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We present a simple randomized algorithmic framework for connected facility location
problems. The basic idea is as follows: We run a black-box approximation algorithm
for the unconnected facility location problem, randomly sample the clients, and open
the facilities serving sampled clients in the approximate solution. Via a novel analytical
tool, which we term core detouring, we show that this approach significantly improves
over the previously best known approximation ratios for several NP-hard network design
problems. For example, we reduce the approximation ratio for the connected facility
location problem from 8.55 to 4.00 and for the single-sink rent-or-buy problem from 3.55
to 2.92. The mentioned results can be derandomized at the expense of a slightly
worse approximation ratio. The versatility of our framework is demonstrated by devising
improved approximation algorithms also for other related problems.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

We consider network design problems that combine facility location and connectivity problems. These problems have
a wide range of applications and have recently received considerable attention both in the theoretical computer science
literature (see, e.g., [17,20,28,38]) and in the operations research literature (see, e.g., [32,35]).

As an example (see also [2,38]), consider the problem of installing a telecommunication network infrastructure. The
network consists of a central high-bandwidth core with unlimited capacity on the links and individual connections from
endnodes to nodes in the core. Among the potential core nodes, we need to select a subset that we connect with each other
and then route the traffic from each endnode to a core node. Each core node comes with an installation cost and we assume
that the cost of installing the high-bandwidth links in the core is larger than the (per unit) routing cost from the endnodes
to the core.

We can model the scenario above as a connected facility location problem (CFL). We are given an undirected graph G =
(V , E) with edge costs c : E → Q+ , a set of facilities F ⊆ V , a set of clients D ⊆ V , and a parameter M � 1. Every facility
i ∈ F has an opening cost f (i) ∈ Q+ and every client j ∈ D has a demand d( j) ∈ Q+ . The goal is to determine a subset
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F ⊆ F of the facilities to be opened, assign each client j ∈ D to some open facility σ( j) ∈ F and build a Steiner tree T
connecting the open facilities such as to minimize the total cost∑

i∈F

f (i) + M
∑
e∈T

c(e) +
∑
j∈D

d( j)�
(

j,σ ( j)
)
, (1)

where �(v, w) is the shortest path distance between vertices v, w ∈ V in G (with respect to c). We refer to the first, second
and last term in (1) as the opening cost, Steiner cost and connection cost, respectively. Subsequently, we assume that every
client j ∈ D has a unit demand d( j) = 1. This assumption is without loss of generality as we may replace j by several
copies of co-located unit-demand clients. The algorithms presented in this paper can easily be adapted in order to run in
polynomial time even if the original demands are not polynomially bounded in the number n of vertices; we refer the
reader to [20] for additional details.

The special case where F = V and all opening costs are zero is known as the single-sink rent-or-buy problem (SROB).
There are various natural extensions of CFL that differ with respect to the underlying facility location and core connectivity
problem. For example, in the connected k-facility location problem (k-CFL) we can open at most k facilities. In the connected
soft-capacitated facility location problem (soft-CFL), facility i ∈ F can serve at most b(i) ∈ N clients, but we are allowed to
open several copies of i (paying its opening cost each time). In both problems, the core constitutes a Steiner tree. We may
alternatively consider the variant of CFL where the open facilities are connected by a traveling salesman tour. We call the
latter problem the tour-connected facility location problem (tour-CFL).

1.1. Our results

We present an algorithmic framework to devise simple approximation algorithms for connected facility location prob-
lems. Via a novel analytical tool, which we term core detouring, we are able to show that this framework yields approxima-
tion algorithms that significantly improve over the previous best approximation ratios for the problems mentioned above.
From a high level point of view, our framework works as follows:

1. Compute an approximate solution for the (unconnected) facility location problem.
2. Randomly sample the clients and open the facilities serving sampled clients in the approximate solution.
3. Compute an approximate solution for the connectivity problem on the open facilities and assign clients to the open

facilities.

We remark that in Steps 1 and 3, we can use any approximation algorithm for the (unconnected) facility location and
core connectivity problem as a black box—this allows us to use the current best approximation algorithms for the respective
subproblems.

Our framework yields a 4.00-approximation algorithm for CFL. The previous best approximation algorithm for CFL is the
primal–dual 8.55-approximation algorithm by Swamy and Kumar [37,38]. In the special case of SROB, our algorithm provides
a 2.92-approximation, hence improving on the previous best 3.55-approximation algorithm by Gupta et al. [19,20]. We show
that our algorithms for SROB and CFL can be derandomized using a technique by van Zuylen and Williamson [41]; this way
we obtain 4.23 and 3.28 worst-case approximation factors for CFL and SROB, respectively. We eventually demonstrate the
versatility of our framework by applying it to the problems k-CFL, tour-CFL, and soft-CFL for which we improve the current
best known approximation ratios.

A key ingredient in our analysis is that we use a novel core detouring scheme to bound the expected connection cost of
random sampling algorithms. The basic idea is to construct a (possibly sub-optimal) connection scheme and to bound its cost
in terms of the optimum cost. In this scheme, we reassign the clients to open facilities by detouring their connection paths
through the core in the optimum solution. This construction is set up such that the reassignment is perfectly symmetric,
which allows us to bound the expected cost of the detoured paths.

Our method leads to better approximation factors when |D|/M is large. For this reason, we developed ad-hoc improved
approximation algorithms for the case |D|/M is a constant. For this special case, we designed polynomial-time approxi-
mation schemes (PTASs) for CFL, k-CFL, and tour-CFL, and a 2-approximation for soft-CFL. This might be of independent,
practical interest.

1.2. Previous and related work

The network design problems considered here are NP-hard [13] and APX-complete [3,5,33], as they contain the Steiner
tree problem or the metric traveling salesman problem as a special case. Researchers have therefore concentrated on ob-
taining good approximation algorithms for them.

CFL and SROB have recently received considerable attention in the computer science literature. Gupta et al. [17] obtain a
10.66-approximation algorithm for CFL, based on rounding an exponential size LP. Gupta, Srinivasan and Tardos [22] describe
a random facility sampling algorithm for CFL leading to a 9.01-approximation. Their algorithm randomly samples clients,
and then runs an (unconnected) facility location approximation algorithm on the sampled clients: the corresponding open
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Table 1
Improved approximation ratios obtained in this paper; expected approximation ratios are
marked with a star.

Problem This paper Previous best

CFL 4.00� 8.55 Swamy and Kumar [37,38]
4.23

SROB 2.92� 3.55� Gupta et al. [19,20]
3.28 4 van Zuylen and Williamson [manuscript]

k-CFL 6.85� 15.55� Swamy and Kumar [37,38]
6.98

tour-CFL 4.12� 5.83� Ravi and Salman [34] (special case only)
soft-CFL 6.27�

facilities form the set of open facilities in the final CFL solution. We remark that our approach is subtly but substantially
different, since we solve an unconnected facility location problem on all the clients (not only on the sampled ones), and
then randomly select a subset of the resulting (deterministic) pool of open facilities. The best algorithm for CFL prior to our
work is a primal–dual 8.55-approximation algorithm by Swamy and Kumar [37,38]. Gupta et al. [20] leave open the question
whether a randomized sampling approach can be used to improve the primal–dual approximation algorithm of Swamy and
Kumar [37,38]. In this paper, we answer this question affirmatively.

Better results are known for SROB. The first constant approximation is given in [28]. Gupta et al. [17] give a
9.01-approximation algorithm. Swamy and Kumar [37,38] describe a primal–dual 4.55-approximation algorithm for the
same problem. Gupta, Kumar, and Roughgarden [20] propose a simple random sampling algorithm which gives a 3.55-
approximation. Gupta, Srinivasan and Tardos [22] show that this algorithm can be derandomized to obtain a 4.2-
approximation algorithm. In a recent unpublished work, van Zuylen and Williamson present a derandomization of the same
random sampling algorithm that reduces the worst-case approximation factor to 4.

