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Abstract. Many polynomial-time solvable combinatorial optimization
problems become NP-hard if an additional complicating constraint is
added to restrict the set of feasible solutions. In this paper, we consider
two such problems, namely maximum-weight matching and maximum-
weight matroid intersection with one additional budget constraint. We
present the first polynomial-time approximation schemes for these prob-
lems. Similarly to other approaches for related problems, our schemes
compute two solutions to the Lagrangian relaxation of the problem and
patch them together to obtain a near-optimal solution. However, due to
the richer combinatorial structure of the problems considered here, stan-
dard patching techniques do not apply. To circumvent this problem, we
crucially exploit the adjacency relations on the solution polytope and,
surprisingly, the solution to an old combinatorial puzzle.

1 Introduction

Many combinatorial optimization problems can be formulated as follows. We are
given a (finite) set F of feasible solutions and a weight function w : F → Q that
assigns a weight w(S) to every feasible solution S ∈ F . An optimization problem
Π asks for the computation of a feasible solution S∗ ∈ F of maximum weight
optΠ , i.e.,

optΠ := maximize w(S) subject to S ∈ F . (Π)
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In this paper, we are interested in solving such optimization problems if the
set of feasible solutions is further constrained by a single budget constraint. More
precisely, we are additionally given a non-negative cost function c : F → Q+ that
specifies a cost c(S) for every feasible solution S ∈ F and a non-negative budget
B ∈ Q+. The budgeted optimization problem Π̄ of the above problem Π can
then be formulated as follows:

opt := maximize w(S) subject to S ∈ F , c(S) ≤ B. (Π̄)

Even if the original optimization problem Π is polynomial-time solvable,
adding a budget constraint typically renders the budgeted optimization problem
Π̄ NP-hard. Problems that fall into this class are, for example, the constrained
shortest path problem [2], the constrained minimum spanning tree problem [1],
and the constrained minimum arborescence problem [6].

We study the budgeted version of two fundamental optimization problems, name-
ly the maximum-weight matching problem and the maximum-weight matroid
intersection problem:

In the budgeted matching problem, we are given an undirected graph G =
(V, E) with edge weights w : E → Q and edge costs c : E → Q+, and a budget
B ∈ Q+. The set F of feasible solutions corresponds to the set of all matchings in
G. Define the weight of a matching M as the total weight of all edges in M , i.e.,
w(M) :=

∑

e∈M w(e). Similarly, the cost of M is defined as c(M) :=
∑

e∈M c(e).
The goal is to compute a matching M∗ ∈ F of maximum weight w(M∗) among
all matchings M in F whose cost c(M) is at most B.

In the budgeted matroid intersection problem, we are given two matroids
M1 = (E,F1) and M2 = (E,F2) on a common ground set of elements E
(formal definitions will be given in Section 2). Moreover, we are given element
weights w : E → Q, element costs c : E → Q+, and a budget B ∈ Q+. The set
of all feasible solutions F := F1 ∩ F2 is defined by the intersection of M1 and
M2. The weight of an independent set X ∈ F is defined as w(X) :=

∑

e∈X w(e)
and the cost of X is c(X) :=

∑

e∈X c(e). The goal is to compute a common
independent set X∗ ∈ F of maximum weight w(X∗) among all feasible solutions
X ∈ F satisfying c(X) ≤ B. Problems that can be formulated as the intersection
of two matroids are, for example, matchings in bipartite graphs, arborescences
in directed graphs, spanning forests in undirected graphs, etc.

A special case of both budgeted matching and budgeted matroid intersection
is the budgeted matching problem on bipartite graphs. This problem is NP-
hard by a simple reduction from the knapsack problem. We remark that the
unbudgeted versions of the two problems can be solved in polynomial-time (see,
e.g., [20]).

Our Contribution. We give the first polynomial-time approximation schemes
(PTAS) for the budgeted matching problem and the budgeted matroid inter-
section problem. For a given input parameter ǫ > 0, our algorithms compute
a (1 − ǫ)-approximate solution in time O(mO(1/ǫ)), where m is the number of
edges in the graph or the number of elements in the ground set, respectively.



The basic structure of our polynomial-time approximation schemes resembles
similar approaches for related budgeted optimization problems [18]. By dualizing
the budget constraint of Π̄ and lifting it into the objective function, we obtain
for any λ ≥ 0 the Lagrangian relaxation LR(λ).

z(λ) := maximize
(

w(S) + λ(B − c(S))
)

subject to S ∈ F . (LR(λ))

Note that the relaxed problem LR(λ) is equivalent to the optimization problem
Π with modified Lagrangian weights wλ(e) := w(e) − λc(e) for all e ∈ E. Since
the unbudgeted problem Π is polynomial-time solvable, we can compute the
optimal Lagrangian multiplier λ∗ := arg minλ≥0 z(λ) and two optimal solutions
S1 and S2 to LR(λ∗) such that c(S1) ≤ B ≤ c(S2). (Details will be given in
Section 2.) The idea now is to patch S1 and S2 together to obtain a feasible
solution S for Π̄ whose weight w(S) is at least (1− ǫ)opt. Our patching consists
of two phases: an exchange phase and an augmentation phase.

