Weighted Matchings in General Graphs

Diplomarbeit von Guido Schafer

Diese Arbeit wurde unter der Betreuung von Prof. Dr. Kurt Mehlhorn am Max—Planck-
Institut fiir Informatik in Saarbriicken innerhalb der Fachrichtung 6.2, Informatik, der
Universitat des Saarlandes angefertigt.

Hiermit erklare ich an Eides Statt, daf ich diese Diplomarbeit selbstandig verfafit und
nur die im Literaturverzeichnis angegebenen Quellen benutzt habe. Ferner habe ich die
Arbeit noch keinem anderen Prufungsamt vorgelegt.

Saarbriicken, 31. Mai 2000

An dieser Stelle mochte ich mich bei Prof. Dr. Kurt Mehlhorn fur die Vergabe des sehr
interessanten Themas und die ausgezeichnete Betreuung sowie fiir die Bereitstellung der
hervorragenden Arbeitsbedingungen am Max—Planck—Institut fir Informatik bedanken.
Ferner mochte ich all jenen danken, die durch ihre Hilfe mafigeblich zum Gelingen
dieser Arbeit beigetragen haben, insbesondere Jochen Kénemann und Robert Spence
fiir das Korrekturlesen. Ein grofler Dank gilt meinen Freunden, die mich die ganze Zeit
iiber und besonders in der Endphase immer wieder unterstiitzten. Letztlich mochte
ich meinen Eltern danken, die mir das Studium ermoglichten und besonders meiner
Freundin Sabine, die immer fiur mich da war.

Contents

Introduction 1
1 Matching Theory 5
1.1 The Matching Problem and its Variants)
1.2 Matching Concepts oL 7
1.3 Edmonds’ Blossom Shrinking Approach 10
1.4 LP Formulations for Weighted Matching Problems 18
1.4.1 LP Formulation for the Weighted Matching Problem 18
1.4.2 LP Formulation for the Weighted Perfect Matching Problem . . 20
1.4.3 An Alternative LP Formulation for the Weighted Perfect Match-
ing Problem o 21
1.5 Reductions 22
1.5.1 Reducing the Weighted Matching Problem to the Weighted Per-
fect Matching Problem 00 oL 22
1.5.2 Reducing the Weighted Perfect Matching Problem to the
Weighted Matching Problem 23
1.6 Primal Dual Method 24
1.6.1 Primal Dual Method for the Maximum Weight Matching Problem 25
1.6.2 Differences in Weighted Perfect Matching Case 27
1.6.3 The Blossom—Shrinking Approach Revisited 28
1.6.4 Half-Integrality of the Dual Solution 34
1.6.5 Using the Alternative LP Formulation Algorithmic Consequences 35
1.7 Survey of Different Realizations 36
1.7.1 An O(n?m) Approach 37
1.7.2 An O(n®) Approach 37

II CONTENTS
1.7.3 An O(nmlogn) Approach 38

1.74 An O(n(m +nlogn)) Approach 39

2 O(nmlogn) Approach 41
2.1 Varying Potentials and Reduced Costs 41
2.1.1 Potential Update 42

2.1.2 Maintenance of Reduced Costs 43

2.1.3 Managing the Blossom Offsets 44

2.2 Determination of 4 towards a Priority Queue Approach 47
2.3 A Misleading Strategy — Traps and Pitfalls 49
2.3.1 Maximum Height of a Blossom Tree 50

2.3.2 Expanding a Blossom — Number of Status Changes 52

2.4 Concatenable Priority Queues o0 53

3 Implementation and Tests 57
3.1 Functionality 58
3.2 Concatenable Priority Queues (concat_pq) 61
3.3 Single Search Tree Approach 63
3.3.1 Data Structures. Lo 63

3.3.2 Algorithm 67

3.4 Multiple Search Tree Approach 90
3.4.1 Data Structures. Lo 92

3.4.2 Algorithm 97

3.5 Constructing Better Initial Solutions 115
3.5.1 Greedy Heuristic oo 116

3.5.2 Fractional Matching Problem 118

3.6 Experimental Results. 0oL, 130
Open Problems 141

Bibliography 143

Introduction

Combinatorial optimization is a field of applied mathematics and theoretical computer
science. A major topic in combinatorial optimization are linear optimization problems.
Said simply, a linear optimization problem requires the optimization of a linear func-
tion over a discrete set of solutions. An intensively studied and well-known problem
in combinatorial optimization is the weighted matching problem: it requires the com-
putation of a matching having maximum or minimum weight. A matching M in an
undirected graph G is a set of edges no two of which share an endpoint. The edges of
G are associated with weights and the total weight of a matching M is the sum of all
the weights of the edges in M. M may further be restricted to being perfect, which
constitutes the weighted perfect matching problem; a matching M is perfect, if every
vertex in G has exactly one incident edge in M.

Many variants and extensions of the weighted matching problem exist. As an example
of a variant, G might be restricted to being bipartite; this is called the bipartite weighted
matching problem. An example of an extension, on the other hand, is the b matching
problem, where each vertex may have up to b incident matching edges.

There are (at least) three types of applications that motivate the investigation of
weighted matching problems. (1) Direct applications of the weighted matching prob-
lem exist. (2) Many other problems can be reduced to the weighted matching problem.
(3) Several algorithms (repeatedly) solve the weighted matching problem in order to
progress. We will give examples of each of the three application types stated. Some
of these are widely known. Additionally, we wish to present two new applications (of
type (2) and (3)) that were encountered during the writing of the thesis and thus have
been, for us, a major source of motivation.

A classic example of an application of type (1) is to optimize, i.e. in this case to mini-
mize, the time spent by a plotter pen in pen—up motion, i.e. moving from one point to
another without drawing. Reingold and Tarjan [RT81] showed this to be a weighted
perfect matching problem. We briefly summarize their reasoning. Assume we wish to
plot a connected figure, and assume further that the time spent by the plotter moving
from one point to another is proportional to the Euclidean distance. We classify the
starting and crossing points of the figure (i.e. the points where a line starts or several
lines cross) to be either odd or even. A point is odd when an odd number of lines
emerge, otherwise it is even. A fundamental theorem in graph theory is that there
exists always an even number of odd points. Moreover, Euler proved that a figure
can be traced (starting and ending in the same point) with no pen—up motion iff it is
connected and no odd points exist. Thus, we need to find a new set of lines such that
each odd point becomes even and, moreover, the total time of pen—up motion along

2 INTRODUCTION

these lines is minimized. We thus define a complete graph G whose vertices correspond
to the odd points of the figure and whose edge weights correspond to the Euclidean
distance of these points. Minimizing the time of pen—up motion then means finding a
minimum weight perfect matching in G.

An example of type (2), which we would like to present as a motivating application for
the weighted matching problem, is the so called dominance problem. Its application
stems from the field of computational linguistics. A dominance problem is given by a
collection of vertex disjoint rooted trees and a set of dominance wishes. A dominance
wish is a directed edge from a leaf of some tree to the root of some other tree — the
leaf wishes to dominate the root. The task is to assemble the trees into a forest such
that every dominance wish is satisfied, i.e. each directed edge reduces to an ancestor—
predecessor relationship. Althaus et al. [ADKT00] recently showed that deciding the
satisfiability of a dominance problem can be reduced to a weighted matching problem.
As an example of type (3), we consider a fundamental communication problem known
as gossiping: n processing units are required to interchange their data with each other.
The underlying communication network is modeled by a graph G. A processing unit
(i.e. vertex) is permitted to communicate with only one of its neighbours (i.e. adjacent
vertices) at a time. The task of stating an optimal gossiping schedule, such that in
the end every processing unit knows the data of all other processing units, is NP hard.
Beier and Sibeyn [BS00] use a matching heuristic to compute a good, sub—optimal gos-
siping schedule. The heuristic can be regarded as working in rounds. In each round,
weights are assigned (on the basis of different criteria) to the connections (i.e. edges)
of the communication network. Then, a maximum-weight matching is computed with
respect to these weights. The pairs of matched processing units communicate with
each other. Another well-known example of this type is Christofides’ approximation
algorithm for the traveling salesman problem (see [Chr76]). The problem is defined by
a complete graph G consisting of n vertices (which represent cities), where the edge
weights correspond to the Euclidean distances. The task is to find a tour of minimum
length. Christofides’ algorithm computes a tour whose length is at most 3/2 as long
as the length of an optimum tour; it is still the currently best known approximation
algorithm for the traveling salesman problem. In a first step, the algorithm constructs
a minimum spanning tree T of G, and afterwards a minimum weight perfect matching
M on the odd degree vertices of T is computed. The graph T'U M then reduces to a
tour with the desired property.

Various other examples of the above mentioned application types exist and can be
found, for example, in Ball, Bodin and Dial [BBD83], Derigs and Metz [DM92], Bell
[Bel94] and Ahuja, Magnanti and Orlin [AMO93].

Matching problems have been the subject of intensive research over several decades.
The earliest result in matching theory we came across, widely known as Konig’s The-
orem, dates back to 1916 (see [K6nl6]). One of the cornerstones in matching theory
is due to Edmonds [Edm65b, Edm65a]. In 1965, he invented the famous blossom—
shrinking algorithm, which enables a solution for the weighted matching problem to
be computed in polynomial time. A straightforward implementation, as originally
proposed by Edmonds himself, requires time O(n?m), where n and m denote the
number of vertices and edges in G, respectively. Since then, the theoretical running
time of the blossom—shrinking approach has been successively improved. Both Lawler
[Law76] and Gabow [Gab74] improved the asymptotic running time to O(n?3). Later,

INTRODUCTION 3

Galil, Micali and Gabow [GMGS86] achieved O(nmlogn) and finally Gabow [Gab90)]
stated that Edmonds’ blossom shrinking algorithm can be implemented to run in time
O(n(m+nlogn)). Somewhat better asymptotic time bounds can be achieved for integer
edge weights using scaling algorithms (see Gabow and Tarjan [GT91]).

The currently most efficient codes implement variants of Edmonds’ blossom shrinking
algorithm and are based on either the O(n?m) or O(n?) approach. For the time being,
the best known implementation, named Blossom IV, is due to Cook and Rohe [CR97].
Their implementation is based on earlier work by Applegate and Cook [App93]. They
do not claim a theoretical time bound, but, as we shall see, it cannot be better than
Q(n3). Blossom IV is known to be highly efficient in practice; the data structures it
uses are simple.

