
Cost Sharing Methods for Makespan and
Completion Time Scheduling?

Janina Brenner and Guido Schäfer

Institute of Mathematics, Technical University Berlin, Germany
{brenner,schaefer}@math.tu-berlin.de

Abstract. Roughgarden and Sundararajan recently introduced an al-
ternative measure of efficiency for cost sharing mechanisms. We study
cost sharing methods for combinatorial optimization problems using this
novel efficiency measure, with a particular focus on scheduling problems.
While we prove a lower bound of Ω(log n) for a very general class of prob-
lems, we give a best possible cost sharing method for minimum makespan
scheduling. Finally, we show that no budget balanced cost sharing meth-
ods for completion or flow time objectives exist.

Keywords: game theory, mechanism design, cost sharing mechanisms, combi-
natorial optimization, scheduling problems.

1 Introduction

Many combinatorial optimization problems are concerned with establishing a
good or service at a minimum cost. Often, these problems can be viewed as
consisting of a set of users that act strategically in order to receive this service.
In a scheduling context, we can imagine jobs to be owned by agents wishing
their jobs to be executed on a machine. Besides finding a way of providing the
service, the problem is then to distribute the resulting cost among the users in a
fair manner. Meanwhile, the service provider may have to decide upon a subset
of users that are served.

In this paper, we study cost sharing mechanisms for combinatorial opti-
mization problems, with a particular focus on scheduling problems. The general
setting is as follows. We are given a set U of n players that are interested in a
certain service. Every player i ∈ U has a private utility ui ≥ 0 for receiving this
service and announces a bid bi ≥ 0 which designates the maximum price she
is willing to pay. Associated with the underlying optimization problem, we are
given a non-decreasing cost function C : 2U → R+ describing the minimum cost
of serving a set of players S ⊆ U .

A cost sharing mechanism M first solicits all bids {bi}i∈U from players in U ,
and based on these bids (i) determines a set S ⊆ U of players that receive the

? This work was supported by the DFG Research Center Matheon “Mathematics for
key technologies”.

service, and (ii) for every player i ∈ S, fixes a non-negative payment xi(S) that
she has to pay for the service. This payment is usually referred to as the cost share
of a player i ∈ S. We assume that the mechanism complies with the following
three natural assumptions: (a) a player is not charged more than her bid, (b) a
player is charged only if she receives service, and (c) a player is guaranteed to
receive service if she reports a sufficiently high bid.

Define the benefit of a player i as ui − xi if i receives service and as zero
otherwise. We assume that each player’s strategy is to maximize her benefit.
Since the outcome computed by the cost sharing mechanism solely depends on
the bids {bi}i∈U , a player may have an incentive to misreport her actual utility,
i.e., to declare a bid bi 6= ui, if advantageous.

There are several desirable properties of a cost sharing mechanism: A cost
sharing mechanism M is β-budget balanced if the cost shares charged to the
players in S deviates by at most a factor β ≥ 1 from the actual cost C(S), i.e.,

C(S)/β ≤
∑
i∈S

xi(S) ≤ C(S). (1)

If β = 1, we simply call the cost sharing mechanism budget balanced.
A mechanism is called strategyproof if bidding truthfully, i.e., announcing

bi = ui, is a dominant strategy for every player. If this is true even if players
collude, then we call a mechanism group-strategyproof. For a set S ⊆ U , define
u(S) :=

∑
i∈S ui. A cost sharing mechanism M is called efficient if it selects a

set of players that maximizes the social welfare u(S)− C(S).
Classical results in economics [8, 24] state that budget balance and efficiency

cannot be achieved simultaneously; even for simple cost functions and if only
strategyproofness is required. As a consequence, most of the previous work has
concentrated on either achieving budget balance or efficiency.

Very recently, Roughgarden and Sundararajan [25] introduced an alternative
efficiency measure that attempts to circumvent the intractability results. They
define the social cost of a set S ⊆ U as

Π(S) := u(U \ S) + C(S).