Exchange Phase: Consider the polytope induced by the feasible solutions F
to the unbudgeted problem Π and let F be the face given by the solutions
of maximum Lagrangian weight. This face contains both S1 and S2. In the first
phase, we iteratively replace either S1 or S2 with another vertex on F , preserving
the invariant c(S1) ≤ B ≤ c(S2), until we end up with two adjacent solutions.
Note that both solutions have objective value z(λ∗) ≥ opt. However, with respect
to their original weights, we can only infer that w(Si) = z(λ∗) − λ∗(B − c(Si)).
That is, we cannot hope to use these solutions directly: S1 is a feasible solution
for Π̄ but its weight w(S1) might be arbitrarily far from opt. In contrast, S2 has
weight w(S2) ≥ opt, but is infeasible.

Augmentation Phase: In this phase, we exploit the properties of adjacent so-
lutions in the solution polytope. For matchings it is known that two solutions
are adjacent in the matching polytope if and only if their symmetric difference
is an alternating cycle or path X . Analogously, two adjacent extreme points in
the common basis polytope of two matroids can be characterized by a proper
alternating cycle X in the corresponding exchangeability graph [4,9]. The idea is
to patch S1 according to a proper subpath X ′ of X . This subpath X ′ guarantees
that the Lagrangian weight of S1 does not decrease too much, while at the same
time the gap between the budget and the cost of S1 (and hence also the gap
between w(S1) and z(λ∗)) is reduced. This way we obtain a feasible solution S
whose weight differs from opt by at most the weight of two edges (elements).

Of course, constructing such a solution S alone is not sufficient to obtain a
PTAS. (The maximum weight of an edge (element) might be comparable to the
weight of an optimum solution). However, this problem can be easily overcome
by guessing the edges (elements) of largest weight in the optimum solution in a
preliminary step.

Surprisingly, the key ingredient that enables us to prove that there always exists
a good patching subpath stems from an old combinatorial puzzle which we quote



from the book by Lovász [10, Problem 3.21]. We leave the proof as an exercise
to the reader.

“Along a speed track there are some gas-stations. The total amount of
gasoline available in them is equal to what our car (which has a very
large tank) needs for going around the track. Prove that there is a gas-
station such that if we start there with an empty tank, we shall be able
to go around the track without running out of gasoline.”

Related Work. For the budgeted matching problem there is an optimal algorithm
if the costs are uniform. This problem is equivalent to finding a maximum-weight
matching that consists of at most B edges, which can be solved by a reduction to
perfect matching. Not much is known for the budgeted matching problem with
general edge costs, besides that it is NP-hard. Naor et al. [15] proposed a fully
polynomial-time approximation scheme (FPTAS) for an even more general class
of problems, which contains the budgeted matching problem considered here as
special case. However, personal communication [14] revealed that unfortunately
the stated result [15, Theorem 2.2] is incorrect. To the best of our knowledge,
the budgeted version of the maximum-weight matroid intersection problem has
not been considered before.

Budgeted versions of polynomial-time solvable optimization problems have
been studied extensively. The best known ones are probably the constrained
shortest path problem and the constrained minimum spanning tree problem.
Finding a shortest s, t-path P (with respect to weight) between two vertices s
and t in a directed graph with edge weights and edge costs such that the total
cost of P is at most B appears as an NP-hard problem already in the book
by Garey and Johnson [5]. Similarly, finding a minimum weight spanning tree
whose total cost is at most some specified value is NP-hard as well [1].

Goemans and Ravi [18] obtain a PTAS for the constrained minimum spanning
tree problem by using an approach which resembles our exchange phase. Starting
from two spanning trees obtained from the Lagrangian relaxation, they walk
along the optimal face (with respect to the Lagrangian weights) of the spanning
tree polytope until they end up with two adjacent solutions S1 and S2 with
c(S1) ≤ B ≤ c(S2). In this polytope, two spanning trees are adjacent if and
only if their symmetric difference consists of just two edges. Therefore, the final
solution S1 is a feasible spanning tree whose weight is away from the optimum
by the weight of only one edge. In particular, once two such adjacent solutions
have been found there is no need for an additional augmentation phase, which is
instead crucial for matchings and matroid intersections. The PTAS by Goemans
and Ravi [18] also extends to the problem of finding a minimum-weight basis in
a matroid subject to a budget constraint.

Hassin and Levin [7] later improved the result of Goemans and Ravi and
obtained an EPTAS for the constrained minimum spanning tree problem. A fully
polynomial bicriteria approximation scheme for the problem has been found by
Hong et al. [8]. However, the question whether there exists a fully polynomial-
time approximation scheme to the constrained minimum spanning tree problem
is open.



