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Abstract

We present cost sharing methods for connected facilitytimecgames that are cross-
monotonic and competitive and that recover a constantifracif the cost of the con-
structed solution. The novelty of this paper is that we usdomized algorithms and that
we share the expected cost among the participating users cadssequence, our cost
sharing methods are simple and achieve attractive appetiximratios. We also provide
a primal-dual cost sharing method for the connected fadditation game with opening
Ccosts.

1 Introduction

The problem of achieving truth-revealing or strategyprowchanisms for sharing the cost
of deploying a network infrastructure has recently reatigeowing attention in computer
science. In this work we are interested in the design of dwestisg mechanisms that would
incite agents to cooperate to share the cost of the netwaiktfaand to reveal their true
value for receiving the service, i.group-strategyprooimechanisms for which truthfulness is
a dominant strategy for every user or coalition of users.

Suppose we are given a détof (potential) users that want to utilize a common service.
Each usetj € U has autility u;, which corresponds to the price she is willing to pay for the
service. Ifj is asked to pay more thary, she prefers to not receive the service. For each set
@ C U of users, letC(Q) denote the cost of servicing all users@h The task is to design
a cost sharing mechanisme., an algorithm that determines (i) a §&tC U of participating
users that receive the service, and (ii) how to distribugegérvicing costC(Q) among all
users inQ) such that each usgre @ is willing to pay her cost share,. Thebenefitof a user
Jjisu; —p;if j € Q, and zero ifj ¢ Q. We assume that each user is selfish and hence may
misreport her utility so as to maximize her benefit. A costisiggmechanism istrategyproof
if each user has no incentive to misreport her true utilitis said to begroup-strategyprooff
the same holds even if users collude.

Given a set) of participating users, eost sharing method computes a cost shage(Q)
for each usej € Q. We are particularly interested in cost sharing methodsatecross-mo-
notonig i.e., that have the property that the cost share of eachithdil user never increases
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as the set of participating users grows. More formally, & sbaring method is cross-mono-
tonic if it satisfies

VQ'CQCU VieQ, &(Q)=>¢&(Q).

The importance of cross-monotonic cost sharing methodsddala result of Moulin and
Shenker [6]: Let be a cross-monotonic cost sharing method. Then, the folipwiechanism
is group-strategyproof. Initializ€) — U. If for each userj € @ the cost sharg;(Q) is
less than or equal to her reported utility, stop. Otherwismove fromQ all users whose cost
shares are larger than their utilities, and repeat.

It is well known thatcompetitivenesandcost recovenare conflicting objectives for sev-
eral games such as facility location and Steiner tree [5]this paper, we are interested in
cost sharing methods that are cross-monotonic, and satsfpetitivenesandapproximate
cost recovery Competitiveness requires that the participating use€g ame not charged more
than the costC*(Q), of an optimal solution, i.e ", ,&;(Q) < C*(Q). Cost recovery
states that the total cost paid by the users covers the(@g} of the constructed solution,
ie., ZjeQ £(Q) > C(Q). Ideally, we may want to require that the constructed sotuis
optimal and thereforé ., £;(Q) = C*(Q). However, we cannot enforce this condition if
the underlying problem is NP-hard. We therefore relax tr&t oecovery condition and only
require that a constant fractidn/' A\, for some\ > 1, of the cost of the constructed solution
is recovered? .., §;(Q) > C(Q)/A. We call such a cost sharing method-@approximate
cost sharing methad

Related Work. Cross-monotonic cost sharing mechanisms have been ddws#tbulin
and Shenker [6] when the optimal cost function is a submaedulzction of the set/. This
is not the case for several network design problems sucheaseBtree, facility location, or
rent-or-buy network design.

Jain and Vazirani [5] presented a cross-monotonic costrgharethod for the minimum
spanning tree game and therefore a 2-approximate coshghaethod for the Steiner tree
game. More recently, Devanur, Mihail and Vazirani [1] preed strategyproof mechanisms
for vertex cover and facility location games based on prichall algorithms. However, their
algorithms are not group-strategyproof. In all these mashthe cost shares are closely related
to a feasible dual solution generated by the algorithm aatefbre competitiveness and ap-
proximate cost recovery are immediate consequences opgrexdmation guarantee achieved
by the algorithm.

