
A GROUP-STRATEGYPROOF COST SHARING MECHANISM FOR

THE STEINER FOREST GAME∗

JOCHEN KÖNEMANN† , STEFANO LEONARDI‡ , GUIDO SCHÄFER§ , AND STEFAN H.

M. VAN ZWAM¶

Abstract. We consider a game-theoretical variant of the Steiner forest problem in which each
player j, out of a set of k players, strives to connect his terminal pair (sj , tj) of vertices in an
undirected, edge-weighted graph G. In this paper we show that a natural adaptation of the primal-
dual Steiner forest algorithm of Agrawal, Klein and Ravi [When trees collide: An approximation
algorithm for the generalized Steiner problem in networks, SIAM Journal on Computing, 24(3):445–
456, 1995] yields a 2-budget balanced and cross-monotonic cost sharing method for this game.

We also present a negative result, arguing that no cross-monotonic cost sharing method can
achieve a budget balance factor of less than 2 for the Steiner tree game. This shows that our result
is tight.

Our algorithm gives rise to a new linear programming relaxation for the Steiner forest problem
which we term the lifted-cut relaxation. We show that this new relaxation is stronger than the
standard undirected cut relaxation for the Steiner forest problem.

1. Introduction. We consider the problem of devising a cost sharing mechanism
that is group-strategyproof and satisfies approximate budget balance for a natural
game-theoretic variant of the Steiner forest problem. In its most general form, the
game-theoretical setting that we consider in this paper can be described as follows.

We are given a service provider and a set R of potential players (or customers,
agents) that are interested in a service offered by the provider. Each player j in R has
a utility uj for receiving this service. We assume that uj is kept private, i.e., that it is
known only to player j. The service provider now solicits bids {bj}j∈R from all players
and based on these bids (i) determines a set Q ⊆ R of players that receive the service,
(ii) computes a solution to service all players in Q, and (iii) for each j ∈ Q fixes a price
xj that j has to pay for receiving the service. A cost sharing mechanism is simply a
strategy that the service provider uses to make these decisions. We assume that the
mechanism complies with the following three natural assumptions: (i) a player is not
charged more than his bid, (ii) a player is charged only if he receives service, and (iii)
a player is guaranteed to receive service if only his bid is large enough.

The total cost that is incurred to establish service for a player set Q ⊆ R is denoted
by c(Q). One objective that we wish to achieve is approximate budget balance. We
say that a cost sharing mechanism is α-budget balanced if

1

α
· c(Q) ≤

∑

j∈Q

xj ≤ optQ. (1.1)

The first inequality states that at least a fraction 1/α of the total cost c(Q) of servicing
the players in Q is recovered by the sum of the prices of the players in Q. The second

∗Partially supported by the EU within the 6th Framework Programme under contract 001907
(DELIS). Parts of this work appeared previously in [12] and [13].

† Department of Combinatorics and Optimization, University of Waterloo, 200 University Avenue
West, Waterloo, ON N2L 3G1, Canada. Email: jochen@uwaterloo.ca.

‡ Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Via Salaria 113,
00198 Roma, Italy. Email: leon@dis.uniroma1.it.

§Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin,
Germany. Email: schaefer@math.tu-berlin.de.

¶ Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O.
Box 513, 5600 MB, Eindhoven, The Netherlands. Email: svzwam@win.tue.nl.

1

inequality establishes fairness in that the sum of all prices is not allowed to exceed
the optimal cost of servicing the players in Q, denoted optQ. This second inequality
is often referred to as competitiveness. A cost sharing mechanism is budget balanced if
α = 1. Ideally we obtain cost sharing mechanisms that compute prices in polynomial
time and are budget balance. However, this is clearly impossible if the underlying
problem is NP-hard and we therefore resort to cost sharing mechanisms that are
approximately budget balanced.

Define the benefit of a player j to be uj − xj if j ∈ Q, and zero otherwise. We
assume that each player is selfish and may lie about his utility in order to maximize his
benefit. The task is to design a cost sharing mechanism that encourages players to bid
their true utility, that is, no player or group of players should be able to benefit from
lying about their utilities. A cost sharing mechanism is strategyproof if the dominant
strategy of each player is to bid his utility; it is said to be group-strategyproof if this
holds even if players are permitted to collude. More precisely, if, for any choice of
i ∈ Q′ ⊆ Q, the utility of a player i increases as a result of non-truthful behavior of
the players in Q′, then there is at least one other player j ∈ Q′ whose utility strictly
decreases.

In [14], Moulin and Shenker presented a powerful framework that reduces the
task of designing a group-strategyproof cost sharing mechanism for a game to that of
giving a cross-monotonic cost sharing method. In fact, Immorlica et al. [9] showed that
all group-strategyproof mechanism that satisfy a certain technical fairness condition
can be obtained using Moulin and Shenker’s framework. A cost sharing method ξ is
an algorithm that, given any subset Q ⊆ R of players, computes a solution to service
Q and for each j ∈ Q determines a non-negative cost share ξQ(j). Analogously to the
definition in (1.1), we say that ξ is α-budget balanced if

1

α
· c(Q) ≤

∑

j∈Q

ξQ(j) ≤ optQ.

A cost sharing method ξ is cross-monotonic if, for any two sets Q and S such that
Q ⊆ S, and any player j ∈ Q we have

ξS(j) ≤ ξQ(j).

In other words, the cost share of any player under the given cost sharing method does
not increase if the size of the player set increases.

Given a budget balanced and cross-monotonic cost sharing method ξ for a game,
the following cost sharing mechanism from [14] satisfies budget balance and group-
strategyproofness: Initially, let Q = R. If, for every player j ∈ Q, the cost share ξQ(j)
is less than or equal to his bid bj , stop. Otherwise, remove from Q all players whose
cost shares in Q are larger than their bids, and repeat. Eventually, let xj = ξQ(j)
be the prices that are charged to players in the final set Q. Jain and Vazirani [10]
later proved that the result of Moulin and Shenker also holds true if one considers
cross-monotonic cost sharing methods that are approximately budget balanced.

The underlying optimization problem that we consider in this context is the
Steiner forest problem. In this problem, we are given an undirected graph G = (V,E),
a non-negative cost function c : E → R

+ on the edges of G, and a set of k > 0 terminal
pairs R = {(s1, t1), . . . , (sk, tk)} ⊆ V × V . Each terminal pair (sj , tj), 1 ≤ j ≤ k, is
associated with a player j that wants to establish a connection between vertices sj

and tj . A feasible solution for terminal set R is a forest F ⊆ E such that vertices sj

2

and tj are in the same tree of F for all 1 ≤ j ≤ k. The objective is to find a feasible
solution of smallest total cost.

The Steiner tree problem is a special case of the Steiner forest problem in which
there is a root vertex r ∈ V and r ∈ {s, t} for all terminal pairs (s, t) ∈ R. In other
words the problem consists of a set of terminals R ⊆ V and a root vertex r ∈ V and
the goal is to connect the terminals in R to r in the cheapest possible way.

Previous Work. Computing minimum-cost Steiner trees and forests is NP-hard [7]
and APX-complete [4, 5] and therefore, neither of the two problems admits a poly-
nomial time approximation scheme unless P = NP. The best known algorithm for
the Steiner forest problem, due to Agrawal, Klein and Ravi [2] and generalized by
Goemans and Williamson [8], uses the primal-dual schema. The algorithms in [2, 8]
achieve an approximation ratio of (2− 1/k) and are both based on the classical undi-
rected cut formulation for the Steiner forest problem [3]. The integrality gap of this
relaxation is known to be (2 − 1/k) and the results in [2, 8] are therefore tight.

Despite the recent interest in computational game theory, examples of combina-
torial optimization problems that possess cross-monotonic cost sharing methods are
scarce: Moulin and Shenker [14] gave a cross-monotonic cost sharing method for prob-
lems whose optimal cost function is a submodular function of the set Q. However,
this condition does not hold for many important network design problems such as
Steiner trees and facility location.

The first cross-monotonic cost sharing method for the minimum-cost spanning
tree game is due to Kent and Skorin-Kapov [11]. Jain and Vazirani [10] presented
an alternative method that is based on the primal-dual spanning tree algorithm due
to Edmonds [6]; the authors then used this result to obtain a 2-budget-balanced,
cross-monotonic cost sharing method for the Steiner tree game. Pál and Tardos [15]
developed a 3-budget balanced cross-monotonic cost sharing method for the facility
location problem and a 15-budget balanced cross-monotonic cost sharing method for
the single-source rent-or-buy network design problem.

