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1 Introduction

Many combinatorial optimization problems are concerned with establishing a
good or service at a minimum cost. Often, these problems can be viewed as
consisting of a set of users (or agents, players) that act strategically in order
to receive this service. For instance, in network design problems, users wish to
be connected to a network or a specific point of interest. In routing problems,
agents want their goods or information to be transferred from one point to
another. In the scheduling context, we can imagine both machines or jobs to
be owned by agents who follow their selfish interests. In all these settings,
the problem is, besides finding a way of providing the service, to distribute
the resulting cost among the users in a fair manner. Meanwhile, the service
provider may not be able to offer the service to the entire user set and must
therefore decide upon a subset of users that are served.

In this paper, we study cost sharing mechanisms for combinatorial optimiza-
tion problems, with a particular focus on scheduling problems. The general
setting is as follows. We are given a set U of n players that are interested in
a certain service. Every player i ∈ U has a private utility ui ≥ 0 for receiving
this service and announces a bid bi ≥ 0 which designates the maximum price
she is willing to pay. Associated with the underlying optimization problem,
we are given a cost function C : 2U → R+ describing the minimum cost of
serving a set of players S ⊆ U .

A cost sharing mechanism M first solicits all bids {bi}i∈U from players in U ,
and based on these bids (i) determines a set S ⊆ U of players that receive the
service, and (ii) for every player i ∈ S, fixes a non-negative payment xi(S)
that she has to pay for the service. This payment is usually referred to as the
cost share of a player i ∈ S. We assume that the mechanism complies with
the following three natural assumptions: (i) a player is not charged more than
her bid, (ii) a player is charged only if she receives service, and (iii) a player
is guaranteed to receive service if she reports a sufficiently high bid.

Define the benefit of a player i as ui − xi if i receives service and as zero
otherwise. We assume that each player’s strategy is to maximize her benefit.
Since the outcome computed by the cost sharing mechanism depends on the
bids {bi}i∈U , a player may have an incentive to misreport her actual utility,
i.e., to declare a bid bi 6= ui, if advantageous.

There are several desirable properties of a cost sharing mechanism: A cost
sharing mechanism M is called strategyproof if bidding truthfully, i.e., an-
nouncing bi = ui, is a dominant strategy for every player. If this is true even if
players collude, then we call a mechanism group-strategyproof. A mechanism
is β-budget balanced if the sum of the cost shares charged to the players in S
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deviates by at most a factor β ≥ 1 from the actual cost C(S), i.e.,

1

β
· C(S) ≤

∑
i∈S

xi(S) ≤ C(S). (1)

We say that the cost shares satisfy β-cost recovery if the first inequality holds;
they are competitive if the latter inequality is fulfilled. For a set S ⊆ U , define
u(S) :=

∑
i∈S ui. A cost sharing mechanism M is called efficient if it selects a

set of players that maximizes the social welfare u(S)− C(S).

Classical results in economics [1,2] state that no truthful mechanism can ap-
proximate budget balance and efficiency simultaneously; even for simple cost
functions and if only strategyproofness is required. As a consequence, most
of the previous work has concentrated on either achieving budget balance or
efficiency. Very recently, Roughgarden and Sundararajan [3] introduced an al-
ternative efficiency measure that attempts to circumvent these intractability
results. They define the social cost of a set S ⊆ U as Π(S) := u(U \S)+C(S).
A mechanism is said to be α-approximate if the set of players it determines
has social cost at most α times the minimum social cost (over all subsets of
U). It is not hard to see that a set S minimizes the social cost iff it maximizes
the social welfare.

A large class of group-strategyproof cost sharing mechanisms are so-called
Moulin mechanisms, based on a framework due to Moulin and Shenker [4].
This framework provides a means to obtain group-strategyproof cost sharing
mechanisms from cross-monotonic cost sharing methods (definitions are given
below). Moreover, Immorlica et al. [5] prove that every group-strategyproof
cost sharing mechanism (satisfying some natural conditions) corresponds to a
cross-monotonic cost sharing method. Roughgarden and Sundararajan [3] re-
vealed a relation between the approximability of a Moulin mechanism and
a property of the underlying cost sharing method, which they termed α-
summability (definition is given below).

One focus of this paper is on cost sharing mechanisms for parallel machine
scheduling problems. In the classical setting, we are given a set N of jobs that
have to be executed on m parallel machines. The goal is to assign all jobs to the
machines such that a certain objective function, such as the makespan or the
sum of all completion times, is minimized. In the cost sharing context, we as-
sume that every job is owned by a player who acts strategically in order to get
his job processed at a low cost. Here, the cost that is to be distributed among
the players depends on the respective objective function. It is very natural to
suppose that the cost incurred by the service provider is the amount of time
that he needs until all jobs are completed, leading to the minimum makespan
cost function. However, one can also imagine that the service provider aims at
minimizing the total time that jobs spend in the system or other completion
time related objective functions.