Very recently, Pal and Tardos [7] proposed cross-monotoast sharing methods for fa-
cility location and single-source rent-or-buy networkidas Their method is based on a novel
idea of using primal-dual algorithms to obtain cross-monat cost sharing methods. Roughly
speaking, the cost share is fixed when the user is connectbd tetwork. However, an un-
derlying ghostprocess continues to contribute to connect other usersetogtwork. They
present a 3-approximate cost sharing method for facilibation and a 15-approximate cost
sharing method for single-source rent-or-buy networkgtesi

Among the approximation algorithms for single-source+@mnbuy developed in literature,
we mention the primal-dual based 4.55-approximation offBywand Kumar [8] and the recent
3.55-approximation obtained through a novel and simpldaarized algorithm proposed by
Gupta, Kumar, and Roughgarden [3]. We will show how ideasisflast work can be turned
into a cross-monotonic cost sharing method that recoveasyar fraction of the cost.



Our Contribution.  In this paper, we present cross-monotonic cost sharingadstfor con-
nected facility location games. Our contribution is twaffol

We present a novel idea of sharing the expected cost of amsirdd algorithm. Recently,
Gupta, Kumar, and Roughgarden [3] gave a simple randomigedthm for the single-source
rent-or-buy problem. Using their algorithm, we define ramdmost shares and prove that the
expected cost shares are cross-monotonic, competitidewih high probability recover at
least a%(l + ¢)~!-fraction of the constructed solution, where- 0 is an arbitrary constant.

Unfortunately, to compute the expected cost shares in patyal time, it seems that one
needs to derandomize the algorithm of Gupta et al. Despite sgffort, we were not able to
do so. However, we believe that the idea of sharing the egdembst will lead to attractive
approximation ratios for cost sharing methods in the futlmea recent independent work by
Gupta, Srinivasan, and Tardos [4] a similar idea is pursaexbtain a 4.5-approximate cross-
monotonic cost sharing method for the single-source refdg problem. The authors show
how to derandomize a version of the algorithm of Gupta et3laf the expenses of a slight
weakening of the approximation guarantee to compute caseslhin polynomial time.

Our second contribution is to extend the recent result bhé Tardos [7] to the connected
facility location game with opening costs. In general, agoathm for connected facility
location consists of a first phase, in which users are groimectlusters, with every cluster
being represented by a location point, and a second phasaijch all locations are connected
by a Steiner tree. ThEs-approximate cross-monotonic cost sharing method of Ralfardos
is restricted to the case in which locations can be openedeay @oint of the network and at
zero cost. This is clearly not realistic in many applicasi@amwhich only specific sites can host
facilities and the cost of the network is formed by the indial costs of the opened facilities
plus the cost of deploying a high bandwidth network infrastiure to connect all facilities. We
give a30-approximate cross-monotonic cost sharing method fomttuge general problem.

2 Problem Definition

In theconnected facility location proble(CFL) we are given an undirected gragh= (V, E)

with non-negative edge costs: £ — R™, a setF C V of potential facilities with opening
cost f; for each facilityi € F, a setD C V of demands (or agents, users), and a parameter
M > 1. The goal is to open a subsEtC F of facilities, to connect each demapds D to

the closest open facility(j) € F, and to build a Steiner tréE connecting all open facilities

in F'. The objective is to minimize the sum of the opening cosks cttnnection costs, and
times the Steiner tree cost, i.e.,

LY clhi) + M- o(T),

icF jebD

wherec(-, -) is the shortest path distance with respect,tandc(7’) is the cost of the edges in
the Steiner tre&. We may assume without loss of generality that a root nodeF, which is
open in some optimal solution, is known in advance. (Othesywive could try all at most/|
possibilities forr.)

In rent-or-buynetwork design problems an edgean either bdoughtat costM - ¢, or
rentedat costc,; a bought edge can be used by an arbitrary number of pathke ahénted
edgee costsc, for each path that uses it.

The single-source rent-or-buy proble(®SRB) is a special case afFL, where a facility
can be opened at any node and all opening costs are zerd; e}/ andf; = 0 forall i € F.
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The problem then essentially reduces to establishing anmaimi cost network such that each
demandj € D is connected to the roetby a path.