A mechanism is said to be α-approximate if the set of players it determines has
social cost at most α times the minimum social cost (over all subsets of U). It is
not hard to see that a set S minimizes the social cost iff it maximizes the social
welfare.

A large class of group-strategyproof cost sharing mechanisms are based on a
framework due to Moulin and Shenker [20]. This framework provides a means to
obtain group-strategyproof cost sharing mechanisms from cross-monotonic cost
sharing methods (definitions are given below). Moreover, Immorlica et al. [13]
prove that every group-strategyproof cost sharing mechanism (satisfying some
natural conditions) corresponds to a cross-monotonic cost sharing method.

Our Results. In this paper, we study cost sharing methods for optimization
problems in light of the new efficiency measure introduced by Roughgarden and
Sundararajan [25]. Our contribution is threefold:

1. Lower Bound on Approximability of Cost Sharing Methods. We present
a general inapproximability result for cost sharing methods of combinatorial
optimization problems. In particular, we prove that there is no cost sharing
method that is α-summable and satisfies cost recovery for any α < log n, where
n denotes the number of players. Our proof holds if the underlying cost function
satisfies a certain “stability” property.

As a consequence, our result implies a lower bound of log n on the approx-
imability of cost sharing mechanisms for various optimization problems, such
as, for instance, facility location, minimum spanning tree (and thus also min-
imum Steiner tree and forest), single-source rent-or-buy, minimum makespan
scheduling, etc. Despite its generality, our lower bound is tight for some specific
problems such as facility location and minimum makespan scheduling.

2. An Optimal Cost Sharing Method for Makespan Scheduling. We study the
minimum makespan scheduling problem, one of the most fundamental problems
in scheduling theory, in a cost sharing context. In this problem, we are given a set
of jobs N that have to be executed on m parallel machines. The goal is to assign
all jobs to the machines such that the maximum completion time is minimized.
We assume that jobs act strategically and attempt to get processed at a low
cost. We develop a cross-monotonic cost sharing method for this problem that
is (2 − 1/m)-budget balanced and log n-approximate; this is tight with respect
to both budget balance and approximability.

3. Budget Balance of Cost Sharing Methods for other Scheduling Problems.
There are several other scheduling problems that can be considered in a cost
sharing context. We show that for scheduling problems in which we aim at
minimizing the total (weighted) completion (or flow) time, there is no cross-
monotonic cost sharing method that is β-budget balanced for any β < n/2.

Previous and Related Work. The development of cost sharing mechanisms
for combinatorial optimization problems has recently attracted a lot of attention
in the theoretical computer science literature.

The framework of Moulin and Shenker [20] has been applied to game-theoretic
variants of classical optimization problems such as fixed multicast [1, 5, 6], sub-
modular cost sharing [20], Steiner trees [14, 15], facility location, single-source
rent-or-buy network design [22, 19, 10] and Steiner forests [16]. Lower bounds on
the budget balance factor that is achievable by a cross-monotonic cost sharing
mechanism are given in [13, 17]. Very recently, researchers started to investigate
cost sharing mechanisms in light of the novel efficiency measure of Roughgarden
and Sundararajan; see [9, 25, 26, 4].

Very notably, although network design problems have been studied exten-
sively in a cost sharing context, very little attention has been given to schedul-
ing problems; in particular if jobs are assumed to act strategically, and group-
strategyproofness is a desirable objective. In most of the previous works, authors
have either concentrated on scheduling problems where machines act selfishly [21,
2, 18], or strategyproofness (but not group-strategyproofness) is an issue [23, 11].

Related to our work is the recent work of Bleischwitz and Monien [3]. The au-
thors present a cross-monotonic cost sharing method for the minimum makespan

scheduling problem. However, as we argue below, their cost sharing mechanism
does not approximate social cost.