The algorithms suggested by Galil, Micali and Gabow [GMG86] and by Gabow [Gab90)]
mainly achieve a better asymptotic time bound by using sophisticated data structures.
For example, the algorithm of Galil, Micali and Gabow requires a data structure con-
catenable priority queue, in which the priorities of certain subgroups of vertices can be
uniformly changed by a single operation. Up to now, it has been an open question (and
one explicitly posed in [App93] and [CR97]), whether or not the use of sophisticated
data structures will help in practice. We will answer this question in the affirmative:
the implementation we shall present in this thesis is based on the ideas of Galil, Micali
and Gabow and turned out to be competitive — if not even superior — to Blossom V.

The structure of the thesis is as follows. In Chapter 1, we will develop all details of
the blossom shrinking algorithm. We will start with the definition of some variants of
the weighted matching problem and introduce important concepts, such as augmenting
paths, that are crucial to almost all matching algorithms. The blossom shrinking ap-
proach will first be considered for the cardinality matching case. Linear programming
formulations for both the weighted matching problem and the weighted perfect match-
ing problem will then be investigated. Duality theory will lead us towards a primal-dual
method for the weighted matching problem based on Edmonds’ blossom—shrinking ap-
proach. Finally, we will conclude the chapter with a brief survey of the four different
realizations mentioned above.

In Chapter 2, we will illustrate the ideas underlying our implementation. Most of
these are based on or have been developed from the ideas put forward by Galil, Micali
and Gabow [GMG86]. We will outline how the blossom shrinking approach can be
implemented using priority queues. The difficulty of handling varying priorities within
these priority queues will be overcome by taking advantage of the fact that these values
change uniformly. Moreover, we will demonstrate in detail the need for concatenable
priority queues.

In Chapter 3 we will describe our implementation and discuss some experimental re-
sults. We implemented two versions of the algorithm: a single search tree approach and
a multiple search tree approach. First, the results from Chapter 2 will be incorporated
into a single search tree algorithm. Then, all necessary extensions and modifications for
the multiple search tree approach will be presented. The efficiency of both algorithms
is considerably improved by using a heuristic to create a better initial solution. We will
discuss two heuristics: a greedy heuristic and a fractional matching heuristic. Finally,
some running—time experiments will reveal the efficiency of our algorithms in practice.

Chapter 1

Matching Theory

In this chapter we will establish essential concepts that are fundamental for later dis-
cussion. We begin with the definition of the matching problem and outline some of its
variants. Some useful notations such as the concept of augmenting paths will follow
and lead to a first generic algorithm solving matching problems. Starting with the
cardinality matching problem, we will present the main ideas of Edmonds’ well known
blossom—shrinking approach. Results from the field of combinatorial optimization will
guide us towards an extension of the blossom shrinking approach for weighted matching
problems.

1.1 The Matching Problem and its Variants

Let G = (V, E) be an undirected graph, where V and E denote the set of vertices and
edges, respectively. The number of vertices and edges are referred to by n = [V| and
m = |F|. Since G is undirected, we will denote an edge e between two vertices v and v
as an unordered pair {u,v}, or uv for short. G is bipartite when a partition V = AUB
of the vertices of G exists and each edge uv € E has exactly one vertex in A and one
in B.

An ordered sequence p = (e1,es,...,e;) of edges, with e; = wju; 41 € E, 1 <4 <k, is
called a path from uq to ugy1 in G. Alternatively, we will represent p by the sequence
p = (ug,uq,...,ux) of vertices traversed. A path p is called simple, when all vertices
on p are distinct. Let C be a path starting and ending with the same vertex. C' is
then called a cycle. Moreover, C is said to be a simple cycle, when no other cycle is
contained in C.

A matching M of G is a subset of edges such that no two edges of M share a common
vertex (see Figure 1.1 for an example). All edges in M are said to be matched and edges
in the difference £\ M are unmatched. Analogously, a vertex u is said to be matched if
there exists an incident matched edge uwv € M; otherwise u is unmatched or free. The
adjacent vertex v of u with respect to a matched edge e = uv is the mate of u. M is a
perfect matching when all vertices of G are matched and hence |M| = n/2.

The matching problem is to find a matching in a graph G that meets certain require-

6 CHAPTER 1. MATCHING THEORY

Figure 1.1: Let G be the graph depicted above. M = {ag,ch,df} is a matching of G.
p = (e, f,d) is an example of an alternating path. p' = (b, h,c,d, f,e) is an augmenting path.
M'= M &p' = {ag,bh,cd, fe} is a matching in G with |M'| = |M|+1. M’ is perfect and hence
a maximum—cardinality matching of G.

ments. We will distinguish between two kinds of matching problems: the unweighted
and the weighted matching problem. In the weighted matching problem a weight func-
tion w : £ —— R on the edges of G is additionally given. The distinction is further
refined on the basis of whether or not G is bipartite. Altogether we classify four variants
of the matching problem, which are defined below.

Maximum—Cardinality Bipartite Matching Let G = (AUB, E) be a bipartite
graph. The maximum cardinality bipartite matching problem is to find a matching M
in G of maximum cardinality, i.e. |[M| > |M’'| for any other matching M’ of G.

Maximum—Cardinality Matching Consider a general graph G = (V, E). In the
maximum cardinality matching problem a matching M of maximum cardinality has to
be determined.

In both cardinality cases, M need not necessarily be perfect. However, every perfect
matching of G forms a maximum cardinality matching.

Maximum—Weight Bipartite Matching Let G = (AUB,E,w) be a bipartite
graph with weight function w. Finding a matching M with total weight w(M) =
Yecrsw(e) and w(M) > w(M') for all other matchings M’ of G constitutes the
mazimum-—weight bipartite matching problem.

In the mazimum-weight bipartite perfect matching problem M is further restricted to
being perfect. This problem is also known as the mazimum weight assignment problem.

Maximum—Weight Matching The most general case of all matching problems is
the mazimum weight matching problem. Given a general graph G = (V, E,w) with

1.2 MATCHING CONCEPTS 7

weight function w, the task is to find a matching M having maximum weight w(M)
among all possible matchings of G.

As above, one might wish to obtain a perfect matching of maximum weight. This
constitutes the mazimum—weight perfect matching problem.

Let G = (V, E,w) be an instance of a weighted matching problem. One might wish
to obtain a matching of minimum instead of maximum weight in G. However, each
minimum weight matching problem can be reduced to an appropriate maximum weight
matching problem by negating the signs of all weights. That is, a maximum-weight
matching M of G’ = (V, E, —w) will be a mimimum weight matching in G.

Many other variants and extensions of the matching problem exist; for example f-
factors, b matchings, T' joins, etc. However, in the context of this thesis, we will only
focus on the four variants defined above. For extensive sources concerning all aspects
of matching problems, see, for example, Lovdsz and Plummer [LP86] and Pulleyblank
[Pul95].

1.2 Matching Concepts

Two concepts are crucial to all matching algorithms: alternating paths and augmenting
paths. The importance of both will become clear shortly. Throughout this section let
G = (V, F) be a graph that might or might not be bipartite. All results apply to both
cases unless stated otherwise.

Definition 1.2.1 (Alternating Path) Let p = (e, e9,...,¢e;) be a simple path from
u to v and M a matching in G. p is an alternating path with respect to M, when the
edges along p are alternately in M and not in M.

An alternating path p = (eq,...,ex) with respect to M, where both endpoints v and
v are free, can be used to augment the current matching M. To see this, consider the
symmetric difference M' of M and p: M' =M &p= (M \p)U(p\ M). M' equals M
except that all matching edges with respect to M on p are unmatched in M’ and all
non matching edges with respect to M on p are matched in M'. It can easily be seen
that M’ itself forms a matching.! Moreover, |M'| = |[M| + 1 and thus M has indeed
been augmented. We will say M has been augmented by p to M' and p is called an
augmenting path. See Figure 1.1 for an example.

Definition 1.2.2 (Augmenting Path) An alternating path p = (ey,...,ex) with
respect to a matching M is called augmenting when both endpoints of p are free.

The discussion above gives rise to the idea that we can compute a maximum—cardinality
matching by repeatedly seeking an augmenting path p to a current matching M. When
p exists, M is augmented by p and we proceed with the augmented matching M & p.

'"Bach vertex that is matched in M is also matched in M’. Only % and v are additionally matched
in M’. But u and v were free in M and thus M’ is a matching.

8 CHAPTER 1. MATCHING THEORY

Otherwise, M is claimed to be maximum.
The following lemma states that the latter conclusion does in fact hold. Tt is due to
Berge [Ber57].

Lemma 1.2.1 M is a matching of maximum cardinality iff there does not exist an
augmenting path with respect to M in G.

Proof:

Clearly, if there exists an augmenting path p with respect to M, then M' = M & p is a
matching having cardinality |[M'| = |M| 4 1. Thus, M is not a maximum—cardinality
matching.

Assume that M is not a maximum cardinality matching, i.e. there exists a matching
M'" with |[M'| > |M|. We show that an augmenting path p with respect to M must
exist. B B

Consider the graph G containing the edges M @& M’ only. Each vertex in G has either
degree zero, one or two. Therefore, G consists of isolated vertices, paths and cycles.
Since M and M' are matchings, the edges on every path and cycle are alternately in
M and in M'. All cycles must be of even length having as many edges in M as in
M'. Since |[M'| > |M|, there must be at least one path, say p, in G having more edges
out of M' than of M. The first and last edge of p must be in M’ and hence p is an
augmenting path with respect to M. g

Using Lemma 1.2.1 we state a first generic algorithm to compute a maximum-
cardinality matching:

Algorithm 1.2.1 Generic algorithm for maximum cardinality matching problems.

let M be any matching
while there exists an augmenting path p with respect to M
replace M by the augmented matching M & p

Observe that Algorithm 1.2.1 can be refined to search for an augmenting path from
each free vertex exactly once.

I_We show that if no augmenting path starting in a free vertex r with respect to a matching M)
exists, then there will never exist an augmenting path starting in r with respect to any other
matching M’ obtained from M by a series of augmentations: M’ = ((M ©po)$Ep1)®. ... Suppose
p' is an augmenting path starting in r with respect to a matching M’ and no augmenting path
starting in r with respect to M exists. Let e = uv denote the first edge in p’ with e € M’ but
e & M. One endpoint, say u, is reachable from r by an alternating path with respect to M. The
non existence of any augmenting path from r with respect to M implies, that no alternating
path from u with respect to M starting with a matched edge to any other free vertex exists.
LHowever, this is a contradiction, since e can in this case never be matched.

In the rest of this section, a search strategy for finding an augmenting path in a bipartite
graph G will be considered closely. The difficulties arising for the general case are then
indicated; they will be solved in Section 1.3.