Swamy and Kumar [37,38] give a 15.55-approximation algorithm for k-CFL, which is also the current best. Ravi and
Salman [34] consider the special case of tour-CFL, where F = V and all opening costs are zero, and give a 5.83-
approximation for it. To the best of our knowledge, soft-CFL has not been considered in the literature before, while the
corresponding unconnected version is a well-studied problem (see [30] and the references therein).

The results presented in this paper and previous best results are summarized in Table 1. Table 1 refers to the state of
the art at the time the conference version of this paper was submitted to SODA’08. In 2008 Jung, Hasan, and Chwa [23]
independently found a primal–dual 8.29-approximation algorithm for CFL (which is worse than our result). The (unpub-
lished) deterministic 4-approximation by van Zuylen and Williamson is obtained by applying a novel derandomization
technique to the algorithm and analysis of Gupta et al. [19,20]. Combining the same derandomization technique with our
core-detouring scheme (as described in an unpublished manuscript that we sent to the authors), van Zuylen and Williamson
independently achieved a 3.28-approximation for SROB, which now appears in [41]. Later on van Zuylen [40] generalized
the derandomization technique in [41]. Using the new technique, the 4.12 randomized algorithm for tour-CFL can be turned
into a deterministic algorithm with the same approximation guarantee [40].

Random sampling is at the heart of some of the best known approximation algorithms for several basic network design
problems: besides SROB [20], multi-commodity rent-or-buy (MROB) [4,12,18], virtual private network design (VPN) [8–10,20],
and single-sink buy-at-bulk (SSBB) [15,16,20,27,39], to name a few. Random sampling is also a useful tool for the solution of
facility location problems [31]. The analysis of most of these algorithms is, more or less explicitly, based on strict cost shares,
a concept originating from game-theoretic cost sharing (see, e.g., the exposition in [19]). These cost shares are used to relate
the expected connection cost of the approximate solution to the cost of the core (or cores) in the optimum solution. We
remark that our core-detouring scheme provides a different way to analyze random sampling algorithms. In fact, we relate
the connection cost of the approximate solution both to the optimal core cost and to the optimal connection cost.

1.3. Organization of paper

In Section 2, we study core connection games, which form the basis of our core detouring scheme. Our random facility
sampling framework for CFL and SROB and its analysis are given in Section 3. Refinements of the analysis are presented
in Section 4. The derandomization of the algorithm is described in Section 5. In Section 6, we discuss extensions of our
framework to other connected facility location problems. Finally, we give some conclusions in Section 7.

1.4. Preliminaries

Throughout this paper, we assume without loss of generality that the number n = |V | of vertices of G = (V , E) satisfies
n � 1. For a given assignment σ of clients to facilities, we let σ−1(i) denote the set of clients assigned to facility i. Recall
that �(v, w) is the shortest path distance between vertices v and w in the graph G = (V , E) with respect to c. We also
define �(v, W ) = minw∈W �(v, w) for a given subset W ⊆ V . Finally, we let c(S) = ∑

e∈S c(e) denote the total cost of all
edges in a subset S ⊆ E .
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Fig. 1. Core connection game instance. Marked client nodes are drawn in bold. The flow of j in the routing scheme is indicated by the bold path.

2. Core connection games

In this section, we study some random games that we call core connection games. These games form the basis of our core
detouring scheme introduced in Section 3.

Consider the following setting. We are given a set N of core nodes that are connected by an undirected cycle C , which
we call the core. Every core node i ∈ N has exactly one client node j ∈ D assigned to it, i.e., |N | = |D|. We use μ( j) ∈ N to
refer to the core node of j ∈ D. Each client node j ∈ D has two oppositely directed edges ( j, i) and (i, j) to its respective
core node i = μ( j); see Fig. 1. Let Hin be the set of all edges that are directed from client nodes to core nodes and Hout
the set of all oppositely directed edges. Define H = Hin ∪ Hout . Let G = (V , E ) be the resulting graph and w : E → Q+
a non-negative weight function on the edges of G . We slightly abuse notation here by using C ⊆ E to refer to the set of
undirected edges in the cycle. By w(S) we denote the total weight of all edges in S ⊆ E .

We now consider the following random cycle-core connection game: We mark (or sample) one client node uniformly at
random and every other client node independently with probability p ∈ (0,1). Now, every client node j ∈ D sends one unit
of (unsplittable) flow to the closest marked client node (with respect to the distances induced by w). We bound the cost of
the total flow sent in this game in the following theorem.

Theorem 1. The cost X of the flow in the cycle-core connection game satisfies E[X] � w(H) + w(C)/(2p).

Proof. We bound the cost of the following sub-optimal flow routing scheme: Every client j ∈ D sends its flow unit to a
closest marked client, with respect to unit edge weights (breaking ties uniformly at random); see Fig. 1. The symmetry
properties of this routing scheme make it easier to bound its expected cost. Let f (e) be the flow on edge e ∈ E and let Y
denote the total cost of this flow (with respect to the original weights). Clearly, E[X] � E[Y ].

By linearity of expectation, the cost of this flow is

E[Y ] =
∑
e∈H

E
[

f (e)
] · w(e) +

∑
e∈C

E
[

f (e)
] · w(e).

Note that f (e) � 1 holds deterministically for every edge e ∈ Hin . By symmetry reasons, E[ f (e)] � 1 for all edges e ∈ Hout .
It remains to bound the expected flow on the edges of the cycle. Again exploiting the symmetry of the routing scheme,

it is sufficient to consider an arbitrary edge e ∈ C . Let X j be the number of edges of the cycle crossed by the flow-path of a
given client node j. Clearly,∑

e∈C
f (e) =

∑
j∈D

X j.

By symmetry, we can conclude that E[ f (e)] = E[X j]. Let us call a core node i = μ( j) by-sampled if j is sampled. We now
observe that X j > k if and only if i and the first k nodes of C to the left and right of i are not by-sampled. As a consequence

Pr(X j > k) < (1 − p)2k+1,

where the strict inequality is due to the fact that at least one core node is by-sampled by assumption. We conclude that

E
[

f (e)
] = E[X j] =

∑
k�0

Pr(X j > k) � 1 − p

1 − (1 − p)2
� 1

2p
.

The theorem follows. �
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We can modify the cycle-core connection game in a way which is better suited for our purposes. Suppose the core is
given by an (undirected) Steiner tree T on the core nodes in N instead of a cycle. The tree T may contain some other
non-core nodes. As before, every client node j ∈ D is assigned to exactly one core node μ( j). Let μ−1(i) be the set of client
nodes assigned to a core node i ∈ N . However, a core node i ∈ N might now have more than one client node assigned to
it, i.e., we have |μ−1(i)| � 1 for every i ∈ N . The rest of the construction remains the same as before. We define a tree-core
connection game analogously to the cycle-core connection game.

Theorem 2. The cost X of the flow in the tree-core connection game satisfies E[X] � w(H) + w(T )/p.

Proof. We transform the Steiner tree T into a cycle C using the following standard arguments: We replace every edge of
the tree by two oppositely directed edges and compute an Eulerian tour on the resulting graph. Starting from an arbitrary
core node in N , we traverse this tour and shortcut all nodes that do not belong to N or have been visited before. Let the
resulting cycle on the core nodes N be C′ . By triangle inequality, w(C′) � 2w(T ).

We now replace every core node i in C′ by a path of |μ−1(i)| copies of i and assign every client node j in μ−1(i) to a
unique random copy, i.e., compute a random matching between the client nodes and the copies. The weights of the edges
in this replacement path are set to zero. Denote the cycle obtained in this way by C . We finally add the two oppositely
directed edges between every client node j and its unique copy of μ( j) in C . Let Y be the cost of the flow in the cycle-core
connection game. It is not difficult to see that X � Y holds deterministically. The claim now follows from Theorem 1 and
the fact that w(C) = w(C′) � 2w(T ). �
3. Connected facility location

In this section we present our improved approximation algorithms for CFL and SROB. Let us assume that M/|D| � ε ,
for a sufficiently small constant ε > 0. As we will see in Section 3.3, this is without loss of generality since otherwise the
problem admits a PTAS.