2 Preliminaries

Moulin Mechanisms. A cost sharing method ξ is a function ξ : U×2U → R+ that
assigns to each user i ∈ U and subset S ⊆ U a non-negative cost share ξ(i, S).
We define ξ(i, S) := 0 for all i ∈ U \S, for all S ⊆ U . ξ is cross-monotonic if the
cost share of a player does not increase as the player set grows; more formally,
for all S′ ⊆ S ⊆ U and for every i ∈ S′, it holds that ξ(i, S′) ≥ ξ(i, S).

Similar to the definition in (1), ξ is β-budget balanced if

∀S ⊆ U : C(S)/β ≤
∑
i∈S

ξ(i, S) ≤ C(S).

We say that ξ satisfies β-cost recovery if the first inequality holds; it is competitive
if the latter inequality is fulfilled.

Moulin and Shenker [20] showed that, given a budget balanced and cross-
monotonic cost sharing method ξ, the following cost sharing mechanism M(ξ)
satisfies budget balance and group-strategyproofness: Initially, let S := U . If
for each player i ∈ S, the cost share ξ(i, S) is at most her bid bi, we stop.
Otherwise, remove from S all players whose cost shares are larger than their
bids, and repeat. Eventually, let S be the final player set and define the payments
as xi(S) := ξ(i, S) for all i ∈ S. Jain and Vazirani [14] later observed that the
result of Moulin and Shenker also holds if one considers approximately budget
balanced and cross-monotonic cost sharing methods.

Yet another fairness concept in cooperative game theory that we use in this
paper is the β-core. A cost sharing method ξ is in the β-core iff it is β-budget
balanced and

∀S′ ⊆ S ⊆ U :
∑
i∈S′

ξ(i, S) ≤ C(S′).

Social Welfare vs. Social Cost. A mechanism M is said to be α-approximate if
it computes a final set SM of social cost at most α times the minimum over
all sets S ⊆ U , i.e., Π(SM) ≤ α · Π(S) for all S ⊆ U . Since u(U) − Π(S) =
u(S) − C(S), the traditional definition of efficiency, and u(U) is a constant, a
set S has minimum social cost iff it has maximum efficiency.

Roughgarden and Sundararajan [25] revealed a relation between the approx-
imability of a Moulin mechanism M(ξ) and a property of the cost sharing
method ξ: Assume we are given an arbitrary order σ on a subset S ⊆ U of
players, i.e., S = {i1, . . . , i|S|}, where ij ≺σ ik if and only if 1 ≤ j < k ≤ |S|.
We define Sj ⊆ S as the (ordered) set of the first j players of S according to
the order σ. A cost sharing method ξ is α-summable if for every ordering σ and
every subset S ⊆ U :

|S|∑
j=1

ξ(ij , Sj) ≤ α · C(S). (2)

Roughgarden and Sundararajan [25] proved that the Moulin mechanism
M(ξ) is (α+β)-approximate and β-budget balanced if the underlying cost shar-
ing method ξ is α-summable and β-budget balanced. Moreover, the authors
argue that max{α, β} is a lower bound on the approximability of M(ξ).

In this paper, we use [n] to denote the set {1, . . . , n}. Moreover, we define Hn

to be the n-th harmonic number, i.e., Hn :=
∑n

i=1 1/i. As n grows to infinity,
Hn ≈ log n, and we use both values interchangeably.

3 A General Lower Bound on Summability

In this section, we prove a lower bound of Ω(log n) on the summability of cost
sharing methods. Our lower bound holds if the underlying cost function C satis-
fies a certain “stability” property, which is fulfilled by a variety of combinatorial
optimization problems such as facility location, Steiner tree, parallel machine
scheduling, etc. Together with the recent result of Roughgarden and Sundarara-
jan [25], this shows that for several problems, the approximability of Moulin
mechanisms cannot be better than Ω(log n).