1.2 MATCHING CONCEPTS 9

a f at
@]
b g Fr
g bt -7 O
¢ h i ,LZ e@
ct OO
d i /,/]
/”’ J+
--------- O
e] h— d+
(a) (b)

Figure 1.2: Let G = (AUB, E) be the graph given in (a). Edges in M are drawn bold. A
possible alternating tree T' rooted at the free vertex ¢ is depicted in (b). In the next step, T
can either be enlarged by taking the edges di and ie to T', or one of the two augmenting paths
p=(f,b,9,¢) and p' = (4,d, h,) will be found.

Let G = (AUB, E) be a bipartite graph and M an arbitrary matching. The search
starts from a free vertex r of G and terminates either when an augmenting path p to
another free vertex has been found, or there does not exist an augmenting path starting
in r.

A tree T is grown from 7 such that each path from a vertex u in T to the root r
is alternating with respect to M. The vertices of T are labeled either even or odd,
stating that the alternating path to the root is of even or odd length. T' is called the
alternating tree. Matched vertices that do not belong to T' are said to be unlabeled. All
free vertices are initially labeled even. For short, we denote an even, odd or unlabeled
vertex v by vT,v~ or v?, respectively. In cases where a vertex label is, for example,
either unlabeled or labeled even we use notions like v121*} etc.

Initially, T consists of the even vertex r* only. The alternating tree is grown from even
vertices ut € T.

Let v ¢ T be adjacent to any vertex u™ € T. T is extended by taking the unmatched
edge uv and also the matching edge of v to T, i.e. the edge vw, where w? & T is the
mate of v. Here, v and w get labeled odd and even, respectively.

When an even vertex v* ¢ T is adjacent to any vertex ™ € T, an augmenting path
p = (v,u,...,r) with respect to M has been found.

If at some stage the tree cannot be grown and no adjacent free vertex exists, the search
terminates due to the non existence of an augmenting path beginning in r.

A possible example scenario for an alternating tree 7' in a bipartite graph can be seen
in Figure 1.2.

Let us try to apply the described search to the general graph G illustrated in Fig-
ure 1.3(a). Clearly, the path p = (g,¢,d, e, f,b,a,r) is augmenting. However, when an

10 CHAPTER 1. MATCHING THEORY

(a) (b)

Figure 1.3: Let G and M be as given in (a). C = (b,c,d, e, f,b) is an odd length cycle. By
definition, B = {b, ¢, d, e, f} forms a blossom. b is the base of B. For every vertex u € BB an even
length alternating path to the base exists. For example, p = (¢, d, e, f,b) is the corresponding
path for ¢. The graph G’ = (V', E') obtained from G by shrinking the blossom B is shown in
(b). It is V' = {r,a,b,g} and E' = {ra,ab, gb}.

alternating tree is grown from r, p could be missed when c is labeled odd. It is due to
the existence of odd length cycles that augmenting paths are missed. Since odd length
cycles cannot occur in a bipartite graph it becomes also perspicuous why the current
search strategy operates correctly in the bipartite case only.

Edmonds was the first to circumvent this problem; he did so by using the concept of
blossoms, which will be the subject of the next section.

1.3 Edmonds’ Blossom—Shrinking Approach

In 1965, Edmonds extended the search described in the preceding section to the general
case (see [Edm65b]). The resulting algorithm is widely known as the blossom—shrinking
approach and will be the subject of this section.

We first establish a general basis by introducing the blossom concept and the idea of
shrinking. Thereafter, a different interpretation of those concepts, which will be more
appropriate for the weighted matching case, is shown to be equivalent. Based on that
alternative interpretation, the search for an augmenting path in a general graph is
revised at the end of this section.

Let G = (V, E) be a general graph. The following two notations will be helpful. For
any subset S C V we denote the edges of G having both endpoints in S by (S):

vy(S)={uww € FE : ue Sand v € S}.
Conversely, we define §(S) as the set of all edges having exactly one endpoint in S:

0(S)={uveFlE : ueSandv ¢ S}.

1.3 EDMONDS’ BLOSSOM SHRINKING APPROACH 11

Note that 6({v}) denotes all edges incident to a vertex v. In that case, we will write
d(v) for short.

As mentioned above, it is due to the existence of an odd length cycle that our current
search might miss an augmenting path. Assume C denotes such an odd length cycle
and, moreover, let C' contain a maximum number of matching edges. This concept is
what we call a blossom.

Definition 1.3.1 (Blossom) Let M be a matching in G and B C V an odd cardi-
nality subset of vertices. B is a blossom, when 7(B) contains a simple cycle C' that
traverses all vertices of B, and, moreover, a maximum number of edges along C are

matched, i.e. [M NC| = ||B|/2].

Figure 1.3(a) shows an example of a blossom. The only vertex in a blossom B that is
either free, or whose matching edge is not contained in y(B), is called the base of B. B
is free, when its base is free; otherwise, B is matched.

Our interest in the blossom concept stems from the following fact. Consider a blossom
B with base b. For any arbitrary vertex u of B an even length alternating path p from
u to the base b must exist. Moreover, the first edge of p is a matching edge and p lies
exclusively in B, i.e. e € y(B) for each edge e in p. Edmonds observed that one can
benefit from that property by shrinking the blossom B into a single vertex, for example
into b. Informally, this means that all vertices of B are collapsed into b and all edges in
v(B) become non existent. Let G’ denote the graph obtained from G by shrinking the
blossom B (see Figure 1.3(b)). Formally, G' = (V', E’) can be defined as follows.

Vi=(V\B) U {b}

and

E' =4V \B) U {ub : uwv e §(B) and u ¢ B}.

Let M' denote the matching in G’ that corresponds to M, i.e. M' = M \ v(B). The
intention behind shrinking is that any augmenting path p’ with respect to M’ in G’ can

be lifted (as described in the proof below) to an augmenting path p with respect to M
in G.

Lemma 1.3.1 Let G’ be a graph obtained from G by shrinking a blossom B as de-
scribed above. If an augmenting path p’ with respect to M’ in G’ exists, then there
also exists an augmenting path p with respect to M in G.

Proof:

Let p’ be an augmenting path in G'. We consider only the case where p’ traverses b,
since otherwise p’ reduces to an augmenting path in G. We can break p’ at b into p;
and py: p' = (p1,b,p2). Let po be the path that starts with the non-matching edge bv.
When b is an endpoint of p’ and hence must be free, p; is empty. Otherwise, p; ends
with the matched edge ub. Due to the construction of G', there must be a vertex w € B
such that wv is an edge in G. Moreover, we know there must exist a possibly empty
even length alternating path in (B) from w to b. Let pg denote that path in reversed
order, i.e. leading from b to w in G. The augmenting path p in G then consists simply
of the concatenation p1, pg and py, where the first edge bv of ps is replaced by wv. [

12 CHAPTER 1. MATCHING THEORY

We will soon refine the search strategy of Section 1.2 such that it will work for general
graphs. But first, we wish to argue that each graph G() obtained from G by a series
of shrinkings can be viewed as a nested family of odd cardinality subsets of V. Let us
introduce that notion next:

N (V) is a nested family of odd cardinality subsets of V', when

(1) each element S of N (V) is a subset of V' having odd cardinality, and

(2) for two elements S;,S; € N (V) with S; # S;, either S; C Sj, or S; C S;, or
Sj N S; = 0 holds.

Assume G is obtained from G as given below.

shrink Bo shrink B shrink B; 1

G =GO elt)) S s GO

Let V(@ denote the set of vertices in G . Each vertex v € V(@ corresponds to an odd
cardinality set S C v which can be defined recursively. We have SV = {v} and for
1> 0:

Sl(,ifl) when v & B; 1,
(i) _ .
Syt = U SU=1" otherwise.
u€EB; 1

Note that uniting an odd number of odd cardinality sets will result in an odd cardi-

nality set. Therefore, each Sq(,i) is indeed of odd cardinality. Moreover, observe that a
(4)

maximum number HS7(,7)\/2J of edges in (S, ’) are matched; this can easily be shown
by induction on 3.

From the definition of Sz(,i) it follows that

N(V) = U < U Sé”)
=0 \wev{)

is a nested family of odd cardinality subsets of V.

N (V) provides sufficient structural information about the nesting of blossoms. The
nesting of blossoms will be of major importance in the weighted matching case later
on. Therefore, we redefine — or better, reinterpret — the concept of blossoms and
introduce some additional terms based on the view we are about to develop.

Each element B € N(V) is called a blossom of G.2 Moreover, we distinguish between
trivial and non trivial blossoms. A trivial blossom B = {v} corresponds to the vertex
v in G. All non-singleton sets B € N'(V) are non—trivial blossoms; they contain other
blossoms which we call subblossoms: B; is a subblossom of B if B; C B.

A maximum superset B € N (V), i.e. B ¢ S for all sets S € N(V), is what we call
a surface blossom. Obviously, surface blossoms are not contained in other blossoms.
Notice, that each vertex in G() corresponds to a surface blossom in (V).

2We wish to emphasize that B does not form a blossom in the sense of Definition 1.3.1: the simple
cycle C containing all vertices of B does not necessarily have to exist. But it is assured, however, that
an even length path from each vertex v € B to the base vertex exists.

1.3 EDMONDS’ BLOSSOM SHRINKING APPROACH 13

<

Figure 1.4: Example of a graph G after a series of shrinkings. There are four non—trivial
blossoms: By = {a,b,c}, Bo = {B1,d,e, f,g9}, Bs = {h,i,j} and By = {l,m,n, 0,p}. The nested
family of odd cardinality subsets of V equals N (V) = {{a},{b},...,{r}, B, B2, B3, Bs}. B is
an immediate subblossom of By; the trivial blossom {a} is a subblossom, but not an immediate
subblossom of By. The base of By and B; is ¢. Current surface blossoms are Ba, Bs, {k}, Ba, {q}
and {r}, of which the first five form a new free blossom with base h.

All edges e in G are classified as either dead or alive. An edge e is dead, when it lies in
a blossom B, i.e. e € y(B); all other edges are alive. Thus, after a series of shrinkings
the current graph G is viewed as being partitioned into surface blossoms which are
connected by alive edges only. Therefore, G will also be called the surface graph.

Let p = (e1,eq,...,e,) be an ordered sequence of alive edges of G. We say p is a
(surface) path from By to Bryy in G, when e; € 6(B;) N 6(Biy1) for 1 < i < k. p
is simple, when additionally all blossoms B;, 1 < ¢ < k + 1, on p are distinct. The
definitions for alternating and augmenting paths extend to surface paths in the obvious
way. A (surface) cycle C = (e1,es,...,¢ex) in G is a path from a blossom Bj to itself.
C is simple, when no other cycle is contained in C.