3.1. Random facility sampling

Let α ∈ (0,1] be a constant parameter which will be fixed later. Our algorithm randCFL for CFL works as follows:

1. Compute a ρfl-approximate solution U = (FU , σU ) for the (unconnected) facility location instance induced by the input
instance.

2. Choose a client j∗ ∈ D uniformly at random and mark it. Mark every other client j independently with probability
α/M . Let D be the set of marked clients.

3. Open facility i ∈ FU if there is at least one marked client in σ−1
U (i). Let F be the (non-empty) set of open facilities.

4. Compute a ρst-approximate Steiner tree on D . Augment this tree by adding the shortest path between every j ∈ D and
the corresponding open facility σU ( j) ∈ F . Extract a tree T spanning F from the resulting multi-graph.

5. Output APX = (F , T , σ ), where σ assigns each client j ∈ D to a closest open facility in F .

In Step 4 we might alternatively construct a Steiner tree directly on the open facilities in F ; however, this would lead to
a worse approximation factor with our analysis. In the special case of SROB, we can assume without loss of generality that
the facility location approximation algorithm used in Step 1 of randCFL opens all the facilities.

The main result of this section is the following theorem; its proof is given in the next subsection.

Theorem 3. For a proper choice of α, randCFL is an expected 4.55-approximation algorithm for CFL. In the special case of SROB, the
approximation ratio reduces to 3.05.

3.2. Analysis

We introduce some more notation. An optimal solution is denoted by OPT = (F ∗, T ∗, σ ∗). We use Z∗ , O ∗ , S∗ and C∗
to refer to its total, opening, Steiner, and connection cost, respectively. Similarly, we use Z , O , S and C to refer to the
respective costs of the approximate solution APX computed by randCFL. We let O U and CU be the opening and connection
cost, respectively, of the approximate solution U = (FU , σU ) for the unconnected instance computed in Step 1.

We first bound the opening cost.

Lemma 1. The opening cost of APX satisfies O � O U .

Proof. We open a subset of the facilities in FU , whose total cost is O U . �
The following bound on the expected Steiner cost is inspired by [20]. We recall that we assume M/|D| � ε .
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Lemma 2. The Steiner cost of APX satisfies E[S] � ρst(S∗ + (α + ε)C∗) + (α + ε)CU .

Proof. We obtain a feasible Steiner tree on the marked clients in D by augmenting the optimal Steiner tree T ∗ by the
shortest paths from each client in D to T ∗ . This Steiner tree has expected cost at most∑

e∈T ∗
c(e) +

∑
j∈D

(
α

M
+ 1

|D|
)

�
(

j, F ∗) = 1

M
S∗ +

(
α

M
+ 1

|D|
)

C∗.

Thus the expected cost of the ρst-approximate Steiner tree over D computed in Step 4 is at most

ρst

M
S∗ + ρst

(
α

M
+ 1

|D|
)

C∗.

Additionally, the expected cost of adding the shortest paths from each client j ∈ D to the corresponding open facility
σU ( j) ∈ FU is at most∑

j∈D

(
α

M
+ 1

|D|
)

�( j, FU ) =
(

α

M
+ 1

|D|
)

CU .

Altogether we obtain

E[S] � M

(
ρst

M
S∗ + ρst

(
α

M
+ 1

|D|
)

C∗ +
(

α

M
+ 1

|D|
)

CU

)
� ρst

(
S∗ + (α + ε)C∗) + (α + ε)CU . �

3.2.1. Core detouring scheme
We next introduce our new core detouring scheme to bound the expected connection cost of APX. Note that since the

clients are assigned to their closest open facility in F , it suffices to bound the total cost of connecting every client j ∈ D to
some open facility in F . To this aim, we use the tree-core connection game introduced in Section 2.

We let the tree-core T in the game be the tree T ∗ in the optimum solution and set w(e) = c(e) for every edge e in the
tree. The client nodes simply correspond to the clients in D. We define the mapping μ as the assignment σ ∗ of OPT . For
every client node j ∈ D, the weight of the directed edge ( j,μ( j)) ∈ Hin is defined as the connection cost �( j, σ ∗( j)); the
weight of the directed edge (μ( j), j) ∈ Hout is �(σ ∗( j), j) + �( j, σU ( j)). The sampling probability p is set to p = α/M .

The key-insight now is the following: Fix an outcome of the random sampling. For every flow-path from a client node
j ∈ D to a marked client j′ ∈ D in G , there is a corresponding path between j and the open facility σU ( j′) in the original
graph; moreover, the costs of these paths are equal. Thus, for every fixed outcome of the random sampling, the connection
cost C is at most the cost X of the flow in the tree-core connection game. Since this holds true for every fixed outcome of
the random sampling, it also holds true unconditionally. We can thus bound the expected connection cost by the expected
cost of X ; for the latter, we derived an upper bound in Section 2. The proof of the following lemma now follows easily.

Lemma 3. The connection cost of APX satisfies E[C] � 2C∗ + CU + S∗/α.

Proof. Note that the total weight of the tree-core T is S∗/M . From the discussion above and Theorem 2 it follows that

E[C] � E[X] � w(H) + 1

p
· w(T )

= 2
∑
j∈D

�
(

j,σ ∗( j)
) +

∑
j∈D

�
(

j,σU ( j)
) + M

α
· S∗

M

= 2C∗ + CU + S∗

α
. �

Now we have all ingredients together to prove Theorem 3. The proof relies on the current best approximation factors for
Steiner tree and facility location, which are ρst < 1.55 [36] and ρfl < 1.52 [29], respectively.

Proof of Theorem 3. By Lemmas 1, 2, and 3,

E[Z ] � O U + ρst
(

S∗ + (α + ε)C∗) + (α + ε)CU + 2C∗ + CU + S∗

α
.

The optimum solution to the facility location problem induced by the input instance is a lower bound on C∗ + O ∗ . As a
consequence, CU + O U � ρfl(C∗ + O ∗). We thus obtain
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E[Z ] � ρst
(

S∗ + (α + ε)C∗) + 2C∗ + S∗

α
+ (1 + α + ε)ρfl

(
C∗ + O ∗)

�
(
C∗ + O ∗)(ρst(α + ε) + 2 + ρfl(1 + α + ε)

) + S∗
(
ρst + 1

α

)
.

Choosing ε sufficiently small and balancing the coefficients of C∗ + O ∗ and S∗ , we obtain the claimed approximation ratio
for α = 0.334.

Recall that in the special case of SROB, we can assume without loss of generality that the facility location approximation
algorithm used in Step 1 of randCFL opens all the facilities. As a consequence, randCFL opens a facility at every marked
client. By imposing O U = O ∗ = CU = 0 in the analysis above and choosing α = 0.671, it follows that randCFL is an
expected 3.05-approximation algorithm for SROB. �
3.3. PTAS for constant |D|/M

In this subsection, we present our PTAS for CFL in the special case that |D|/M is upper bounded by a constant, hence
justifying the assumption made at the beginning of this section. Besides helping to improve the analysis for the general
case, this PTAS might also be of independent interest.

Theorem 4. If |D|/M = O (1), then there is a PTAS for k-CFL.

Proof. Let OPT = (F ∗, T ∗, σ ∗) be an optimal solution for k-CFL. We use Z∗ , O ∗ , S∗ and C∗ to refer to its total, opening,
Steiner, and connection cost, respectively. If k is a constant, we can trivially compute an optimum solution in polynomial
time. Hence, let m � 1 be an arbitrary integral constant and assume k � 2m. Consider the following algorithm:

1. For all possible choices of F ⊆ F with |F | � 2m do:
(a) Compute an optimal Steiner tree T over F .
(b) Assign every client j ∈ D to its closest facility σ( j) in F .