In most of the methods proposed so far to obtain approximate budget balanced
cross-monotonic cost sharing methods, the cost shares are closely related to a feasible
dual solution generated by the algorithm and therefore approximate budget balance is
an immediate consequence of the approximation guarantee achieved by the algorithm.

Immorlica, Mahdian and Mirrokni [9] showed that NP-hardness of the underlying
combinatorial optimization problem is not the only obstruction in achieving budget
balance. The authors provide lower bounds on the budget balance factor α of cross-
monotonic cost sharing methods for several problems. Among other results they prove
(maybe most surprisingly) lower bounds of Ω(n) and Ω(n1/3) for the budget balance
factor of the set cover and the vertex cover problems, respectively. The authors left
open the issue of finding a lower bound on the budget balance factor for the Steiner
tree problem.

Edmonds [6] proposed the bidirected cut relaxation for the Steiner tree problem.
It is a well-known fact that an integrality-gap of α for this formulation implies that no
(α− ǫ)-budget balanced cross-monotonic cost sharing method can exist for any ǫ > 0
(see also [9]). The worst example known for the integrality gap of the bidirected-cut
relaxation is due to Goemans (c.f. [1]) and shows a gap of 8/7.

Our Contribution. While the performance guarantee of 2 of primal-dual approx-
imation algorithms for the Steiner tree problem is matched by a 2-budget balanced
cross-monotonic cost sharing method [10], a similar result for the Steiner forest prob-
lem was elusive so far. This contrasts the optimization version of the problem where

3

primal-dual (2 − 1/k)-approximation algorithms exist for both problems [2, 8].

In this paper we present a cross-monotonic cost sharing method for the Steiner
forest problem that is 2-budget balanced. Our algorithm is a natural adaptation of
the primal-dual algorithm for computing Steiner forests due to Agrawal, Klein and
Ravi [2], which we will review in Section 2. We then show how a modification of this
algorithm turns it into a cross-monotonic cost sharing method in Sections 3 and 4.

An interesting byproduct of the work in this paper is that our Steiner forest
algorithm is (2 − 1/k)-approximate despite the fact that the forest computed by our
method is usually costlier than those computed by known primal-dual algorithms
in [2, 8]. Although we are able to prove that the cost shares computed by our algorithm
are 2-budget balanced they do not correspond to a feasible dual solution for any of
the known LP formulations of the Steiner forest problem. Obvious questions that
arise are: Is there an alternate Steiner forest LP formulation such that the cost shares
computed by our algorithm correspond to a feasible dual solution? If so, how does
this new LP relaxation relate to the standard undirected-cut LP relaxation?

We answer these questions by presenting in Section 5 a new LP relaxation for the
Steiner forest problem, the lifted-cut relaxation. The dual solution computed by our
algorithm is feasible for the dual linear program of the lifted-cut relaxation. We prove
that our new relaxation is stronger than the well-studied undirected cut relaxation
for the Steiner forest problem. There are instances for which the optimal objective
function value of our lifted-cut relaxation provides a much better approximation of
the optimal cost of a Steiner forest than the undirected cut relaxation.

Unfortunately, there exist instances that show that the LP/IP gap of the lifted-cut
relaxation is still nearly 2. For instances in which the lifted-cut relaxation is stronger
than the undirected cut relaxation we can, however, show that the additional strength
can be used to improve the performance guarantee of the existing primal-dual Steiner
forest algorithms in [2, 8]. The details are presented in Section 6.

A natural question is whether there is a cross-monotonic cost sharing method for
the Steiner tree and forest games that achieves a budget balance factor smaller than
2. We provide a negative answer to this question by showing (c.f. Section 7) that
there is no (2 − ǫ)-budget balanced cross-monotonic cost sharing method for Steiner
trees for any ǫ > 0. This proves that the cross-monotonic cost sharing method for
the Steiner tree game [10, 11] as well as our cross-monotonic cost sharing method
for the Steiner forest game are tight with respect to the budget balance factor. We
remark that our lower bound holds for any cross-monotonic cost sharing method for
the Steiner tree game, including those taking exponential time.

2. A Primal-Dual Algorithm for the Steiner Forest Problem. We review
the algorithm of Agrawal, Klein, and Ravi [2]. Subsequently, we use AKR to refer to
this algorithm. AKR is a primal-dual algorithm, that is, the algorithm constructs both
a feasible and integral primal and a feasible dual solution for a linear programming
formulation of the Steiner forest.

A standard integer programming formulation for the Steiner forest problem has a
binary variable xe for all edges e ∈ E: xe has value 1 if edge e is part of the resulting
forest and 0 otherwise. A subset U ⊆ V is a Steiner cut if it separates at least one
terminal pair in R. In other words, U is a Steiner cut iff there is a pair (s, t) ∈ R
with |{s, t} ∩ U | = 1. We use S to refer to the set of all Steiner cuts. For a subset
U ⊆ V we define δ(U) to be the set of all edges that have exactly one endpoint in
U . Consider a Steiner cut U ∈ S. Any feasible solution F for a given Steiner forest
instance must cross this cut at least once, i.e., |δ(U) ∩ F | ≥ 1. This gives rise to the

4

following integer programming formulation for the Steiner forest problem, to which
we refer as the undirected cut formulation:

optIP = min
∑

e∈E

c(e) · xe (IP)

s.t.
∑

e∈δ(U)

xe ≥ 1 ∀U ∈ S (2.1)

xe ∈ {0, 1} ∀e ∈ E

The dual of the linear programming relaxation (LP) of (IP) has a variable yU for each
Steiner cut U ∈ S. There is a constraint for each edge e ∈ E that limits the total
dual assigned to sets U ∈ S that contain exactly one endpoint of e to be at most the
cost c(e) of the edge.

optD = max
∑

U∈S

yU (D)

s.t.
∑

U∈S: e∈δ(U)

yU ≤ c(e) ∀e ∈ E (2.2)

yU ≥ 0 ∀U ∈ S

Algorithm AKR constructs a primal feasible solution for (IP) and a dual feasible solu-
tion for (D). The algorithm starts with an infeasible primal solution and reduces the
degree of infeasibility as it progresses. At the same time, it greedily creates a feasible
dual packing of subsets of large total value. The algorithm raises dual variables of a
laminar family of vertex subsets. The final dual solution is maximal in the sense that
no single set can be raised without violating a constraint of type (2.2).

We can think of an execution of AKR as a process over time. Let xτ and yτ ,
respectively, be the primal incidence vector and feasible dual solution at time τ . We
use F τ to denote the forest corresponding to xτ . Initially, x0

e = 0 for all e ∈ E
and y0

U = 0 for all U ∈ S. In the following, we say that an edge e ∈ E is tight if
the corresponding constraint (2.2) holds with equality. Assume that the forest F τ at
time τ is infeasible. We use F̄ τ to denote the subgraph of G that is induced by the
tight edges for dual yτ . In the following, we will also use the term moat to refer to
a connected component U of F̄ τ . A connected component U of F̄ τ is active at time
τ iff it separates at least one terminal pair, i.e., iff U ∈ S. Let Aτ be the set of all
connected components of F̄ τ that are active at time τ .

AKR raises the dual variables for all sets in Aτ uniformly at all times τ ≥ 0. We
say that moats U1 and U2 collide at time τ if

1. U1 and U2 are moats at some time τ ′ < τ , and
2. τ is the first time during the execution of the algorithm at which forest F̄ τ

contains a connected component containing the vertices of both U1 and U2.
If this happens, we add the edges on a shortest U1, U2-path to F τ and continue.

The following is the main result of [2]:
Theorem 2.1. Suppose that algorithm AKR outputs a forest F and a feasible dual

solution {yU}U∈S . Then

c(F) ≤

(

2 −
1

k

)

·
∑

U∈S

yU ≤

(

2 −
1

k

)

· optR,

where optR is the minimum-cost of a Steiner forest for the given input instance with
terminal set R.

5

s1 s2 s3 t3 t2 t1

2 1 1 1 2

Fig. 3.1. Distributing the dual growth of each moat U in AKR uniformly among U ’s active

terminals does not lead to a cross-monotonic cost sharing method.

3. A Cross-Monotonic Algorithm for the Steiner Forest Game. In this
section we use the ideas presented in the last section to develop a cross-monotonic
cost sharing method for the Steiner forest problem.