Finding constrained minimum arborescences in directed graphs is NP-hard
as well. Guignard and Rosenwein [6] apply Lagrangian relaxation to solve it to
optimality (though not in polynomial time). Previous work on budgeted opti-
mization problems also includes results on budgeted scheduling [21] and bicriteria
results for several budgeted network design problems [11].

All problems mentioned above can be interpreted as bicriteria optimization
problems with a min-min objective, i.e., where the goal is to compute a solution
that minimizes the objective value and whose cost stays below a given budget.
In contrast, in our work we consider max-min bicriteria problems.

Organization of the Paper. The paper is structured as follows. In Section 2, we
give some prerequisites on matroids and Lagrangian relaxation. We then present
the PTAS for the budgeted matching problem in Section 3. The PTAS for the
budgeted matroid intersection problem is the subject of Section 4. In Section 5
we discuss some open problems.

2 Preliminaries

2.1 Matroids

Let E be a set of elements and F ⊆ 2E be a non-empty set of subsets of E.
Then M = (E,F) is a matroid if the following holds:

(a) If I ∈ F and J ⊆ I, then J ∈ F .
(b) For every I, J ∈ F , |I| = |J |, for every x ∈ I there is a y ∈ J such that

I \ {x} ∪ {y} ∈ F .

The elements of F are called independent sets. An independent set X is a basis
of M if for every x ∈ E \ X , X ∪ {x} /∈ F . We assume that F is represented
implicitly by an oracle: for any given I ⊆ E, this oracle determines whether
I ∈ F or not. In the running time analysis, each query to the oracle is assumed
to take constant time. It is not hard to show that matroids have the following
properties (see e.g. [20] and references therein).

Lemma 1. For any given matroid M = (E,F):

1. (Deletion) For every E0 ⊆ E, M − E0 := (E′,F ′) is a matroid, where
E′ := E \ E0 and F ′ := {X ∈ F : X ∩ E0 = ∅}.

2. (Contraction) For every E0 ∈ F , M/E0 := (E′,F ′) is a matroid, where
E′ := E \ E0 and F ′ := {X ⊆ E \ E0 : X ∪ E0 ∈ F}.

3. (Truncation) For every q ∈ N, Mq := (E,Fq) is a matroid, where Fq :=
{X ∈ F : |X | ≤ q}.

4. (Extension) For every set D, D ∩ E = ∅, M + D := (E′,F ′) is a matroid,
where E′ := E ∪ D and F ′ := {X ⊆ E ∪ D : X ∩ E ∈ F}.

Observe that an oracle for the original matroid implicitly defines an oracle for all
the derived matroids above. Given X ∈ F and Y ⊆ E, the exchangeability graph
of M with respect to X and Y is the bipartite graph exM(X, Y ) := (X \ Y, Y \
X ; H) with edge set H = {(x, y) : x ∈ X \ Y, y ∈ Y \ X, X \ {x} ∪ {y} ∈ F}.



Lemma 2 ([9]). (Exchangeability Lemma) Given X ∈ F and Y ⊆ E, if exM(X, Y )
has a unique perfect matching, then Y ∈ F .

The intersection of two matroids M1 = (E,F1) and M2 = (E,F2) over the same
ground set E is the pair M = (E,F1 ∩ F2). We remark that the intersection of
two matroids might not be a matroid, while every matroid M = (E,F) is the
intersection of itself with the trivial matroid (E, 2E). Lemma 1 can be naturally
extended to matroid intersections. For example, for a given matroid intersection
(E,F1∩F2), by Lemma 1.3 (E,Fq

1 ∩Fq
2 ) is still the intersection of two matroids,

for any q ∈ N.
Given two matroids M1 = (E,F1) and M2 = (E,F2), the common basis

polytope of M1 and M2 is the convex hull of the characteristic vectors of the
common bases. We say that two common bases X, Y ∈ F1 ∩ F2 are adjacent
if their characteristic vectors are adjacent extreme points in the common basis
polytope of M1 and M2.

2.2 Lagrangian Relaxation

We briefly review the Lagrangian relaxation approach; for a more detailed expo-
sition, the reader is referred to [16]. The Lagrangian relaxation of the budgeted
optimization problem Π̄ is given by:

z(λ) := maximize
(

w(S) + λ(B − c(S))
)

subject to S ∈ F . (LR(λ))

For any value of λ ≥ 0, the optimal solution to LR(λ) gives an upper bound
on the optimal solution of the original budgeted problem, because any feasible
solution satisfies

∑

e∈S c(e) ≤ B. The Lagrangian relaxation problem is to find
the best such upper bound, i.e. to determine λ∗ such that z(λ∗) = minλ≥0 z(λ).
This can be done in polynomial time whenever LR(λ) is solvable in polynomial
time [19, Theorem 24.3]. In our case, since there are combinatorial algorithms for
weighted matching and weighted matroid intersection [20], we can even obtain λ∗

in strongly polynomial time by using Megiddo’s parametric search technique [12].
Indeed, for any fixed feasible solution, the value of the Lagrangian relaxation is
a linear function of λ, so that LR(λ) is the maximum of a set of linear functions,
i.e. a piecewise-linear convex function. Finding the minimum of such a piecewise-
linear convex function is precisely what is achieved by parametric search.