2. Output a minimum cost solution (F , T , σ ), among the solutions obtained.

In Step 1(a), we can use, for example, the algorithm by Dreyfus and Wagner [7]. Note that the algorithm outputs a
feasible solution, since 2m � k, and runs in polynomial time.

It is sufficient to show that there is a proper choice of F which satisfies the claim. Let us construct F as follows: Initially,
set F := {i∗}, where i∗ is an arbitrary facility in F ∗ . Then, while there exists a facility i ∈ F ∗ with �(i, F ) > c(T ∗)/m, add i
to F . Note that this way, we ensure that the following two properties hold for the final set F :

1. For any two facilities i, i′ ∈ F , �(i, i′) > c(T ∗)/m.
2. For every facility i ∈ F ∗ , there is a facility i′ in F such that �(i, i′) � c(T ∗)/m.

We first show that |F | � 2m. To see this, double the edges of T ∗ , compute an Eulerian tour E∗ on the resulting graph,
and shortcut the vertices not in F . The cost of the resulting tour on F is at least |F | · c(T ∗)/m due to Property 1. Moreover,
the cost of the Eulerian tour is c(E∗) � 2c(T ∗). Thus, |F | · c(T ∗)/m � 2c(T ∗), which implies that |F | � 2m.

We next bound the cost Z of the solution APX = (F , T , σ ) for our particular choice of F . Clearly, c(T ) � c(T ∗), since
F ⊆ F ∗ and we compute an optimum Steiner tree T over F . Therefore,

Z =
∑
i∈F

f (i) + Mc(T ) +
∑
j∈D

�
(

j,σ ( j)
)

�
∑
i∈F ∗

f (i) + Mc
(
T ∗) +

∑
j∈D

�
(

j,σ ∗( j)
) +

∑
j∈D

�
(
σ ∗( j), F

)

� O ∗ + S∗ + C∗ + |D| · c(T ∗)
m

= Z∗ + |D|
M

· Mc(T ∗)
m

= Z∗ + O (1) · S∗

m
�

(
1 + O (1)

m

)
Z∗.

For the second inequality, we exploit the fact that �(σ ∗( j), F ) � c(T ∗)/m by Property 2. Since we can choose m arbitrarily
large, the claim follows. �
Corollary 1. If |D|/M = O (1), then there is a PTAS for CFL.

Proof. It follows from Theorem 4 observing that CFL is equivalent to |F |-CFL. �
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4. Refinements

We can improve the approximation ratio of randCFL given in Section 3 by combining the following techniques.

(a) Bifactor facility location. We obtain a better approximation ratio if we run a (proper) bifactor approximation algorithm
on the induced facility location instance in Step 1. An algorithm for the facility location problem is a (ρO ,ρC )-approximation
algorithm if for every feasible solution with opening cost O and connection cost C , the cost of the solution computed by
the algorithm is at most ρO O + ρC C . Mahdian, Ye, and Zhang [29] give a (1.11,1.78)-approximation algorithm. Moreover,
they (essentially) show that any (ρO ,ρC )-approximation algorithm can be converted into a (ρO + ln δ,1 + (ρC − 1)/δ)-
approximation algorithm for any δ � 1.

Note that an optimum solution OPT for CFL induces a feasible solution for the underlying facility location problem with
opening cost O ∗ and connection cost C∗ . Exploiting this, we obtain

CU + O U � (1.11 + ln δ)O ∗ +
(

1 + 0.78

δ

)
C∗.

We can now optimize the parameter δ so as to balance the coefficients of the connection and opening costs; while the
parameter α is used to balance the Steiner and connection costs.

(b) Flow canceling. We can refine Theorem 2, and hence the bound on the connection cost given in Lemma 3, by means
of flow canceling. Consider a given edge e of T in the tree-core connection game and let e1 and e2 be the two edges of C
associated to e (because of shortcutting, it might be e1 = e2). If the flows along e1 and e2 in C are both directed clockwise
or counterclockwise (and e1 	= e2), this means that we are sending two oppositely directed flows along e in T . In this case,
it is possible to cancel the difference of the two flows (independently for each e ∈ T ) by redirecting the flow paths in a
proper way. The somewhat technical proof of the following theorem is given in Appendix A.

Theorem 5. For |D| � 1/p, the cost X of the flow in the tree-core connection game satisfies E[X] � w(H) + 0.807w(T )/p.

In particular, since by assumption |D|/M � 1 and α is a constant, this implies the following refined bound on the
connection cost:

E[C] � 2C∗ + CU + 0.807
S∗

α
.

Combining Techniques (a) and (b), we obtain the following theorem.

Theorem 6. There is an expected 4.00-approximation algorithm for CFL. In the special case of SROB, the expected approximation ratio
reduces to 2.92.

Proof. Let us adapt the proof of Theorem 3. Combining (a) and (b), we obtain

E[Z ] � O U + ρst
(

S∗ + (α + ε)C∗) + (α + ε)CU + 2C∗ + CU + 0.807
S∗

α

� ρst
(

S∗ + (α + ε)C∗) + 2C∗ + 0.807
S∗

α

+ (1 + α + ε)

(
(1.11 + ln δ)O ∗ +

(
1 + 0.78

δ

)
C∗

)

= C∗
(
ρst(α + ε) + 2 + (1 + α + ε)

(
1 + 0.78

δ

))

+ S∗
(
ρst + 0.807

α

)
+ O ∗((1 + α + ε)(1.11 + ln δ)

)
α=0.330, δ=6.657

< 4.00Z∗.

The analysis above can be adapted to SROB by imposing CU = O U = O ∗ = 0. For α = 0.591, this yields

E[Z ] � ρst
(

S∗ + (α + ε)C∗) + 2C∗ + 0.807
S∗

α
< 2.92Z∗. �
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5. Derandomization

We can derandomize our algorithm for CFL using an idea by van Zuylen and Williamson [41]. In order to use the result
by van Zuylen and Williamson as a black box, we adapt our randomized algorithm randCFL as follows:

• In Step 2, we first mark each client independently with probability α/M . Let D ′ be the set of marked clients. Then we
sample one client j∗ uniformly at random, and let D = D ′ ∪ { j∗}. Eventually, we guess the facility r∗ = σ ∗( j∗) in the
Steiner tree of an optimal solution which is closest to j∗ .

• In Step 4, we compute a 2-approximate Steiner tree on D ′ ∪{r∗}, using a primal–dual algorithm [1,14]. Then we augment
this tree by adding the shortest path from j∗ to r∗ , and from each j ∈ D to the corresponding open facility σU ( j).

The guessing of r∗ is implemented by considering all possible choices for r∗ ∈ F . We assume that M/|D| � ε; this is without
loss of generality since our PTAS for CFL is deterministic.

Let Z = O + Sst + Saug + C be the expected total cost of the (modified) randomized algorithm, where O is the opening
cost, Sst the cost of the Steiner tree on D ′ ∪ {r∗} computed in Step 4, Saug the augmentation cost in Step 4, and C the
connection cost of the modified algorithm. Following essentially the same line of arguments as in the proof of Theorem 6,
we obtain for α = 0.361885, δ = 7.359457, and ε small enough

E[Z ] � O U + 2
(

S∗ + (α + ε)C∗) + (α + ε)CU + 2C∗ + CU + 0.807
S∗

α
< 4.23Z∗. (2)

That is, the modified algorithm is a 4.23-approximation algorithm for CFL. In the special case of SROB, the approximation
ratio reduces to 3.28 by letting CU = O U = 0 and choosing α = 0.635.