Consider a subset Q of players and let R be the corresponding set of terminal pairs.
Running AKR on this instance yields a feasible dual solution for (D) and Theorem 2.1
implies that its value is at least 1

2optR and at most optR.

Can we distribute the dual computed by AKR as cost shares over the players in Q?
A natural strategy goes as follows: at any time τ during the run of the algorithm, and
for any active moat U ∈ Aτ , distribute the increase in yU evenly among the players
in Q whose terminals are separated by U .

This strategy does not lead to a cross-monotonic cost sharing method as the
example instance in Figure 3.1 shows. In the figure, the edges are labeled by their
costs. The instance shown has 3 players and the terminal pair of player i ∈ Q =
{1, 2, 3} is (si, ti). Distributing the dual growth uniformly as proposed yields a cost
share of ξQ(1) = 3 for player 1. On the other hand, if player 3 leaves the game
and the set of remaining players is Q′ = {1, 2}, we have ξQ′(1) = 5/2, violating
cross-monotonicity.

The example above shows that the activity time of a terminal in AKR depends on
the presence of other terminals. We now present an adaptation of AKR (subsequently
referred to as KLS) that overcomes this problem.

Define the time of death d(s, t) for each terminal pair (s, t) ∈ R as

d(s, t) =
1

2
· c(s, t), (3.1)

where c(s, t) denotes the cost of the minimum-cost s, t-path in G. We assume for
ease of presentation that each vertex v ∈ V has at most one terminal on it. This
assumption is without loss of generality since we can replace each vertex in V by a
sufficient number of copies and link these copies by zero-cost edges. We extend the
death time notion to individual terminals and define d(s) = d(t) = d(s, t) for terminals
s, t ∈ R.1

Recall that AKR raises the dual variables for all sets in Aτ . As a consequence, yτ

is a feasible dual solution for (D) at all times τ ≥ 0. Using the notation introduced in
the previous section we obtain KLS by modifying the definition of Aτ . We say that a
connected component U of F̄ τ is active at time τ iff it contains at least one terminal
v ∈ U with death time at least τ , i.e., U is active at time τ iff there exists v ∈ U
with d(v) ≥ τ . KLS grows all active connected components in Aτ uniformly at all
times τ ≥ 0. Observe that in this way KLS also raises dual variables of connected

1Throughout this paper we slightly abuse notation by letting R refer to both the set of terminal
pairs and the set of terminal vertices.

6

components in Aτ that do not correspond to Steiner cuts. In what follows we denote
by N the set of all non-Steiner cuts, i.e.,

N = {U ⊆ V : U 6∈ S, U ∩ R 6= ∅}.

Furthermore, we let U = S ∪ N be the set of all Steiner and non-Steiner cuts.
What is the intuition behind this? Consider a terminal pair (s, t) ∈ R and imagine

running the primal-dual Steiner forest algorithm AKR on the instance consisting of
this terminal pair only. In this case, AKR grows two moats corresponding to s and t,
respectively, at all times τ ≤ d(s, t). At time d(s, t) the moats of s and t collide and a
shortest path connecting the terminals is added. In KLS a terminal pair (s, t) is active
for the time it would take s and t to connect in the absence of any other terminals.
Therefore, the activity time of s and t is independent of other terminal pairs. This
independence is the crucial property leading to cross-monotonicity.

Consider an arbitrary terminal pair (s, t) ∈ R. Observe that our choice of the
death time d(s, t) in (3.1) implies that s and t end up in the same connected component
of the final forest F . Therefore KLS constructs a feasible solution for the given Steiner
forest instance.

For a terminal v ∈ R and for τ ≤ d(v) we let Uτ (v) be the connected component
in F̄ τ that contains v. Also let aτ (v) be the number of terminals in Uτ (v) whose
death time is at least τ . We then define the cost share of terminal vertex v ∈ R as

ξR(v) =

∫ d(v)

τ=0

1

aτ (v)
dτ (3.2)

and we let ξR(s, t) = ξR(s) + ξR(t) for all (s, t) ∈ R.
The proof of the following theorem is the subject of Section 4.
Theorem 3.1. The cost shares ξ computed by KLS are cross-monotonic and

2-budget balanced.

4. Analysis. We denote the final forest produced by KLS(R) by F and use
{yU}U∈U for the dual computed by our method.

4.1. Proving Cross-Monotonicity. In order to prove the cross-monotonicity
of KLS we consider an arbitrary terminal pair (s, t) ∈ R and let R0 = R \ {(s, t)}. In
this section we study the effect of the removal of (s, t) on the cost shares of all other
terminal pairs (s′, t′) ∈ R0.

Let us first introduce some simplifying notation. Assume that KLS(R) terminates
at time τ∗ with forest F . Similarly, KLS(R0) finishes at time τ∗

0 with a forest F0.
Moreover, for all times τ we let Cτ and Cτ

0 be the sets of connected components of F̄ τ

and of F̄ τ
0 , respectively. The next lemma shows that Cτ

0 is a refinement of Cτ .
Lemma 4.1. For all times τ ≤ τ∗ and for all U0 ∈ Cτ

0 there must be a set U ∈ Cτ

such that U0 ⊆ U .
Proof. The proof is by induction on the time τ . It is clear that the claim is true

for τ = 0 since C0 = C0
0 = V . Consider a point in time 0 ≤ τ < τ∗ and assume that

the claim is true at time τ . KLS(R0) grows active sets in Cτ
0 and these are the only

sets that can potentially violate the claim at any time τ + ǫ for ǫ > 0. Let U0 ∈ Cτ
0 be

an active set at time τ in KLS(R0), i.e., there exists a terminal v ∈ U0 with d(v) ≥ τ .
From the induction hypothesis we know that there is a connected component U of
Cτ that contains U0. Then U must be active in KLS(R) at time τ and hence KLS(R)
grows U at time τ . The claim follows.

7

Lemma 4.1 immediately implies cross-monotonicity. Let ξ(v) and ξ0(v) be the
cost share of terminal v ∈ R0 in KLS(R) and in KLS(R0), respectively.

Corollary 4.2. Algorithm KLS is cross-monotonic, i.e., for each v ∈ R0 we
have

ξ0(v) ≥ ξ(v).

Proof. Let Uτ (v) and Uτ
0 (v) be the moats containing terminal v at time τ in

KLS(R) and KLS(R0), respectively. Similarly, let aτ (v) and aτ
0(v) be the number of

terminals with death time at least τ in Uτ (v) and Uτ
0 (v). Lemma 4.1 implies that

Uτ
0 (v) ⊆ Uτ (v) and hence aτ

0(v) ≤ aτ (v) for all τ ≤ τ∗ and for all v ∈ R0. Hence we
obtain

ξ(v) =

∫ d(v)

τ=0

1

aτ (v)
dτ ≤

∫ d(v)

τ=0

1

aτ
0(v)

dτ = ξ0(v)

for all v ∈ R0 and the corollary follows.

4.2. Proving Approximate Budget Balance. We first prove that the cost
shares computed by KLS satisfy approximate cost recovery.

Lemma 4.3. Suppose that algorithm KLS outputs a forest F and a dual solution
{yU}U∈U . We then have

c(F) ≤ 2 ·
∑

U∈U

yU = 2 ·
∑

(s,t)∈R

ξR(s, t). (4.1)

Proof. Using Definition (3.2) it can then be seen that the cost share sum on the
right-hand side of (4.1) increases by ǫ whenever the total dual value increases by ǫ for
some ǫ > 0. Hence we must have

∑

(s,t)∈R ξR(s, t) =
∑

U∈U yU .

We next prove that c(F) ≤ 2 ·
∑

U∈U yU . We construct a new instance of the
Steiner forest problem as follows. For each terminal v ∈ R, introduce a new terminal
pair (ṽ, ṽ′) and edges (v, ṽ) with c(v, ṽ) = 0 and (ṽ, ṽ′) with c(ṽ, ṽ′) = 2d(v). Run
the algorithm AKR on the set of terminal pairs R̃ ∪ R where R̃ = {(ṽ, ṽ′) : v ∈ R}.
We denote by S̃ the set of all Steiner cuts in this new problem, and we use Ẽ for
the set of only the new edges. Since the edge (v, ṽ) will go tight at time τ = 0, the
component containing v will be active for precisely the same amount of time as in
the run of KLS, so we can convert the dual constructed by AKR on the new problem
to the dual constructed by KLS, and vice versa. Let {yAKRU }U∈S̃ and {yKLSU }U∈U be the
dual solutions computed by AKR and KLS, respectively. Since the new edges do not
become tight before the death time of a vertex v, the solution computed by AKR, when
restricted to the original graph, must be equal to the solution computed by KLS. By
Theorem 2.1 the solution returned for this new problem is within a factor 2 of the
optimal solution for this problem. Using this, we see

∑

e∈E∪Ẽ

c(e)xe =
∑

e∈E

c(e)xe +
∑

e∈Ẽ

c(e)xe

≤ 2
∑

U∈S̃

yAKRU = 2
∑

U∈S∪N

yKLSU + 2
∑

v∈R

yAKR{ṽ′}.