The idea behind Megiddo’s technique is that, even though we do not know
λ∗, we can simulate the algorithm solving LR(λ∗) and at the same time discover
λ∗. Towards this end, for each e ∈ E the value wλ∗(e) := w(e) − λ∗c(e) will
be manipulated symbolically as a linear function of the form a + λ∗b. In the
simulated algorithm, which is combinatorial, these linear functions might be
added together to create more linear functions, but at most a polynomial number
of such functions will be used overall. Whenever the simulated algorithm asks
for a comparison between some a + λ∗b and some a′ + λ∗b′, we compute the
critical λ for which a + λb = a′ + λb′. To correctly perform the comparison and
resume the simulation of the algorithm, it is enough to know whether λ is smaller
or larger than λ∗. But this can be discovered by solving one more Lagrangian



subproblem, this time with weight function w−λc: if the corresponding solution
costs more than B, then λ < λ∗, and vice versa if the cost is larger than B. At
the end of the simulation, the output of the algorithm can be used to determine
λ∗ explicitly. Finally, λ∗ can be used to compute two solutions S1, S2 such that:

1. Both S1 and S2 are optimal with respect to the weight function wλ∗(e) :=
w(e) − λ∗c(e), e ∈ E;

2. c(S1) ≤ B ≤ c(S2).

These two solutions can be obtained by solving the relaxed problems LR(λ∗ + ǫ)
and LR(λ∗ − ǫ), respectively, for a sufficiently small ǫ > 0. Indeed, even without
knowing how small ǫ has to be, they can be obtained by simulating again the
algorithm and resolving the comparisons accordingly.

2.3 The Gasoline Puzzle

One crucial ingredient in our patching procedure is the solution to the puzzle
cited in the introduction. We state it more formally in the following lemma.

Lemma 3. (Gasoline Lemma) Given a sequence of k real values a0, a1, . . . ak−1

of total value
∑k−1

j=0 aj = 0, there is an index i ∈ {0, 1, . . . , k − 1} such that, for

any 0 ≤ h ≤ k − 1,
∑i+h

j=i aj (mod k) ≥ 0.

3 A PTAS for the Budgeted Matching Problem

In this section, we present our PTAS for the budgeted matching problem. Sup-
pose we are given a budgeted matching instance I := (G, w, c, B). Let n and m
refer to the number of nodes and edges in G, respectively. Moreover, we define
wmax := maxe∈E w(e) as the largest edge weight in I. Throughout this section,
opt refers to the weight of an optimal solution M∗ for I. In order to prove that
there exists a PTAS, we proceed in two steps: First we prove that there is an
algorithm to compute a feasible solution of weight at least opt − 2wmax. The
Gasoline Lemma will play a crucial role in this proof. The claimed PTAS is then
obtained by guessing the edges of largest weight in M∗ in a preliminary phase
and applying the algorithm above.

Lemma 4. There is a polynomial-time algorithm to compute a solution M to
the budgeted matching problem of weight w(M) ≥ opt − 2 wmax.

Proof. As described in Section 2, we first compute the optimal Lagrangian mul-
tiplier λ > 0 and two matchings M1 and M2 of maximum Lagrangian weight
wλ(M1) = wλ(M2) and satisfying c(M1) ≤ B ≤ c(M2). Observe that for
i ∈ {1, 2} we have that

wλ(Mi) + λB ≥ wλ(M∗) + λB ≥ wλ(M∗) + λ c(M∗) = opt. (1)
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Fig. 1. The construction used in Lemma 4. Each edge xi is labeled with the value ai.

We next show how to extract from M1 ∪M2 a matching M with the desired
properties in polynomial-time. Consider the symmetric difference M ′ = M1⊕M2.
Recall that M ′ ⊆ M1∪M2 consists of a disjoint union of paths P and cycles C. We
apply the following procedure until eventually |P ∪C| ≤ 1: Take some X ∈ P ∪C
and let A := M1 ⊕ X . If c(A) ≤ B replace M1 by A. Otherwise replace M2 by
A. Observe that in each step, the cardinality of M1 ∩ M2 increases by at least
one; hence this procedure terminates after at most O(n) steps. Moreover, by the
optimality of M1 and M2, the Lagrangian weight of the two matchings does not
change during the process.

If at the end of this procedure c(Mi) = B for some i ∈ {1, 2}, we are done:
Mi is a feasible solution to the budgeted matching problem and

w(Mi) = wλ(Mi) + λc(Mi) = wλ(Mi) + λB ≥ opt.