3



1.1 Our Results

In this paper, we study cost sharing methods for optimization problems in
light of the new efficiency measure introduced by Roughgarden and Sundarara-
jan [3]. Our contribution is threefold:

1. Lower Bound on Approximability of Cost Sharing Mechanisms.

We present a general inapproximability result for cost sharing methods for
combinatorial optimization problems. In particular, we prove that there is no
cost sharing method that is α-summable and satisfies β-cost recovery for any
α < Hn/β, where n denotes the number of players. Our proof holds if the
underlying cost function satisfies a certain cost-stability property. As a conse-
quence, our result implies a lower bound of Ω(log n) on the approximability of
Moulin mechanisms for various optimization problems, such as, for instance,
facility location, minimum spanning tree (and thus also minimum Steiner tree
and forest), single-source rent-or-buy, minimum makespan scheduling, etc. De-
spite its generality, our lower bound is tight for some specific problems such
as facility location and minimum makespan scheduling.

2. Optimal Cost Sharing Method for Makespan Scheduling.

We study the minimum makespan scheduling problem, one of the most fun-
damental problems in scheduling theory, in a cost sharing context. In this
problem, we are given a set of jobs N , each of which is owned by a selfish
player. The objective is to assign the chosen set of jobs to m parallel machines
such that the maximum completion time is minimized. We develop a cross-
monotonic cost sharing method for this problem which is (2 − 1/m)-budget
balanced and (Hn + 1)-approximate. With a slightly refined analysis, one can
show that our method achieves a budget balance factor of 2− 2/(m+ 1); this
is tight with respect to both budget balance and approximability.

Related to this result is the recent work of Bleischwitz and Monien [6]. The
authors present a cross-monotonic (2−2/(m+1))-budget balanced cost sharing
method for the minimum makespan scheduling problem. However, as we argue
below, their cost sharing mechanism does not approximate social cost.

3. Lower Bound on Budget Balance of Cost Sharing Mechanisms.

We present a generic lower bound showing that no cross-monotonic and β-
budget balanced cost sharing method exists for any β < f(n), where f is a
function that measures the maximum rate of increase of the underlying cost
function C. For example, for every fixed player set, f is at least the ratio
between the cost of the whole set and the sum of the costs of all its singleton
subsets. We prove that this lower bound even holds for cost sharing methods
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in the β-core (definition is given below). We use this general approach to prove
negative results for several fundamental scheduling problems in a cost sharing
context. Namely, we show a lower bound of Ω(n) on the budget balance factor
of cross-monotonic cost sharing methods for all scheduling problems in which
we aim at minimizing the total (weighted) completion (or flow) time. We prove
that the same bound also applies to average (weighted) completion (or flow)
time objectives.

1.2 Previous and Related Work

The development of cost sharing mechanisms for combinatorial optimization
problems has recently attracted a lot of attention in the theoretical computer
science literature.

The framework of Moulin and Shenker [4] has been applied to game-theoretic
variants of classical optimization problems such as fixed tree multicast [7–
9], submodular cost sharing [4], Steiner trees [10,11], facility location, single-
source rent-or-buy network design [12–14] and Steiner forests [15]. Lower
bounds on the budget balance factor that is achievable by a cross-monotonic
cost sharing mechanism are given in [5,16]. Very recently, researchers started
to investigate cost sharing mechanisms in light of the novel efficiency measure
of Roughgarden and Sundararajan; see [3,17–19].

The problem of scheduling independent jobs on parallel machines is well-
studied for various objective functions. The minimum makespan version
P | |Cmax is shown to be NP-complete by Garey and Johnson [20]. Lenstra,
Shmoys and Tardos gave a PTAS for this problem [21]. The minimum
weighted completion time (P | |∑iwiCi) and average weighted completion
time (P | |∑iwiCi/n) scheduling problems are also NP-complete as proved by
Lenstra [22]. A PTAS for both problems has been given in [23]. However, for
unit processing times or equal weights, all three problems are polynomially
solvable [24,25].

Very notably, although network design problems have been studied extensively
in a cost sharing context, very little attention has been given to scheduling
problems; in particular if jobs are assumed to act strategically, and group-
strategyproofness is a desirable objective. In most of the previous works, au-
thors have either concentrated on scheduling problems where machines act
selfishly [26–28], or strategyproofness (but not group-strategyproofness) is an
issue [29,30].

After the publication of this paper, substantial progress has been made in
the theory of cost sharing mechanims. Mehta, Roughgarden, and Sundarara-
jan [31] introduced a new class of cost sharing mechanisms called acyclic mech-
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anisms. These mechanisms generalize Moulin mechanisms and as such leave
more flexibility to improve upon the approximation guarantees with respect
to budget balance and social cost. However, they achieve a slightly weaker no-
tion of truthfulness called weak group-strategyproofness. A mechanism is weakly
group-strategyproof [31,32] if no coordinated bidding of a coalition S ⊆ U can
ever strictly increase the utility of every player in S. For scheduling prob-
lems with completion time related objectives, Brenner and Schäfer [33] define
acyclic mechinsms with constant approximation factors for both budget bal-
ance and social cost. These results are in sharp contrast with the lower bounds
for Moulin mechanisms that we prove in this paper.

1.3 Organization of Paper

The paper is structured as follows: In Section 2, we introduce some additional
notation and concepts that are used in subsequent sections. The general lower
bound on the approximability of cost sharing mechanisms is presented in Sec-
tion 3. Our tight cost sharing mechanism for the minimum makespan schedul-
ing is given in Section 4. The negative results with respect to approximating
the budget balance factor for certain cost functions together with its applica-
tions to completion time related scheduling problems is stated in Section 5.
Finally, we offer some conclusions in Section 6.