8

Furthermore, we know that edge (ṽ, ṽ′) is added exactly at time c(ṽ, ṽ′)/2. Hence
∑

e∈Ẽ

c(e)xe = 2
∑

v∈R

yAKR{ṽ′}.

The lemma follows immediately since c(F) =
∑

e∈E c(e)xe.

We remark that Lemma 4.3 does not imply that the cost c(F) of forest F produced
by our cost sharing method is at most twice that of an optimal Steiner forest. In fact,
{yU}U∈U is not a feasible solution for (D) since our algorithm raises duals for active
sets that correspond to non-Steiner cuts U ∈ N .2 Surprisingly however, we can show
that the total dual

∑

U∈U yU is bounded by the cost optR of an optimal Steiner forest
for the given instance on terminal set R.

Lemma 4.4. Let {yU}U∈U be the dual computed by KLS(R) and let optR be the
minimum-cost of any feasible Steiner forest for the given instance. We have

∑

U∈U

yU ≤ optR.

Lemma 4.3 and 4.4 imply the following corollary on the approximate budget
balance of KLS.

Corollary 4.5. Let F be the Steiner forest computed by KLS(R). We then have

1

2
· c(F) ≤

∑

(s,t)∈R

ξR(s, t) ≤ optR.

It remains to prove Lemma 4.4.

4.3. A Proof of Lemma 4.4. Recall the definition of the death time d(s, t) of
a terminal pair (s, t) ∈ R. In the following, let

R = {(s1, t1), . . . , (sk, tk)}

such that

d(s1, t1) ≤ . . . ≤ d(sk, tk).

We define a precedence order ≺ on R by letting (si, ti) ≺ (sj , tj) iff i ≤ j. We extend
this order to terminal vertices by letting

s1 ≺ t1 ≺ s2 ≺ t2 ≺ . . . ≺ sk ≺ tk.

For ease of notation we assume that v ≺ v for all v ∈ R.
Let Uτ be an active connected component in KLS(R) at some time τ ≥ 0. A

terminal vertex v ∈ Uτ is responsible for the growth of Uτ iff there does not exist a
terminal u ∈ Uτ different from v with v ≺ u. This way, each active moat in KLS has
a unique responsible terminal vertex. For a terminal vertex v ∈ R and a time τ ≥ 0,
let rτ (v) = 1 if v is responsible at time τ and rτ (v) = 0 otherwise. We then define
the responsibility time of a terminal v ∈ R as

r(v) =

∫ d(v)

τ=0

rτ (v) dτ. (4.2)

2Observe, however, that the projection of y on the set of Steiner cuts is feasible for (D).

9

As before we let Uτ (v) be the connected component of F̄ τ containing terminal
v ∈ R. We can show that a terminal v ∈ R is responsible for a unique moat at all
times 0 ≤ τ ≤ r(v).

Claim 4.6. Let v ∈ R be a terminal and let r(v) be its responsibility time. Then,
v is responsible for Uτ (v) in KLS(R) for all 0 ≤ τ < r(v).

Proof. Assume for the sake of contradiction that there is a point of time τ ∈
[0, r(v)) such that v is not responsible for U = Uτ (v). Since U is active, we know that
there must be a terminal u ∈ U that is responsible. We therefore must have v ≺ u
and also d(v) ≤ d(u). Since u and v are contained in the same active moat in KLS at
time τ , this means that v cannot be responsible after time τ and hence r(v) < τ ; a
contradiction.

Definition (4.2) also implies that

∑

U∈U

yU =
∑

v∈R

r(v) (4.3)

and hence it suffices to bound the sum on the right-hand side in order to prove Lemma
4.4.

Let F ∗ be a minimum-cost Steiner forest for the given instance with terminal
set R. Consider a tree T in F ∗ and suppose that T connects the terminals R(T) =
{v1, . . . , vp}. We let Rτ (T) be the set of terminal vertices in R(T) that are responsible
at time τ , i.e.,

Rτ (T) = {v ∈ R(T) : rτ (v) = 1}.

The following claim shows that at any time τ the moats in

Uτ (T) = {Uτ (v) : v ∈ Rτ (T)}

are pairwise disjoint.
Claim 4.7. Consider a point of time τ and two terminal vertices u, v ∈ Rτ (T),

u 6= v. The two moats Uτ (u) and Uτ (v) must be disjoint.
Proof. Assume for the sake of contradiction that Uτ (u) and Uτ (v) are not disjoint.

Since both Uτ (u) and Uτ (v) are connected components of F̄ τ it must therefore be
the case that Uτ (u) = Uτ (v). Claim 4.6 implies that both u and v are responsible for
this moat and hence, we must have u = v. This contradicts our choice of u and v.

The example in Figure 4.1 shows three terminal pairs (s1, t1), (s2, t2) and (s3, t3)
that are connected by a tree T in an optimal solution F ∗. The figure shows a snapshot
of algorithm KLS at some time τ > 0. At this time, five of the terminals are responsible:
Rτ (T) = {s1, s2, s3, t1, t3} (assuming that t2 ≺ s1). Consequently, Claim 4.7 implies
that the five moats Uτ (s1), U

τ (s2), U
τ (s3), U

τ (t1) and Uτ (t3) are pairwise disjoint.
But this means that each of the moats has a non-empty intersection with T and
therefore, we can charge their dual growth in the algorithm to the cost c(T) of tree
T .

Let w ∈ R(T) be the terminal vertex with highest responsibility time among
all terminals spanned by tree T . Then, for all terminals vi ∈ R(T) \ {w} and for
all 0 ≤ τ ≤ r(vi), Claim 4.7 implies that the moats Uτ (w) and Uτ (vi) are disjoint.
Therefore,

∑

vi∈R(T)\{w}

r(vi) ≤ c(T).

10

τ

s1

t2

t3

s2

s3

t1

Fig. 4.1. Snapshot of algorithm KLS at some time τ > 0.

On the other hand, r(w) must be at most d(w) which in turn is at most c(T)/2 and
hence, the last inequality implies that

p
∑

i=1

r(vi) ≤
3

2
c(T).

In the remainder of this section, we will strengthen the above argument in order
to prove Lemma 4.4.

Lemma 4.8. If δ(Uτ (w)) ∩ T 6= ∅ for all 0 ≤ τ < r(w) then we must have

∑

v∈R(T)

r(v) ≤ c(T).

Proof. Consider any point of time τ ≥ 0 where there are at least two terminals in
R(T) that are responsible, i.e., |Rτ (T)| > 1. By Claim 4.7 we have that the moats in
Uτ (T) are pairwise disjoint. On the other hand, the vertices in Rτ (T) are connected
by T and hence, each of the moats in Uτ (T) loads a distinct part of the edges of T ;
see Figure 4.1.

Consider now a time τ where |Rτ (T)| = 1. It must be the case that w is the
only remaining responsible terminal among the vertices in R(T), i.e., Rτ (T) = {w}.
By assumption, Uτ (w) loads at least one edge of T . This concludes the proof of the
lemma.

Recall that T is a tree in an optimal Steiner forest F ∗ and that T spans terminals
R(T) ⊆ R. Furthermore, terminal w ∈ R(T) has highest responsibility time among
all terminals spanned by T . In the following, let w̄ be the mate of w, i.e., (w, w̄) ∈ R.
From now on we will assume that there is a time τ0 ∈ [0, r(w)) such that δ(Uτ0(w))∩
T = ∅ and hence T ⊆ E(Uτ0(w)), where E(Uτ0(w)) denotes the subset of those edges
in E that have both endpoints in Uτ0(w). We also must have |Rτ (T)| = 1 for all
τ ∈ [τ0, r(w)) since all vertices of R(T) are in the same connected component of F̄ τ .
Furthermore, since w is responsible until time r(w) we must have Rτ (T) = {w} for
all τ ∈ [τ0, r(w)) and thus u ≺ w and u ≺ w̄ for all u ∈ R(T) \ {w, w̄}.

