≤

∑
a∈Z∩πi

la(xa) + θmax
a (xa)−

∑
a∈X∩πi

la(xa) + θmin
a (xa)

≤
∑

a∈Z∩πi

la(za) + θmax
a (za)−

∑
a∈X∩πi

la(za) + θmin
a (za)

≤
∑
a∈Zi

la(za) +
∑

a∈Z∩πi

θmax
a (za)−

∑
a∈X∩πi

θmin
a (za).

The claim now follows by multiplying the above inequality with ri and sum-
ming over all commodities i ∈ [k]. Note that C(z) =

∑
i ri
∑
a∈Zi

la(za). ut
7 Note that the values lP (x) + δP (x) are the same for all flow-carrying paths, but this

is not necessarily true for the values lP (x).
8 Note that ηi ≤ d(n− 1)/2e.
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Fig. 1. The fifth Braess graph with (l5a, δ
5
a) on the arcs as defined in Example 1. The

bold arcs indicate the alternating path π1.

4 Lower bounds for (α, β)-deviations

We show that the bound in Theorem 3 is tight in all its parameters for (α, β)-
deviations. We start with single-commodity instances.

Our instance is based on the generalized Braess graph [10]. The m-th Braess
graph Gm = (V m, Am) is defined by V m = {s, v1, . . . , vm−1, w1, . . . , wm−1, t}
and Am as the union of three sets: Em1 = {(s, vj), (vj , wj), (wj , t) : 1 ≤ j ≤
m− 1}, Em2 = {(vj , wj−1) : 2 ≤ j ≤ m} and Em3 = {(v1, t) ∪ {(s, wm−1}}.

Example 1. We can assume without loss of generality that α = 0 (see [4]). Let
β ≥ 0 be a fixed constant and let n = 2m ≥ 4 ∈ N.9 Let Gm be the m-th
Braess graph. Furthermore, let ym : R≥0 → R≥0 be a non-decreasing, continuous
function10 with ym(1/m) = 0 and ym(1/(m− 1)) = β. We define

lma (g) =

 (m− j) · ym(g) for a ∈ {(s, vj) : 1 ≤ j ≤ m− 1}
j · ym(g) for a ∈ {(wj , t) : 1 ≤ j ≤ m− 1}
1 otherwise.

Furthermore, we define δma (g) = β for a ∈ Em2 , and δma (g) = 0 otherwise. Note
that 0 ≤ δma (g) ≤ βlma (g) for all a ∈ A and g ≥ 0 (see Figure 1).

A Nash flow z = f0 is given by routing 1/m units of flow over the paths
(s, wm−1, t), (s, v1, t) and the paths in {(s, vj , wj−1, t) : 2 ≤ j ≤ m−1}. Note that
all these paths have latency one, and the path (s, vj , wj , t), for some 1 ≤ m ≤ j,
also has latency one. We conclude that C(z) = 1.

9 Note that the value d(n− 1)/2e is the same for n ∈ {2m, 2m+ 1} with m ∈ N. The
example shows tightness for n = 2m. The tightness for n = 2m + 1 then follows
trivially by adding a dummy node.

10 For example ym(g) = m(m− 1)βmax{0,
(
g − 1

m

)
}. That is, we define ym to be zero

for 0 ≤ g ≤ 1/m and we let it increase with constant rate to β in 1/(m− 1).
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A Nash flow x = fδ, with δ as defined above, is given by routing 1/(m− 1)
units of flow over the paths in {(s, vj , wj , t) : 1 ≤ j ≤ m− 1}. Each such path P
then has a latency of lP (x) = 1 + βm. It follows that C(x) = 1 + βm. Note that
the deviated latency of path P is qP (x) = 1+βm because all deviations along this
path are zero. Each path P ′ = (s, vj , wj−1, t), for 2 ≤ j ≤ m− 1, has a deviated
latency of qP ′(x) = 1 +β+ (m− 1)ym(1/(m− 1)) = 1 +β+ (m− 1)β = 1 +βm.
The same argument holds for the paths (s, wm−1, t) and (s, v1, t). We conclude
that x is δ-inducible. It follows that C(x)/C(z) = 1 + βm = 1 + βn/2. ut

By adapting the construction above, we obtain the following result.

Theorem 4. There exist common source two-commodity instances I such that

DR(I, (α, β)) ≥
{

1 + (β − α)/(1 + α) · (n− 1)/2 · r for n = 2m+ 1 ∈ N≥5

1 + (β − α)/(1 + α) · [(n/2− 1)r + 1] for n = 2m ∈ N≥4.

For two-commodity instances and n even, we can actually improve the upper
bound in Theorem 3 to the lower bound stated in Theorem 4 (see [4]).

For general multi-commodity instances the situation is much worse. In par-
ticular, we establish an exponential lower bound on the Deviation Ratio. The
instance used in proof of Theorem 5 is similar to the one used by Lin et al. [6].