2 Preliminaries

2.1 Moulin Mechanisms

A cost sharing method ξ is a function ξ : U × 2U → R+ that assigns to each
user i ∈ U and subset S ⊆ U a non-negative cost share ξ(i, S). We define
ξ(i, S) := 0 for all i ∈ U \ S, for all S ⊆ U . ξ is cross-monotonic if the cost
share of a player does not increase as the player set grows; more formally, for
all S ′ ⊆ S ⊆ U and for every i ∈ S ′, it holds that ξ(i, S ′) ≥ ξ(i, S).

Similar to the definition in (1), ξ is β-budget balanced if

∀S ⊆ U :
1

β
· C(S) ≤

∑
i∈S

ξ(i, S) ≤ C(S).

We say that ξ satisfies β-cost recovery if the first inequality holds; it is com-
petitive if the latter inequality is fulfilled. If β = 1, we simply call the cost
sharing mechanism budget balanced.
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Moulin and Shenker [4] showed that, given a budget balanced and cross-
monotonic cost sharing method ξ, the following cost sharing mechanism M(ξ)
satisfies budget balance and group-strategyproofness: Initially, let S := U . If
for each player i ∈ S, the cost share ξ(i, S) is at most her bid bi, we stop. Oth-
erwise, remove from S all players whose cost shares are larger than their bids,
and repeat. Eventually, let SM be the final player set and define the payments
as xi(S

M) := ξ(i, SM) for all i ∈ SM . Jain and Vazirani [10] later observed that
the result of Moulin and Shenker also carries over to approximately budget
balanced and cross-monotonic cost sharing methods.

Yet another fairness concept in cooperative game theory that we use in this
paper is the β-core. A cost sharing method ξ is in the β-core iff it is β-budget
balanced and

∀S ′ ⊆ S ⊆ U :
∑
i∈S′

ξ(i, S) ≤ C(S ′).

2.2 Social Welfare vs. Social Cost

Recall that we define the social welfare of a set S ⊆ U as u(S) − C(S),
where u(S) :=

∑
i∈S ui. A cost sharing mechanism M is said to be efficient

if it selects a set SM of players that maximizes the social welfare (assuming
truthful bidding). An alternative measure of efficiency that we consider in this
paper is social cost : Define the social cost of a set S ⊆ U as

Π(S) := u(U \ S) + C(S).

A mechanism M is said to be α-approximate if it computes a final set SM of
social cost at most α times the minimum over all sets S ⊆ U , i.e., Π(SM) ≤
α · Π(S) for all S ⊆ U . Observe that for every set S ⊆ U , u(U) − Π(S) =
u(S) − C(S). Since u(U) is a constant, a set S minimizes social cost iff it
maximizes social welfare.

Roughgarden and Sundararajan [3] revealed a relation between the approx-
imability of a Moulin mechanism M(ξ) and a property of the cost sharing
method ξ: Assume we are given an arbitrary order σ on a subset S ⊆ U of
players, i.e., S = {i1, . . . , i|S|}, where ij ≺σ ik if and only if 1 ≤ j < k ≤ |S|.
We define Sj ⊆ S as the (ordered) set of the first j players of S according to
the order σ. A cost sharing method ξ is α-summable if for every order σ and
every subset S ⊆ U :

|S|∑
j=1

ξ(ij, Sj) ≤ α · C(S). (2)

The authors proved that the Moulin mechanism M(ξ) is (α+β)-approximate
and β-budget balanced if the underlying cost sharing method ξ is α-summable
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and β-budget balanced. Moreover, they showed that max{α, β} is a lower
bound on the approximability of M(ξ).

In this paper, we use [n] to denote the set {1, . . . , n}. We define Hn to be the n-
th harmonic number, i.e., Hn :=

∑n
i=1 1/i. As n grows to infinity, Hn = log n+

γ, where γ ≈ 0.577 denotes the Euler-Mascheroni constant. Hence, Hn =
Θ(log n) and we use both values interchangeably. Unless stated otherwise, we
denote by n the cardinality of the universe U .

3 A General Lower Bound on Summability

In this section, we prove a lower bound of Ω(log n) on the summability of cost
sharing methods, where n denotes the number of players in U . Our lower bound
holds for every optimization problem which contains a so-called cost stable in-
stance. Intuitively, we call an instance cost stable if it contains a significantly
large player set whose cost does not deviate too much from the cost of any of
its subsets. This property is fulfilled by a variety of combinatorial optimization
problems such as facility location, Steiner tree, minimum makespan schedul-
ing, etc. Together with the recent result of Roughgarden and Sundararajan [3],
our result shows that for all these problems, the approximability of Moulin
mechanisms cannot be better than Ω(log n).

Theorem 1 Consider an instance of a combinatorial optimization problem
on a player set U inducing a cost function C. Suppose that there is a set
S ⊆ U of size |S| ≥ |U |/γ for some constant γ ≥ 1 such that

C(S ′) ≥ 1

δ
· C(S)

for all S ′ ⊆ S and some constant δ ≥ 1. Let ξ be a cost sharing method for this
problem that satisfies the β-cost recovery condition. Then, ξ is not α-summable
for any α < Hdn/γe/(β · δ).

PROOF. It is sufficient to prove that there exists an order σ on U such that

|S|∑
j=1

ξ(ij, Sj) ≥
Hdn/γe
β · δ

· C(S),

where Sj is the set of the first j players in S and ij is the jth player of S
(ordered according to σ).