3 Single-Source Rent-or-Buy Game

Gupta, Kumar, and Roughgarden [3] presented a randomizeshdamation algorithm for
SSRB For a given seD of demands, the algorithm works as follows:

SIMPLECFL(D):

1. Mark each demang € D with probability 1/M. Let D’ C D denote the
set of marked demands.

2. Construct ast-approximate Steiner tréEon F = D' U {r}.
3. Connect each demarjdz D’ to its closest facility inf.

Gupta et al. prove thati8@PLECFL has an expected approximation ratio(df+ pst),
wherepst denotes the approximation ratio of the Steiner tree algoriised in Step 2.

For a given subsef) C D of demands, we use@PLECFL(Q) to define a random cost share
a;(Q) for each demand < ( and prove that thexpectedcost shareg;(Q), defined as
¢;(Q) = 1E[a;(Q)], are cross-monotonic. Moreover, we show that the expeastishares
are competitive and with high probability recover at Ieaé(th ¢)~!-fraction of the cost of
the constructed solution, whete> 0 is an arbitrary constant.

3.1 Cost Shares

We approximate the Steiner tree in Step 2 by computing a miminspanning tree on the
metric completion ofF’, denoted byG(F). It is known that a minimum spanning tree on
G(F) is a2-approximation of the optimal Steiner tree &h see, e.g., [9]. We compute the
minimum spanning tree off(F') by running Edmonds’ primal-dual algorithm [2] to compute
a minimum branching on a grapf(F), which is obtained fronG(F) if for each edge in
G(F) we also add the reversed edge. Having computed a minimum:rbmjloné(F),
we obtain a minimum spanning tree 6f{F') by simply discarding directions of edges. We
associate the standard notion of time with the primal-dwahthing algorithm onﬁ(F). At
timet, lets;(¢) denote the number of vertices in the strongly connected oot containing
Jj. We defineg;(t) = 1/s;(t) if the component containing does not contain the root, and
Bj(t) = 0 otherwise. Jain and Vazirani [5] showed that for the Stetree game the cost
sharesy; = [;° 3;(t)dt are cross-monotonic. We will exploit this fact later to peasross-
monotonicity for the expectation of the cost shares defiredovi
We definej’s random cost share with respectoas
0:(0) = {M‘.fooo Bitydt if j € F, and M
c(3, F) ifj¢F.

Here,c(j, F) denotes the shortest path distance frpta a facility in F'. Note that bothg; (¢)
andc(j, F') are random variables.



3.2 Cross-Monotonicity

We next prove thag, defined ag;(Q) = 1E[«;(Q)] for each@ C D, j € Q, is cross-mono-
tonic. Essentially, the argument is as follows. (EtC D be a subset of demands. Consider
the cost shares defined byM®LECFL(Q’) and letF” C @' denote the set of open facilities.
Assume that we add a demahdo ()’. Let the new set of demands Be= Q' U {k}. We use

F C @ to denote the set of open facilities with respec€toConditioned on the event that in
SIMPLECFL(Q) the outcomes of the coin flips for demandsijhare the same as before, we
have two possibilities foF": (i) F' = F’ U {k} (probability 1/M), or (ii) F' = F’ (probability
1—1/M).

If & becomes part of’, the cross-monotonicity of the Steiner tree game implias tie
cost share of each demayice F’ can only decrease. Moreover, the connection cost of each
demandj € Q' \ F’ can only decrease because of the additional option to cotméc

If ¥ does not become part @f, the cost share of each facilifye F’ remains the same,
and the cost share of eagle Q' \ F’ can only decrease, since the shortest path distance from
j to F can only decrease (viae Q' \ F’).

Lemma 1. £ is a cross-monotonic cost sharing method.

Proof. Let@" C D be an arbitrary subset of demands, andJet Q' U{k} for somek ¢ Q.
It is sufficient to show that for eache @', &;(Q’) > &;(Q). Throughout the proof, let’ and
F, respectively, denote the set of open facilitieg@fand Q. We have

E[0j(Q)] = ) Ela;(Q)| F = 0] -P[F = 0]

oce

= Z <E[aj(Q)]F:O]-P[F:O]+E[aj(Q)\F:OU{I<:}]-P[FzOU{k:}]).

ocQ’
From the discussion above, we know that for each@’ and for eactO C @',

Elo;(Q) [ F = O]
Elo;(Q) | F = O U{k}]

E[o;(Q)|F' =0], and

<
< Elqj(Q)|F' =0].