Suppose C' = (e1,e2,...,e9:41) is a simple surface cycle of odd length in G. Let
Bi,Bs, ..., Bogy1 denote the odd number of surface blossoms that lie on C. Moreover,
let C' contain k£ matching edges with respect to a matching M in G. Then, a new

blossom
2k+1

B= U B;
=1

has been found. We can shrink B by adding it to N'(V). Consequently, all blossoms
Bi, 1 < i <2k + 1, stop being surface blossoms and become subblossoms of B. B is a
new surface blossom of G. The defining blossoms B;, 1 < i < 2k + 1, of B will be called
immediate subblossoms of B. Figure 1.4 shows an example scenario.

14 CHAPTER 1. MATCHING THEORY

Algorithm 1.3.1 Generic algorithm to search for an augmenting path p from a free
vertex r. Let G be the underlying graph and M a matching in G such that r is free.

let r be the only even vertex of T
while there does not exist an alive edge e = uv with u™ ¢ T and v € T {
if an alive edge uv with u™ € T and v? ¢ T exists {
let b be the base of B, and w denote the mate of b, with w € B,,
make B, an odd and B, an even labeled blossom of T’
add the edges uv and bw to T
}
else if an alive edge uv with ut € T and v € T exists {
determine the lowest common ancestor B;., of B, and B, in T
let p1 = (e1,...,eg;) be the alternating path from By, to B, in T', and
let po = (e2j42,---,€2k+1) be the alternating path from B, to Bj, in T
all surface blossoms on C = (p1, e2j4+1 = uv,py) define a new blossom B
shrink B by making all surface blossoms on C' to subblossoms of B
B gets labeled even and all edges in y(B) are considered to be dead

}

else terminate, T' is abandoned since no augmenting path for r exists
}
there must exist an even length alternating surface path p” from B, to B, in T
p' = (e,p") is an augmenting surface path from B, to B,
raise p’ to an augmenting path p in the original graph G using Lemma 1.3.1

By now we are well prepared to revise our search for an augmenting path. At the end
we give a generic algorithm that seeks an augmenting path in a general graph G. The
algorithm is based on the nested view of G developed above and will be fundamental
for the weighted matching problem.

Let M be a matching in G and r a free vertex with respect to M. As in the bipartite
case, an alternating tree T' is grown from r. However, T" forms a tree with respect to
the surface blossoms of GG only, and the edges used by the search are restricted to being
alive. For the sake of conciseness, we denote the surface blossom to a vertex u of G by
B,. Moreover, we stipulate that each vertex u retains the label of its surface blossom
B, and u is said to be in T', when B, is contained in T'.

Shortly, it will become apparent that non—trivial blossoms can occur only as even tree
blossoms in the unweighted matching case. However, in the weighted matching case
later on, non—trivial blossoms will also occur outside of T" and can be even or odd tree
blossoms. Therefore, we do some preparatory work by assuming non trivial blossoms
to be of any kind.

Initially, T' consists of the even labeled vertex r* only. The search assumes the following
labeling for all surface blossoms outside of T": each free surface blossom is labeled even
and each matched surface blossom is unlabeled. Four cases have to be distinguished.

Let uv be an alive edge with u™ € T and v ¢ T. The base b of B, must be matched,
since B, is unlabeled. Let w denote the mate of b in B,,. T is extended by making B,

1.3 EDMONDS’ BLOSSOM SHRINKING APPROACH 15

Algorithm 1.3.2 Generic algorithm to compute a maximum-cardinality matching in
a general graph G.

let M be an arbitrary matching in GG
label all free vertices even and unlabel all matched vertices
for each vertex r in G {
if r is matched continue with another vertex
grow an alternating tree T rooted in r as described in Algorithm 1.3.1
if an augmenting path p with respect to M in G has been found {
replace M by the augmented matching M & p
unlabel all vertices contained in T'
delete all non—trivial surface blossoms of T
destroy T
}
else T has been abandoned
continue with another vertex

}

M is a maximum cardinality matching

an odd and B,, an even labeled tree blossom and taking uv and bw to T'. This is what
we will call a grow step henceforth.

Let us assume there exists an alive edge uv with u™ € T and v™ € T. We determine
the lowest common ancestor surface blossom Bj., of B, and B,. That is, By, is the
first blossom that is both on the surface tree path from B, to B, and on the surface
tree path from B, to B,. Notice that from the way we built T, Bj.,, must be labeled

even. Let p; = (e1,...,ez;) denote the even length surface path from B, to B, and
p2 = (€242, ..., e2,41) the even length surface path from B, to Bj., in T. Obviously,
C = (p1,e2j+1 = uv,ps) is an odd length surface cycle and moreover, a maximum

number k of edges on that cycle are matched, i.e. we have detected a blossom B. B is
defined as the union of all surface blossoms B; on C, with 1 < ¢ < 2k + 1. Since for
every vertex v of B an even length alternating path to the base of B (this will actually
be the base of By.,) exists, and therefore also an even length alternating path from
v to the root r of T, B gets labeled even.? All blossoms B;, 1 < i < 2k 4 1, become
subblossoms of B and each edge in y(B) is no longer used by the search. That completes
the description of a so—called shrink step.

When an alive edge uv with ut € T and v ¢ T is encountered, an augmenting surface
path p' = (vu,p”) from B, to B, is directly available. Here, p” denotes the even length
alternating surface path from B, to B, in T. p’ can be lifted to an augmenting path p
in the original graph G by repeatedly applying Lemma 1.3.1.

Last, when none of the above cases applies T' is abandoned, since no augmenting path
starting in r exists. T retains its identity, i.e. all surface blossoms in 7" stay in 7" and
retain their label. 7" will never be looked at again.

When an alternating tree T is abandoned, there are no edges from any vertex u™ € T

Actually, that is the justification for the label of a vertex being determined by its surface blossom.

16 CHAPTER 1. MATCHING THEORY

to any other vertex v{?/t} & T Moreover, each edge uv connecting two even vertices
uT € T and v € T is dead, i.e. lies in a surface blossom BT € T. Each odd surface
blossom B; € T (which is trivial in the unweighted matching case) is matched by an
alive edge ij € M with an even surface blossom B;-' € T, and B € T is the only surface
blossom that is free in T'.

The complete search for an augmenting path in a general graph G is summarized in
Algorithm 1.3.1.

Combining the idea of Algorithm 1.2.1 with the search just described yields a generic
algorithm for computing a maximum-—cardinality matching in a general graph G as
given in Algorithm 1.3.2.

"In the rest of this section, we will prove optimality of M*, the matching obtained by Algo—_|
rithm 1.3.2, and thus establish correctness. The results to come are interesting from a theo-
retical point of view. However, the optimality criteria for the weighted matching case will be
of another kind and only Algorithm 1.3.1 will be used. Therefore, the reader may also skip
directly to the next section.

Different optimality criteria have evolved over several decades. Two of them will be considered
more closely. The first is due to Edmonds [Edm65b] and is based on the notion of an odd set
cover. The second is known as the Tutte-Berge Formula.

Assume M* leaves t vertices unmatched. The cardinality of M is thus |(n — t)/2], where n
denotes the number of vertices in G. For each free vertex r;, 1 < i < t, an alternating tree Tj,
which has been abandoned by the search, is rooted in B,,. As we outlined above, each vertex
u~ € T;, 1 <i <t is matched with a surface blossom B+ € T; and only the root blossom B,
is free. Remember that all edges uv connecting two even vertices must lie in the same blossom
BT € T; for some 1 < i < t. All unlabeled vertices u? are matched with a vertex v? and for
each tree T;, there exists no edge uv with 42 and vt € T;.

Let C(V) be a family of pairwise disjoint odd cardinality subsets of V. C(V) is called an odd
set cover of G when for every edge e € E: e € §(v) for a singleton set {v} € C(V'), or otherwise
e € ¥(S) for a non-singleton set S € C(V).

The capacity cap(S) of a set S € C(V) is defined as

1 when S is a singleton set,

cap(S) = { ||S]/2] otherwise.

As can easily be verified, the total capacity cap(C(V))) = Y gec(v) cap(S) of an odd set cover

gives an upper bound for the cardinality of any matching in G, i.e. |M| < cap(C(V)).*

Edmonds constructed an odd set cover C(V') of G having capacity equal to the cardinality of
M* and thus proved M* to be maximum.

CV)={v €Ty : 1<i<k} U {BT€T; : 1<i<k,and Bisnon trivial}.

When U # , we choose some @& € U and add {a} to C(V). Additionally, U \ @ is added to
C(V), when |U| > 2.7

“Let M be a matching in G. FEach edge e € M must be covered by some set S € C(V) and the
number of matching edges covered by some S € C(V) is clearly bounded above by cap(S).

Let us see why C(V) does indeed form an odd set cover. Each odd vertex v~ € T;, 1 < i < ¢,

1.3 EDMONDS’ BLOSSOM SHRINKING APPROACH 17

Each odd vertex v covers exactly 1 = cap(v) matching edge of M*. We argued above that
the number of matched edges in an even surface blossom B equals ||B|/2] = cap(B). Finally,
@ covers exactly 1 = cap(@) matching edge. If |U| > 2, all other |(|U|—1)/2] = cap(U \ @)
matching edges are covered by U \ @. Thus, we have |M*| = cap(C(V)) as desired. We can now
state the optimality criteria which is due to Edmonds [Edm65h].

Lemma 1.3.2 Let G = (V, E) be a graph and M a matching in G. Moreover, let C(V') be an
odd set cover of G having capacity cap(C(V)). Then, M is a maximum-—cardinality matching
and C(V) is an odd set cover having minimum capacity, iff |M| = cap(C(V)).

Another interesting possibility to obtain an upper bound on the cardinality of a matching M
in G is as follows.

Let A C V be an arbitrary subset of vertices of G. Removing each vertex u € A and all its
incident edges from G, results in a new graph denoted by G \ A. Let Cy,Cs,...,Cy be the
connected components in G \ A having an odd number of vertices. Each C; contains either
a free vertex, or there exists a matching edge uv € M with u € C; and v € A. Since M is
a matching, the endpoints in A of those edges must be distinct. Therefore, at most |A| such
matching edges exist. Consequently, we can conclude that at least k — | A| vertices must be free
with respect to M. To put it differently, no more than n — (k — |A|) vertices can be matched
by M.

Let occ(G) denote the number of connected components in G having an odd number of vertices.
The cardinality of a matching M is thus bounded by |M| < |[(n —occ(G \ A) +|A4])/2], for any
ACV.