We construct σ by determining the sets Sj and players ij inductively as follows.
Initially, set j = |S| and assign Sj = S. Now, suppose we have determined
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sets S|S|, . . . , Sj. By an average argument, there must exist a player i ∈ Sj
such that

ξ(i, Sj) ≥
C(Sj)

β · |Sj|
=
C(Sj)

β · j
≥ C(S)

βδ · j
,

since ξ satisfies the β-cost recovery condition. The last inequality holds because
Sj ⊆ S. Assign ij := i and Sj−1 := Sj \ {ij}.

Let S = {i1, . . . , i|S|} be the set of players in S ordered according to the order
σ constructed above. We have

|S|∑
j=1

ξ(ij, Sj) ≥
(

1 +
1

2
+ · · ·+ 1

|S|

)
· C(S)

βδ
≥
Hdn/γe
βδ

· C(S),

where we exploit that |S| ≥ n/γ and |S| ∈ N. 2

This lower bound applies to many problems, as e.g. to the following ones:

Example 2 (Fixed-tree Multicast Problem) Players are located at ver-
tices of an undirected graph and wish to receive a broadcasting service which
is produced in a root vertex. The cost of serving a set of players U is the cost
of a minimum spanning tree containing U and the root. An instance fulfilling
the conditions of the above theorem is the one in which all players are located
on the same vertex which is connected to the root by an edge of length 1. The
lower bound for this problem has been shown in [3].

Example 3 (Facility Location Problem) Players are located at vertices
and wish to be connected to an open facility. Facilities can be opened at a
given subset of vertices. Here, a sample instance is the one in which there is
only one vertex v at which a facility may be opened, and all players are located
directly on v. Then, the cost of a solution is independent of the number of
players and equal to the opening cost of the facility. This lower bound is tight,
as has been shown in [18].

Another example for which Theorem 1 applies is the makespan machine
scheduling problem that we define in Section 4. There, we show that the
bound on summability is tight for this problem.

We remark that there are stronger lower bounds for e.g. the Steiner tree and
Steiner forest problems [18].
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4 Minimum Makespan Scheduling

We consider the classical minimum makespan scheduling problem. We are given
a set of n jobs N that have to be scheduled on m identical machines. Each
job i ∈ N has a non-negative processing time pi, which is the time needed to
execute i on one of the machines. We denote the completion time of job i by Ci.
Every machine can execute at most one job at a time; preemption of jobs is
not allowed. The objective is to schedule all jobs in N on the m machines
such that the maximum completion time maxi∈N Ci, also called makespan, is
minimized. Following the naming scheme introduced by Graham et al. [34],
this problem is referred to as P | |Cmax.

In a game-theoretic variant of the machine scheduling problem, each job is
associated with a player, who wants her job to be processed on one of the
m machines. We therefore identify the universe of players U with the set of
jobs N . The cost C(S) incurred to schedule all jobs in S is the minimum
makespan. We are interested in designing a cost sharing mechanism for the
minimum makespan scheduling problem that is β-budget balanced and α-
approximate for every possible instance.

Let pmax(S) denote the maximum processing time over all jobs in S. Define
µ(S) as the average machine load, i.e., µ(S) :=

∑
i∈S pi/m. The following fact

is folklore (see, e.g., [35]).

Fact 4 For a given set S ⊆ U of jobs, let C(S) be the makespan of an optimal
schedule for S. The following two inequalities hold:

(1) C(S) ≤ µ(S) + (1− 1
m

) · pmax(S);

(2) C(S) ≥ max{µ(S), pmax(S)}.

4.1 Cross-Monotonic Cost Shares

Bleischwitz and Monien [6] describe a cross-monotonic cost sharing method
ξbm for the above machine scheduling problem. We briefly review their cost
sharing method. 1

We call a job i large with respect to S if pi = pmax(S) and small otherwise.
Let `(S) be the number of large jobs in S. Given a subset S ⊆ U of the jobs,

1 At first sight, the cost shares that we state here differ from the ones defined by
Bleischwitz and Monien in [6]. However, it can easily be verified that both definitions
are in fact equivalent; we feel that the definition we present here is more intuitive.
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we define the cost share of i ∈ S as:

ξbm(i, S) :=


pi
m

+
pi − µ(S)

`(S)
if pi = pmax(S) and pi > µ(S),

pi
m

otherwise.

(3)

The intuition is as follows: Every job gets a cost share of pi/m. If the aver-
age machine load µ(S) is less than the maximum processing time pmax(S),
every large job additionally obtains an equal share of the cost pmax(S)−µ(S).
We summarize one of the main results of Bleischwitz and Monien [6] in the
following theorem.

Theorem 5 ([6]) ξbm is a (2m/(m + 1))-budget balanced cross-monotonic
cost sharing method for the minimum makespan scheduling problem. More-
over, there is no β-budget balanced cross-monotonic cost sharing method ξ for
this problem, for any β < 2m/(m+ 1).

Albeit Theorem 5 proves that the Moulin mechanism M(ξbm), driven by the
cost sharing method ξbm by Bleischwitz and Monien, is optimal with respect to
budget balance, we show below that it is far from being optimal with respect
to social cost. In fact, the social cost of the final set SM output by M(ξbm)
can be as large as n/2 times the optimal social cost, where n is the number of
jobs in the universe U .