Thus,

E[0;(Q)] < Y E[a;(Q)|F =0] - (P[F=0]+P[F=0U{k}]).
ocQ’

The proof now follows from the observation that for ed2c @',
P[F=0]+P[F=0U{k}]=P[F' =0].
O

The next lemma shows that the cost share of a demighd” can be computed efficiently.
We are not able, however, to efficiently compy®cost share ifi € F.

Lemma 2. Let@ C D, and letj € @ be a demand. The expected connection cogtvaith
respect taR) can be computed in polynomial time.



Proof. Consider the se)~ = @ \ {;j} of all demands except Letvy,ve,..., v, 1 =|Q|,
denote the demands {p— ordered according to non-decreasing distances froihen,

2
Blay(Q) 13 ¢ Fl = getioon) + 57 (1= 7 ) o)+ 57 (1= 37 ) eliowm) 4.

i—1

_ %i (1 _ %) c(j,v1).

3.3 Competitiveness and Cost Recovery

For a subset) C D of demands, leC(Q) be a random variable denoting the cost of the
solution of SMPLECFL(Q). We useC* (@) to denote the cost of an optimal solution fgr

Lemma 3. The cost shares; (Q) = 1+E[«;(Q)] are competitive and, for any constant> 0,
with high probability recover at least é(l + &)~ !-fraction of the cost of the constructed
solution.

Proof. From the analysis of Gupta et al. [3] we know that the expected E[C'(Q)] of the
solution is at mostC*(Q). Moreover,E[C(Q)] = >, E[a;(Q)]. We conclude that

RIOE —E

JEQ JEQ

> 04(Q } < CHQ).

By Markov’s inequality we have with probability at mast + ), for any constant > 0,
thatC(Q) > (1 + ¢)E[C(Q)]. Thus, by rerunning the algorithiog(n)/log(1 + ) times,
SIMPLECFL(Q) computes a solution such that with high probability

[

Zgj _1+5) I'C(Q)-
JeQ

..;;

O

Theorem 1. The cost shareg;(Q) = 2E[o;(Q)] are cross-monotonic, competitive, and, for
any constant > 0, with high probability recover at least §(1 + ¢)~!-fraction of the cost of
the constructed solution.

4 Connected Facility Location Game

Recently, Pal and Tardos [7] gavd &approximate cross-monotonic cost sharing method for
the facility location problem and the single-source renbay problem. Their cute idea is to
consider two processes: A “ghost” process to determine dbeghares and a “real” process
constructing a solution to the problem. The ghost procedesiggned in a way that the cost
shares are trivially cross-monotonic. The difficult partadink the ghost process to the real
process and to prove that at least a constant fraction ofdbieaf the computed solution is
recovered.



We extend the result of Pal and Tardos to the connectedtyalcitation game with opening
costs. Using similar ideas, we give a cross-monotonic dwsirsg method that is competitive
and recovers at Ieast%—fraction of the cost of the solution.

We make the simplifying assumption that the edge§ @bnsist of a continuum of points.
We use the ternfpcationto refer to both original vertices and intermediate poiasically,
the algorithm works as follows. We first form clusters arosodhe locations such that each
cluster contains at leadt’ demands; call these locationenters The clusters are then con-
nected by building a Steiner trée on the centers. Moreover, for each cluster we identify a
facility that is opened and to which all demands in the cluate assigned. Finally, we buy
the shortest path from each center to the correspondiniitfatising the idea of Swamy and
Kumar [8], we can transform the Steiner tree on the centéosanree on original vertices of
the graph without increasing the cost.

4.1 Ghost Process

For a given set) C D of demands, we run the following ghost process to deternfireet
different cost sharesy;(Q), o;(Q), anda’/(Q), for eachj € Q. The final cost share gfwill
be a combination of the three.