Let Pww̄ be the unique w, w̄-path in T . We define Iτ (T) as the set of responsible
terminal pairs in Rτ (T)\{w, w̄} that inflict dual load on path Pww̄ in KLS(R) at time

11

τ , i.e.,

Iτ (T) = {v ∈ Rτ (T) \ {w, w̄} : δ(Uτ (v)) ∩ Pww̄ 6= ∅}.

Claim 4.9. Consider a point in time τ and a terminal v ∈ Iτ (T). Then Uτ (v)
contains neither w nor w̄.

Proof. By definition of Iτ (T), we know that v 6∈ {w, w̄}. We also know that v ≺ w
and v ≺ w̄. The claim follows as v is responsible for Uτ (v) and hence {w, w̄}∩Uτ (v) =
∅.

For a time τ and a vertex v ∈ Iτ (T), let pτ
ww̄(v) be the number of intersections

of Pww̄ and Uτ (v) at time τ :

pτ
ww̄(v) = |δ(Uτ (v)) ∩ Pww̄|. (4.4)

We use slww̄ to denote the cost of that part of Pww̄ that does not feel any dual load
from any of the terminals in R(T). Let lw and lw̄ be the total load on Pww̄ coming
from terminals w and w̄, respectively. We can then express the cost of Pww̄ as

c(Pww̄) = lw + lw̄ + slww̄ +

∫ τ0

0

∑

v∈Iτ (T)

pτ
ww̄(v) dτ. (4.5)

We obtain the following lemma.
Lemma 4.10. If there is a τ0 ∈ [0, r(w)) with δ(Uτ0(w)) ∩ T = ∅ then we must

have
∑

v∈R(T)

r(v) ≤ c(T).

Proof. Similar to the proof of Lemma 4.8, consider a time τ < r(w) where Rτ (T)
contains more than one terminal. The corresponding moats in Uτ (T) are pairwise
disjoint by Claim 4.7 and the vertices in Rτ (T) are connected by T . Hence, each
of the moats in Uτ (T) loads a distinct part of T . Moreover, using the definition of
pτ

ww̄(v) in (4.4), for all τ ∈ [0, τ0) and v ∈ Iτ (T) moat Uτ (v) loads at least pτ
ww̄(v)

edges of T .
Recall that slww̄ is the cost of the segments of Pww̄ that do not feel any load

from terminals in R(T). Furthermore, w loads edges of T until time τ0 and hence we
must have

c(T) ≥ τ0 + slww̄ +

∫ τ0

0

∑

v∈Iτ (T)

(pτ
ww̄(v) − 1) dτ +

∑

v∈R(T)\{w}

r(v). (4.6)

Observe that for all τ ∈ [0, τ0) and v ∈ Iτ (T), we account a total contribution of
pτ

ww̄(v): pτ
ww̄(v) − 1 in the first and 1 in the second sum, respectively.

The death time of vertex w is at most half of the cost of Pww̄. Using (4.5) we
therefore obtain

r(w) ≤
lw + lw̄

2
+

slww̄

2
+

1

2
·

∫ τ0

0

∑

v∈Iτ (T)

pτ
ww̄(v) dτ

≤ τ0 + slww̄ +

∫ τ0

0

∑

v∈Iτ (T)

(pτ
ww̄(v) − 1) dτ, (4.7)

12

where the second inequality uses the fact that max{lw, lw̄} ≤ τ0 and that by Claim 4.9,
pτ

ww̄(v) ≥ 2 for all v ∈ Iτ (T). Combining (4.6) and (4.7) yields the lemma.
We can now sum over all trees T in the forest F ∗. Lemmas 4.8 and 4.10 together

with (4.3) imply that

∑

U∈U

yU =
∑

v∈R

r(v) =
∑

T∈F∗

∑

v∈R(T)

r(v) ≤
∑

T∈F∗

c(T) = optR.

This finishes the proof of Lemma 4.4.

5. Lifted-Cut LP Relaxation for the Steiner Forest Problem. Recall that
without loss of generality we let

R = {(s1, t1), . . . , (sk, tk)}

such that

d(s1, t1) ≤ . . . ≤ d(sk, tk).

As before we define a precedence order ≺ on R by letting (si, ti) ≺ (sj , tj) iff i ≤ j
and we extend this order to terminal vertices by letting

s1 ≺ t1 ≺ s2 ≺ t2 ≺ . . . ≺ sk ≺ tk. (5.1)

We assume that v ≺ v for all v ∈ R.
Let R(U) be the set of terminal pairs in R that are separated by a Steiner cut

U ∈ S, i.e., R(U) = {(s, t) ∈ R : |{s, t} ∩ U | = 1}. Consider a terminal v and let v̄
be v’s mate in the Steiner forest instance, i.e., (v, v̄) ∈ R. We let Sv ⊆ S be the set
of Steiner cuts that separate v and v̄ and for which (v, v̄) is the highest ranked such
terminal pair:

Sv = {U ∈ S : v ∈ R(U), u ≺ v for all u ∈ R(U)}. (5.2)

We also let Nv ⊆ N be the set of all non-Steiner cuts containing v and v̄ where (v, v̄)
is the terminal pair of highest rank:

Nv = {U ∈ N : {v, v̄} ⊆ U ∩ R, (u, ū) ≺ (v, v̄) for all (u, ū) ∈ U ∩ R}.

Recall that we define U = S ∪ N as the set of all Steiner and non-Steiner cuts. We
then say that a terminal v ∈ R is responsible for a cut U ∈ U if U ∈ Sv ∪Nv. Observe
that for a non-Steiner cut U ∈ N two terminals are responsible. Also note that the
responsibility notion introduced here differs from the one that was used in Section 4
in that a terminal can only be responsible for a Steiner cut if the cut separates it from
its mate.

The dual of the lifted-cut relaxation for the Steiner forest problem is as follows:

optLC-D = max
∑

U∈U

yU (LC-D)

s.t.
∑

U∈U : e∈δ(U)

yU ≤ c(e) ∀e ∈ E (5.3)

∑

U∈Sv

yU +
∑

U∈Nv

yU ≤ d(v) ∀v ∈ R (5.4)

yU ≥ 0 ∀U ∈ U .

13

Notice that a feasible solution to (LC-D) may assign positive values to non-Steiner
cuts U ∈ N . The constraints of type (5.4) are necessary as the objective function
value of (LC-D) would be unbounded in their absence.

The linear programming dual of (LC-D) has variables xe for every edge e ∈ E
and variables xv for every terminal v ∈ R:

optLC-P = min
∑

e∈E

c(e) · xe +
∑

v∈R

d(v) · xv (LC-P)

s.t.
∑

e∈δ(U)

xe + xv ≥ 1 ∀U ∈ Sv, ∀v ∈ R (5.5)

∑

e∈δ(U)

xe + xv + xv̄ ≥ 1 ∀U ∈ Nv, ∀v ∈ R (5.6)

xe, xv ≥ 0 ∀e ∈ E, ∀v ∈ R.

Lemma 5.1. Let {xe, xv}e∈E,v∈R be an integral solution that is feasible for
(LC-P). Then there is a feasible Steiner forest of cost at most

∑

e∈E

c(e) · xe +
∑

v∈R

d(v) · xv.

Proof. Given {xe, xv}e∈E,v∈R, define F = {e ∈ E : xe = 1}. The total cost c(F)
of F is

∑

e∈E c(e) · xe. F is not necessarily a feasible Steiner forest since there might
exist a Steiner cut U ∈ S with no crossing edge, i.e., δ(U) ∩ F = ∅. Let U ∈ Sv

be such a set and let v̄ be the mate of v. Constraint (5.5) for U and v implies that
xv = 1 in this case. Next consider the complement Ū = V \ U . It can be seen that
v̄ is responsible for Ū and hence, Ū ∈ Sv̄. As no edge crosses Ū , constraint (5.5)
for Ū and v̄ implies that xv̄ = 1. Therefore, we can add all edges along the shortest
v, v̄-path to F at a cost of at most 2d(v, v̄). Observe that this addition is sufficient to
satisfy all Steiner cuts in Sv, so we only need to add this path once for v and v̄. We
can therefore repeat this procedure for all remaining terminals v ∈ R for which there
exists a Steiner cut U ∈ Sv that is not crossed by F . The total cost in this solution
incurred by the additional paths is not more than

∑

v∈R d(v) · xv, which completes
the proof.

