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Abstract

We present cost sharing methods for connected facility location games that are cross-
monotonic and competitive and that recover a constant fraction of the cost of the con-
structed solution. The novelty of this paper is that we use randomized algorithms and that
we share the expected cost among the participating users. Asa consequence, our cost
sharing methods are simple and achieve attractive approximation ratios. We also provide
a primal-dual cost sharing method for the connected facility location game with opening
costs.

1 Introduction

The problem of achieving truth-revealing or strategyproofmechanisms for sharing the cost
of deploying a network infrastructure has recently received growing attention in computer
science. In this work we are interested in the design of cost sharing mechanisms that would
incite agents to cooperate to share the cost of the network facility and to reveal their true
value for receiving the service, i.e.,group-strategyproofmechanisms for which truthfulness is
a dominant strategy for every user or coalition of users.

Suppose we are given a setU of (potential) users that want to utilize a common service.
Each userj ∈ U has autility uj , which corresponds to the price she is willing to pay for the
service. Ifj is asked to pay more thanuj , she prefers to not receive the service. For each set
Q ⊆ U of users, letC(Q) denote the cost of servicing all users inQ. The task is to design
a cost sharing mechanism, i.e., an algorithm that determines (i) a setQ ⊆ U of participating
users that receive the service, and (ii) how to distribute the servicing costC(Q) among all
users inQ such that each userj ∈ Q is willing to pay her cost share,pj . Thebenefitof a user
j is uj − pj if j ∈ Q, and zero ifj /∈ Q. We assume that each user is selfish and hence may
misreport her utility so as to maximize her benefit. A cost sharing mechanism isstrategyproof
if each user has no incentive to misreport her true utility; it is said to begroup-strategyproofif
the same holds even if users collude.

Given a setQ of participating users, acost sharing methodξ computes a cost shareξj(Q)
for each userj ∈ Q. We are particularly interested in cost sharing methods that arecross-mo-
notonic, i.e., that have the property that the cost share of each individual user never increases
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as the set of participating users grows. More formally, a cost sharing methodξ is cross-mono-
tonic if it satisfies

∀Q′ ⊆ Q ⊆ U, ∀j ∈ Q′, ξj(Q
′) ≥ ξj(Q).

The importance of cross-monotonic cost sharing methods is due to a result of Moulin and
Shenker [6]: Letξ be a cross-monotonic cost sharing method. Then, the following mechanism
is group-strategyproof. InitializeQ ← U . If for each userj ∈ Q the cost shareξj(Q) is
less than or equal to her reported utility, stop. Otherwise,remove fromQ all users whose cost
shares are larger than their utilities, and repeat.

It is well known thatcompetitivenessandcost recoveryare conflicting objectives for sev-
eral games such as facility location and Steiner tree [5]. Inthis paper, we are interested in
cost sharing methods that are cross-monotonic, and satisfycompetitivenessandapproximate
cost recovery. Competitiveness requires that the participating users inQ are not charged more
than the cost,C∗(Q), of an optimal solution, i.e.,

∑

j∈Q ξj(Q) ≤ C∗(Q). Cost recovery
states that the total cost paid by the users covers the costC(Q) of the constructed solution,
i.e.,

∑

j∈Q ξj(Q) ≥ C(Q). Ideally, we may want to require that the constructed solution is
optimal and therefore

∑

j∈Q ξj(Q) = C∗(Q). However, we cannot enforce this condition if
the underlying problem is NP-hard. We therefore relax the cost recovery condition and only
require that a constant fraction1/λ, for someλ ≥ 1, of the cost of the constructed solution
is recovered:

∑

j∈Q ξj(Q) ≥ C(Q)/λ. We call such a cost sharing method aλ-approximate
cost sharing method.

Related Work. Cross-monotonic cost sharing mechanisms have been devisedby Moulin
and Shenker [6] when the optimal cost function is a submodular function of the setU . This
is not the case for several network design problems such as Steiner tree, facility location, or
rent-or-buy network design.