Lemma 6 For every n ∈ N, there exists an instance of the minimum
makespan scheduling problem such that the cost sharing method ξbm is not
α-summable for any α < n/2.

PROOF. It is sufficient to define an instance of the minimum makespan
scheduling problem on n jobs and a permutation σ for which the cost share
sum in (2) with respect to ξbm is at least n/2 times the minimum makespan.

Let U := {i1, . . . , im} be an (ordered) set ofm jobs, wherem = n is the number
of machines. Define the processing time of job ij to be pij := 1+(j−1)ε for all
j ∈ [m] and some small ε > 0. Since the number of jobs equals the number of
machines, the makespan of an optimal assignment for U is C(U) = 1+(m−1)ε.

Observe that the processing time of job ij, j ∈ [m], is maximum among all
jobs in the set Sj = {i1, . . . , ij}, i.e., ij is large. Furthermore, ij is the only
large job in Sj and thus `(Sj) = 1. The average machine workload of Sj is

µ(Sj) =
1

m

j∑
l=1

pil =
1

m

(
j +

j(j − 1)ε

2

)
≤ 1 + (j − 1)ε = pmax(Sj).

11



Hence, the cost share that job ij obtains with respect to Sj is

ξbm(ij, Sj) =
pij
m

+ pij − µ(Sj) = pij − µ(Sj−1),

where we define S0 := ∅. We obtain

ξbm(ij, Sj) = (1 + (j − 1)ε)− 1

m

(
(j − 1) +

(j − 1)(j − 2)ε

2

)
≥ 1− j − 1

m
.

Therefore,

m∑
j=1

ξbm(ij, Sj) ≥ m− m(m− 1)

2m
=
m

2
+

1

2
≥ m

2
(1 + (m− 1)ε) =

m

2
· C(U),

where the last inequality holds if we choose ε sufficiently small. 2

Intuitively, this high summability gives voice to the fact that processing times
exceeding the average workload µ(S) are punished in an unfair manner: In-
stead of sharing the additional cost of pmax(S)−µ(S) among all jobs for which
pi > µ(S), only those jobs attaining the maximum processing time come up
for it. We tackle this problem in the next section.

4.2 Approximate Cost Shares

We continue by proposing new cost shares ξbs for the minimum makespan
scheduling problem that are still (2 − 1/m)-budget balanced and cross-
monotonic, but concurrently (Hn + 1)-summable. This is tight in terms of
both budget balance and summability.

We use a different definition of small and large jobs here: A job i is large with
respect to S iff pi > µ(S) and small otherwise. The cost share of a job i ∈ S
with respect to S is defined as

ξbs(i, S) :=


pi
m

+

pi∫
µ(S)

1

|{j ∈ S : pj ≥ t}|
dt if pi > µ(S),

pi
m

otherwise.

(4)

Intuitively, every job receives a cost share of pi/m. A large job i obtains some
additional cost share: for every time instant t ∈ [µ(S), pi], i shares the cost of
1dt evenly with all other jobs in S whose processing time is at least t.

We show that ξbs is a cost sharing method that satisfies cross-monotonicity,
approximate budget balance and summability.
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Theorem 7 ξbs is a cross-monotonic, (2−1/m)-budget balanced and (Hn+1)-
summable cost sharing method for the minimum makespan scheduling problem.

Our cost sharing method is essentially tight: Bleischwitz and Monien [6] proved
that no cross-monotonic cost sharing method for this problem achieves a bud-
get balance factor better than (2−1/m). Moreover, using Theorem 1 we show
(see Corollary 11 below) that no cost sharing method that satisfies the β-cost
recovery condition can be α-summable for any α < Hn/β.

The proof of Theorem 7 follows from Lemmas 8, 9 and 10 that are given below.

Lemma 8 ξbs is cross-monotonic.

PROOF. Consider some set S ⊆ U and a job i ∈ S. We prove that if a new
job j /∈ S is added to S, the cost share of i does not increase.

If i was small in S, then it remains small, and hence i’s cost share stays pi/m.
If i was large in S and becomes small in S ∪ {j}, then i’s cost share decreases
to pi/m. It remains to show that the cost share of i does not increase if i stays
large. Note that by adding job j, the number of jobs whose processing time is
at least t for some t ≥ 0 does not decrease. Moreover, we have

pi∫
µ(S)

1

|{j ∈ S : pj ≥ t}|
dt ≥

pi∫
µ(S∪{j})

1

|{j ∈ S ∪ {j} : pj ≥ t}|
dt,

since µ(S) ≤ µ(S ∪ {j}). This concludes the proof. 2

We show next that the budget balance condition is satisfied.

Lemma 9 ξbs is (2− 1/m)-budget balanced.

PROOF. With the cost share definition in (4) we have

∑
i∈S

ξ(i, S) =
∑
i∈S

pi
m

+
∑

i∈S: pi>µ(S)

pi∫
µ(S)

1

|{j ∈ S : pj ≥ t}|
dt

= µ(S) +

pmax(S)∫
µ(S)

1 dt = max{µ(S), pmax(S)}.