In the remainder of this section we prove the following theorem:
Theorem 5.2. The objective value of an optimal solution to the lifted-cut relax-

ation (LC-P) is at most the cost of any feasible Steiner forest for the given instance.
The dual linear program (LC-D) is stronger than the well-known undirected-cut relax-
ation for the Steiner forest problem. Moreover, the dual solution computed by KLS is
feasible for (LC-D). There exist instances for which the IP/LP gap is about 2.

The following lemma relates the cost of any feasible solution for the given Steiner
forest instance to the objective function value of an optimal solution for (LC-P).

Lemma 5.3. Let F be a feasible solution for the underlying Steiner forest instance.
We can then construct a half-integral solution {xe, xv}e∈E,v∈R that is feasible for (LC-
P) and satisfies:

∑

e∈E

c(e) · xe +
∑

v∈R

d(v) · xv ≤ c(F).

In particular, this implies that opt
LC-P

≤ optR.

14

Proof. Let T be a tree in F . We use E(T) and V (T) to refer to the edges and
vertices of T , respectively. We construct a solution {xe, xv}e∈E,v∈R that is feasible
for (LC-P) and show that for each tree T ∈ F

∑

e∈E(T)

c(e) · xe +
∑

v∈R∩V (T)

d(v) · xv ≤ c(T).

The lemma then follows by summing over all trees in F .
Consider a tree T ∈ F . Let (w, w̄) be the terminal pair such that w and w̄ are

responsible for the non-Steiner cut V (T). Moreover, let Pww̄ denote the unique w, w̄-
path in T . We set xe = 1/2 for each edge e ∈ E(Pww̄) and xe = 1 for each edge
e ∈ E(T) \E(Pww̄). Moreover, we assign xw = xw̄ = 1/2 and xv = 0 for all terminals
v ∈ (R∩V (T))\{w, w̄}. By definition (3.1) of death time, d(w, w̄) ≤ c(Pww̄)/2. Thus,
the objective value for x on T is

∑

e∈E(T)

c(e) · xe +
∑

v∈R∩V (T)

d(v) · xv = c(T) −
c(Pww̄)

2
+ d(w, w̄) ≤ c(T).

It remains to be shown that x is feasible for (LC-P). We show for each tree T in
F and for all v ∈ R ∩ V (T) that x satisfies the cut-requirements of constraints (5.5)
and (5.6) for sets U ∈ Sv ∪Nv.

Consider a cut U ∈ Sv for some v ∈ R ∩ V (T). If v ∈ {w, w̄}, constraint (5.5)
holds since U intersects Pww̄ and xv = 1/2. Now let v /∈ {w, w̄}. As U ∈ Sv and
v ≺ w, by assumption, it follows that either {w, w̄} ⊆ U or {w, w̄} ∩ U = ∅. We also
have v̄ 6∈ U . As T connects v and v̄, it can be seen that U either intersects at least
one edge e of T that is not on Pww̄ (and hence xe = 1) or it intersects at least two
edges e1 and e2 on Pww̄ (and therefore xe1

= xe2
= 1/2). Thus, constraint (5.5) holds

in this case as well.
Next consider a non-Steiner cut U ∈ Nv for terminal v ∈ R∩V (T). If v 6∈ {w, w̄}

then {w, w̄} ∩ U = ∅ and U crosses at least one edge of T that is not on Pww̄ or at
least two edges of Pww̄. Hence constraint (5.6) holds. Otherwise, U may cross no
edge of T but xw + xw̄ = 1 and thus (5.6) is satisfied.

Running algorithm KLS on terminal set R yields a cost share ξR(s, t) for all (s, t) ∈
R. It also returns a dual solution {yU}U∈U such that

∑

(s,t)∈R ξR(s, t) =
∑

U∈U yU . It

is easy to verify that y is feasible for (LC-D). Lemma 5.3 therefore yields an alternate
proof of the competitiveness of KLS:

Corollary 5.4. ξ satisfies competitiveness, i.e.,

∑

(s,t)∈R

ξR(s, t) =
∑

U∈U

yU ≤ opt
LC-D

= opt
LC-P

≤ optR.

The next lemma shows that (LC-D) is at least as strong as the standard LP dual
(D).

Lemma 5.5. Let {yU}U∈S be a feasible dual solution for (D). Then there is a
feasible dual solution {y′

U}U∈U for (LC-D) with

∑

U∈S

yU ≤
∑

U∈U

y′
U .

This implies that opt
D
≤ opt

LC-D
.

15

Proof. Let y be a feasible solution for (D). The sets Sv for terminals v ∈ R form
a partition of S: S =

⋃

v∈R Sv. We define a candidate dual solution y′ for (LC-D) as
follows: for a set U ∈ S, let Ū ∈ S be its complement and define

y′
U = y′

Ū =
yU + yŪ

2
.

Let y′
U = 0 for all non-Steiner cuts U ∈ N .

We claim that y′ satisfies all constraints of type (5.3). To see this, consider an
edge e ∈ E and observe that

∑

U∈S:e∈δ(U)

y′
U =

∑

U∈S:e∈δ(U)

yU + yŪ

2
=

∑

U∈S:e∈δ(U)

yU

where the last equality uses the fact that U is a Steiner cut if and only if its complement
is. The dual feasibility of y for (D) shows that y′ satisfies (5.3).

We will now show that y′ also satisfies all constraints of type (5.4). Assume for
the sake of contradiction that y′ violates constraint (5.4) for some terminal v ∈ R.
We then have

∑

U∈Sv

y′
U +

∑

U∈Nv

y′
U =

∑

U∈Sv

y′
U > d(v) = c(Pvv̄)/2. (5.7)

where c(Pvv̄) is the cost of a minimum-cost v, v̄-path in G.
Consider a Steiner cut U ∈ S and observe that U and its complement Ū separate

the same set of terminal pairs. Therefore, U ∈ Sv iff Ū ∈ Sv̄ for a terminal pair
(v, v̄) ∈ R and thus,

∑

U∈Sv

y′
U =

∑

U∈Sv

yU + yŪ

2
=

∑

U∈Sv̄

y′
U . (5.8)

Together with (5.7), this implies that

∑

U∈Sv

y′
U +

∑

U∈Sv̄

y′
U > c(Pvv̄).

On the other hand, adding the constraints of type (2.2) for all edges e ∈ E(Pvv̄) yields

∑

U∈Sv

y′
U +

∑

U∈Sv̄

y′
U ≤

∑

U∈S

|δ(U) ∩ Pvv̄| · yU =
∑

e∈E(Pvv̄)

∑

U∈S: e∈δ(U)

yU ≤ c(Pvv̄),

and this is a contradiction.
The dual of the lifted-cut relaxation is stronger than the standard LP dual (D).
Lemma 5.6. There exist instances for which optD < opt

LC-D
.

Proof. Consider a cycle of 2n vertices with unit edge costs. Let V = {v1, . . . , v2n}
and define R = {(v1, vj)}2≤j≤2n. The cost of an optimal solution is optR = 2n − 1.

We define a dual solution as follows: y{v} = 1/2 for each v ∈ V and yU = 0 for
all other sets U ∈ S. Clearly, {yU}U∈S is a feasible solution to (D). It can easily be
verified that this is an optimal solution for (D): If we set xe = 1/2 for each edge e of
the cycle, we obtain a feasible solution for the LP relaxation (LP) having the same
objective function value. Thus, optD = n.

16

For (LC-D) on the other hand, we can define a dual solution y′
{v} = 1/2 for each

v ∈ V , y′
V = n/2 − 1/2, and y′

U = 0 for all other sets U ∈ U . It is easy to verify that
y′ is a feasible solution for (LC-D). We conclude that

optLC-D ≥
∑

U∈U

y′
U =

3n

2
−

1

2
.

The latter term is strictly larger than n if n > 1.
Unfortunately, as with the undirected cut formulation for the Steiner forest prob-

lem, the IP/LP gap of the lifted-cut relaxation is close to 2 for certain instances.
Lemma 5.7. There exist instances for which optR/opt

LC-P
= 2 − 2/(k + 1),

where k is the number of terminal pairs.
Proof. Consider a clique Kn with vertices V = {v1, v2, . . . , vn} and unit edge

costs. Define R = {(v1, vj)}2≤j≤n. Without loss of generality, let (w, w̄) = (v1, v2) be
the highest ranked terminal pair among all terminal pairs in R.