We associate a notion of time with the process. For each dgpame have a ghost ball
B;(t), which is centered gt and has radius equal to the current tim&/hen)/ or more balls
intersect a common locatign we operp. We use,), to refer to the time whep is opened and
@, to denote the set of demands that are responsible for thengpefy, i.e., all demandg
that satisfyc(j, p) < t,. We say that the demandsd, form acluster

All locations open at time form a setC(t). C(¢) can be seen as being partitioned into
connected component& connected component is an inclusion maximal subset@ft) such
that for any two locationg andq of C, all locations along the path fromto ¢ are contained
in C. Consider the evolution of (¢) over time. Initially, C(0) is empty. With increasing
time, components start to appear. Each compotkatarts as a single locatign As time
progresses;’ grows uniformly like a ball with centeys. Eventually, two or more components
touch and are merged into a single component. Observe thagrwing of components
in the ghost process is very similar to the growing of compdmen the standard primal-
dual algorithm for Steiner trees. The difference, howeigethat in the ghost process new
components may appear at arbitrary locations over timelevihithe primal-dual algorithm
we start to grow components from a fixed set of locations.

A demand;j is connected to a componefitof C(t) at timet, if B;(t) N C # . For each
demandj, lett¢; denote the time whej becomes connected to some component for the first
time, and Iettg denote the time whep becomes connected to a component that contains the
root. For a componert’ of C(¢), let Q(C') denote the set of demands that are connected to
C at timet. For a connected demaryd let s;(¢) denote the maximum siz€&)(C')| over all
components” of C(t) thatj is connected to at time

At time ¢, the contribution of demang to the opening cost of a facility is max(0,¢ —
c(j,1)). If the total contribution towards a facility equals the opening cogt, we open.

Let ¢; denote the time when facility is opened, and lef); denote the set of demands that
contribute to the opening afat timet;.

For each demang € @, we define three different cost shares:



t
1

o (Q)=t; + M - ! ——dt, and

! tj S](t)

o (Q) = min( min ¢;, min c(j,i)).

1jEQ: i€ Q:
Lemma 4. a, o/, anda” are cross-monotonic cost sharing methods.

Proof. (See also [7].)

Consider a se’ ¢ D of demands and assume we add one additional derhdad)’.
By adding demand, at any time, the setC(¢) can only become larger. Thus, the connection
timet; of ademand € Q' can only become smaller. Moreover, since the number of ddman
that are connected to a componéhof C(t) at timet can only become larges,;(¢) can only
increase for a demang € @’. Furthermore, by adding to @Q’, the opening time; of any
facility ¢ can only become smaller. O

4.2 Algorithm

We run the ghost process but take the following rules int@artin order to decide which
locations and facilities are eventually opened.

e We open a locatiop at timet,, only if there is no other open locatianwith ¢(p, q) <
2t,.

e We open a facility; at timet; only if there is no other open facility with c(i, k) < 2¢;.

Locations that are opened in the above process are azdietrs Let I/ denote the set
of facilities that were opened. As will be seen below, thagesr assure that (i) all clusters
@, With centerp are disjoint and (ii) all set§); with i € F’ are disjoint. The final solution
is constructed as follows. For each open clugpgr we determine a facilityj(p), which is
open and closest to centgr we say thati(p) is the facility of cluster@,. Let F' denote
the set of all facilitiesi(p) corresponding to open cluste€},, i.e., F = {i € F' : i =
i(p) for some centep}. We assign all demands of a clustgy, to its facility i(p). Demands
that are not contained in any open cluster are assigned tad¢hity of their closest center.
We build a Steiner tree on the centers and for each ceriay the shortest path fromto the
facility i(p) of the cluster. This makes sure that the facilitiediare connected. Observe that
no demand is assigned to a facility # \ . We therefore close all facilities iR” \ F'.

4.3 Analysis

Lemma 5. For any two centerp andgq, , and (@, are disjoint.

Proof. Assume otherwise, i.eQ, N Q, # 0. Let j be a demand that is contained@} and
in Qq. Then,c(j,p) < t, andc(j,q) < t,. Without loss of generality assume thgt< t,,.
When we are about to opgnwe havec(p, q) < c(j,p) + c(j,q) < t, +t, < 2t,, whichis a
contradiction, since theqwould not be opened. O

Lemma 6. For any two open facilities and k, Q; andQy, are disjoint.