By Fact 4, C(S) ≥ max{µ(S), pmax(S)}, which proves competitiveness. More-
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over, the cost shares satisfy (2− 1/m)-cost recovery because

(
2− 1

m

)
·max{µ(S), pmax(S)} ≥ µ(S) +

(
1− 1

m

)
pmax(S) ≥ C(S),

where the last inequality follows from Fact 4. 2

Finally, we prove that the cost shares fulfill (Hn + 1)-summability.

Lemma 10 ξbs is (Hn + 1)-summable.

PROOF. Let σ be an arbitrary order on the jobs in U , and let S :=
{i1, . . . , i|S|}⊆ U be a subset of U ordered according to σ. First, observe that

|S|∑
j=1

ξbs(ij, Sj) =
|S|∑
j=1

pij
m

+

pij∫
µ(S)

1

|{k ∈ Sj : pk ≥ t}|
dt


≤
|S|∑
j=1

pij
m

+

pij∫
0

1

|{k ∈ Sj : pk ≥ t}|
dt


≤ µ(S) +

|S|∑
j=1

pij∫
0

1

|{k ∈ Sj : pk ≥ t}|
dt.

Fix a point in time t ∈ [0, pmax(S)]. Define r(t) as the number of jobs in S
whose processing time is at least t. Using this definition, we obtain

|S|∑
j=1

pij∫
0

1

|{k ∈ Sj : pk ≥ t}|
dt =

pmax(S)∫
0

r(t)∑
r=1

1

r
dt =

pmax(S)∫
0

Hr(t) dt ≤ pmax(S) ·H|S|.

Thus,

|S|∑
j=1

ξbs(ij, Sj) ≤ µ(S) + pmax(S) ·H|S| ≤ (Hn + 1) · C(S). 2

Using Theorem 1, we can prove that Lemma 10 is essentially tight.

Corollary 11 Let ξ be a cost sharing method for the minimum makespan
scheduling problem P |pi = 1|Cmax that satisfies the β-cost recovery condition.
Then the summability of ξ is no better than Hn/β.
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PROOF. Consider an instance that consists of n jobs with unit processing
times and m := n machines. Clearly, C(S) = 1 = C(U) for all S ⊆ U .
Theorem 1 now gives a lower bound of Hn/β. 2

5 A General Lower Bound on Budget Balance

While we have given cross-monotonic (2−1/m)-budget balanced and (Hn+1)-
summable cost shares for the minimum makespan scheduling problem, we
identify a class of problems to which no constantly budget balanced and cross-
monotonic cost sharing method exists in this section. We show that both
weighted completion time scheduling and average completion time scheduling
belong to this class, as well as all of their generalizations.

Consider a cost sharing game on a universe U of n players whose cost function
C : 2U → R is non-decreasing, i.e. C(S ′) ≤ C(S) for all S ′ ⊆ S ⊆ U . If there is
an instance to the cost sharing game for which C(U) exceeds

∑
i∈U C({i}) by

a factor of f(n), then the β-core of this game is empty for all β < f(n). This
is due to the fact that players can never be charged more than the cost they
incur when being served alone, and therefore the players in a set S cannot pay
more than

∑
i∈S C({i}).

In the case of general (not necessarily non-decreasing) cost functions, using
sets Ti containing i instead of the singletons {i} itself can yield even better
lower bounds. Intuitively, we choose the subset Ti ⊆ S for which the amount
that player i ∈ S is allowed to pay is smallest.

Theorem 12 Consider a cost sharing game on a universe U of n players
and its cost function C. Let f : N→ R be a non-decreasing function. Suppose
there is a set S of size |S| ≥ |U |/γ for some constant γ ≥ 1, and arbitrary
sets Ti ⊆ S with i ∈ Ti such that

C(S) ≥ f(|S|) ·
∑
i∈S

C(Ti).

Then, there is no cost sharing method ξ in the β-core for any β < f(n
γ
) for

this game.

PROOF. Assume that ξ is a cost sharing method in the β-core for this prob-
lem. First, the core property implies that the cost share of player i in the set
S ⊇ Ti is at most the cost induced by the set Ti, i.e. ξ(i, S) ≤ ∑j∈Ti

ξ(j, S) ≤
C(Ti) for all i ∈ S. Second, we assume C(S) ≥ f(|S|) ·∑i∈S C(Ti). The con-
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dition of β-cost recovery now implies that for every S ⊆ U :

β ≥ C(S)∑
i∈S ξ(i, S)

≥ f(|S|) ·∑i∈S C(Ti)∑
i∈S C(Ti)

≥ f
(n
γ

)
. 2

Since every cross-monotonic β-budget balanced cost sharing method is in the
β-core, this theorem implies the same lower bound on the budget balance
factor of a cross-monotonic cost sharing method for the respective problem.
In the following two sections, we apply Theorem 12 to the parallel machine
scheduling problems with completion time and average completion time ob-
jectives.

5.1 Minimum Weighted Completion Time Scheduling

In the minimum weighted completion time scheduling problem, we are given a
set of n jobs N and m identical machines. Each job i ∈ N has a processing
time pi and a weight wi. The objective is to assign all n jobs to the m machines
such that the total weighted completion time

∑
i∈N wiCi is minimized.

In the cost sharing context, we define U := N as before, and let C be the total
weighted completion time of an optimal schedule. We show that the β-core of
this scheduling problem is empty for β < (n + 1)/2, even for the unweighted
single machine case with unit processing times.