Otherwise, M1 ⊕ M2 consists of a unique path or cycle X = (x0, x1, . . . , xk−1)
such that c(M1 ⊕ X) = c(M2) > B > c(M1). Consider the sequence

a0 = δ(x0)wλ(x0), a1 = δ(x1)wλ(x1), . . . , ak−1 = δ(xk−1)wλ(xk−1),

where δ(xi) = 1 if xi ∈ M2 and δ(xi) = −1 otherwise. This sequence has total
value zero, because of the optimality of M1 and M2. By the Gasoline Lemma,
there must exist an edge xi, i ∈ {0, 1, . . . , k − 1}, of X such that for any cyclic
subsequence X ′ = (xi, x(i+1) (mod k), . . . , x(i+h) (mod k)),

0 ≤
i+h
∑

j=i

aj (mod k) =
∑

e∈X′∩M2

wλ(e) −
∑

e∈X′∩M1

wλ(e). (2)

Consider the longest such subsequence X ′ satisfying c(M1 ⊕ X ′) ≤ B. Let
e1 = xi and e2 = x(i+h) (mod k) be the endpoints of X ′ (see Figure 1). Note
that by the maximality of X ′ and by the non-negativity of the edge costs, either
e2 ∈ M1 or X is a path and e2 its last edge. In both cases, M := (M1⊕X ′)\{e1}
is a matching (while M1 ⊕ X ′ might not be a matching if e1 ∈ M2). Moreover,
c(M) = c(M1 ⊕X ′)− c(e1) ≤ c(M1 ⊕X ′) ≤ B. That is, M is a feasible solution
to the budgeted matching problem.



It remains to lower bound the weight of M . We have

w(M1 ⊕ X ′) = wλ(M1 ⊕ X ′) + λ c(M1 ⊕ X ′)

= wλ(M1 ⊕ X ′) + λB − λ (B − c(M1 ⊕ X ′))

≥ wλ(M1) + λB − λ (B − c(M1 ⊕ X ′))

≥ opt − λ (B − c(M1 ⊕ X ′)),

where the first inequality follows from (2) and the second inequality follows from
(1).

Let e3 = x(i+h+1) (mod k). The maximality of X ′ implies that c(e3) > B −
c(M1 ⊕ X ′) ≥ 0. Moreover, by the optimality of M1 and M2, 0 ≤ wλ(e3) =
w(e3) − λ c(e3). Altogether λ (B − c(M1 ⊕ X ′)) ≤ λ c(e3) ≤ w(e3) and hence
w(M1 ⊕ X ′) ≥ opt − w(e3). We can thus conclude that

w(M) = w(M1 ⊕ X ′) − w(e1) ≥ opt − w(e3) − w(e1) ≥ opt − 2 wmax.

⊓⊔

Theorem 1. There is a PTAS for the budgeted matching problem.

Proof. Let ǫ ∈ (0, 1) be a given constant. Assume that the optimum matching
M∗ contains at least p := ⌈2/ǫ⌉ edges. (Otherwise the problem can be solved
optimally by brute force.) Consider the following algorithm. Initially, we guess
the p heaviest (with respect to weights) edges M∗

H of M∗. Then we remove
from the graph G the edges in M∗

H , all edges incident to M∗
H , and all edges

of weight larger than the smallest weight in M∗
H . We also decrease the budget

by c(M∗
H). Let I ′ be the resulting budgeted matching instance. Note that the

maximum weight of an edge in I ′ is w′
max ≤ w(M∗

H)/p ≤ ǫM∗
H/2. Moreover,

M∗
L := M∗ \M∗

H is an optimum solution for I ′. We compute a matching M ′ for
I ′ using the algorithm described in the proof of Lemma 4. Eventually, we output
the feasible solution M := M∗

H ∪ M ′.
The algorithm above has running time O(mp+O(1)) = O(mO(1/ǫ)), where the

mp factor comes from the guessing of M∗
H . By Lemma 4, w(M ′) ≥ w(M∗

L) −
2 w′

max. It follows that

w(M) = w(M∗
H) + w(M ′) ≥ w(M∗

H) + w(M∗
L) − 2 w′

max

≥ w(M∗) − ǫ w(M∗
H) ≥ (1 − ǫ)w(M∗).

⊓⊔

4 A PTAS for the Budgeted Matroid Intersection

Problem

In this section we will develop a PTAS for the budgeted matroid intersection
problem. As in the PTAS for the budgeted matching problem, we will first show
how to find a feasible common independent set of two matroids M1 = (E,F1)



and M2 = (E,F2) of weight at least opt − 2wmax, where wmax is the weight
of the heaviest element. The PTAS will then follow similarly as in the previous
section.