Consider path P = (v2, v3, . . . , vn, v1) spanning all vertices of Kn. The following
is a feasible solution for (LC-P): set xw = xw̄ = 1/2 and xv = 0 for all v ∈ V \{w, w̄},
set xe = 1/2 for all edges e ∈ E(P) and xe = 0 for all edges e /∈ E(P). This solution
satisfies constraints (5.5) and (5.6). The objective function value for x is n/2. Next
consider the following dual solution. Let y{v} = 1/2 for all v ∈ V and yU = 0 for all
other U ∈ U . Then y satisfies constraints (5.3) and (5.4). The objective value of y is
n/2 and thus x and y are optimal solutions to (LC-P) and (LC-D), respectively.

Clearly, the optimal solution optR has cost n − 1. The ratio between optR and
optLC-D is 2 − 2/n. Since k = n − 1 the lemma follows.

6. Algorithmic Consequences of the Lifted-Cut Relaxation. In this sec-
tion we show that, for some instances of the Steiner forest problem, we can use the
additional strength of the lifted-cut relaxation in order to prove that algorithm AKR

returns a Steiner forest of cost strictly less than (2 − 1/k)optR.
Consider an instance of the Steiner forest problem with terminal set R. Assume

that algorithm AKR, when executed on this instance, finishes at time τ∗ ≥ 0 with forest
F and feasible dual solution {yU}U∈S . Let U1, . . . , Up be the connected components
of F̄ τ∗

and define Ri ⊆ R to be the set of terminal pairs contained in Ui, for all
1 ≤ i ≤ p. Further let (si, ti) be the terminal pair in Ri of highest rank according to
the precedence order ≺ defined in (5.1), i.e.,

(s, t) ≺ (si, ti)

for all (s, t) ∈ Ri and for all 1 ≤ i ≤ p. For 1 ≤ i ≤ p, we now define the combined
slack sli of the constraints (5.4) for the terminal vertices si and ti with respect to
dual solution y:

sli = 2d(si, ti) −
∑

U∈Ssi
∪Sti

yU .

Let slR = max1≤i≤p sli be the slack of the given instance of the Steiner forest
problem.

Theorem 6.1. The forest F returned by AKR for an instance of the Steiner forest
problem with terminal pairs R has cost at most

(

2 −
1

k

) (

Y

Y + slR/2

)

optR

17

where Y is the objective function value of the dual computed by AKR.
Proof. From the proof of Lemma 5.5 (see (5.8)) we know that we may assume

w.l.o.g. that y is symmetric, i.e., we may assume that

∑

U∈Ss

yU =
∑

U∈St

yU

for all (s, t) ∈ R.
We observe that the proof of Lemma 5.5 works for any fixed precedence order ≺

on R; in particular, at no point in the proof of this lemma do we use the fact that
(s, t) ≺ (s′, t′) implies d(s, t) ≤ d(s′, t′).

Choose 1 ≤ q ≤ p such that slq = max1≤i≤p sli. We will now define an alterna-
tive order ≺′ on R in which the terminal pairs in Rq have highest rank. The order
on terminal pairs in R \ Rq and the order within Rq is that induced by ≺. Formally,
consider two terminal pairs (s, t), (s′, t′) ∈ R. We let (s, t) ≺′ (s′, t′) iff

• (s, t) ≺ (s′, t′) and either {(s, t), (s′, t′)} ⊆ R \ Rq or {(s, t), (s′, t′)} ⊆ Rq, or
• (s, t) ∈ R \ Rq and (s′, t′) ∈ Rq.

Similar to the definition of Sv in (5.2) we let S ′
v be the set of Steiner cuts that separate

v and its mate v̄ and for which (v, v̄) has highest ≺′-rank among all such terminal
pairs. The definition of ≺′ implies that (s, t) ≺ (s′, t′) if and only if (s, t) ≺′ (s′, t′)
for all {(s, t), (s′, t′)} ⊆ Ri for all 1 ≤ i ≤ p. Therefore, we also must have

∑

U∈Sv

yU =
∑

U∈S′

v

yU

for all terminals v ∈ R. Specifically, this and the symmetry of y imply that

∑

U∈S′

sq

yU +
∑

U∈Nsq

yU ≤ d(sq, tq) −
slq

2

∑

U∈S′

tq

yU +
∑

U∈Ntq

yU ≤ d(sq, tq) −
slq

2

where Nsq
= Ntq

and yU = 0 for all U ∈ Nsq
. Finally notice that V ∈ Nsq

as (sq, tq)
is the highest ranked terminal pair in R under ≺′. We now let y′

U = yU for all Steiner
cuts U ∈ S and we define y′

V = slq/2. It is not hard to see that y′ is feasible for the
lifted-cut dual (LC-D) for the given instance of the Steiner forest problem.

In the following, we use Y as a short for
∑

U∈S yU . We then have

(

1 +
slR

2Y

)

· Y = y′
V +

∑

U∈S

y′
U ≤ optR

and this together with Theorem 2.1 implies

c(F) ≤

(

2 −
1

k

)

· Y ≤

(

2 −
1

k

)(

Y

Y + slR/2

)

optR.

Suppose now that we are given an instance of the Steiner tree problem with
terminal set R and root vertex r. Let ∆R be the maximum distance among any two
terminals in R ∪ {r}. We call ∆R the diameter of the given instance. Let r′ be an

18

arbitrary terminal in R ∪ {r} such that there exists a terminal u ∈ R ∪ {r} with
c(r′, u) = ∆R. The Steiner forest instance with terminal pairs

R′ = {(u, r′) : u ∈ R ∪ {r}}

is easily seen to be equivalent to the given instance of the Steiner tree problem.
Suppose again, that AKR finishes at time τ∗, when run on this instance. It is not hard
to convince oneself that the slack slR′ of this instance is

slR′ = ∆R − τ∗.

We therefore obtain the following corollary of Theorem 6.1:
Corollary 6.2. Given an instance of the Steiner tree problem with terminal set

R, AKR returns a tree T of cost at most
(

2 −
1

|R|

)(

Y

Y + (∆R − τ∗)/2

)

optR

where Y is the objective function value of the dual computed by AKR.

7. A Lower Bound for the Steiner Tree Game. We next prove that no
cross-monotonic cost sharing method for the Steiner tree game can achieve a budget
balance factor better than 2.

Theorem 7.1. There is no (2− ǫ)-budget balanced, cross-monotonic cost sharing
method for the Steiner tree game for any ǫ > 0.

The tools used in this section are adaptations of those used in [9]. In particular we
consider any given cross-monotonic cost sharing method ξ for the Steiner tree game
and show that there is an instance of the game where the sum of the cost shares of all
players is considerably smaller than the cost of an optimal solution. Instead of using
a probabilistic argument similar to the one described in [9], we use a more direct (but
ultimately equivalent) proof based on convex combinations.

The family of instances used in our proof resembles the one used for the facility
location lower bound in [9]. We construct an undirected graph G = (V,E). First we
describe the vertex set. There are k pairwise disjoint sets Ai, i = 1, . . . , k, each of
which contains m vertices. Every one of these vertices corresponds to a player who
wants to connect this vertex with a root vertex (which is different from the vertices
in the Ai). The set of all players that have a vertex associated with them in Ai is

denoted by Ai. The set of all players is R =
⋃k

i=1 Ai.
Let B be the collection of all sets with exactly one element from each of the Ai,

i.e.,

B =
{

{a1, . . . , ak} : ai ∈ Ai, i = 1, . . . , k
}

.

For each set B ∈ B, we introduce a unique vertex fB and edges (b, fB) of cost 1 for
all vertices b ∈ B. The distance to the vertices not in B is, by the triangle inequality,
equal to 3. Finally there is, for each B, an edge (fB , r) of cost 3. See Figure 7.1.

The following lemma argues that we may assume that ξ is symmetric, i.e. that it
does not differentiate between players from the same set Ai.

Lemma 7.2. Suppose that there is an α-budget balanced cost sharing method for
the Steiner tree game. Then there is also an α-budget balanced cost sharing method
that satisfies, for every subset Q ⊆ R of players,

ξQ(c) = ξQ(d)

19

fB2

A1 A3

1

1

3

A2

r A4

1

3

11

1

1

1

fB1

Fig. 7.1. Example of G in which k = 4, m = 5, and only 2 of the fB are drawn.

for all c, d ∈ Q ∩ Ai and for all 1 ≤ i ≤ k. Moreover, for all c ∈ Q ∩ Ai and for all
d ∈ Ai \ Q,

ξQ(c) = ξ(Q\{c})∪{d}(d).