Corollary 13 Consider the single machine minimum completion time
scheduling problem with unit processing times 1|pi = 1|∑iCi. There is no
cost sharing method ξ that is in the β-core for any β < (n + 1)/2 for this
game.

PROOF. Clearly, the cost of every singleton set {i}, i ∈ U , is C({i}) = 1.
Set Ti := {i}. On the other hand, C(U) = n(n+ 1)/2. Thus,

C(U) ≥ n+ 1

2
·
∑
i∈U

C(Ti),

and using Theorem 12 with S = U and f(n) = (n+ 1)/2 yields the claim. 2

This lower bound carries over to all generalizations of the single machine
minimum completion time scheduling problem, e.g. to the minimum weighted
flow time scheduling problem and problems with additional constraints such
as release or due dates. Note that the trivial cost sharing method ξwct(i, S) :=
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wipi for all i ∈ S and S ⊆ U is cross-monotonic and n-budget balanced for
P | |∑iwiCi, as shown by the following lemma.

Lemma 14 Consider the minimum weighted completion time scheduling
problem P | |∑iwiCi. ξ

wct is a cross-monotonic n-budget balanced cost sharing
method for this problem.

PROOF. ξwct is obviously cross-monotonic. It is competitive since pi ≤ Ci
for every job i ∈ S and all S ⊆ U .

To show n-cost recovery, we first consider the single machine case. Take an
optimal schedule and number the jobs accordingly. Smith [36] proved that
if job i is scheduled before job j in an optimal schedule, i.e. i < j, then
pi/wi ≤ pj/wj. Thus, either pi ≤ pj or wi > wj (or both) are true, and the
following inequality holds for all i < j:

wjpi ≤ max{wipi, wjpj} ≤ wipi + wjpj.

Using this, we can bound the cost of an optimal schedule for a set S ⊆ U by

|S|∑
j=1

wjCj =
|S|∑
j=1

wj ·
( j∑
i=1

pi

)
=
|S|∑
j=1

j∑
i=1

wjpi ≤
|S|∑
j=1

( j−1∑
i=1

(wipi + wjpj) + wjpj

)

=
|S|∑
j=1

(
j · wjpj + (|S| − j)wjpj

)
= |S| ·

|S|∑
j=1

wjpj ≤ n ·
|S|∑
j=1

ξwct(j, S),

which proves n-cost recovery for the single machine case.

For the general case, consider the set Sk ⊆ S of jobs that are scheduled on
machine k ∈ [m] in an optimal schedule. Clearly, the schedule for machine
k is optimal for the corresponding single machine problem on the set of jobs
Sk, for which the above inequality holds. Summing up over all machines, we
obtain∑
j∈S

wjCj =
∑
k∈[m]

∑
j∈Sk

wjCj ≤
∑
k∈[m]

n ·
∑
j∈Sk

ξwct(j, Sk) = n ·
∑
j∈S

ξwct(j, S). 2

5.2 Minimum Average Completion Time Scheduling

In the minimum average completion time scheduling problem, the setting is
as above, but with the objective of minimizing the total average weighted
completion time, i.e. C(S) =

∑
i∈S wiCi/|S| for all S ⊆ U . In classical machine

scheduling, where an optimal (or approximate) solution for the whole set U
of players is sought, the problems with average weighted completion time and
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weighted completion time objectives coincide, since the objectives only differ
by a constant factor of |U |. However, during the run of a Moulin mechanism,
the size of the current player set varies, and thus |S| can no more be seen as
a constant. As a matter of fact, due to the division by |S|, the cost function
is not monotone for this game, as the following example shows:

Example 15 Consider an instance on a single machine and three jobs
{1, 2, 3} with processing times pi = i and unit weights. The average com-
pletion time is 3 if only job 3 is scheduled, (1 + 4)/2 = 2.5 if jobs 1 and 3 are
scheduled, and (1 + 3 + 6)/3 > 3 if all three jobs are scheduled. Hence, the cost
of an optimal schedule can increase as well as decrease when a job is added to
the scheduled set.

For this reason, we need a slightly more elaborated instance with non-
uniform processing times to show that the β-core of this game is empty for
β < (n+ 4)/8. Nevertheless, the lower bound holds even for the unweighted
single machine case.

Corollary 16 Consider the single machine minimum average completion
time scheduling problem 1| |∑iCi/n. There is no cost sharing method ξ that
is in the β-core for any β < (n+ 4)/8 for this game.

PROOF. Let U = S ∪̇ L be a set of n jobs, where |S| = n/2 − 1 and
|L| = n/2 + 1; we call the jobs in S small and those in L large. Define pi := ε
for all i ∈ S, and pi := 1 for all i ∈ L. The optimal cost for every singleton
set {i}, i ∈ S, is C({i}) = ε. Set Ti := {i} for all small jobs i ∈ S. For the
large jobs i ∈ L, set Ti := S ∪{i}. In an optimal schedule for Ti, first all small
jobs in S are processed and finally the large job i. The cost of an optimal
schedule is thus

C(Ti) =
1

|Ti|

 |S|∑
j=1

j · ε+ (|S| · ε+ 1)

 ≤ 2

n

(
1 + εn

(
n

8
+

1

2

))
.