Jain and Vazirani [5] presented a cross-monotonic cost sharing method for the minimum
spanning tree game and therefore a 2-approximate cost sharing method for the Steiner tree
game. More recently, Devanur, Mihail and Vazirani [1] proposed strategyproof mechanisms
for vertex cover and facility location games based on primal-dual algorithms. However, their
algorithms are not group-strategyproof. In all these methods, the cost shares are closely related
to a feasible dual solution generated by the algorithm and therefore competitiveness and ap-
proximate cost recovery are immediate consequences of the approximation guarantee achieved
by the algorithm.

Very recently, Pàl and Tardos [7] proposed cross-monotonic cost sharing methods for fa-
cility location and single-source rent-or-buy network design. Their method is based on a novel
idea of using primal-dual algorithms to obtain cross-monotonic cost sharing methods. Roughly
speaking, the cost share is fixed when the user is connected tothe network. However, an un-
derlying ghostprocess continues to contribute to connect other users to the network. They
present a 3-approximate cost sharing method for facility location and a 15-approximate cost
sharing method for single-source rent-or-buy network design.

Among the approximation algorithms for single-source rent-or-buy developed in literature,
we mention the primal-dual based 4.55-approximation of Swamy and Kumar [8] and the recent
3.55-approximation obtained through a novel and simple randomized algorithm proposed by
Gupta, Kumar, and Roughgarden [3]. We will show how ideas of this last work can be turned
into a cross-monotonic cost sharing method that recovers a larger fraction of the cost.
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Our Contribution. In this paper, we present cross-monotonic cost sharing methods for con-
nected facility location games. Our contribution is twofold.

We present a novel idea of sharing the expected cost of a randomized algorithm. Recently,
Gupta, Kumar, and Roughgarden [3] gave a simple randomized algorithm for the single-source
rent-or-buy problem. Using their algorithm, we define random cost shares and prove that the
expected cost shares are cross-monotonic, competitive, and with high probability recover at
least a1

4(1 + ε)−1-fraction of the constructed solution, whereε > 0 is an arbitrary constant.
Unfortunately, to compute the expected cost shares in polynomial time, it seems that one

needs to derandomize the algorithm of Gupta et al. Despite some effort, we were not able to
do so. However, we believe that the idea of sharing the expected cost will lead to attractive
approximation ratios for cost sharing methods in the future. In a recent independent work by
Gupta, Srinivasan, and Tardos [4] a similar idea is pursued to obtain a 4.5-approximate cross-
monotonic cost sharing method for the single-source rent-or-buy problem. The authors show
how to derandomize a version of the algorithm of Gupta et al. [3] at the expenses of a slight
weakening of the approximation guarantee to compute cost shares in polynomial time.

Our second contribution is to extend the recent result of Pál and Tardos [7] to the connected
facility location game with opening costs. In general, an algorithm for connected facility
location consists of a first phase, in which users are groupedinto clusters, with every cluster
being represented by a location point, and a second phase, inwhich all locations are connected
by a Steiner tree. The15-approximate cross-monotonic cost sharing method of Pál and Tardos
is restricted to the case in which locations can be opened at every point of the network and at
zero cost. This is clearly not realistic in many applications in which only specific sites can host
facilities and the cost of the network is formed by the individual costs of the opened facilities
plus the cost of deploying a high bandwidth network infrastructure to connect all facilities. We
give a30-approximate cross-monotonic cost sharing method for thismore general problem.

2 Problem Definition

In theconnected facility location problem(CFL) we are given an undirected graphG = (V,E)
with non-negative edge costsc : E → R

+, a setF ⊆ V of potential facilities with opening
costfi for each facilityi ∈ F , a setD ⊆ V of demands (or agents, users), and a parameter
M > 1. The goal is to open a subsetF ⊆ F of facilities, to connect each demandj ∈ D to
the closest open facilityi(j) ∈ F , and to build a Steiner treeT connecting all open facilities
in F . The objective is to minimize the sum of the opening costs, the connection costs, andM
times the Steiner tree cost, i.e.,

∑

i∈F

fi +
∑

j∈D

c(j, i(j)) + M · c(T ),

wherec(·, ·) is the shortest path distance with respect toc, andc(T ) is the cost of the edges in
the Steiner treeT . We may assume without loss of generality that a root noder ∈ F , which is
open in some optimal solution, is known in advance. (Otherwise, we could try all at most|V |
possibilities forr.)