Proof. Assuming that we open all facilities iR’, we can prove the lemma analogously to
Lemma 5. Since’ C F’, the lemma also holds for facilities if. O



Lemma 7. Letj € @, for some centep. Thent, < 3a;. For each demand that does not
belong to any open cluster, there is a ceniesuch thate(j, p) < 3a;.

Proof. (See also [7].)

Let j € @, for some centep and assume that, > 3«;. Letq be the location that
definesa;, i.e.,a; > t, anday > c(j,q). If ¢ is open, we have a contradiction, since then
c(p,q) < tp + a; < 2t,. Assume thay is not open. Since was not opened at timeg, there
must exist an open locatiafi such that(q, ¢’) < 2t,. But then

c(p,q') < tp+aj+2tg <ty + 30 < 21,

a contradiction.

Next, assume thatis not contained in any open cluster. lgdbe the location that defines
aj, i.e., o > tganda; > c(j, q). Sincegq is not opened at time,, there must exist an open
locationp with ¢(q, p) < 2t,. Thus,c(j,p) < o + 2t4 < 3a;. O

Lemma 8. Letj € Q; for some facilityi € F’. Thent; < 3a//. For each demang that does
not belong to any sep,, with facility k& € F”, there is a facilityi € I’ such that(j, i) < 3a/.

Proof. Same as for Lemma 7. O
Lemma 9. The cost of the Steiner tree on the centers is at Mogt, 6a.

Proof. The proof is given in [7]. O
Lemma 10. The cost of opening facilitye I is at most_, . (3] — c(3,1)).

Proof. We havef; = ..o, (ti — c(j, i)). The lemma follows from Lemma 8. O

Lemma 11. The cost of connecting all demands of an open clugtgto facility i(p) is at
mosty_ ., 60y + 3a.

Proof. Letj € @,. If there exists some open facilitye F’ with j € Q;, we havec(j, ) <

t; < 3o’ by Lemma 8. Otherwise, if is not contained in any s€}, with facility & € F”, by
Lemma 8 there exists an open facilitye F’ with ¢(j,i) < 3049’. That is, for eacly € Q,,

there exists a facility i within distance at mosia’j. Since we choosg(p) from I as the
facility that is closest tg, we have

c(p,t < t, + min(3a)).
(p.i(p)) < tp zer( ')

Hence,
c(j,i(p)) < 2t, + lmggn(i%a;') < 2ty 4 30 < 6a; + 3aj,
€Wp
where the last inequality follows from Lemma 7. O

Let L C @ denote the set of demands that are not contained in any opstercl

Lemma 12. The cost of connecting all demands that are not containedhynagen cluster to
the facility of their closest center is at mds}, . ;, 6a; + 3a.



Proof. Let j € L. By arguments similar to those in the proof of Lemma 11, weidantify

a facility i € I’ with c(j,i) < 3a’. Moreover, due to Lemma 7 there is an open center
p with ¢(j,p) < 3a;. Let L(p) denote the demands ibh whose closest center js Then,
c(p,i(p)) < mingerp) 3oy + 3¢f'). We conclude that

c(4,i(p)) < 3ay + min (3ey + 307) < 6 + 3.
leL(p)

O

Lemma 13. The total cost of buying the shortest path between a cenged its facilityi(p)
isatmost);c 3a; + 3aj.

Proof. Each cluster contains at ledgt demands. The cost of buying the shortest path between
p andi(p) is

M -c(p,i(p)) <M - (t, + mln 3ozl Z tp 4 30 < Z 3 + 30,
J€Qp JeQp

where the firstinequality was already derived in the prodferhma 11 and the last inequality
follows from Lemma 7. O

Lemma 14. The cost of the solution constructed is at mp3f., 9a; + 6a + 9a7.

Lemma 15. Every feasible solution to the connected facility locatpmoblem on@ has cost
1
at leastmax <ZjeQ 5D ie Vs 2jeq @ ;’)

Proof. The lower bound proofs fob ;.5 a; and ) ;. o’ are given in [7]. Moreover,
>_jeq @ is alower bound on the cost of a feasible solution for thelifgdocation game
even without the requirement that the open facilities areected; see [7]. O

Theorem 2. The cost sharing methag which for each) C D, j € Q is defined ag;(Q) =
5a;(Q) + £a5(Q) + £57(Q), is cross-monotonic, competitive, and recovers at leat-a
fraction of the optimal cost.
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