We next show how to derandomize the algorithm above, without increasing its approximation ratio. For x ∈ D, y ∈ F ,
A ⊆ D with x ∈ A, and Ā ⊆ D with A ∩ Ā = ∅, we denote by (x, y, A, Ā) the event { j∗ = x, r∗ = y, A ⊆ D, Ā ∩ D = ∅}. Intu-
itively, (x, y, A, Ā) refers to the event that we have sampled client j∗ = x, guessed facility r∗ = y, decided to mark the clients
in A and to unmark the clients in Ā. Suppose we were able to compute the conditional expected cost E[Z | (x, y, A, Ā)]. We
could then run the following (deterministic) algorithm for every possible choice (x, y) ∈ D × F :

1. Dx,y = {x}, D̄x,y = ∅;
2. While ∃ j ∈ D \ (Dx,y ∪ D̄x,y)

(a) If E[Z | (x, y, Dx,y ∪ { j}, D̄x,y)] � E[Z | (x, y, Dx,y, D̄x,y ∪ { j})], set Dx,y ← Dx,y ∪ { j}.
(b) Otherwise set D̄x,y ← D̄x,y ∪ { j}.

We can interpret Dx,y and D̄x,y as the sets of clients that we have decided to mark and unmark, respectively. Initially, we
mark client x. In each iteration of Step 2, we decide for some (yet undecided) client j whether to mark or unmark it; this
process continues until eventually all clients are either marked or unmarked. It is easy to see that, for fixed x and y, at the
end of the process we have

Zx,y := E
[

Z
∣∣ (x, y, Dx,y, D̄x,y)

]
� E

[
Z

∣∣ j∗ = x, r∗ = y
]
.

In fact, the choice of whether to mark or unmark client j in each iteration of Step 2 is made so as to guarantee that the con-
ditional expected cost does not increase. As a consequence, the cost of the cheapest solution obtained by the deterministic
algorithm above satisfies

min
(x,y)∈D×F

Zx,y � min
(x,y)∈D×F

E
[

Z
∣∣ j∗ = x, r∗ = y

]
� E[Z ],

and we thus would obtain the desired approximation ratio.
From the discussion above it follows that we would be able to derandomize our algorithm if we could efficiently com-

pute the conditional expected cost E[Z | (x, y, A, Ā)]. It is not difficult to see that we can indeed efficiently compute the
conditional expected connection cost E[C | (x, y, A, Ā)] and opening cost E[O | (x, y, A, Ā)] of our algorithm. The same holds
for the conditional expected augmentation cost E[Saug | (x, y, A, Ā)]. However, the problem is that we do not know how to
compute the conditional expected Steiner cost E[Sst | (x, y, A, Ā)].

We circumvent this problem by using an idea of van Zuylen and Williamson [41]. A straightforward adaptation of their
analysis (cf. [41, Lemma 2.4]) shows that, when y belongs to the optimal Steiner tree, there is a random variable X
satisfying the following properties: (i) E[X | j∗ = x, r∗ = y] � S∗ + αC∗ , (ii) E[Sst | (x, y, A, Ā)] � 2E[X | (x, y, A, Ā)], and
(iii) E[X | (x, y, A, Ā)] can be computed in polynomial time. We remark that in order to prove this claim, the authors cru-
cially exploit the fact that a primal–dual 2-approximate Steiner tree algorithm [1,14] is used.

Observe that 2X is sandwiched between Sst and the upper bound 2(S∗ + αC∗) on Sst used in the analysis of the ran-
domized algorithm. The idea is then to replace the random variable Sst by 2X . In other words, the deterministic algorithm
makes its decisions in Step 2 according to the new cost function Z ′ = O + 2X + Saug + C (for which we are able to compute
E[Z ′ | (x, y, A, Ā)] efficiently by Property (iii)). Eventually, the algorithm still outputs the solution whose Z -cost is minimal
among all pairs (x, y) ∈ D × F . In the following, we denote by Z ′

x,y the Z ′-cost of the solution returned for the pair (x, y).
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Theorem 7. There is a deterministic 4.23-approximation algorithm for CFL. In the special case of SROB, the approximation ratio
reduces to 3.28.

Proof. Consider the algorithm above. Let E(x) = (x, σ ∗(x), Dx,σ ∗(x), D̄x,σ ∗(x)). Since σ ∗(x) belongs to the optimal Steiner tree,
the result of van Zuylen and Williamson applies. In particular,

Z ′
x,σ ∗(x) = E

[
Z ′ ∣∣ E(x)

]
� E

[
Z ′ ∣∣ j∗ = x, r∗ = σ ∗(x)

]
� O U + 2

(
S∗ + αC∗) + M�

(
x,σ ∗(x)

) + M�
(
x,σU (x)

)
+ α

M

∑
v∈D

M�
(

v,σU (v)
) + E

[
C

∣∣ j∗ = x
]
, (3)

where we use the fact that the choices of the algorithm are made such that the expected Z ′-cost never increases and
Property (i). Moreover, by Property (ii),

Zx,σ ∗(x) = E
[

Z
∣∣ E(x)

]
� E

[
Z ′ ∣∣ E(x)

] = Z ′
x,σ ∗(x). (4)

Combining (2), (3), and (4), we can conclude that the cost Z̃ of the final solution returned by the algorithm satisfies

Z̃ = min
(x,y)∈D×F

Zx,y � 1

|D|
∑
x∈D

min
y∈F

Zx,y � 1

|D|
∑
x∈D

Zx,σ ∗(x)

� 1

|D|
∑
x∈D

Z ′
x,σ ∗(x) � O U + 2

(
S∗ + αC∗) + M

|D| C∗ + M

|D| CU + αCU + E[C]

� O U + 2
(

S∗ + αC∗) + εC∗ + εCU + αCU + 2C∗ + CU + 0.807
S∗

α
< 4.23Z∗.

A similar argument gives a deterministic 3.28-approximation algorithm in the case of SROB. �
6. Extensions

Our approach is flexible enough to be adapted to several natural variants of CFL. In this section we sketch three such
applications.

6.1. Connected k-facility location

By Theorem 4, we can assume that M/|D| � ε , for a sufficiently small constant ε > 0. An algorithm for k-CFL is obtained
by modifying randCFL in the following way:

• In Step 1, compute a ρkfl-approximate solution U = (FU , σU ) for the (unconnected) k-facility location instance induced
by the input instance.

The analysis can be refined via Technique (b). The following theorem relies on the current best approximation ratio for
the k-facility location problem, which is ρkfl � 4 [25,26] (see also [42]).

Theorem 8. There is an expected 6.85-approximation algorithm for k-CFL.

Proof. By adapting the proof of Theorem 6, we obtain

E[Z ] � ρst
(

S∗ + (α + ε)C∗) + 2C∗ + 0.807
S∗

α
+ (1 + α + ε)ρkfl

(
C∗ + O ∗)

�
(
C∗ + O ∗)(ρst(α + ε) + 2 + ρkfl(1 + α + ε)

) + S∗
(
ρst + 0.807

α

)
α=0.1524

< 6.85Z∗. �
Also in this case the algorithm can be derandomized by applying the technique by van Zuylen and Williamson [41].

Corollary 2. There is a deterministic 6.98-approximation algorithm for k-CFL.
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6.2. Tour-connected facility location

When |D|/M is small we can easily obtain a PTAS for tour-CFL by adapting the analysis of Theorem 4. The main difference
is that now T ∗ and T denote optimal tours (instead of optimal Steiner trees) on F ∗ and F , respectively. Note that, for
|F | = O (1), T can be computed in polynomial time, for example via the algorithm by Held and Karp [24].

Theorem 9. If |D|/M = O (1), then there is a PTAS for tour-CFL.

Due to Theorem 9, we can assume also in this case that M/|D| � ε , for a sufficiently small constant ε > 0. We obtain an
algorithm for tour-CFL by adapting randCFL in the following way:

• In Step 4, compute a ρtsp-approximate TSP-tour on D . Then augment the tour by adding two shortest paths between
every client in D and the corresponding open facility in F . Finally, compute an Eulerian tour on the resulting multi-
graph and shortcut it to obtain a TSP-tour T of F .

The algorithm above can be improved by means of Technique (a). The following result relies on Christofides’ 1.5-
approximation algorithm for metric TSP [6].