In rent-or-buynetwork design problems an edgee can either beboughtat costM · ce, or
rentedat costce; a bought edge can be used by an arbitrary number of paths, while a rented
edgee costsce for each path that uses it.

Thesingle-source rent-or-buy problem(SSRB) is a special case ofCFL, where a facility
can be opened at any node and all opening costs are zero, i.e.,F = V andfi = 0 for all i ∈ F .
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The problem then essentially reduces to establishing a minimum cost network such that each
demandj ∈ D is connected to the rootr by a path.

3 Single-Source Rent-or-Buy Game

Gupta, Kumar, and Roughgarden [3] presented a randomized approximation algorithm for
SSRB. For a given setD of demands, the algorithm works as follows:

SIMPLECFL(D):

1. Mark each demandj ∈ D with probability 1/M . Let D′ ⊆ D denote the
set of marked demands.

2. Construct aρST-approximate Steiner treeT onF = D′ ∪ {r}.

3. Connect each demandj /∈ D′ to its closest facility inF .

Gupta et al. prove that SIMPLECFL has an expected approximation ratio of(2 + ρST),
whereρST denotes the approximation ratio of the Steiner tree algorithm used in Step 2.

For a given subsetQ ⊆ D of demands, we use SIMPLECFL(Q) to define a random cost share
αj(Q) for each demandj ∈ Q and prove that theexpectedcost sharesξj(Q), defined as
ξj(Q) = 1

4E[αj(Q)], are cross-monotonic. Moreover, we show that the expected cost shares
are competitive and with high probability recover at least a1

4(1 + ε)−1-fraction of the cost of
the constructed solution, whereε > 0 is an arbitrary constant.

3.1 Cost Shares

We approximate the Steiner tree in Step 2 by computing a minimum spanning tree on the
metric completion ofF , denoted byG(F ). It is known that a minimum spanning tree on
G(F ) is a2-approximation of the optimal Steiner tree onF , see, e.g., [9]. We compute the
minimum spanning tree onG(F ) by running Edmonds’ primal-dual algorithm [2] to compute
a minimum branching on a graph~G(F ), which is obtained fromG(F ) if for each edge in
G(F ) we also add the reversed edge. Having computed a minimum branching on ~G(F ),
we obtain a minimum spanning tree onG(F ) by simply discarding directions of edges. We
associate the standard notion of time with the primal-dual branching algorithm on~G(F ). At
time t, let sj(t) denote the number of vertices in the strongly connected component containing
j. We defineβj(t) = 1/sj(t) if the component containingj does not contain the root, and
βj(t) = 0 otherwise. Jain and Vazirani [5] showed that for the Steinertree game the cost
sharesαj =

∫ ∞

0 βj(t)dt are cross-monotonic. We will exploit this fact later to prove cross-
monotonicity for the expectation of the cost shares defined below.

We definej’s random cost share with respect toQ as

αj(Q) =

{

M ·
∫ ∞

0 βj(t)dt if j ∈ F , and

c(j, F ) if j /∈ F .
(1)

Here,c(j, F ) denotes the shortest path distance fromj to a facility inF . Note that bothβj(t)
andc(j, F ) are random variables.
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3.2 Cross-Monotonicity

We next prove thatξ, defined asξj(Q) = 1
4E[αj(Q)] for eachQ ⊆ D, j ∈ Q, is cross-mono-

tonic. Essentially, the argument is as follows. LetQ′ ⊆ D be a subset of demands. Consider
the cost shares defined by SIMPLECFL(Q′) and letF ′ ⊆ Q′ denote the set of open facilities.
Assume that we add a demandk to Q′. Let the new set of demands beQ = Q′ ∪ {k}. We use
F ⊆ Q to denote the set of open facilities with respect toQ. Conditioned on the event that in
SIMPLECFL(Q) the outcomes of the coin flips for demands inQ′ are the same as before, we
have two possibilities forF : (i) F = F ′ ∪ {k} (probability1/M ), or (ii) F = F ′ (probability
1− 1/M ).