Again, we show optimality of M*. Choose A = {v~ € T; : 1 <i < k}. Obviously, occ(G \ A)
must be |A| + ¢, since that is the total number of even surface blossoms in all abandoned
trees T;, 1 < i < k. Thus, the bound stated above becomes tight, i.e. |M*| = |(n —t)/2] =
[(n — oce(G\ A) + |A])/2], and M* is maximum. The following optimality criterion for a
maximum cardinality matching has just been proved. It is due to Berge [Ber58].

Lemma 1.3.3 Let G = (V, E) be a graph having n vertices and M a matching in G. M is a
maximum—cardinality matching, iff a set A C V exists with |[M| = [(n — occ(G \ A) + |A])/2].

The discussion above and Lemma 1.3.3 immediately imply the following corollary which states
a condition for the existence of a perfect matching. It was originally proved by Tutte [Tut47].

Corollary 1.3.1 A graph G = (V, F) has a perfect matching iff for every set A C V of vertices
oce(G\ A) < |A|.

As an aside, observe that Algorithm 1.3.2 will find a perfect matching, if there exists any. But
it can even prove the non—existence of a perfect matching using Corrollary 1.3.1. To see this,
consider any abandoned tree T;. Let A denote the set of odd vertices in T;. Since the number of
even labeled surface blossoms in T; equals [A]| + 1, it is oce(G \ A) = |A| +1 > |A| and we have
thus proved that no perfect matching exists. In conclusion, we can state that Algorithm 1.3.2
_can solve maximum—cardinality perfect matching problems as well.

covers all its incident edges. All edges lying in an even labeled surface blossom Bt € T; are covered by
B € C(V). Edges connecting two vertices of U are covered by 4 or lie in v(U \ @) and are hence covered
by U \ 4. Finally, no other edges exist as stated before.

18 CHAPTER 1. MATCHING THEORY

1.4 LP Formulations for Weighted Matching Problems

In the preceding sections, important matching concepts such as augmenting paths have
been introduced. Further, we acquired a generic algorithm that can solve both variants
of the maximum-—cardinality matching problem. The stated results serve as a good
basis for the weighted case considered in this and the subsequent sections.

Fundamental findings in the area of combinatorial optimization will guide us to a generic
algorithm for the weighted matching problem. We assume familiarity with terms such
as linear programming formulations, relaxation, duality theory (weak and strong du-
ality, complementary slackness) as well as the concepts behind primal dual methods.
For extensive sources concerning these subjects, see Bertsimas and Tsitsiklis [BT97],
Papadimitriou and Steiglitz [PS82] and Chvétal [Chv83].

We start with the discussion of linear programming formulations for the weighted
matching problem.

1.4.1 LP Formulation for the Weighted Matching Problem

Let G = (V,E,w) be an instance of the maximum—-weight matching problem. The
maximum weight matching problem can be formulated as a zero one integer linear
programming problem. An incidence vector z is associated with the edges of G. Each
component %, is a decision variable having value 0 or 1. The relation between the
incidence vector z and a matching M is as follows:

Te —

~)0 if e does not belong to the matching M,
1 if e does belong to the matching M.

An incidence vector x corresponding to a given matching M is called the characteristic
vector of M.

Let S C F be a subset of edges and z an incidence vector associated with the edges F of
G. x(S) is defined as the sum over all components z, with e € S, i.e. 2(S) = > g Te.

We are now able to formulate the maximum—weight matching problem as a zero—one
integer linear program (IwM):

(1wm) maximize wlx
subject to z(d(u)) < 1 for all u € V, (1)
z. € {0,1} foralle€ FE. (2)

(twm) (1) assures that each vertex has at most one incident edge that is matched. Note
that each optimal solution z of (TWM) corresponds to a maximum-weight matching M.
And conversely, every characteristic vector z to a maximum weight matching M is an
optimal solution to (twm). Therefore, (1wM) does in fact formulate the maximum-—
weight matching problem.

A standard technique in combinatorial optimization is to relax the zero—one constraint
(twm)(2) which yields the linear programing relaxation (wM’).

1.4 LP FORMULATIONS FOR WEIGHTED MATCHING PROBLEMS 19

(wm’) maximize wl'z
subject to z(d(u)) < 1 forallu eV, (1)
e > 0 forallee€ FE. (2)

Unfortunately, (WM’) does not have zero-one solutions only.® To see this, consider a
graph G = (V, F) having three vertices V' = {a,b,c} that lie on a odd length cycle,
i.e. F = {ab,bc,ca}. Assume further that w, = 1 for alledges e € E. Then, z, = 1/2 for
each edge e of G is an optimal solution to (WM’) having objective value 3/2. However,
Z is not a solution to (IWM) (the objective value of an optimal solution to (1wM) is 1).

Consequently, the two formulations (IwM) and (WM’) are not equal, or to put it dif-
ferently, (wM’) is said to be not as strong as (IWM). A measure for the strength of
a linear programming relaxation is the closeness of its feasible set to the convez hull
defined by the feasible incidence vectors of the original integer program.

In general, the feasible set F("P) to a linear programming formulation (LP) consists of
all feasible incidence vectors to (LP). For example,

f-(WM’) _ {’I" . 1 satisfies (WM7)(1) and (WM’)(2)}

The convex hull PU") of a feasible set F("*) can be seen as a polyhedron spanned by

f(LP)_?

For an integer linear programming formulation (ILP) and its relaxation (LP’) the re-
lation P("?) C P always holds, whereas one cannot expect that the opposite does
too. The relation between PU"M) and P(WM) is a perfect example.

Theorem 1.4.1 Two linear programming formulations (LP) and (LP’) are equally
strong, iff pe) — p(Lr?),

The question is, whether there exists a linear programming formulation similar to (WM”)
that is moreover as strong as (IWM).

Let O denote the set of all non—singleton odd cardinality subsets of V:
O={BCV :|B|isodd and |B| > 3}.

Consider the linear programming formulation (WM) below.

SHowever, the two linear programing formulations (wwm’) and (1wM) have been proved to be equiv-
alent for the bipartite weighted matching problem. The proof is due to Birkhoff [Bir46].

"The convex hull P of a finite set S = {z1,z2,...,2x} € R" is defined as the set of all convex
combinations of S:

P:{-T:Zf:])\imi : Zf:1)\i:1,ﬂ?iesand)\1‘20,1Si§k}.

More precisely, we would have to distinguish between a polyhedron P"") which is defined by (i.e. is
equal to) its feasible set F™ and a polyhedron P"") which is defined by the convex hull of its feasible
set F**) (e.g. in cases where (LP) is an integer linear program). However, we do not wish to go into the
details of polyhedral combinatorics at this point. Instead, for a more extensive discussion concerning
these aspects, the interested reader is referred to Cook et al. [CCPS98] and Bertsimas and Tsitsiklis
[BT97].

20 CHAPTER 1. MATCHING THEORY

(Wwm) maximize wl'z
subject to z(d(u)) < 1 forallu eV, (1)
z(y(B)) < [|B]/2] forall Be O, (2)
e > 0 for alle € F. (3)

(WM) equals (WM’) except that a new series of constraints (WM)(2) has been added.
(WM)(2) states, that the number of matched edges in y(B), where B C V is a non
singleton odd cardinality set, is bounded above by ||B|/2|. Note that (WM)(2) coincides
with one’s intuition. It can easily be observed that each characteristic vector = to a
given matching M must satisfy (wm)(1)—(3) and therefore: PIWM) C p(WM),

What consequences does the additional constraint (wm)(2) entail? As before, let us
regard the graph G consisting of an odd cycle only. Setting z. = 1/2 for all edges of G
is not a feasible solution to (WM), since z(y({a,b,c})) =3/2 £ 1.

The idea arises that (wWM) is a stronger formulation than (wM’). And indeed, as the
following lemma shows, the linear programming formulation (WM) is not only stronger
than (WM’), but as strong as (TWM).

Lemma 1.4.1 Let P") and P represent the polyhedron of (1wm) and (wwm),
respectively. Then PWM) — p(wu),

Lemma 1.4.1 is one of the cornerstones of the weighted matching theory. It is due to
Edmonds. Generally, one can prove Lemma 1.4.1 either directly, or by an algorithmic
proof.

We will do so by the latter method, i.e. we develop an algorithm that computes a
matching M and moreover, the characteristic vector « to M will be an optimal solution
to (WM). Further details are deferred to Section 1.6. Similar algorithmic proofs can be
found in Pulleyblank [Pul95] and Cook et al. [CCPS98].

The direct proof is complex and not given here. Details can be found in the original
work of Edmonds [Edm65a]. Cook et al. [CCPS98, Chapter 6] and Lovész and Plummer
[LP86] are also excellent sources.

1.4.2 LP Formulation for the Weighted Perfect Matching Problem

The linear programming formulation for the maximum-weight perfect matching prob-
lem slightly differs from (wM) and will be sketched next. In Section 1.5 we will see
that under certain conditions, each maximum-weight perfect matching problem can be
reduced to the maximum weight matching problem and contrariwise. Taking that fact
into consideration, one may wonder if it is worth the effort to inspect the weighted
perfect matching case separately. However, the differences between those two problems
regarding linear programming formulation aspects are interesting to see and, more-
over, both problems can be incorporated into one generic algorithm easily as, will be
exploited in Section 1.6.

Again, we start with the integer linear program. Since every vertex has to be matched

1.4 LP FORMULATIONS FOR WEIGHTED MATCHING PROBLEMS 21

in the maximum-weight perfect matching problem, the primal condition (1TwMm)(1)
becomes an equality constraint:

(IWPM) maximize w’x
subject to xz(d(u)) = 1 for all u € V, (1)
z. € {0,1} foralle€ F. (2)

In the perfect case, too, the linear programming relaxation of (IWPM) is not as strong
as (1wpM) itself. But as in the non perfect case, adding a new series of constraints
helps. The corresponding linear program is (WPM).

(WPM) maximize wl'z
subject to z(d(u)) = 1 forallu eV, (1)
z(y(B)) < [|B]/2] forall Be O, (2)
e > 0 for alle € F. (3)

At this point one observes that the formulation of (WMm) is a generalization of (WPM),
since PWPM) is a face of P(WM). The following lemma states that (TWPM) is as strong
as (WPM).

Lemma 1.4.2 Let PUY"™) and P(WPM) represent the polyhedron of (1wpm) and
(WPM), respectively. Then PIWPM) — p(wpy),

As for Lemma 1.4.1; the generic algorithm in Section 1.6 will prove correctness of the
stated lemma. For alternative proofs all references given for Lemma 1.4.1 apply.