Theorem 10. There is an expected 4.12-approximation algorithm for tour-CFL.

Proof. We adapt the analysis of Section 3. Trivially, O � O U . Taking into account the duplication of the shortest paths
from D to F and using a similar duplication to bound the cost of the optimum TSP-tour over D , we obtain

E[S] � ρtsp
(

S∗ + 2(α + ε)C∗) + 2(α + ε)CU .

Theorem 2 can be easily adapted to this case and we thus obtain

E[X] � w(H) + w(T )

2p
.

It follows that

E[C] � 2C∗ + CU + S∗

2α
.

Altogether

E[Z ] � O U + ρtsp
(

S∗ + 2(α + ε)C∗) + 2(α + ε)CU + 2C∗ + CU + S∗

2α

� ρtsp
(

S∗ + 2(α + ε)C∗) + 2C∗ + S∗

2α

+ (
1 + 2(α + ε)

)((
1 + 0.78

δ

)
C∗ + (1.11 + ln δ)O ∗

)

= C∗
(

2ρtsp(α + ε) + 2 + (
1 + 2(α + ε)

)(
1 + 0.78

δ

))

+ S∗
(
ρtsp + 1

2α

)
+ O ∗((1 + 2(α + ε)

)
(1.11 + ln δ)

)
α=0.19084, δ=6.5004

� 4.12Z∗. �
6.3. Connected soft-capacitated facility location

Let us assume that M/|D| � ε , for a constant ε > 0 small enough. We will later show how to obtain a 2-approximation
for |D|/M = O (1). Our algorithm for soft-CFL is obtained by modifying randCFL as follows:

• In Step 1, compute a ρsf -approximate solution U = (FU , σU ) for the (unconnected) soft-capacitated instance induced by
the input instance.

• In Step 5, output APX = (F , T , σ ), where σ assigns each client j ∈ D to the open facility i = σ( j) which minimizes the
quantity �(i, j) + f (i)/b(i).

The analysis can be refined via Technique (b). The following theorem relies on the current best approximation ratio for
the (unconnected) soft-capacitated facility location problem, which is ρsf � 2 [30].
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Theorem 11. There is an expected 6.27-approximation algorithm for soft-CFL.

Proof. We adapt the analysis of Section 3. Let APX = (F , T , σ ) be the solution computed by the algorithm. By essentially
the same analysis as in Lemma 2, the Steiner cost S of APX satisfies:

E[S] � ρst
(

S∗ + (α + ε)C∗) + (α + ε)CU .

In order to bound the connection cost C and opening cost O of APX, we consider the following reduction. Let APX′ be
the solution to CFL corresponding to APX (assignment included). We augment the connection cost of APX′ in the following
way: for each client j assigned to a facility i = σ( j), we increase the corresponding connection cost from �(i, j) to �(i, j) +
f (i)/b(i). Let C ′ and O ′ be the new connection and opening costs of APX′ after the augmentation. Then

O + C =
∑
i∈F

⌈ |σ−1(i)|
b(i)

⌉
f (i) +

∑
j∈D

�
(

j,σ ( j)
)

�
∑
i∈F

f (i) +
∑
i∈F

|σ−1(i)|
b(i)

f (i) +
∑
j∈D

�
(

j,σ ( j)
)

�
∑
i∈FU

f (i) +
∑
j∈D

(
�
(

j,σ ( j)
) + f (σ ( j))

b(σ ( j))

)
� O U + C ′.

We next observe that the assignment σ is chosen such as to minimize the augmented connection cost C ′ . Hence, in order
to bound this cost, we can use the same approach as in Lemma 3. This analysis can be refined by means of Technique (b)
(since flow-canceling does not change the number of clients assigned to each facility). Thus

E
[
C ′] � 2C∗ + 0.807

S∗

α
+

∑
j∈D

(
�
(

j,σU ( j)
) + f (σU ( j))

b(σU ( j))

)

= 2C∗ + 0.807
S∗

α
+ CU +

∑
i∈FU

|σ−1
U (i)|
b(i)

f (i)

� 2C∗ + 0.807
S∗

α
+ CU +

∑
i∈FU

⌈ |σ−1
U (i)|
b(i)

⌉
f (i) = 2C∗ + 0.807

S∗

α
+ CU + O U .

Altogether,

E[Z ] � ρst
(

S∗ + (α + ε)C∗) + (α + ε)CU + O U + 2C∗ + 0.807
S∗

α
+ CU + O U

� ρst
(

S∗ + (α + ε)C∗) + (2 + ε)(CU + O U ) + 2C∗ + 0.807
S∗

α

� ρst
(

S∗ + (α + ε)C∗) + (2 + ε)ρsf
(
C∗ + O ∗) + 2C∗ + 0.807

S∗

α

�
(
C∗ + O ∗)((α + ε)ρst + (2 + ε)ρsf + 2

) + S∗
(
ρst + 0.807

α

)
α=0.1712

< 6.27Z∗,

for ε > 0 small enough. �
It remains to present our 2-approximation for constant |D|/M .

Theorem 12. If |D|/M = O (1), then there is a 2-approximation for soft-CFL.

Proof. With the usual notation, let F ∗ be the optimal set of facilities, T ∗ the optimal Steiner tree over F ∗ , and σ ∗ the
optimal assignment of clients to facilities of F ∗ . The cost of the optimal solution is

Z∗ =
∑
i∈F ∗

⌈ |σ ∗−1(i)|
b(i)

⌉
f (i)

︸ ︷︷ ︸
O∗

+
S∗︷ ︸︸ ︷

Mc
(
T ∗)+

∑
j∈D

�
(

j,σ ∗( j)
)

︸ ︷︷ ︸
∗

.

C
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Consider the following algorithm:

1. For all possible choices of F ⊆ F with |F | � k := �2|D|/M� do:
(a) Compute an optimal Steiner tree T over F .
(b) Assign every client j ∈ D to the facility σ( j) minimizing �( j, σ ( j)) + f (σ ( j))/b(σ ( j)).

2. Output a minimum cost solution (F , T , σ ) obtained.

Note that the algorithm above can be implemented in polynomial time, using, e.g., the algorithm by Dreyfus and Wagner [7]
to compute optimal Steiner trees, since k = O (1).

Since the algorithm considers all possible subsets F ⊆ F with |F | � k, it is sufficient to bound the cost of a specific
choice of F . Derive from T ∗ an Eulerian tour E∗ by the same construction as in the proof of Theorem 2. In particular,
|E∗| = |D|, c(E∗) � 2c(T ∗), and each i ∈ F ∗ appears in |σ ∗−1(i)| copies in E∗ . Split E∗ in k intervals I1, I2, . . . , Ik of at most
�M/2� vertices each. In each interval mark the facility i which minimizes the quantity f (i)/b(i), and let F be the set of
marked facilities. (Thereby it does not harm if the same facility is marked more than once.)

Trivially, since F ⊆ F ∗ , we have c(T ) � c(T ∗) = S∗/M , and hence the Steiner cost paid by the algorithm is Mc(T ) � S∗ .
Next, consider the sum of the connection and opening cost paid by the algorithm:

∑
j∈D

�
(

j,σ ( j)
) +

∑
i∈F

⌈ |σ−1(i)|
b(i)

⌉
f (i) �

∑
j∈D

(
�
(

j,σ ( j)
) + f (σ ( j))

b(σ ( j))

)
+

∑
i∈F

f i

�
∑
j∈D

(
�
(

j,σ ( j)
) + f (σ ( j))

b(σ ( j))

)
︸ ︷︷ ︸

A

+O ∗,

where we used the fact that F ⊆ F ∗ , and hence
∑

i∈F f i �
∑

i∈F ∗ f i = O ∗ . It remains to bound A. Let σ ′( j) be the marked
facility in the interval containing j’s unique copy of σ ∗( j). For a given choice of F , our algorithm minimizes A. Thus
replacing σ( j) with σ ′( j) provides a feasible upper bound on A. Recall that σ ′( j) minimizes the ratio f (i)/b(i) over the
interval associated to j. In particular,

f (σ ′( j))

b(σ ′( j))
� f (σ ∗( j))

b(σ ∗( j))

since σ ∗( j) lies in the same interval. By the observations above and triangle inequality,

A �
∑
j∈D

(
�
(

j,σ ′( j)
) + f (σ ′( j))

b(σ ′( j))

)

�
∑
j∈D

�
(

j,σ ∗( j)
) +

∑
j∈D

�
(
σ ∗( j),σ ′( j)

) +
∑
j∈D

f (σ ∗( j))

b(σ ∗( j))

� C∗ +
∑
j∈D

�
(
σ ∗( j),σ ′( j)

)
︸ ︷︷ ︸

B

+O ∗.