Theorem 1. Let ξ be a cost sharing method on a universe U that satisfies the β-
cost recovery condition with respect to a cost function C. Suppose that there is a
set S ⊆ U with |S| ≥ |U |/γ for some constant γ ≥ 1 such that C(S′) ≥ C(S)/δ
for all S′ ⊆ S and some constant δ ≥ 1. Then ξ is not α-summable for any
α < Hdn/γe/(β · δ), where n is the number of players in U .

Proof. It is sufficient to prove that there exists an order σ on U such that

|S|∑
j=1

ξ(ij , Sj) ≥
Hdn/γe

β · δ
· C(S),

where Sj is the set of the first j players in S and ij is the jth player of S (ordered
according to σ).

We construct σ by determining the sets Sj and users ij inductively as follows.
Initially, set j = |S| and assign Sj = S. Now, suppose we have determined sets
S|S|, . . . , Sj . By an average argument, there must exist a user i ∈ Sj such that

ξ(i, Sj) ≥
C(Sj)
β · |Sj |

=
C(Sj)
β · j

≥ C(S)
βδ · j

,

since ξ satisfies the β-cost recovery condition. The last inequality holds because
Sj ⊆ S. Assign ij := i and Sj−1 := Sj \ {ij}.

Let S = {i1, . . . , i|S|} be the set of players in S ordered according to the
order σ constructed above. We have

|S|∑
j=1

ξ(ij , Sj) ≥
(

1 +
1
2

+ · · ·+ 1
|S|

)
· C(S)

βδ
≥

Hdn/γe

βδ
· C(S),

where we exploit that |S| ≥ n/γ and |S| ∈ N. ut

This lower bound applies to many problems, as e.g. to the following ones:

Example 1 (Fixed-tree Multicast Problem). Users are located at vertices of an
undirected graph and wish to receive a broadcasting service which is produced
in a root vertex. The cost of serving a set of users U is the cost of a minimum
spanning tree containing U and the root. An instance fulfilling the conditions of
the above theorem is the one in which all users are located on the same vertex
which is connected to the root by an edge of length 1. There are better lower
bounds for this problem.

Example 2 (Facility Location Problem). Users are located at vertices and wish
to be connected to an open facility. Facilities can be opened at a given subset of
vertices. Here, a sample instance is the one in which there is only one vertex v
at which a facility may be opened, and all users are located directly on v. Then,
the cost of a solution is independent of the number of users and equal to the
opening cost of the facility. This lower bound is tight, as has been shown in [26].

Another example for which Theorem 1 applies is the makespan machine
scheduling problem that we define in Section 4. There, we show that the bound
on summability is tight for this problem.

4 Minimum Makespan Scheduling

We consider the classical minimum makespan scheduling problem. We are given
a set of n jobs N that have to be scheduled on m identical machines. Each
job i ∈ N has a non-negative processing time pi, which is the time needed to
execute i on one of the machines. We denote the completion time of job i by Ci.
Every machine can execute at most one job at a time; preemption of jobs is not
allowed. The objective is to schedule all jobs in N on the m machines such that
the maximum completion time maxi∈N Ci, also called makespan, is minimized.
Following the naming scheme introduced by Graham et al. [7], this problem is
referred to as P | |Cmax.

In a game-theoretic variant of the machine scheduling problem, each job is
associated with a player, who wants her job to be processed on one of the m
machines. We therefore identify the universe of players U with the set of jobs N .
The cost C(S) incurred to schedule all jobs in S is the minimum makespan. We
are interested in designing a cost sharing mechanism for the minimum makespan
scheduling problem that is β-budget balanced and α-approximate for every pos-
sible instance.

Let pmax(S) denote the maximum processing time over all jobs in S. Define
µ(S) as the average machine load, i.e., µ(S) :=

∑
i∈S pi/m. The following fact

is folklore (see, e.g., [12]).