1.4.3 An Alternative LP Formulation for the Weighted Perfect
Matching Problem

In Section 1.6 we will develop a primal dual method that computes an optimal solution
to the linear programming formulations given above. The details of that method depend
on those fixed formulations. However, an alternative linear programming formulation
for the maximum-weight perfect matching problem exists and will be the subject of
this section. The pros and cons of that alternative formulation with respect to the
resulting primal dual method will be discussed in detail in Section 1.6.5.

In both cases, i.e. the perfect and non perfect weighted matching problem, we added a
series of constraints to the relaxation of the integer linear program in order to obtain a
linear program that is as strong as its integer linear program. Those constraints have
been of the form:

z(v(B)) < ||B/2] forall Be O. (1.1)

However, for the weighted perfect matching problem, the same effect can be achieved
by a different type of constraint:

z(0(B)) > 1 forall Be O. (1.2)

22 CHAPTER 1. MATCHING THEORY

(1.2) means that at least one edge that leaves a non-singleton odd cardinality set B,
i.e. is part of §(B), must be matched.

The alternative formulation for the maximum weight perfect matching problem is given
in (WpM*).

(WPM*) maximize wlx
subject to z(d(u)) = 1 forallueV, (1)
z(6(B)) > 1 forall Be O, (2)
ze > 0 forallee F. (3)

As mentioned above, it can be shown that (wpM*) is as strong as (iwpMm). Thus,
(wpM*) is indeed an alternative to (WPM).

1.5 Reductions

We intend to use this section to show that each instance of the maximum weight
matching problem can be reduced to an instance of the maximum-weight perfect mat-
ching problem. Moreover, assuming the availability of a technique to discover the
non—existence of a perfect matching, the contrary can be achieved as well.

We will describe these reductions by means of a transformation 7 such that

(11) for each instance G = (V, E,w) of the maximum weight matching problem, a
maximum-weight perfect matching M’ in G' = 7(G) can be translated to a
maximum weight matching M in G, and

(12) under the assumption that a perfect matching exists for an arbitrary in-
stance G' = (V', E',w') of the maximum-weight perfect matching problem,
a maximum-weight matching M in G = 7~'(G") corresponds to a maximum-—
weight perfect matching M’ in G'.

First, 7 will be constructed suiting (11) and after that the inverse transformation 7!

satisfying (12) will be given.

1.5.1 Reducing the Weighted Matching Problem to the Weighted Per-
fect Matching Problem

Let G = (V, E,w) be an instance of the maximum-weight matching problem. We give
a transformation 7(G) = G’, where G' = (V', E',w'), and then proceed to show that
G’ satisfies (11).

Assume, G = (XN/, E, w) is a copy of G. For each vertex u, edge e and weight w, of G,
we denote the corresponding vertex, edge and weight in G by u, € and wg, respectively.

Consider the graph G’ that consists of G and G. Moreover, let G’ have additional zero—
cost edges from each vertex u of G to u of G. More precisely, G’ is given as V' =V UV

1.5 REDUCTIONS 23

and _ ~
E'=FUE U {uu : ueV andu eV}

The weight function w' of G’ is defined as:

wy when e € E,
. N -
Wy = § Wy when € € F,

0 when ¢ = ui withu € Vanda € V.

Lemma 1.5.1 Let G' = 7(G) as given above. Each maximum-weight perfect mat-
ching M in G’ then corresponds to a maximum weight matching M in G.

Proof:
Let M’ be a maximum weight perfect matching in G'. The difference

M\{ui : ueVandieVi=MUM

decomposes into M C E and M C E. Since M’ is of maximum weight, M must be a
maximum weight matching in G.

Conversely, let M be a maximum weight matching in G' and M the corresponding
matching in G. Then

M' =M U M U {uii € E' : u free in G and @ free in G}

is a perfect matching in G' with weight w'(M') = 2w(M). O

The stated lemma is often used to reduce the proof of Lemma 1.4.1 to the proof of
Lemma 1.4.2.

1.5.2 Reducing the Weighted Perfect Matching Problem to the
Weighted Matching Problem

Consider an instance G’ = (V', E',w') of the maximum-weight perfect matching prob-
lem. We will construct a transformation 7' that gives us an instance 7' (G') = G,
with G = (V, E,w), of the maximum-weight matching problem satisfying (12). How-
ever, we wish to emphasize that the reduction to be stated is correct only when a perfect
matching does indeed exist in G’.

In the discussion that follows, we assume that all edge weights of G’ are non—negative.
We may make this assumption, since the weighted perfect matching problem is not
affected when all edge weights are modified by adding a constant ¢ = max{|w,| : e € E}.

Define G = (V, E,w) with V.= V' and E = E'. The edge weights in G will be set
such that each maximum—weight matching M in G is perfect. This can be achieved by
adding a positive value L to the original edge weights of G': w, = w, + L.

Choosing L such that the total weight w(M) of each perfect matching M in G is larger
than the total weight of any non—perfect matching M in G yields the desired result. Let
n = |V| denote the number of vertices of G; n is assumed to be even, since otherwise no

24 CHAPTER 1. MATCHING THEORY

perfect matching exists in G'. Moreover, let C' = max {w, : e € E'} be the maximum
edge weight in G'. By the definition of w, we have C + L > w, > L. The total
weight w(M) of each perfect matching M is thus bounded below by |[M| L = (n/2) L.
Conversely, the total weight w(M) of a non perfect matching M cannot be more than
‘M| (C + L). Hence, choosing L such that the relation

(n/2) L > |M|(C+L) (1.3)

holds, assures that each maximum weight matching M in G will be perfect. The right
hand side of (1.3) maximizes for |[M| = (n/2) — 1, since that is the largest cardinality
of a non—perfect matching possible. Therefore, choosing L := (n/2) C > ((n/2) — 1) C
has the desired effect.

Lemma 1.5.2 Let G = 77 '(G’) as given above and assume a perfect matching exists in
G'. Each maximum weight matching M in G then corresponds to a maximum weight
perfect matching M’ in G'.

Proof:

Let M be a maximum weight matching in G. From the construction above, it immedi-
ately follows that M must be perfect. The total weight of a maximum-weight perfect
matching in G’ is thus w'(M) = w(M) — |M| L = w(M) — (n/2) L.

Conversely, let M’ be a maximum weight perfect matching in G’ having total weight
w'(M'). M' is then a perfect matching in G of weight w(M') = w'(M') + |M| L =
w'(M') + (n/2) L. Due to the construction of G, no non perfect matching can have
total weight larger than or equal to w(M'). Thus, M’ is a maximum-weight matching
in G. O

Each maximum-weight perfect matching problem can thus be solved by an algorithm
for the maximum weight matching problem using Lemma 1.5.2 and a further technique
to discover the non—existence of a perfect matching in G (for example Corrollary 1.3.1).

Mehlhorn and Niher [MN99] use a similar construction to force a maximum weight
bipartite matching algorithm to find a maximum-weight matching along all maximum-
cardinality bipartite matchings.

1.6 Primal-Dual Method

In Section 1.4.1 a linear programing formulation for the maximum-weight matching
problem was introduced. Based on that formulation, we will use duality theory to
obtain a first high-level primal-dual method to compute a maximum-weight matching
to a given instance. A primal dual method based on the maximum weight perfect
matching problem formulation of Section 1.4.2 will then be outlined.

Edmonds’ blossom shrinking approach will be extended in Section 1.6.3 such that it
becomes a concrete derivation of those primal-dual methods. The resulting generic
algorithm establishes correctness of Lemma 1.4.1 and Lemma 1.4.2 and will serve as
the fundamental approach for our implementations.

1.6 PRrRIMAL DuAL METHOD 25

We will complete this section by showing a useful property of the dual solution to
the maximum weight matching and maximum weight perfect matching problem and,
moreover, discuss the pros and cons of a similar algorithm for the maximum-weight
perfect matching problem using the alternative formulation of Section 1.4.3.

1.6.1 Primal-Dual Method for the Maximum—Weight Matching
Problem

We repeat the linear programing formulation of the maximum weight matching problem
considered in Section 1.4.1:

T

(WM) maximize w'x
subject to z(d(u)) < 1 forallu eV, (1)
z(y(B)) < [|B]/2] forall Be O, (2)
e > 0 for alle € F. (3)

We will use duality theory in order to derive a primal dual method that computes
an optimal solution to (WM). The main idea is to compute a matching M whose
characteristic vector z is a feasible and moreover optimal solution to (wm). We will
assure optimality of 2 by a feasible solution to the dual linear program of (wm) that
satisfies all complementary slackness conditions with .

The dual linear program (WM) to (WM) is given next. Each vertex u and each non—
singleton odd cardinality set B has an associated dual variable gy, and zg, respectively.

(WM) minimize Z Yu + Z ||1B|/2] z

ueV BeO
subject to Yo > 0 for all u € V, (1)
zg > 0 for all B € O, (2)
Yu + Yo + Z zg > Wy, foralluvéE E. (3)
BeO
uv€Evy(B)

We will call y, and zp the dual value, or alternatively the potential of vertex u and
blossom B. (WM)(3) states that the potentials of the endpoints of an edge e = uv plus
the sum of all potentials of non—trivial odd cardinality sets containing that edge must
be greater or equal to the weight of e.

To simplify further notations, we introduce the notion of the reduced cost of an edge e.

Definition 1.6.1 (Reduced Cost) Let (y,z) be a solution to the dual linear program
(WM). The reduced cost m,, of an edge e = uv with respect to (y, z) is defined as:

Tyy = Yu + Yo — Wyy + g ZB-

BeO
uv€~y(B)

An edge e = wuw is called tight, when its reduced cost m,, equals zero. Note that
(WM)(3) can be replaced by m,, > 0 for all edges uv of E. Thus, (WM)(3) assures that
the reduced cost of each edge is non negative.

26 CHAPTER 1. MATCHING THEORY

Let us deduce the complementary slackness conditions for (wM) and (WM). Given a
primal feasible solution 2 to (WM) and a dual feasible solution (y, z) to (WM), then z
and (y, z) are optimal iff the complementary slackness conditions (¢s)(1)—(3) hold.

(cs) Ty > 0 = Tyw = 0 for all edges uv € F, (1)
Yy > 0 = z(0(u) = 1 for all nodes u € V, (2)
zs > 0 = z(v(B) = [|B|/2] forall BeO. (3)

What do the above constraints mean? We now proceed to give an interpretation.
(cs)(1) requires that matched edges must be tight. Because of (cs)(2), free vertices
must have potential zero. Finally, due to (cs)(3), when a non—singleton odd cardinality
set B has potential different from zero, then a maximum number of edges in B must
be matched, i.e. 7(B) contains ||B|/2| matched edges. We will also say B must be full.
Observe that each non trivial blossom is a non singleton odd cardinality set that is
full.