In order to upper bound B , replace each shortest path from σ ∗( j) to σ ′( j) with the shortest path in the Eulerian tour E∗
between the same two endpoints, and let �′(σ ∗( j),σ ′( j)) � �(σ ∗( j),σ ′( j)) be the length of the latter path. Since σ ∗( j) and
σ ′( j) lie in the same interval I , containing at most �M/2� vertices, each edge of E∗ is used by at most �M/2� − 1 � M/2
such (longer) paths. Hence

B �
∑
j∈D

�′(σ ∗( j),σ ′( j)
)
� M

2
c
(

E∗) � Mc
(
T ∗) = S∗.

Altogether, the cost paid by the algorithm is at most

S∗ + A + O ∗ � S∗ + C∗ + B + O ∗ + O ∗ � 2S∗ + C∗ + 2O ∗ � 2Z∗. �
7. Conclusions

We described a simple algorithmic framework, based on random facility sampling, to solve connected facility location
problems. By means of our novel core detouring scheme, we showed that this framework yields much better approximation
algorithms for the problems considered in this paper.
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We leave open the question whether core detouring can also be used to obtain significantly better approximation al-
gorithms for MROB and the single-sink buy-at-bulk problem. The major difficulty here is that the optimum solution does
not exhibit a single central core. While a small improvement seems nonetheless possible for the single-sink buy-at-bulk
problem, the situation is less clear for MROB.

There is a strong relation between random sampling algorithms and the boosted sampling framework for two-stage
stochastic optimization with recourse by Gupta et al. [21]. It is a very interesting open question whether our core detouring
scheme also leads to improved approximation algorithms in that framework.

Appendix A

In this appendix we will prove Theorem 5. Before proving the theorem, we list a few useful equations, whose simple
(and tedious) proof is left as an exercise for the reader. For any integer h � 0 and any real number 0 < q < 1:

h∑
j=0

q j = 1 − qh+1

1 − q
, (5)

h∑
j=0

jq j = q − (h + 1)qh+1 + hqh+2

(1 − q)2
, (6)

h∑
j=0

j2q j = q + q2 − (h + 1)2qh+1 + (2h2 + 2h − 1)qh+2 − h2qh+3

(1 − q)3
, (7)

h∑
j=0

j3q j = q + 4q2 + q3 − (h + 1)3qh+1 + (3h3 + 6h2 − 4)qh+2

(1 − q)4

+ (−3h3 − 3h2 + 3h − 1)qh+3 + h3qh+4

(1 − q)4
, (8)

h∑
i=0

i∑
j=0

i2 jqi+ j = q

(1 − q)2

(
h∑

j=0

j2q j −
h∑

j=0

j2(q2) j

)
− q

(1 − q)

h∑
j=0

j3(q2) j
, (9)

h∑
i=0

i∑
j=0

i j2qi+ j = q + q2

(1 − q)3

(
h∑

j=0

jq j −
h∑

j=0

j
(
q2) j

)
− 2q

(1 − q)2

h∑
j=0

j2(q2) j

− q

1 − q

h∑
j=0

j3(q2) j
. (10)

Proof of Theorem 5. Our client sampling process is equivalent to:

(1) Mark each client independently with probability p.
(2) Choose a client j∗ (either marked or not) uniformly at random, and mark it.

Consider the following modified sampling process:

(a) Run (1).
(b) If no client is marked in Step (a), run (2).

Let Y denote the cost of the flow in the tree-connection game with respect to the modified sampling scheme. By a simple
coupling argument, it is easy to see that E[X] � E[Y ]: Intuitively, sampling fewer clients can only make the cost of the flow
larger (in expectation). Hence it is sufficient to bound E[Y ].

Let Q denote the event that in Step (b) of the modified game we run (2). By elementary probability theory,

E[Y ] = Pr(Q )E[Y | Q ] + Pr(Q̄ )E[Y | Q̄ ].
Trivially, Pr(Q ) = (1 − p)|D| . Moreover, E[Y | Q ] � w(H) + |D|w(T ). We will next show that

E[Y | Q̄ ] � w(H) + w(T )
0.8067

. (11)

p
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The claim easily follows:

E[Y ] � w(H) + w(T )

(
(1 − p)|D||D| + 0.8067

p

)

� w(H) + w(T )

(
e−p|D||D| + 0.8067

p

)

� w(H) + w(T )
0.807

p
,

where we used the assumption |D| � 1/p which implies e−p|D||D| � 1/p.
It remains to prove (11). Subsequently, we assume that the event Q̄ holds. It is clear that E[ f (e)] � 1 holds for every

e ∈ H. Thus it is sufficient to show that E[ f (e)] � 0.8067/p for any given e ∈ T . Let e1 and e2 be the two edges of C
associated with e. We define the flow f (ei) along ei in C to be positive if it goes clockwise and negative otherwise.

If e1 = e2, E[ f (e)] = E[| f (e1)|] � 1/(2p) by essentially the standard analysis. Hence, let us assume e1 	= e2. In this case,
F := f (e) = | f (e1) − f (e2)| by flow canceling. We next introduce some notation. Let m = |D|. Let moreover I and I ′ be
the two paths obtained by removing e1 and e2 from C . Without loss of generality, we assume that I is the shortest of
the two paths (in terms of number of edges), and we denote its length by k := |I|. Observe that 0 � k � m/2 − 1 and
k � k′ := |I ′| = m − k − 2. We also assume, still without loss of generality, that e1 is incident to the left endpoint of I .

The value of E[F ] is a (complicated) function of p, m, and k. Recall that each node of C is by-sampled with probability p,
but under the event Q̄ that at least one (random) node is by-sampled. Let q = 1 − p. We distinguish three events A, B ,
and C , which partition the considered probability space:

(A) No node selected in I , at least one node selected in I ′ . The value of F is deterministically k + 1. In fact, if h flow-paths
along I are directed to the left and the other k + 1 − h to the right (event A′), then f (e1) = −h, f (e2) = k + 1 − h, and
altogether E[F | A′] = E[|(−h) − (k + 1 − h)|] = k + 1. Otherwise (event A′′), the flow on e1 and e2 must go in the same
direction, say from left to right, and it must be f (e2) = f (e1)+k + 1 (e2 collects the same flow as e1 plus the flow along I).
Then E[F | A′′] = E[| f (e1) − ( f (e1) + k + 1)|] = k + 1. Since event A happens with probability qk+1(1 − qk′+1)/(1 − qm), the
overall contribution of this case to the total expected flow is

F A = Pr(A)E[F | A] = qk+1(1 − qk′+1)

1 − qm
(k + 1).

(B) No node selected in I ′ , at least one node selected in I . By essentially the same argument as in case (A), we obtain

F B = Pr(B)E[F | B] = qk′+1(1 − qk+1)

1 − qm

(
k′ + 1

)
.