Fact 1 For a given set S ⊆ U of jobs, let C(S) be the makespan of an optimal
schedule for S. The following two inequalities hold:

1. C(S) ≤ µ(S) + (1− 1
m) · pmax(S);

2. C(S) ≥ max{µ(S), pmax(S)}.

4.1 Cross-Monotonic Cost Shares

Bleischwitz and Monien [3] describe a cross-monotonic cost sharing method ξbm

for the above machine scheduling problem. We briefly review their cost sharing
method.1

We call a job i large with respect to S if pi = pmax(S) and small otherwise.
Let `(S) be the number of large jobs in S. Given a subset S ⊆ U of the jobs, we
define the cost share of i ∈ S as:

ξbm(i, S) :=


pi

m
+

pi − µ(S)
`(S)

if pi = pmax(S) and pi > µ(S),

pi

m
otherwise.

(3)

The intuition is as follows: Every job gets a cost share of pi/m. If the average
machine load µ(S) is less than the maximum processing time pmax(S), every
large job additionally obtains an equal share of the cost pmax(S) − µ(S). We
summarize one of the main results of Bleischwitz and Monien [3] in the following
theorem.

Theorem 2. ξbm is a (2m/(m+1))-budget balanced cross-monotonic cost shar-
ing method for the minimum makespan scheduling problem. Moreover, there is
no β-budget balanced cross-monotonic cost sharing method ξ for this problem,
for any β < 2m/(m + 1).

Albeit Theorem 2 proves that the Moulin mechanism M(ξbm), driven by the
cost sharing method ξbm by Bleischwitz and Monien, is optimal with respect to
budget balance, we show below that it is far from being optimal with respect to
social cost. In fact, the social cost of the final set SM output by M(ξbm) can be
as large as n/2 times the optimal social cost, where n is the number of jobs in
the universe U .

Lemma 1. For every n ∈ N, there exists an instance of the minimum makespan
scheduling problem such that the cost sharing method ξbm is not α-summable for
any α < n/2.

Proof. It is sufficient to define an instance of the minimum makespan scheduling
problem on n jobs and a permutation σ for which the cost share sum in (2) with
respect to ξbm is at least n/2 times the minimum makespan.

Let U := {i1, . . . , im} be an (ordered) set of m jobs, where m = n is the
number of machines. Define the processing time of job ij to be pij

:= 1+(j−1)ε
for all j ∈ [m] and some small ε > 0. Since the number of jobs equals the number
of machines, the makespan of an optimal assignment for U is C(U) = 1+(m−1)ε.

1 At first sight, the cost shares that we state here differ from the ones defined by
Bleischwitz and Monien in [3]. However, it can easily be verified that both definitions
are in fact equivalent; we feel that the definition we present here is more intuitive.

Observe that the processing time of job ij , j ∈ [m], is maximum among all
jobs in the set Sj = {i1, . . . , ij}, i.e., ij is large. Furthermore, ij is the only large
job in Sj and thus `(Sj) = 1. The average machine workload of Sj is

µ(Sj) =
1
m

j∑
l=1

pil
=

1
m

(
j +

j(j − 1)ε
2

)
≤ 1 + (j − 1)ε = pmax(Sj).

Hence, the cost share that job ij obtains with respect to Sj is

ξbm(ij , Sj) =
pij

m
+ pij − µ(Sj) = pij − µ(Sj−1),

where we define S0 := ∅. We obtain

ξbm(ij , Sj) = (1 + (j − 1)ε)− 1
m

(
(j − 1) +

(j − 1)(j − 2)ε
2

)
≥ 1− j − 1

m
.

Therefore,
m∑

j=1

ξbm(ij , Sj) ≥ m− m(m− 1)
2m

=
m

2
+

1
2
≥ m

2
(1 + (m− 1)ε) =

m

2
· C(U),

where the last inequality holds if we choose ε sufficiently small. ut

Intuitively, this high summability gives voice to the fact that processing times
exceeding the average workload µ(S) are punished in an unfair manner: Instead
of sharing the additional cost of pmax(S) − µ(S) among all jobs for which pi >
µ(S), only those jobs attaining the maximum processing time come up for it.
We tackle this problem in the next section.