If k becomes part ofF , the cross-monotonicity of the Steiner tree game implies that the
cost share of each demandj ∈ F ′ can only decrease. Moreover, the connection cost of each
demandj ∈ Q′ \ F ′ can only decrease because of the additional option to connect to k.

If k does not become part ofF , the cost share of each facilityj ∈ F ′ remains the same,
and the cost share of eachj ∈ Q′ \F ′ can only decrease, since the shortest path distance from
j to F can only decrease (viak ∈ Q′ \ F ′).

Lemma 1. ξ is a cross-monotonic cost sharing method.

Proof. Let Q′ ⊂ D be an arbitrary subset of demands, and letQ = Q′∪{k} for somek /∈ Q′.
It is sufficient to show that for eachj ∈ Q′, ξj(Q

′) ≥ ξj(Q). Throughout the proof, letF ′ and
F , respectively, denote the set of open facilities ofQ′ andQ. We have

E[αj(Q)] =
∑

O⊆Q

E[αj(Q) |F = O] ·P[F = O]

=
∑

O⊆Q′

(

E[αj(Q) |F = O] ·P[F = O] + E[αj(Q) |F = O ∪ {k}] ·P[F = O ∪ {k}]

)

.

From the discussion above, we know that for eachj ∈ Q′ and for eachO ⊆ Q′,

E[αj(Q) |F = O] ≤ E
[

αj(Q
′) |F ′ = O

]

, and

E[αj(Q) |F = O ∪ {k}] ≤ E
[

αj(Q
′) |F ′ = O

]

.

Thus,

E[αj(Q)] ≤
∑

O⊆Q′

E
[

αj(Q
′) |F ′ = O

]

·
(

P[F = O] + P[F = O ∪ {k}]
)

.

The proof now follows from the observation that for eachO ⊆ Q′,

P[F = O] + P[F = O ∪ {k}] = P
[

F ′ = O
]

.

The next lemma shows that the cost share of a demandj /∈ F can be computed efficiently.
We are not able, however, to efficiently computej’s cost share ifj ∈ F .

Lemma 2. Let Q ⊆ D, and letj ∈ Q be a demand. The expected connection cost ofj with
respect toQ can be computed in polynomial time.
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Proof. Consider the setQ− = Q \ {j} of all demands exceptj. Let v1, v2, . . . , vl, l = |Q−|,
denote the demands inQ− ordered according to non-decreasing distances fromj. Then,

E[αj(Q) | j /∈ F ] =
1

M
c(j, v1) +

1

M

(

1−
1

M

)

c(j, v2) +
1

M

(

1−
1

M

)2

c(j, v3) + . . .

=
1

M

l
∑

i=1

(

1−
1

M

)i−1

c(j, vi).

3.3 Competitiveness and Cost Recovery

For a subsetQ ⊆ D of demands, letC(Q) be a random variable denoting the cost of the
solution of SIMPLECFL(Q). We useC∗(Q) to denote the cost of an optimal solution forQ.

Lemma 3. The cost sharesξj(Q) = 1
4E[αj(Q)] are competitive and, for any constantε > 0,

with high probability recover at least a14(1 + ε)−1-fraction of the cost of the constructed
solution.

Proof. From the analysis of Gupta et al. [3] we know that the expectedcostE[C(Q)] of the
solution is at most4C∗(Q). Moreover,E[C(Q)] =

∑

j∈Q E[αj(Q)]. We conclude that

∑

j∈Q

ξj(Q) =
1

4
E





∑

j∈Q

αj(Q)



 ≤ C∗(Q).