(C) At least one node selected in both I and I ′ . Let us denote by Li (resp., Ri ) the distance between the left (resp., right)
endpoint of ei and the first by-sampled node to its left (resp., right). It is not hard to see that E[ f (ei)] = (Li − Ri)/2. Define
X := L2 + R1 � k and X ′ = L1 + R2 � k′ . Note that E[F | C] = 1

2 E[|X ′ − X |]. Moreover, X and X ′ are independent. Let us study

the probability distribution of X . For 0 � a + b < k, Pr(L2 = a, R1 = b) = pqa ·pqb

1−qk+1 . For a + b = k, Pr(L2 = a, R1 = b) = qa ·qb ·p
1−qk+1 .

We can conclude that

Pr(X = i) =
i∑

a=0

Pr(L2 = a, R1 = i − a) =
⎧⎨
⎩

(i + 1)
p2qi

1−qk+1 if i ∈ [0,k − 1];
(k + 1)

pqk

1−qk+1 if i = k.

Analogously,

Pr
(

X ′ = j
) =

⎧⎪⎨
⎪⎩

( j + 1)
p2q j

1−qk′+1 if j ∈ [0,k′ − 1];

(k′ + 1)
pqk′

1−qk′+1 if j = k′.

Note that, as expected,
∑k

i=0 Pr(X = i) = ∑k′
j=0 Pr(X ′ = j) = 1. The contribution of this case to the overall flow is

FC = Pr(C)E[F | C] = (1 − qk+1)(1 − qk′+1)

2(1 − qm)

k∑
i=0

k′∑
j=0

|i − j|Pr(X = i)Pr
(

X ′ = j
)

= (k + 1)p3qk

2(1 − qm)

(
k−1∑

(k − j)( j + 1)q j +
k′−1∑

( j − k)( j + 1)q j

)

j=0 j=k
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+ (k + 1)(k′ + 1)(k′ − k)p2qk′+k

2(1 − qm)
+ (k′ + 1)p3qk′

2(1 − qm)

k−1∑
i=0

(
k′ − i

)
(i + 1)qi

+ p4

2(1 − qm)

(
k−1∑
i=0

i−1∑
j=0

(i − j)(i + 1)( j + 1)qi+ j +
k−1∑
i=0

k′−1∑
j=i

( j − i)(i + 1)( j + 1)qi+ j

)

= (k + 1)p3qk

2(1 − qm)

(
2

k−1∑
j=0

(k − j)( j + 1)q j +
k′−1∑
j=0

( j − k)( j + 1)q j

)

+ (k + 1)(k′ + 1)(k′ − k)p2qk′+k

2(1 − qm)
+ (k′ + 1)p3qk′

2(1 − qm)

k−1∑
i=0

(
k′ − i

)
(i + 1)qi

+ p4

2(1 − qm)

(
2

k−1∑
i=0

i−1∑
j=0

(i − j)(i + 1)( j + 1)qi+ j +
k−1∑
i=0

k′−1∑
j=0

( j − i)(i + 1)( j + 1)qi+ j

)
.

By variable substitution,

FC = (k + 1)p3qk

2(1 − qm)

(
2q−1

k∑
j=0

(k + 1 − j) jq j − q−1
k′∑

j=0

(k + 1 − j) jq j

)

+ (k + 1)(k′ + 1)(k′ − k)p2qk′+k

2(1 − qm)
+ (k′ + 1)p3qk′

2(1 − qm)
q−1

k∑
i=0

(
k′ + 1 − i

)
iqi

+ p4

2(1 − qm)

(
2q−2

k∑
i=0

i∑
j=0

(i − j)i jqi+ j − q−2
k∑

i=0

k′∑
j=0

(i − j)i jqi+ j

)

= (k + 1)2 p3qk−1

(1 − qm)

k∑
j=0

jq j − (k + 1)p3qk−1

(1 − qm)

k∑
j=0

j2q j

− (k + 1)2 p3qk−1

2(1 − qm)

k′∑
j=0

jq j + (k + 1)p3qk−1

2(1 − qm)

k′∑
j=0

j2q j

+ (k + 1)(k′ + 1)(k′ − k)p2qk′+k

2(1 − qm)

+ (k′ + 1)2 p3qk′−1

2(1 − qm)

k∑
j=0

jq j − (k′ + 1)p3qk′−1

2(1 − qm)

k∑
j=0

j2q j

+ p4

q2(1 − qm)

(
k∑

i=0

i∑
j=0

i2 jqi+ j −
k∑

i=0

i∑
j=0

i j2qi+ j

)

+ p4

2q2(1 − qm)

(
−

k∑
j=0

j2q j ·
k′∑

j=0

jq j +
k∑

j=0

jq j ·
k′∑

j=0

j2q j

)
.

Substituting Eqs. (5)–(10), and simplifying the formula,

FC = qm(k′ − k) − qk+1(k + 1) − qk′+1(k′ + 1)

1 − qm

+ 2q(1 + q + q2) + q2k+2(k2(1 − q2)2 + k(1 − q2)(3 − q2) + (2 − 2q(1 + q)2))

(1 − q)(1 + q)3(1 − qm)
.

Altogether we obtain

E[F ] = Pr(A)E[F | A] + Pr(B)E[F | B] + Pr(C)E[F | C] = F A + F B + FC

= −2(k + 1)qm

m
1 − q
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+ 2q(1 + q + q2) + q2k+2(k2(1 − q2)2 + k(1 − q2)(3 − q2) + (2 − 2q(1 + q)2))

(1 − q)(1 + q)3(1 − qm)
.

Observe that −2(k+1)qm

1−qm < 0, and recall that qm = (1 − p)m � e−p|D| � ε , for an arbitrarily small constant ε > 0. Then

E[F ] � R(q,k)

p(1 − ε)
,

where

R(q,k) := 2q(1 + q + q2) + q2k+2(k2(1 − q2)2 + k(1 − q2)(3 − q2) + 2 − 2q(1 + q)2)

(1 + q)3
.

Our goal is to show that E[F ] � 0.8067/p: to that aim it is sufficient to show that R(q,k) � 0.8066 for any q and k. Trivially

sup
0<q<1
0�k�k′

{
R(q,k)

}
� sup

0<q<1
x�0

{
R(q, x)

}
.

Differentiating function R(q, x) with respect to x:

∂ R(q, x)

∂x
= x2q2x+2(2 ln q(1 − q2)2)

(1 + q)3
+ xq2x+2(2 ln q(1 − q2)(3 − q2) + 2(1 − q2)2)

(1 + q)3

+ q2x+2(2 ln q(2 − 2q(1 + q)2) + (1 − q2)(3 − q2))

(1 + q)3
.

The two roots of ∂ R(q,x)
∂x are

x1(q) := (q2 − 3) ln q − (1 − q2) −
√

(1 + 8q + 10q2 + 8q3 + q4) ln2 q + (1 − q2)2

2(1 − q2) ln q

and

x2(q) := (q2 − 3) ln q − (1 − q2) +
√

(1 + 8q + 10q2 + 8q3 + q4) ln2 q + (1 − q2)2

2(1 − q2) ln q
.

Recall that the domain of R(q, x) is q ∈ (0,1) and x � 0. Function x2(q) is always negative for q ∈ (0,1), while x1(q) can
be either positive or negative, depending on q. As a consequence, for any fixed q ∈ (0,1), R(q, x) is maximized either for
x = 0, or for x = x1(q), or for x → +∞. One has

R(q,0) = 2q + 4q2 − 4q4 − 2q5

(1 + q)3
� 0.5

and

lim
x→+∞ R(q, x) = 2q(1 + q + q2)

(1 + q)3
� 0.75.

Function R(q, x1(q)) is monotonically increasing in q. Hence

R
(
q, x1(q)

)
� lim

q→1− R
(
q, x1(q)

)

= 3

4
+ lim

q→1−
q−2

√
8

2 ln q

8

(
8

4 ln2 q
4(1 − q)2 −

√
8

2 ln q
4(1 − q) − 6

)

= 3

4
+ e−√

8

8
(8 + 2

√
8 − 6) = 3 + (1 + √

8)e−√
8

4
< 0.806571.

This concludes the proof of the theorem. �
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