Like in the matching case, we initially use Megiddo’s parametric search tech-
nique to obtain the optimal Lagrangian multiplier λ ≥ 0 and two solutions
X, Y ∈ F1 ∩ F2, c(X) ≤ B ≤ c(Y ), that are optimal with respect to the La-
grangian weights wλ(e) = w(e) − λ c(e), e ∈ E. Notice that neither X nor Y
will contain any element e such that wλ(e) < 0. Furthermore, both solutions can
be used to derive upper bounds on the optimum solution. In fact, let I∗ be the
optimum solution, of weight opt = w(I∗). For Z ∈ {X, Y },

wλ(Z) + λB ≥ wλ(I∗) + λB ≥ wλ(I∗) + λ c(I∗) = opt. (3)

If X and Y have different cardinalities, say |X | < |Y |, we extend M1 and M2

according to Lemma 1.4 by adding |Y | − |X | dummy elements D of weight and
cost zero, and then we replace X by X ∪D. (Dummy elements will be discarded
when the final solution is returned.) Of course, this does not modify the weight
of the optimum solution nor the weight and cost of X . Finally, using Lemma 1.3
we truncate the two matroids to q := |X | = |Y |. The solutions X and Y will now
be maximum-weight common bases of each one of the two truncated matroids.

In the following, we will show how to derive from X and Y a feasible solution
of weight at least opt− 2wmax. This is done in two steps. First (Section 4.1), we
extract from X∪Y two adjacent common bases, one below and the other over the
budget, with the same (optimal) Lagrangian weight of X and Y . Then (Section
4.2) we apply the Gasoline Lemma to a proper auxiliary graph to compute the
desired approximate solution.

4.1 Finding Adjacent Common Bases

The following lemma characterizes two adjacent common bases in the common
basis polytope of two matroids.

Lemma 5 ([4,9]). Assume we have two matroids M1 = (E,F1), M2 = (E,F2)
and two common bases X, Y ∈ F1 ∩ F2. Then X and Y are adjacent extreme
points in the common basis polytope if and only if the following conditions hold:

1. The exchangeability graph exM1
(X, Y ) has a unique perfect matching M1.

2. The exchangeability graph exM2
(X, Y ) has a unique perfect matching M2.

3. The union M1 ∪ M2 forms a cycle.

The following corollary of Lemma 5 will help us to deal with contracted matroids.

Corollary 1. Let M1 = (E,F1) and M2 = (E,F2) be two matroids. Moreover,
let Z ∈ F1 ∩ F2 and Z ⊆ X ∩ Y . Then X and Y are adjacent extreme points in
the common basis polytope of M1 and M2 if and only if X \ Z and Y \ Z are
adjacent extreme points in the common basis polytope of M1/Z and M2/Z.



Proof. First note, that X is a basis of Mi if and only if X \Z is a basis of Mi/Z
(i = 1, 2) by Lemma 1.2. The same holds for Y . Moreover, as Z ⊆ X ∩ Y , the
exchangeability graphs exMi

(X, Y ) and exMi/Z(X \ Z, Y \ Z) (i = 1, 2) are the
same, since they are defined on the symmetric difference of X and Y . The claim
then follows immediately from Lemma 5. ⊓⊔

Remember that X and Y , are maximum-weight common bases of M1 and
M2 with respect to the Lagrangian weights wλ, and that c(X) ≤ B ≤ c(Y ). Since
our solution will be a subset of X∪Y , let us delete the elements E′ = E\(X∪Y )
according to Lemma 1.1. In order to do a similar patching procedure as for the
matching problem, we would like X and Y to be adjacent extreme points in the
common basis polytope of M1 and M2. The following lemma will help us to
find such two adjacent common bases which are also of maximum weight with
respect to wλ.

Lemma 6. There is a polynomial-time algorithm that finds a third maximum-
weight common basis A with respect to wλ, such that X 6= A 6= Y and X ∩ Y ⊆
A ⊆ X ∪ Y , or determines that no such basis exists.

Proof. Let Z = X ∩ Y . Without loss of generality, let X \ Y = {x1, . . . , xr}
and Y \ X = {y1, . . . , yr}. For 1 ≤ i, j ≤ r denote by Mij

1 = M1/Z − {xi, yj}

and Mij
2 = M2/Z − {xi, yj} the matroids resulting from the contraction of Z

(Lemma 1.2) and the deletion of xi and yj (Lemma 1.1).
Consider the following (polynomial-time) algorithm. For every 1 ≤ i, j ≤ r

compute Aij , a maximum-weight common basis of Mij
1 and Mij

2 . If there is
an Aij satisfying |Aij | = r and wλ(Aij) = wλ(X \ Z), then A = Aij ∪ Z is

the desired third basis. In fact, Aij is a common basis of Mij
1 and Mij

2 , and
since |A| = |Aij | + |Z| = |X |, it is also a common basis of M1 and M2. Also,

X 6= A 6= Y since xi and yj are not present in Mij
1 and Mij

2 .
If none of the Aij ’s satisfies |Aij | = r and wλ(Aij) = wλ(X \ Z), then no

common basis A of M1 and M2 with the desired properties exists. In fact,
assume by contradiction that there is such a third maximum-weight basis A.
Choose i and j such that xi, yj /∈ A. Note that such indices must exist since