Proof. Let ξ̃ be an α-budget balanced cost sharing method for the Steiner tree
game. Let Π be the set of permutations of R that leave the Ai invariant, i.e. if π ∈ Π
and c ∈ Ai, then π(c) ∈ Ai. Then |Π| = (m!)k. Write π(Q) := {π(c) : c ∈ Q}.
Define, for c ∈ R,

ξQ(c) :=
∑

π∈Π

1

(m!)k
ξ̃π(Q)

(

π(c)
)

.

Notice that, for a player c 6∈ Q, the value ξQ(c) is 0 as π(c) 6∈ π(Q) for all π ∈ Π.
Since we average over all player permutations, for all 1 ≤ i ≤ k and for any two players
c, d ∈ Ai ∩ Q, we have ξQ(c) = ξQ(d). It remains to show that ξ is cross-monotonic
and α-budget balanced.

Consider adding a player d to set Q. We have to argue that the cost share of an
individual player cannot increase. For a player c ∈ Q we see that

ξQ∪{d}(c) =
∑

π∈Π

1

(m!)k
ξ̃π(Q∪{d})(π(c)) ≤

∑

π∈Π

1

(m!)k
ξ̃π(Q)(π(c)) = ξQ(c).

This follows since π(Q∪ {d}) = π(Q)∪ {π(d)} and hence the cross-monotonicity of ξ̃
can be applied to each term.

Now we show α-budget balance. To this end we must specify which solution is
returned by the algorithm. If we denote with Sπ the solution returned by cost sharing
method ξ̃ when run on set π(Q), we return the solution S ∈ {Sπ : π ∈ Π} with cost
c(S) = minπ∈Π c(Sπ).

Of course this solution is not necessarily feasible for the original player set, but
because of the symmetry of the instance there is a graph isomorphism that maps the
solution back to a feasible one without changing the cost.

20

Now we can write

∑

c∈Q

ξQ(c) =
∑

c∈Q

∑

π∈Π

1

(m!)k
ξ̃π(Q)(π(c)) =

∑

π∈Π

1

(m!)k

∑

c∈Q

ξ̃π(Q)(π(c))

≥
∑

π∈Π

1

(m!)k

1

α
· c(Sπ) ≥

∑

π∈Π

1

(m!)k

1

α
· c(S) =

1

α
· c(S).

Competitiveness can be proved using a similar line of reasoning: the cost of the
optimal solution must be the same in any permutation. With that, the proof is
complete.

Now suppose we are given a symmetric cost sharing method ξ. From this point
on we will identify players and vertices to avoid complication of notation. Ask the
algorithm for cost shares for a subset of players {a1, . . . , ak} where ai ∈ Ai. By
construction of the graph, all these terminals can connect to vertex f{a1,...,ak} at cost
1, at which point they are only 3 units away from the root. Hence there is a solution
of cost k + 3 for this subset. Competitiveness states that

k
∑

j=1

ξ{a1,...,ak}(aj) ≤ opt{a1,...,ak}
≤ k + 3.

Therefore there must be at least one index i such that ξ{a1,...,ak}(ai) ≤ (k + 3)/k and
Lemma 7.2 implies that

ξ{a1,...,ai−1,c,ai+1,...,ak}(c) ≤ (k + 3)/k (7.1)

for all c ∈ Ai.
For this index i we consider the instance with subset Q = {a1, . . . , ak} ∪ Ai. We

bound the sum of the cost shares for this set as follows:

∑

c∈Q

ξQ(c) =
∑

c∈Ai

ξQ(c) +
∑

j 6=i

ξQ(aj)

≤
∑

c∈Ai

ξ{a1,...,ai−1,c,ai+1,...,ak}(c) +
∑

j 6=i

ξ{a1,...,ai−1,ai+1,...,ak}(aj) (7.2)

≤ m ·
k + 3

k
+ k + 2. (7.3)

The first inequality is an application of cross-monotonicity; the second follows from
(7.1) and the fact that there is a solution of cost k + 2 for a set

{a1, . . . , ai−1, ai+1, . . . , ak}

of players where aj ∈ Aj .
Due to the large amount of symmetry in the instance, we can in fact describe the

optimal solution.
Lemma 7.3. The optimal solution for connecting the players in a set Q, as defined

above, to the root has cost 2m + k + 1.
Proof. We observed above that connecting all terminals {a1, . . . , ak} via f{a1,...,ak}

to the root has cost k +3. Fix a terminal aj ∈ Q with aj /∈ Ai. Each of the remaining
m−1 terminals in Ai\{ai} can connect to aj at cost 2. Thus, optQ ≤ k+3+2(m−1) =
2m + k + 1.

21

We next show that 2m + k + 1 is a lower bound on the optimal cost. Suppose F
is the set of vertices fB, B ∈ B, that are used to connect all terminals in Q to the
root r and define f = |F |. Clearly, 1 ≤ f ≤ m. The cost of connecting all vertices
in F to the root is 3f . Moreover, connecting all k − 1 terminals in Q \ Ai to F has
cost at least k − 1. At most f terminals in Ai are adjacent to a vertex in F and the
total cost of connecting these terminals to F is f . The remaining m− f terminals in
Ai are not adjacent to any of the f vertices in F and therefore the cost of connecting
these terminals to F is at least 2(m− f). Hence, the cost of connecting all terminals
in Q via vertices in F is at least

3f + k − 1 + f + 2(m − f) = 2m + k + 2f − 1 ≥ 2m + k + 1.

Combining Lemma 7.3 with Inequality (7.3), we can now prove Theorem 7.1.

Proof. [Theorem 7.1] The ratio between the cost shares of players in the subset
Q as defined above and the cost of the network they use can be bounded as follows:

∑

c∈Q ξQ(c)

c(Q)
≤

∑

c∈Q ξQ(c)

optQ

≤
mk+3

k + k + 2

2m + k + 1
=

k2 + 4k + 2

2k2 + k + 1
,

where the last equality holds if we choose m = k2. This ratio tends to 1/2 as k → ∞,
which completes the proof.

REFERENCES

[1] A. Agarwal and M. Charikar, On the advantage of network coding for improving network

throughput, in Proceedings, IEEE Information Theory Workshop, 2004.
[2] A. Agrawal, P. Klein, and R. Ravi, When trees collide: an approximation algorithm for the

generalized Steiner problem on networks, SIAM J. Comput., 24 (1995), pp. 440–456.
[3] Y. P. Aneja, An integer linear programming approach to the Steiner problem in graphs, Net-

works, 10 (1980), pp. 167–178.
[4] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and the

hardness of approximation problems, J. ACM, 45 (1998), pp. 501–555.
[5] M. Bern and P. Plassmann, The Steiner problem with edge lengths 1 and 2, Inform. Process.

Lett., 32 (1989), pp. 171–176.
[6] J. Edmonds, Optimum branchings, J. Res. Nat. Bur. Standards Sect. B, 71B (1967), pp. 233–

240.
[7] M. R. Garey and D. S. Johnson, Computers and intractability, W. H. Freeman and Co., San

Francisco, Calif., 1979. A guide to the theory of NP-completeness.
[8] M. X. Goemans and D. P. Williamson, A general approximation technique for constrained

forest problems, SIAM J. Comput., 24 (1995), pp. 296–317.
[9] N. Immorlica, M. Mahdian, and V. S. Mirrokni, Limitations of cross-monotonic cost shar-

ing schemes, in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, ACM Press, 2005, pp. 602–611.

[10] K. Jain and V. V. Vazirani, Applications of approximation algorithms to cooperative games,
in Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing,
2001, pp. 364–372.

[11] K. Kent and D. Skorin-Kapov, Population monotonic cost allocation on mst’s, in Opera-
tional Research Proceedings KOI, 1996, pp. 43–48.

[12] J. Könemann, S. Leonardi, and G. Schäfer, A group-strategyproof mechanism for Steiner

forests, in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, ACM Press, 2005, pp. 612 – 619.

[13] J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam, From primal-dual to cost shares

and back: A stronger LP relaxation for the Steiner forest problem, in Proceedings of the
32nd International Colloquium on Automata, Languages and Programming, vol. 3580 of
Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2005, pp. 930–942.

22

[14] H. Moulin and S. Shenker, Strategyproof sharing of submodular costs: budget balance versus

efficiency, Econom. Theory, 18 (2001), pp. 511–533.

[15] M. Pál and É. Tardos, Group strategyproof mechanisms via primal-dual algorithms, in Pro-
ceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, 2003,
pp. 584–593.

23