By Markov’s inequality we have with probability at most(1 + ε)−1, for any constantε > 0,
thatC(Q) > (1 + ε)E[C(Q)]. Thus, by rerunning the algorithmlog(n)/ log(1 + ε) times,
SIMPLECFL(Q) computes a solution such that with high probability

∑

j∈Q

ξj(Q) ≥
1

4
(1 + ε)−1 · C(Q).

Theorem 1. The cost sharesξj(Q) = 1
4E[αj(Q)] are cross-monotonic, competitive, and, for

any constantε > 0, with high probability recover at least a14 (1 + ε)−1-fraction of the cost of
the constructed solution.

4 Connected Facility Location Game

Recently, Pál and Tardos [7] gave a15-approximate cross-monotonic cost sharing method for
the facility location problem and the single-source rent-or-buy problem. Their cute idea is to
consider two processes: A “ghost” process to determine the cost shares and a “real” process
constructing a solution to the problem. The ghost process isdesigned in a way that the cost
shares are trivially cross-monotonic. The difficult part isto link the ghost process to the real
process and to prove that at least a constant fraction of the cost of the computed solution is
recovered.
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We extend the result of Pál and Tardos to the connected facility location game with opening
costs. Using similar ideas, we give a cross-monotonic cost sharing method that is competitive
and recovers at least a130 -fraction of the cost of the solution.

We make the simplifying assumption that the edges ofG consist of a continuum of points.
We use the termlocation to refer to both original vertices and intermediate points.Basically,
the algorithm works as follows. We first form clusters aroundsome locations such that each
cluster contains at leastM demands; call these locationscenters. The clusters are then con-
nected by building a Steiner treeT on the centers. Moreover, for each cluster we identify a
facility that is opened and to which all demands in the cluster are assigned. Finally, we buy
the shortest path from each center to the corresponding facility. Using the idea of Swamy and
Kumar [8], we can transform the Steiner tree on the centers into a tree on original vertices of
the graph without increasing the cost.

4.1 Ghost Process

For a given setQ ⊆ D of demands, we run the following ghost process to determine three
different cost shares,αj(Q), α′

j(Q), andα′′
j (Q), for eachj ∈ Q. The final cost share ofj will

be a combination of the three.
We associate a notion of time with the process. For each demand j, we have a ghost ball

Bj(t), which is centered atj, and has radius equal to the current timet. WhenM or more balls
intersect a common locationp, we openp. We usetp to refer to the time whenp is opened and
Qp to denote the set of demands that are responsible for the opening of p, i.e., all demandsj
that satisfyc(j, p) ≤ tp. We say that the demands inQp form acluster.

All locations open at timet form a setC(t). C(t) can be seen as being partitioned into
connected components: A connected componentC is an inclusion maximal subset ofC(t) such
that for any two locationsp andq of C, all locations along the path fromp to q are contained
in C. Consider the evolution ofC(t) over time. Initially, C(0) is empty. With increasing
time, components start to appear. Each componentC starts as a single locationp. As time
progresses,C grows uniformly like a ball with centerp. Eventually, two or more components
touch and are merged into a single component. Observe that the growing of components
in the ghost process is very similar to the growing of components in the standard primal-
dual algorithm for Steiner trees. The difference, however,is that in the ghost process new
components may appear at arbitrary locations over time, while in the primal-dual algorithm
we start to grow components from a fixed set of locations.

A demandj is connected to a componentC of C(t) at timet, if Bj(t) ∩ C 6= ∅. For each
demandj, let tj denote the time whenj becomes connected to some component for the first
time, and lett′j denote the time whenj becomes connected to a component that contains the
root. For a componentC of C(t), let Q(C) denote the set of demands that are connected to
C at timet. For a connected demandj, let sj(t) denote the maximum size|Q(C)| over all
componentsC of C(t) thatj is connected to at timet.

At time t, the contribution of demandj to the opening cost of a facilityi is max(0, t −
c(j, i)). If the total contribution towards a facilityi equals the opening costfi, we openi.
Let ti denote the time when facilityi is opened, and letQi denote the set of demands that
contribute to the opening ofi at timeti.