4.2 Approximate Cost Shares

We continue by proposing new cost shares ξbs for the minimum makespan
scheduling problem that are still (2−1/m)-budget balanced and cross-monotonic,
but concurrently log n-summable. This is tight in terms of both budget balance
and summability.

We use a different definition of small and large jobs here: A job i is large
with respect to S iff pi > µ(S) and small otherwise. The cost share of a job
i ∈ S with respect to S is defined as

ξbs(i, S) :=


pi

m
+

pi∫
µ(S)

1
|{j ∈ S : pj ≥ t}|

dt if pi > µ(S),

pi

m
otherwise.

(4)

Intuitively, every job receives a cost share of pi/m. A large job i obtains some
additional cost share: for every time instant t ∈ [µ(S), pi], i shares the cost of
1dt evenly with all other jobs in S whose processing time is at least t.

We show that ξbs is a cost sharing method that satisfies cross-monotonicity
and approximate budget balance and summability.

Theorem 3. ξbs is a cross-monotonic, (2−1/m)-budget balanced and (Hn +1)-
summable cost sharing method for the minimum makespan scheduling problem.

The proof of Theorem 3 follows from Lemmas 2, 3 and 4 that are given below.

Lemma 2. ξbs is cross-monotonic.

Proof. Consider some set S ⊆ U and a job i ∈ S. We prove that if a new job
j /∈ S is added to S, the cost share of i does not increase.

If i was small in S, then it remains small, and hence i’s cost share stays pi/m.
If i was large in S and becomes small in S ∪ {j}, then i’s cost share decreases
to pi/m. It remains to show that the cost share of i does not increase if i stays
large. Note that by adding job j, the number of jobs whose processing time is
at least t for some t ≥ 0 does not decrease. Moreover, we have

pi∫
µ(S)

1
|{j ∈ S : pj ≥ t}|

dt ≥
pi∫

µ(S∪{j})

1
|{j ∈ S ∪ {j} : pj ≥ t}|

dt,

since µ(S) ≤ µ(S ∪ {j}). This concludes the proof. ut
We show next that the budget balance condition is satisfied.

Lemma 3. ξbs is (2− 1/m)-budget balanced.

Proof. It is easy to verify that with the cost share definition in (4) we have∑
i∈S

ξ(i, S) = max{µ(S), pmax(S)}.

By Fact 1, C(S) ≥ max{µ(S), pmax(S)}, which proves competitiveness. More-
over, the cost shares satisfy (2− 1/m)-cost recovery because(

2− 1
m

)
·max{µ(S), pmax(S)} ≥ µ(S) +

(
1− 1

m

)
pmax(S) ≥ C(S),

where the last inequality follows from Fact 1. ut
Finally, we prove that the cost shares fulfill O(log n)-summability.

Lemma 4. ξbs is (Hn + 1)-summable.

Proof. Let σ be an arbitrary order on the jobs in U , and let S := {i1, . . . , i|S|}⊆ U
be a subset of U ordered according to σ. First, observe that

|S|∑
j=1

ξbs(ij , Sj) ≤
|S|∑
j=1

pij

m
+

pij∫
µ(S)

1
|{k ∈ Sj : pk ≥ t}|

dt


≤

|S|∑
j=1

pij

m
+

pij∫
0

1
|{k ∈ Sj : pk ≥ t}|

dt


≤ µ(S) +

|S|∑
j=1

pij∫
0

1
|{k ∈ Sj : pk ≥ t}|

dt.

Fix a point in time t ∈ [0, pmax(S)]. Define r(t) as the number of jobs in S
whose processing time is at least t. Using this definition, we obtain

|S|∑
j=1

pij∫
0

1
|{k ∈ Sj : pk ≥ t}|

dt =

pmax(S)∫
0

r(t)∑
r=1

1
r

dt =

pmax(S)∫
0

Hr(t) dt ≤ pmax(S)·H|S|.