X 6= A 6= Y . Then A \ Z is a common basis of Mij
1 and Mij

2 . Hence wλ(Aij) ≥
wλ(A\Z), since Aij is a maximum-weight such common basis. Moreover |Aij | =
|A \ Z| = r, and thus Aij ∪ Z is a common basis of M1 and M2, implying
wλ(Aij ∪ Z) ≤ wλ(A). Hence wλ(Aij) ≤ wλ(A \ Z). We can conclude that
wλ(Aij) = wλ(A \ Z) = wλ(X \ Z), which is a contradiction. ⊓⊔

We can now apply Lemma 6 as follows. Until we find a third basis A, we
replace X by A if c(A) ≤ B, and Y by A otherwise. In either case, the cardinality
of the intersection of the new X and Y has increased. Hence this process ends
in at most O(m) rounds.

At the end of the process, X and Y must be adjacent in the common basis
polytope of M1 and M2. In fact, X \Y and Y \X are maximum-weight common
bases of M1/(X ∩ Y ) and M2/(X ∩ Y ) and there is no other maximum-weight
common basis A′ of M1/(X∩Y ) and M2/(X∩Y ), as otherwise A = A′∪(X∩Y )



would have been found by the algorithm from Lemma 6. Now as X \Y and Y \X
are the only two maximum-weight common bases, they must also be adjacent on
the optimal face of the common basis polytope of M1/(X∩Y ) and M2/(X∩Y ).
Therefore, by Corollary 1, X and Y are adjacent in the common basis polytope
of M1 and M2.

4.2 Merging Adjacent Common Bases

Let X and Y be the two adjacent solutions obtained at the end of the process
described in the previous section. Notice that, if either c(X) = B or c(Y ) = B,
we obtain a feasible solution that is optimal also with respect to the original
weights, in which case we can already stop. For this reason in the following we
will assume that c(S1) < B < c(S2). Without loss of generality, we also assume
that X \ Y = {x1, x2, . . . , xr} an Y \ X = {y1, y2, . . . , yr}.

Lemma 7. Given X and Y with the properties above, there is a polynomial-time
algorithm which computes a common independent set X ′ ∈ F1 ∩ F2 such that
c(X ′) ≤ B and w(X ′) ≥ opt − 2wmax.

Proof. We exploit again Lemma 5 to obtain two unique perfect matchings:
M1 = {x1y1, . . . , xryr} in exM1

(X, Y ) and M2 = {y1x2, y2x3, . . . , yrx1} in
exM2

(X, Y ). Let (x1, y1, x2, y2, . . . , xr, yr) be the corresponding connected cy-
cle. Assign to the each edge xjyj a weight δj := wλ(yj) − wλ(xj), and weight
zero to the remaining edges. Clearly

∑r
j=1 δj = 0, since X and Y have the same

maximum Lagrangian weight. Hence, by the Gasoline Lemma, there must exist
an edge of the cycle such that the partial sum of the δ-weights of each subpath
starting at that edge is non-negative. Without loss of generality, assume x1y1 is
such an edge. Thus for all i ≤ r,

∑i
j=1 δj ≥ 0. Find the largest k ≤ r such that

c(X) +

k
∑

j=1

(

c(yj) − c(xj)
)

≤ B.

Since c(Y ) > B, we have k < r and by construction

c(X) +

k
∑

j=1

(

c(yj) − c(xj)
)

> B − c(yk+1) + c(xk+1).

We now show that X ′ := X \{x1, . . . , xk+1}∪{y1, . . . , yk} satisfies the claim.
By the choice of k, B − cmax ≤ B − c(yk+1) < c(X ′) ≤ B, where cmax =

maxe∈E c(e). Also, since
∑k

j=1 δj ≥ 0, we have

wλ(X ′) ≥ wλ(X) − wλ(xk+1) ≥ wλ(X) − wmax.

We next prove that X ′ ∈ F1∩F2. Consider the set X ′∪{xk+1}: its symmetric
difference with X is the set {x1, . . . , xk} ∪ {y1, . . . , yk}. Recall that xiyi is an
edge of M1. Thus, for i ≤ k, it is also an edge of exM1

(X, X ′ ∪ {xk+1}) so



that this graph has a perfect matching. On the other hand this perfect matching
must be unique, otherwise M1 would not be unique in exM1

(X, Y ). Thus by the
Exchangeability Lemma X ′ ∪ {xk+1} ∈ F1.

Similarly, consider the set X ′ ∪ {x1}: its symmetric difference with X is the
set {x2, . . . , xk+1} ∪ {y1, . . . , yk}. For i ≤ k, yixi+1 is an edge of M2. Thus
exM2

(X, X ′ ∪ {x1}) has a perfect matching, and it has to be unique, otherwise
M2 would not be unique in exM2

(X, Y ). Thus by the Exchangeability Lemma
X ′∪{x1} ∈ F2. We have thus shown that X ′∪{xk+1} ∈ F1 and X ′∪{x1} ∈ F2.
As a consequence, X ′ ∈ F1 ∩ F2.