For each demandj ∈ Q, we define three different cost shares:

αj(Q) = tj,
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α′
j(Q) = tj + M ·

∫ t′j

tj

1

sj(t)
dt, and

α′′
j (Q) = min

(

min
i:j∈Qi

ti, min
i:j 6∈Qi

c(j, i)

)

.

Lemma 4. α, α′, andα′′ are cross-monotonic cost sharing methods.

Proof. (See also [7].)
Consider a setQ′ ⊂ D of demands and assume we add one additional demandk to Q′.

By adding demandk, at any timet, the setC(t) can only become larger. Thus, the connection
timetj of a demandj ∈ Q′ can only become smaller. Moreover, since the number of demands
that are connected to a componentC of C(t) at timet can only become larger,sj(t) can only
increase for a demandj ∈ Q′. Furthermore, by addingk to Q′, the opening timeti of any
facility i can only become smaller.

4.2 Algorithm

We run the ghost process but take the following rules into account in order to decide which
locations and facilities are eventually opened.

• We open a locationp at timetp only if there is no other open locationq with c(p, q) ≤
2tp.

• We open a facilityi at timeti only if there is no other open facilityk with c(i, k) ≤ 2ti.

Locations that are opened in the above process are calledcenters. Let F ′ denote the set
of facilities that were opened. As will be seen below, these rules assure that (i) all clusters
Qp with centerp are disjoint and (ii) all setsQi with i ∈ F ′ are disjoint. The final solution
is constructed as follows. For each open clusterQp, we determine a facility,i(p), which is
open and closest to centerp; we say thati(p) is the facility of clusterQp. Let F denote
the set of all facilitiesi(p) corresponding to open clustersQp, i.e., F = {i ∈ F ′ : i =
i(p) for some centerp}. We assign all demands of a clusterQp to its facility i(p). Demands
that are not contained in any open cluster are assigned to thefacility of their closest center.
We build a Steiner tree on the centers and for each centerp buy the shortest path fromp to the
facility i(p) of the cluster. This makes sure that the facilities inF are connected. Observe that
no demand is assigned to a facility inF ′ \ F . We therefore close all facilities inF ′ \ F .

4.3 Analysis

Lemma 5. For any two centersp andq, Qp andQq are disjoint.

Proof. Assume otherwise, i.e.,Qp ∩ Qq 6= ∅. Let j be a demand that is contained inQp and
in Qq. Then,c(j, p) ≤ tp andc(j, q) ≤ tq. Without loss of generality assume thattp ≤ tq.
When we are about to openq, we havec(p, q) ≤ c(j, p) + c(j, q) ≤ tp + tq ≤ 2tq, which is a
contradiction, since thenq would not be opened.

Lemma 6. For any two open facilitiesi andk, Qi andQk are disjoint.

Proof. Assuming that we open all facilities inF ′, we can prove the lemma analogously to
Lemma 5. SinceF ⊆ F ′, the lemma also holds for facilities inF .
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Lemma 7. Let j ∈ Qp for some centerp. Thentp ≤ 3αj . For each demandj that does not
belong to any open cluster, there is a centerp such thatc(j, p) ≤ 3αj .

Proof. (See also [7].)
Let j ∈ Qp for some centerp and assume thattp > 3αj . Let q be the location that

definesαj , i.e., αj ≥ tq andαj ≥ c(j, q). If q is open, we have a contradiction, since then
c(p, q) ≤ tp + αj < 2tp. Assume thatq is not open. Sinceq was not opened at timetq, there
must exist an open locationq′ such thatc(q, q′) ≤ 2tq. But then

c(p, q′) ≤ tp + αj + 2tq ≤ tp + 3αj < 2tp,

a contradiction.
Next, assume thatj is not contained in any open cluster. Letq be the location that defines

αj, i.e.,αj ≥ tq andαj ≥ c(j, q). Sinceq is not opened at timetq, there must exist an open
locationp with c(q, p) ≤ 2tq. Thus,c(j, p) ≤ αj + 2tq ≤ 3αj .