Assume now that the following four invariants hold for z and (y, z):

(11) z is a feasible solution to (WM),
(12) (y,z) is a feasible solution to (WM),
(13) (cs)(1) holds, and

(14) (cs)(3) holds.

Maintaining (11) to (14) we will alter the solutions z and (y, z) such that the violations
of (€s)(2) are successively reduced. Eventually, (¢s)(2) will hold too and we will thus
have obtained optimal solutions z and (y, z) to (WM) and (WM).

Let r be a vertex that violates (Cs)(2), i.e. r is free and y, > 0. Our purpose is either
to match r (and thus alter the primal solution z), or to adjust the dual solution (y, 2)
such that the potential of r equals zero. Having achieved either of those, r will no
longer violate (€S)(2). The following strategy realizes the outlined idea.

First, we try to match r. However, notice that by (c¢s)(1) tight edges are qualified to
be matching edges only. The attempt to match r using all current tight edges might
fail. In this case, a so—called dual adjustment by some § > 0 is performed. That is, the
dual solution (y, z) gets adjusted to (y',2') such that
) the objective value of (WM) strictly decreases,
) the invariants (11) to (14) remain true for (', 2'),
(17) in general, new tight edges exist with respect to (y',2'), and

)

the potential of r strictly decreases.

(15) assures that the dual solution converges with its optimum.® When new tight edges
result from the dual adjustment, the attempt to match r is continued. Note that (17)
will hold in general only, i.e. not every dual adjustment will produce new tight edges.”

8 Actually, if (15) did not hold, the termination could not even be guaranteed for real weights (see
Ardoz and Edmonds [AES85]).

9The reason for this will become clear shortly. For the time being, the reader is asked to accept that
we cannot guarantee each dual adjustment to produce new tight edges, since we must preserve (16).

1.6 PRrRIMAL DuAL METHOD 27

Eventually, after a series of dual adjustments either sufficiently many tight edges will
exist such that r can be matched, or the potential of r will drop to zero (due to (18)).
We summarize the discussed primal-dual method in Algorithm 1.6.1.

Algorithm 1.6.1 Generic primal-dual method for the maximum-weight matching
problem.

let x and (y, z) satisfy (11) to (14)
while there exists a free vertex r with y, >0 {
repeat {
try to match r using tight edges only
if r is not matched yet
perform dual adjustment by § > 0 such that (15) to (18) hold
} until y, = 0 or r is matched

}

The only missing details that have to be filled in are how to find the initial feasible
solutions z and (y, z) that satisfy (11) to (14), how to match free vertices using tight
edges and how to perform a dual adjustment satisfying (15) to (18). We will come back
to these details in Section 1.6.3.

1.6.2 Differences in Weighted Perfect Matching Case

Some minor changes in the primal-dual method ensue for the maximum-weight perfect
matching problem. (WpM) introduced in Section 1.4.2 is used as the linear programing
formulation for the maximum-weight perfect matching problem.

T

(WPM) maximize w'x
subject to z(d(u)) = 1 for all u € V, (1)
z(y(B)) < ||B|/2] forall Be O, (2)
ze > 0 for alle € E. (3)

(WPM) equals (WM) except that (Wpm)(1) is an equality constraint. Consequently,
the non negativity constraints for all vertices in (WM) do not occur in the dual linear
program (WPM) of (WPM).

(WPM) minimize Z Yu + Z ||1B|/2] 25

ueV BeO
subject to zg > 0 for all B € O, (1)
Yu + Yo + Z zg > Wy, foralluveFE. (2)
Beo
uv€~y(B)

Thus, the complementary slackness conditions for a primal solution z of (WpM) and a
dual solution (y, z) of (WPM) are comprised of (cs)(1) and (cs)(3) only. We repeat
them as (Pcs)(1) and (pcs)(2) below:

28 CHAPTER 1. MATCHING THEORY

(Pcs) Tyy > 0 = Tyw = 0 for all edges uv € E, (1)
zs > 0 = z(v(B) = [|B|/2] forall BeO. (2)

The description and arguments given for the non perfect case no longer make sense
now. In the perfect case, we therefore maintain primal and dual solutions z and (y, z)
that satisfy the invariants (J1) to (J14).

(J1) z satisfies all conditions of (WPM) except (WPM)(1),

(12) (y,2) is a feasible solution to (WPM),

(313) (pcs)(1) holds, and

(34) (pcs)(2) holds.

Gradually, the violations of (WPM)(1) are decreased such that in the end, z becomes a
primal feasible solution and thus is optimal, or one discovers that the objective value of
(WPM) is unbounded and therefore, no perfect matching exists (by weak duality). As
before, tight edges are used to match a free vertex r. If the current tight edges do not
suffice to match r, a dual adjustment by § > 0 is performed. § must be chosen such
that

(15) the objective value of (WPM) strictly decreases,
(16) the invariants (J1) to (J4) remain true for the adjusted dual solution (y', 2'),
(J7) in general, new tight edges exist with respect to (y', z’).

The objective value of (WPM) is unbounded, when § can be made arbitrarily large,
i.e. d = oc. The modified generic algorithm reduces to:

Algorithm 1.6.2 Generic primal dual method for the maximum weight perfect mat-
ching problem.

let z and (y, z) satisfy (11) to (14)
while there exists a free vertex r {
repeat {
try to match r using tight edges only
if r is not matched yet {
choose § > 0 such that (35) to (17) hold
if 0 = oo terminate, since no perfect matching exists
else perform dual adjustment by

}

} until 7 is matched

}

1.6.3 The Blossom—Shrinking Approach Revisited

Based on the primal dual methods discussed in the preceding sections we will extend
Edmonds’ blossom—shrinking approach (see Section 1.3) such that it can solve instances
of the weighted matching problem (non perfect and perfect). We will first focus on the

1.6 PRrRIMAL DuAL METHOD 29

maximum-weight matching problem and outline the differences for the perfect matching
case thereafter.

The following three details are still open and will be filled in next:

1. constructing the initial solutions = and (y, z) to (WM) and (WM) that satisfy (11)
to (14),

2. matching a free vertex r with non—zero potential using tight edges only, and

3. performing a dual adjustment by ¢ > 0 and assuring the validity of (15) to (18).

Throughout this section, let G = (V, E,w) be an instance of the maximum weight
matching problem. z will denote the characteristic vector to a matching M of G. We
will often not distinguish between a matching M and its characteristic vector z, and
use one notion for the other.

Finding Initial Solutions

Clearly, the empty matching M = (), i.e. z, = 0 for each edge e € F, is a feasible
solution to (wM). For each vertex u the potential is set to y, = max {w./2: e € §(u)}.
The approach will use the potentials zz of blossoms only. That is, the potential zz of
each non singleton odd cardinality set is regarded as being set to zz = 0. Exceptions
are the potentials that are associated with a non—trivial blossom B; these can have value
zp > 0. Initially, no non trivial blossoms exist. We thus obtain a feasible solution (y,)
to the dual linear program (WM).

Moreover, note that z and (y,z) satisfy both conditions (cs)(1) and (¢s)(3). In
summary, we can state that z and (y, z) meet the invariants (11) to (14).

Different possibilities to obtain better initial solutions will be the subject of Section 3.5.
For now, assume we start with the solutions z and (y, z) above.

Reducing the Violations of (cs)(2)

Consider a free vertex r with non zero potential y, > 0. First, we will describe the
attempt to match r using tight edges only. The dual adjustment step, which is trig-
gered when the search does not succeed due to insufficiently many tight edges, will be
considered more closely afterwards.

Matching a free vertex r using tight edges. From the discussion in Section 1.3
one immediately observes that the task of matching r reduces to a search for an aug-
menting path starting with . Therefore, we grow an alternating tree T' rooted at r
as described in Algorithm 1.3.1. However, in the weighted matching case it is crucial
that only tight edges are used by the search in order to preserve (cs)(1). All details of
Algorithm 1.3.1 apply.

In the case where a blossom B is shrunk, B is full, and, therefore, its potential zp
becomes accessible for future dual adjustments, as will be explained below.

30 CHAPTER 1. MATCHING THEORY

When an augmenting path p consisting of tight edges has been found, the current
matching M is augmented by p to M'. As a result, r will be matched thereafter and
the new characteristic vector 2’ of M’ no longer violates (cs)(2), as desired. All surface
blossoms in T" get unlabeled and T is destroyed. However, note the following difference.
In the unweighted matching case, all non—trivial surface blossoms have been deleted
when T was destroyed (see also Algorithm 1.3.2). For the weighted matching case the
situation is different. It is crucial that non—trivial surface blossoms with zz > 0 retain
their identity; deleting them would change the dual solution. As a consequence, non
trivial blossoms can occur outside of an alternating tree or as even or odd labeled tree
blossoms.

When T is abandoned by the search this is due to the non-existence of further tight
edges uv incident to any vertex u* € T. In such cases, a dual adjustment is initiated as
described below. New tight edges might exist thereafter and the search resumes with
T.

Performing a dual adjustment. Consider a situation where the search for an aug-

menting path from r fails because there are no more tight edges incident to any vertex
+

ut eT.

We want to alter the potentials (y, z) of the vertices and non singleton odd cardinality
sets such that (15) to (18) are met. One way to achieve this is by adjusting (v, z) to
(y',2') as stated below. The value of § > 0 will be determined shortly.

Yy, = yy—0 forallvt eT,
y = y,+d forallv €T,
yo= Yy for all 121t} ¢ T,
zg = zg+20 forall B €T,
zy = zp—20 forall B €T,
Zy = 2B for all B{?I+h ¢ T

Note that the adjustment has to be interpreted as follows. The potentials of all vertices
in T are adjusted — including those that are contained in a non-trivial blossom. On
the other hand, a potential zg of a non singleton odd cardinality set B is only adjusted
when B is a non-trivial surface blossom of G.

We demonstrate that all conditions stated above are met when a dual adjustment by
an appropriate value ¢ is performed.