It remains to bound the weight of X ′:

w(X ′) = wλ(X ′) + λc(X ′) = wλ(X ′) + λB − λ(B − c(X ′))

≥ wλ(X) + λB − wmax − λc(yk+1) ≥ wλ(X) + λB − 2wmax

≥ opt − 2wmax.

Above we used the fact that wλ(e) ≥ 0 for all e ∈ Y , so in particular wλ(yk+1) =
w(yk+1)−λc(yk+1) ≥ 0, implying wmax ≥ w(yk+1) ≥ λc(yk+1). The last inequal-
ity follows from (3). ⊓⊔

Theorem 2. The budgeted matroid intersection problem admits a PTAS.

Proof. Let ǫ ∈ (0, 1) be a given constant. Assume that the optimum solution
contains at least p := ⌈2/ǫ⌉ elements (otherwise the problem can be solved
optimally by brute force). We first guess the p elements of largest weight in the
optimal solution. Using contraction (Lemma 1.2) we remove these elements from
both matroids, and using deletion (Lemma 1.1) we as well remove all elements
that have a larger weight than any of the contracted elements. We decrease
the budget by an amount equal to the cost of the guessed elements. Finally
we apply the above algorithm and we add back the guessed elements to the
solution. The final solution will have weight at least opt− 2w′

max, where w′
max is

the largest weight of the elements that remained after the guessing step. Since
opt ≥ (2/ǫ)w′

max, we obtain a solution of weight at least (1− ǫ)opt. The running
time of the algorithm above is O(mO(1/ǫ)). ⊓⊔

5 Concluding Remarks and Open Problems

There are several problems that we left open. One natural question is whether
we can apply our patching technique to other budgeted problems. Apparently,
the main property that we need is that the difference between two solutions that
are adjacent in the solution polytope of the corresponding unbudgeted problem
can be characterized by a proper alternating path or cycle. This deserves further
investigation.

Another natural question is whether there are fully polynomial-time approx-
imation schemes for the problems considered here. We conjecture that budgeted
matching is not strongly NP-hard. However, finding an FPTAS for that problem
might be a very difficult task. In fact, for polynomial weights and costs, the



budgeted matching problem is equivalent to the exact perfect matching prob-
lem (proof is given in the appendix): Given an undirected graph G = (V, E),
edge weights w : E → Q, and a parameter W ∈ Q, find a perfect matching
of weight exactly W , if any. This problem was first posed by Papadimitriou
and Yannakakis [17]. For polynomial weights, the problem admits a polynomial-
time Monte Carlo algorithm [3,13]. Hence, it is very unlikely that exact perfect
matching with polynomial weights is NP-hard (since this would imply RP=NP).
However, after 25 years, the problem of finding a deterministic algorithm to solve
this problem is still open.

Finally, an interesting open problem is whether our approach can be extended
to the case of multiple budget constraints. The difficulty here is that the Gasoline
Lemma alone seems not able to fill in the cost-budget-gap for several budget
constraints at the same time.
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A Exact Perfect Matching and Budgeted Matching

We prove that the budgeted matching problem and the exact perfect matching
problem are equivalent for polynomial weights and costs. We call the variant of
the budgeted matching problem, where we additionally require that the com-
puted matching is perfect, the budgeted perfect matching problem.

Lemma 8. For polynomial weights and costs, the following problems are poly-
nomially reducible: (a) exact perfect matching; (b) budgeted perfect matching; (c)
budgeted matching.

Proof. Without loss of generality, we assume that all weights and costs are non-
negative integers. Let wmax and cmax be the largest weight and cost, respectively.

(a) ⇒ (b): Let (G, w, W ) be an exact perfect matching instance. Solve the bud-
geted perfect matching instance (G, w, c, B), where B = W and c(e) = w(e) for
every edge e. If the solution returned has weight smaller than B = W , the origi-
nal problem is infeasible. Otherwise, the solution computed is a perfect matching
of G of weight W .

(c) ⇒ (a): Let (G, w, c, B) be a budgeted matching instance. For two given
W ∗ and B∗, consider the exact perfect matching instance (G, w′, W ′), where
W ′ = (n/2 + 1)cmaxW

∗ + B∗ and w′(e) = (n/2 + 1)cmaxw(e) + c(e) for every
edge e. The problem (G, w′, W ′) is feasible if and only if there is a matching of
weight W ∗ and cost B∗ in the original problem. By trying all the (polynomially
many) possible values for W ∗ and B∗, we obtain the desired solution to the
original problem.

(b) ⇒ (c): Let (G, w, c, B) be a budgeted perfect matching instance. Consider the
budgeted matching instance (G, w′, c, B), where w′(e) = w(e)+(n/2+1)wmax for
every edge e. The original problem is feasible if and only the maximum matching
M∗ of the new problem contains n/2 edges, i.e., M∗ is a perfect matching. ⊓⊔