Thus,
|S|∑
j=1

ξbs(ij , Sj) ≤ µ(S) + pmax(S) ·H|S| ≤ (Hn + 1) · C(S).

ut

Lemma 4 is tight, as the following corollary shows.

Corollary 1. Let ξ be a cost sharing method for the minimum makespan schedul-
ing problem that satisfies the β-cost recovery condition. Then the summability
of ξ is no better than Hn/β.

Proof. Consider an instance that consists of n jobs with unit processing times
and m := n machines. Clearly, C(S) = 1 = C(U) for all S ⊆ U . Theorem 1 now
gives a lower bound of Hn/β. ut

5 Minimum Weighted Completion Time Scheduling

In the minimum weighted completion time scheduling problem, we are given a set
of n jobs N and m identical machines. Each job i ∈ N has a processing time pi

and a weight wi. The objective is to assign all n jobs to the m machines such
that the total weighted completion time

∑
i∈N wiCi is minimized.

In the cost sharing context, we define U := N as before, and let C be the
total weighted completion time of an optimal schedule. We show that the β-core
of this scheduling problem is empty for β < (n + 1)/2.

Theorem 4. Consider the 1-machine minimum completion time scheduling prob-
lem 1| |

∑
i Ci. There is no cost sharing method ξ that is in the β-core for any

β < (n + 1)/2.

Proof. Let U be a set of n jobs and define pi := 1 for each i ∈ U . Clearly,
the optimal cost for every singleton set {i}, i ∈ U , is C({i}) = 1. The β-core
property therefore implies that the cost share of i is at a most 1, i.e., ξ(i, S) ≤ 1
for all i ∈ S and for all S ⊆ U . On the other hand, C(S) = |S|(|S|+ 1)/2 for all
S ⊆ U .

The condition of β-cost recovery now implies that for every S ⊆ U

β ≥ C(S)∑
i∈S ξ(i, S)

≥
|S|(|S|+1)

2

|S|
=
|S|+ 1

2
.

ut

Since every β-budget balanced cross-monotonic cost sharing method is in the
β-core, this theorem implies the same lower bound for the budget balance factor
of cross-monotonic cost sharing methods for the 1-machine minimum completion
time scheduling problem. Remind that cross-monotonic and n-budget balanced
cost sharing methods trivially exist for these problems.

This result also carries over to all scheduling problems that are generaliza-
tions of the 1-machine minimum completion time scheduling problem, as e.g. the
minimum weighted flow time scheduling problem, and problems with additional
constraints such as release or due dates.

6 Conclusion

We proved that in many cases, efficiency is not approximable within less than
logarithmic factors even with the new approach of social cost. This reduces the
hope to find truly efficient cost sharing mechanisms, while on the other hand
allowing us to evaluate social cost approximation factors in terms of their highest
polylogarithmic power.

We studied cost sharing methods for the two cases of minimum makespan
and minimum completion time scheduling. Our results demonstrate that differ-
ent scheduling problems can behave very differently. While the completion time
setting raises the question of how to handle problems for which the here exam-
ined framework does not allow for any (reasonable) solutions, there are many
more scheduling problems that deserve to be studied.

References

1. A. Archer, J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Approx-
imation and collusion in multicast cost sharing. Games and Economic Behavior,
47(1):36–71, 2004.

2. A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In Proc.
of the 42nd Annual Sympos. on Foundations of Computer Science, pages 482–491.
IEEE Computer Society, 2001.

3. Y. Bleischwitz and B. Monien. Fair cost-sharing methods for scheduling jobs on
parallel machines. In Proc. of the 6th Int. Conf. on Algorithms and Complex-
ity, volume 3998 of Lecture Notes in Comput. Sci., pages 175–186, Berlin, 2006.
Springer.