Theorem 5. For every p = 2q+1 ∈ N, there exists a two-commodity instance I
whose size is polynomially bounded in p such that DR(I, (α, β)) ≥ 1 + βFp+1 ≈
1 + 0.45β · φp+1, where Fp is the p-th Fibonacci number and φ ≈ 1.618 is the
golden ratio.

5 Applications

By using our bounds on the Deviation Ratio, we obtain the following results.

Price of Risk Aversion.

Theorem 6. The Price of Risk Aversion for a common source multi-commodity
instance I with non-negative and non-decreasing latency functions, variance-to-
mean-ratio κ > 0 and risk-aversion parameter γ ≥ −1/κ is at most

PRA(I, γ, κ) ≤

{
1− γκ/(1 + γκ)d(n− 1)/2er for −1/κ < γ ≤ 0

1 + γκd(n− 1)/2er for γ ≥ 0.

Moreover, these bounds are tight in all its parameters if n = 2m+ 1 and almost
tight if n = 2m (see [4]). In particular, for single-commodity instances we obtain
tightness for all n ∈ N.

10



Stability of Nash flows under small perturbations.

Theorem 7. Let I be a common source multi-commodity instance with non-
negative and non-decreasing latency functions (la)a∈A. Let f be a Nash flow
with respect to (la)a∈A and let f̃ be a Nash flow with respect to slightly perturbed
latency functions (l̃a)a∈A satisfying supa∈A, x≥0 |(la(x) − l̃a(x))/la(x)| ≤ ε for

some small ε > 0. Then the relative error in social cost is (C(f̃)−C(f))/C(f) ≤
2ε/(1− ε)d(n− 1)/2e · r = O(εrn).

6 Smoothness based approaches

We derive tight smoothness bounds on the Biased Price of Anarchy for (0, β)-
deviations. Our bounds improve upon the bounds of (1 + β)/(1 − µ) recently
obtained by Meir and Parkes [7] and Lianeas et al. [5] for (1, µ)-smooth latency
functions. As a direct consequence, we also obtain better smoothness bounds on
the Price of Risk Aversion. Our approach is a generalization of the framework
of Correa, Schulz and Stier-Moses [3] (which we obtain for β = 0).

Let L be a given set of latency functions and β ≥ 0 fixed. For l ∈ L, define

µ̂(l, β) = sup
x,z≥0

{
z[l(x)− (1 + β)l(z)]

xl(x)

}
and µ̂(L, β) = sup

l∈L
µ̂(L, β).

Theorem 8. Let L be a set of non-negative, non-decreasing and continuous
functions. Let I be a general multi-commodity instance with (la)a∈A ∈ LA. Let
x be δ-inducible for some (0, β)-deviation δ and let z be an arbitrary feasible
flow. Then C(x)/C(z) ≤ (1 + β)/(1 − µ̂(L, β)) if µ̂(L, β) < 1. Moreover, this
bound is tight if L contains all constant functions and is closed under scalar
multiplication, i.e., for every l ∈ L and γ ≥ 0, γl ∈ L.

For example, for affine latencies µ̂(L, β) = 1/(4(1+β)) (see [4]) and we obtain
a bound of (1 + β)2/( 3

4 + β) on the Biased Price of Anarchy, which is strictly
better than the bound 4(1 + β)/3 obtained in [5, 7].

We also provide an upper bound on the absolute gap between the Biased
Price of Anarchy and the Deviation Ratio (see [4]).

As a final result we derive smoothness bounds for general path deviations, which
are not necessarily decomposable into arc deviations (see [4] for formal defini-
tions). The main motivation for investigating such deviations is that we can apply
such bounds to the mean-std objective of the Price of Risk Aversion model by
Nikolova and Stier-Moses [9] (see Section 2).

Theorem 9. Let I be a general multi-commodity instance with (la)a∈A ∈ LA.
Let x be δ-inducible with respect to some (0, β)-path deviation δ and let z an
arbitrary feasible flow. If µ̂(L, 0) < 1/(1 + β), then C(x)/C(z) ≤ (1 + β)/(1 −
(1 + β)µ̂(L, 0)).
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7 Conclusions

We introduced a unifying model to study the impact of (bounded) worst-case
latency deviations in non-atomic selfish routing games. We demonstrated that
the Deviation Ratio is a useful measure to assess the cost deterioration caused
by such deviations. Among potentially other applications, we showed that the
Deviation Ratio provides bounds on the Price of Risk Aversion and the relative
error in social cost if the latency functions are subject to small perturbations.

Our approach to bound the Deviation Ratio (see Section 3) is quite generic
and, albeit considering a rather general setting, enables us to obtain tight
bounds. We believe that this approach will turn out to be useful to derive bounds
on the Deviation Ratio of other games (e.g., network cost sharing games).

In general, studying the impact of (bounded) worst-case deviations of the
input data of more general classes of games (e.g., congestion games) is an inter-
esting and challenging direction for future work.
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