We obtain

∑
i∈U

C(Ti) ≤
(
n

2
− 1

)
· ε+

(
n

2
+ 1

) 2

n

(
1 + εn

(
n

8
+

1

2

))
≤ n+ 2

n

(
1 + εn

(
n

8
+ 1

))
. (5)

Define ε′ := εn(n/8 + 1). On the other hand,

C(U) ≥
(n

2
+ 1)(n

2
+ 2)

2n
=

(n+ 2)(n+ 4)

8n
. (6)
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Combining inequalities (5) and (6), we obtain

C(U) ≥ n+ 4

8(1 + ε′)
·
∑
i∈U

C(Ti).

By Theorem 12, we obtain a lower bound of β ≥ (n+4)/(8(1+ε′)) for any cost
sharing method in the β-core. The claim now follows by choosing ε sufficiently
small. 2

Note that the trivial cost sharing method ξact(i, S) := wipi/n for all i ∈ S
and S ⊆ U is cross-monotonic and n-budget balanced for P | |∑iwiCi/n.

Lemma 17 Consider the minimum average weighted completion time
scheduling problem P | |∑iwiCi/n. ξact is a cross-monotonic n-budget bal-
anced cost sharing method for this problem.

PROOF. ξact is obviously cross-monotonic. It is competitive since wipi/n ≤
wiCi/|S| for every job i ∈ S and all S ⊆ U . The proof of n-cost recovery is
analogous to the non-average case.

On a single machine, Smith’s rule still holds for every optimal schedule for S
since the average cost is only a constant factor times the non-average cost for
fixed S. Thus, the cost of an optimal schedule for a set S ⊆ U is bounded by

|S|∑
j=1

wjCj/|S| ≤
|S|∑
j=1

wjpj = n ·
|S|∑
j=1

ξact(j, S).

For the general case, again, considering the sets Sk ⊆ S for all machines
k ∈ [m] and summing up yields∑
j∈S

wjCj/|S| ≤
∑
k∈[m]

∑
j∈Sk

wjCj/|Sk| ≤
∑
k∈[m]

n·
∑
j∈Sk

ξact(j, Sk) = n·
∑
j∈S

ξact(j, S),

proving n-cost recovery. 2

6 Conclusion

We proved that the efficiency of Moulin mechanisms is not approximable
within less than logarithmic factors even with the new social cost efficiency
measure. Our lower bound holds if the underlying optimization problem sat-
isfies a certain cost-stability property. This reduces the hope to find truly
efficient cost sharing mechanisms for these problems. On the other hand, the
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new efficiency measure allows us to characterize cost sharing mechanisms in
terms of their best polylogarithmic approximation factor.

Although most of the previously known cross-monotonic and approximately
budget balanced cost sharing methods for combinatorial optimization prob-
lems turned out to simultaneously achieve the best possible social cost effi-
ciency [3,17–19], our work reveals that different cost sharing methods achiev-
ing the same budget balance factor may indeed behave very differently with
respect to approximate social cost.

We studied cost sharing methods for makespan and completion time related
scheduling problems. Our results demonstrate that the tractability of these
problems in a cost sharing context heavily depends on the respective objective
function. Our negative result on the budget balance factor for cross-monotonic
cost sharing methods motivates the investigation of alternative cost sharing
models; perhaps with a weaker notion of truthfulness for cooperative games.
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[21] J. K. Lenstra, D. B. Shmoys, É. Tardos, Approximation algorithms for
scheduling unrelated parallel machines, in: Proceedings of the 28th Symposium
on the Foundations of Computer Science, 1987, pp. 217–224.

21



[22] P. Brucker, Scheduling Algorithms, Springer, New York, USA, 1998.

[23] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis,
M. Queyranne, M. Skutella, C. Stein, M. Sviridenko, Approximation schemes
for minimizing average weighted completion time with release dates, in:
Proceedings of the 40th Symposium on the Foundations of Computer Science,
1999, pp. 32–43.

[24] B. Simons, Multiprocessor scheduling of unit-time jobs with arbitrary release
times and deadlines, SIAM Journal on Computing 12 (2) (1983) 294–299.

[25] R. McNaughton, Scheduling with deadlines and loss functions, Management
Sciences 6 (1959) 1–12.

[26] N. Nisan, A. Ronen, Algorithmic mechanism design, Games and Economic
Behavior (2001) 166–196.

[27] A. Archer, É. Tardos, Truthful mechanisms for one-parameter agents, in:
Proceedings of the 42nd Symposium on the Foundations of Computer Science,
2001, pp. 482–491.

[28] A. Kovacs, Fast monotone 3-approximation algorithm for scheduling related
machines, in: Proceedings of the 13th Annual European Symposium on
Algorithms, Lecture Notes in Computer Science, Springer, 2005.

[29] R. Porter, Mechanism design for online real-time scheduling, in: Proceedings of
the 5th ACM Conference on Electronic Commerce, 2004.

[30] B. Heydenreich, R. Müller, M. Uetz, Decentralization and mechanism design for
online machine scheduling, in: Proceedings of the 1st International Workshop
on Computational Social Choice, Springer, 2006, pp. 136–147.

[31] A. Mehta, T. Roughgarden, M. Sundararajan, Beyond Moulin mechanisms, in:
Proceedings of the 8th ACM Conference on Electronic Commerce, 2007.

[32] N. Devanur, M. Mihail, V. Vazirani, Strategyproof cost-sharing mechanisms for
set cover and facility location games, in: Proceedings of the 4th ACM Conference
on Electronic Commerce, 2003.
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