4. S. Chawla, T. Roughgarden, and M. Sundararajan. Optimal cost-sharing mecha-
nisms for steiner forest problems. submitted to WINE.

5. J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Hardness results for
multicast cost-sharing. Theoretical Computer Science, 304:215–236, 2003.

6. J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast
transmissions. J. Comput. System Sci., 63(1):21–41, 2001. Special issue on internet
algorithms.

7. R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan. Optimization and approx-
imation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics, 5:287–326, 1979.

8. J. Green, E. Kohlberg, and J. J. Laffont. Partial equilibrium approach to the free
rider problem. Journal of Public Economics, 6:375–394, 1976.

9. A. Gupta, J. Könemann, S. Leonardi, R. Ravi, and G. Schäfer. An efficient cost-
sharing mechanism for the prize-collecting steiner forest problem. In ACM-SIAM
Sympos. on Discrete Algorithms. ACM Press, 2007. to appear.

10. A. Gupta, A. Srinivasan, and É. Tardos. Cost-sharing mechanisms for network
design. In Proc. of the Seventh Int. Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, 2004.

11. B. Heydenreich, R. Müller, and M. Uetz. Decentralization and mechanism design
for online machine scheduling. unpublished manuscript.

12. D. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS
Publishing Company, 1997.

13. N. Immorlica, M. Mahdian, and V. S. Mirrokni. Limitations of cross-monotonic
cost sharing schemes. In Proc. of the Sixteenth Annual ACM-SIAM Sympos. on
Discrete Algorithms, pages 602–611. ACM Press, 2005.

14. K. Jain and V. Vazirani. Applications of approximation algorithms to cooperative
games. In Proc. of the 33rd Annual ACM Sympos. on the Theory of Computing
(STOC), pages 364–372, 2001.

15. K. Kent and D. Skorin-Kapov. Population monotonic cost allocations on MSTs. In
Proc. of the 6th Int. Conf. on Operational Research (Rovinj, 1996), pages 43–48.
Croatian Oper. Res. Soc., Zagreb, 1996.

16. J. Könemann, S. Leonardi, and G. Schäfer. A group-strategyproof mechanism for
Steiner forests. In Proc. of the Sixteenth Annual ACM-SIAM Sympos. on Discrete
Algorithms, pages 612–619. ACM Press, 2005.

17. J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam. From primal-dual to
cost shares and back: a stronger LP relaxation for the Steiner forest problem. In
Automata, Languages and Programming, volume 3580 of Lecture Notes in Comput.
Sci., pages 930–942. Springer, Berlin, 2005.

18. A. Kovacs. Fast monotone 3-approximation algorithm for scheduling related ma-
chines. In Proc. of the 13th Annual European Sympos. on Algorithms, Lecture
Notes in Comput. Sci. Springer, 2005.

19. S. Leonardi and G. Schäfer. Cross-monotonic cost sharing methods for connected
facility location games. Theor. Comput. Sci., 326(1-3):431–442, 2004.

20. H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: budget
balance versus efficiency. Econom. Theory, 18(3):511–533, 2001.

21. N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic
Behavior, pages 166–196, 2001.

22. M. Pál and É. Tardos. Group strategyproof mechanisms via primal-dual algo-
rithms. In Proc. of the 44th Sympos. on the Foundations of Computer Science
(FOCS), pages 584–593, 2003.

23. R. Porter. Mechanism design for online real-time scheduling. In Proc. of the ACM
Conference on Electronic Commerce. ACM Press, 2004.

24. K. Roberts. The characterization of implementable choice rules. In J. J. Laffont,
editor, Aggregation and Revelation of Preferences. North-Holland, 1979.

25. T. Roughgarden and M. Sundararajan. New trade-offs in cost-sharing mechanisms.
In STOC, 2006.

26. T. Roughgarden and M. Sundararajan. Approximately efficient cost-sharing mech-
anisms. arXiv report, http://www.arxiv.org/pdf/cs.GT/0606127, June 2006.