Lemma 8. Let j ∈ Qi for some facilityi ∈ F ′. Thenti ≤ 3α′′
j . For each demandj that does

not belong to any setQk with facility k ∈ F ′, there is a facilityi ∈ F ′ such thatc(j, i) ≤ 3α′′
j .

Proof. Same as for Lemma 7.

Lemma 9. The cost of the Steiner tree on the centers is at most
∑

j∈Q 6α′
j .

Proof. The proof is given in [7].

Lemma 10. The cost of opening facilityi ∈ F ′ is at most
∑

j∈Qi
(3α′′

j − c(j, i)).

Proof. We havefi =
∑

j∈Qi
(ti − c(j, i)). The lemma follows from Lemma 8.

Lemma 11. The cost of connecting all demands of an open clusterQp to facility i(p) is at
most

∑

j∈Qp
6αj + 3α′′

j .

Proof. Let j ∈ Qp. If there exists some open facilityi ∈ F ′ with j ∈ Qi, we havec(j, i) ≤
ti ≤ 3α′′

j by Lemma 8. Otherwise, ifj is not contained in any setQk with facility k ∈ F ′, by
Lemma 8 there exists an open facilityi ∈ F ′ with c(j, i) ≤ 3α′′

j . That is, for eachj ∈ Qp,
there exists a facility inF ′ within distance at most3α′′

j . Since we choosei(p) from F ′ as the
facility that is closest top, we have

c(p, i(p)) ≤ tp + min
l∈Qp

(3α′′
l ).

Hence,
c(j, i(p)) ≤ 2tp + min

l∈Qp

(3α′′
l ) ≤ 2tp + 3α′′

j ≤ 6αj + 3α′′
j ,

where the last inequality follows from Lemma 7.

Let L ⊆ Q denote the set of demands that are not contained in any open cluster.

Lemma 12. The cost of connecting all demands that are not contained in any open cluster to
the facility of their closest center is at most

∑

j∈L 6αj + 3α′′
j .
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Proof. Let j ∈ L. By arguments similar to those in the proof of Lemma 11, we canidentify
a facility i ∈ F ′ with c(j, i) ≤ 3α′′

j . Moreover, due to Lemma 7 there is an open center
p with c(j, p) ≤ 3αj . Let L(p) denote the demands inL whose closest center isp. Then,
c(p, i(p)) ≤ minl∈L(p)(3αl + 3α′′

l ). We conclude that

c(j, i(p)) ≤ 3αj + min
l∈L(p)

(3αl + 3α′′
l ) ≤ 6αj + 3α′′

j .

Lemma 13. The total cost of buying the shortest path between a centerp and its facilityi(p)
is at most

∑

j∈Qp
3αj + 3α′′

j .

Proof. Each cluster contains at leastM demands. The cost of buying the shortest path between
p andi(p) is

M · c(p, i(p)) ≤M · (tp + min
l∈Qp

(3α′′
l )) ≤

∑

j∈Qp

tp + 3α′′
j ≤

∑

j∈Qp

3αj + 3α′′
j ,

where the first inequality was already derived in the proof ofLemma 11 and the last inequality
follows from Lemma 7.

Lemma 14. The cost of the solution constructed is at most
∑

j∈Q 9αj + 6α′
j + 9α′′

j .

Lemma 15. Every feasible solution to the connected facility locationproblem onQ has cost

at leastmax
(

∑

j∈Q αj ,
1
2

∑

j∈Q α′
j ,

∑

j∈Q α′′
j

)

.

Proof. The lower bound proofs for
∑

j∈Q αj and
∑

j∈Q α′
j are given in [7]. Moreover,

∑

j∈Q α′′
j is a lower bound on the cost of a feasible solution for the facility location game

even without the requirement that the open facilities are connected; see [7].

Theorem 2. The cost sharing methodξ, which for eachQ ⊆ D, j ∈ Q is defined asξj(Q) =
3
10αj(Q) + 1

5α′
j(Q) + 3

10α′′
j (Q), is cross-monotonic, competitive, and recovers at least a1

30 -
fraction of the optimal cost.
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