First, we claim that the objective value of (WM) strictly decreases by §. Since § > 0,
that will imply the correctness of (15). We consider the rate of change Af = f' — f in
the objective value of (WM), where f and f’ denote the objective value before and after
the dual adjustment, respectively. The rate of change that is contributed to Af by a
trivial blossom u or non trivial blossom B is denoted by Af,, and Afg. An odd labeled
trivial surface blossom v~ € T obviously contributes Af,- = ¢ to Af. Analogously,
Af,+ = —6 for an even labeled trivial surface blossom v+ € T. Let B~ be an odd

1.6 PRrRIMAL DuAL METHOD 31

labeled non—trivial surface blossom of T'. Then,
Afs = |BI+BI/2] (~26) = Bls— (B - 1) = 6.
Analogously, for an even labeled non trivial surface blossom BT € T' we have:
Afse = IBI(-8)+ [IBI/2](20) = —|BIo+ (Bl 1)5 = —o.

We can conclude the argument now by observing that 7' always contains more even
than odd surface blossoms (trivial or non—trivial). More precisely, let nt denote the
number of even surface blossoms in T'. Correspondingly, let n~ be the total number of
odd surface blossoms in T'. Since each even surface blossom except the root is matched
with an odd surface blossom in T', we have: n™ = n~ + 1. The total rate of change in
the objective value is therefore Af = n™(—§) +n 6 = —4.

Let us prove that invariant (16) holds. We start with the feasibility conditions (11) and
(12). x stays feasible if it was so before the dual adjustment, since z is not altered at
all.

Ensuring that the adjusted dual solution (y', ') is dual feasible entails some restrictions
on the value of §. First, § cannot be larger than the smallest potential of an even
labeled vertex u™ € T. Second, the potential of all non-trivial blossoms must stay
non negative, and therefore ¢ is bounded above by the minimal value z5/2 of an odd
non—trivial surface blossom B~ € T. Finally, the reduced cost of all edges must be
non negative after the dual adjustment. This point demands closer inspection.

We only consider edges e = uv with at least one endpoint in T'; the reduced costs of
edges having none of its endpoints in T" do not change. Let m,, denote the reduced cost
of e before the dual adjustment and assume further that e does not lie in a blossom B,
i.e. e y(B) for a blossom B. We distinguish five cases.

Case 1: uteT

Case la: ut €T andovt €T
both endpoints of e are decreased by d. Since the new reduced
cost my,, — 20 is restricted to being non—negative, we obtain an
upper bound of 6 < m,,/2.

Case 1b: u' € T and 01?1t} g T
the reduced cost 7y, of e will change by —§, resulting in another
bound: § < my,

Case 2: utceTandv™ €T
since u is decreased and v increased by ¢, the reduced cost m,, of e will not
change.

Case 3: uw €T

Case 3a: v €T andv €T
the potential of each endpoint v and v is increased by 6. The
new reduced cost m,, + 2§ of e is, obviously, non negative.
Case 3b: u~ € T and v{?1t}t ¢ T
the reduced cost m,, increases to m,, + 0 and will hence stay
feasible.

32 CHAPTER 1. MATCHING THEORY

Figure 1.5: Let B be an odd blossom in the alternating tree T' as depicted in (a). Immediate
subblossoms of B are d,B;,b,q and p. B; is the only non—trivial subblossom of B. When B is
expanded (see (b)), all immediate subblossoms along the even length path from d to b become
part of T and are labeled appropriately. p and ¢ are unlabeled and leave T'.

Consider the case now where e = uv € y(B) is embedded in a blossom B. Its reduced
cost 7y, will not change, since the potentials of the endpoints u and v are both decreased
or increased by §, whereas the potential of B is increased or decreased by 24, respectively.
Actually, this is the motivation for only changing the potential of non—trivial surface
blossoms.

We conclude by noting that we have obtained the following bounds for the value of §
in order to stay dual feasible.

0= min{é] y 52, 53, 54}

where
41 = min s ut e T},
! ueV {yu }
by = min {my, : ut €T, o121} ¢ T},
wwek
03 = min {mu,/2 : uT €T, v €T},
uveFE

04 = i 2 : B eT}.

4 min - {zp/ ¥

The convention of defining the minimum of an empty set to be oo is adopted here as
well.

Finally, from the discussion above one can immediately affirm the validity of (cs)(1)
and (€s)(3). This concludes the verification of (16).

The only invariants not having been affirmed yet are (17) and (18). Let 0 be chosen
as stated above. Each vertex u, edge e or non—trivial blossom B that is responsible for
one of the bounds §;, with 1 <4 < 4, is called the responsible vertex, edge or blossom,
respectively.

1.6 PRrRIMAL DuAL METHOD 33

Algorithm 1.6.3 Generic algorithm of the blossom—shrinking approach to compute a
maximum weight matching (perfect or non perfect) in a general graph G.

let M be the empty matching
set y, = max {w,/2: e € E} for each vertex u in G
label each vertex u in G even
for each vertex r in G {
if r is matched continue with another vertex
let B, be the only blossom of T
repeat {
if non—perfect matching case and a vertex u™ in T with y, = 0 exists {
let p’ denote the alternating surface path from B, to B,
lift p’ to an alternating path p from u to r using Lemma 1.3.1
replace M by M @& p
}
else if an alive edge uv with ™ in T and 7y, = 0 exists {
case v? € T grow step
case v € T: shrink step
case vt € T augment step
}
else if there exists an odd blossom B~ € T with zg = 0
expand step for B
else {
determine d accordingly
if 6 = oo and perfect matching case
terminate, no perfect matching exists
perform dual adjustment by 0

}

} until 7 is matched

}

Consider the case § = ;. The potential y, of the responsible vertex v € T will be
decreased to zero by the dual adjustment. Since u is even, an even (possibly zero)
length alternating path p from u to r exists. p starts with a matching edge and ends
with a non matching edge. We can match r by replacing M by M & p. Note that u
will thereafter be free. However, this is legal since the potential of v equals zero. Thus,
the number of violations of (¢S)(2) has indeed decreased by one.

Assume now that § = ¢; for + = 2,3. Let e = uv be the responsible edge to §;.
Obviously, e will become tight and can thus be used either to extend T' (6 = d2) or to
shrink a new blossom (J = d3).

Finally, let 6 = 64 and B~ € T be the responsible blossom. Then, zz of B will drop to
zero after the dual adjustment and thus cannot participate in another dual adjustment.
The action to be taken is to expand B, which is somehow the opposite to shrinking a
blossom. B gets expanded by raising all its immediate subblossoms to the surface. Since
B is an odd blossom of T', there must be a matching tree edge ¢ and a non—matching

34 CHAPTER 1. MATCHING THEORY

tree edge €’ incident to B. Let b and d denote the endpoint of e and €’ that is contained
in B. There must exists an even length alternating path p from By to By, the immediate
subblossoms of B containing d and b, lying exclusively in v(B). Moreover, all edges in
p are tight. We add p and thus all immediate subblossoms lying on p to 7" and label
them according to their even or odd length distance to the root blossom B, of T'. All
other immediate subblossoms of B not lying on p get unlabeled and leave the tree T'.
In Figure 1.5 an example is given of a so—called expand step.

Obviously, (17) holds whenever § = d;, with i = 2,3. Moreover, note that § = d; will
happen at most once per search and the occurrences of § = §4 during a search are
bounded by O(n).'” Finally, when the potentials are adjusted in the way stated above,
(18) certainly holds.

Let us briefly consider the differences for the maximum-weight perfect matching case.
The initial solutions constructed above will certainly validate (1) to (14). Moreover,
the details to match a free vertex using only tight edges stay the same. Moreover, the
stated dual adjustment will assure invariants (J5) to (37). The only difference is that
the potentials of even tree vertices are no longer restricted to being non negative. As
a consequence, 0 is not bounded above by ;. Therefore, choosing

0= min{ég, 53, 54}

yields the desired result for the maximum—-weight perfect matching problem. Note that
0 = oc might in fact happen in the perfect case, whereas this is prevented by the
existence of §; in the non perfect case.

Finally, we summarize Edmonds’ blossom shrinking approach to find a maximum
weight matching (perfect or non—perfect) in a general graph by the generic algorithm
depicted in Algorithm 1.6.3.

1.6.4 Half-Integrality of the Dual Solution

We will use this section to prove an important property of the dual solution constructed
by the approach described in the preceding section.

Lemma 1.6.1 Let (y,z) be an optimal solution to (WM), where all edge weights are
integral. Then (y, z) is half-integral, or more precisely:

Yo =0 (mod 1) forallu €V, and (1)
zs=0 (mod 1) forall Be O. (2)

Proof:

Assume the algorithm starts with the initial solution (y, z) as described above, i.e. y,, =
max {w./2 : e € E} for each vertex u and zg = 0 for all non-singleton odd cardinality
sets B. When w, is integral for each edge e, (1) and (2) hold.

Observe that once a blossom becomes an even tree blossom, it will stay even labeled and in T for
the rest of the search.

1.6 PRrRIMAL DuAL METHOD 35

Let (y,z) be a dual solution satisfying (1) and (2). Consider a dual adjustment by
d > 0 and let (y,2') be the resulting dual solution. (1) and (2) will remain true for
(y',2") when § can be proved to be half-integral. § is obviously half-integral when
d = 01 or § = 44 (actually, 0 is integral iff § = d4). The reduced cost m,, of an edge
uv is guaranteed to be half-integral by definition and (1) and (2). Thus § = Jy is
half integral. Finally, consider the case § = d3. We will show that the reduced cost
Tuo Of an edge uv with u* € T and v € T must be integral. To see this, note that all
edges e = 40 in T are tight and all edge weights are integral. Thus, for these edges we
have:
Ya + Yo + Z ZB = Wij
Beo
ave~(B)

which implies that y; + y; = 0 (mod 1) must hold for any two vertices 4 and ¢ in
T. Thus we can infer that the reduced cost m,, of the edge wv is integral, and this
concludes the proof. O

One can immediately affirm the following corollary for the maximum weight perfect
matching case.

Corollary 1.6.1 Let (y,z) be an optimal solution to (WPM), where all edge weights
are integral. Then (y, z) is half-integral.

1.6.5 Using the Alternative LP Formulation — Algorithmic Conse-
quences

As was mentioned above, the details of the primal-dual method we have developed
depend on the underlying linear programming formulation. Using the alternative linear
programming formulation (WPM*) introduced in Section 1.4.3 one may hope to obtain
a different approach for the maximum weight perfect matching problem which could
be implemented more efficiently.

The differences of a primal dual method based on the linear programming formulation
(wpM*) are the subject of this section.

(wpM*) maximize w’x
subject to z(d(u)) = 1 forallueV, (1)
z(d6(B)) > 1 forall Be O, (2)
e > 0 forallee F. (3)

The dual linear program (WpM*) to (WpM*) is given below.

(wpM*) minimize Z Yu + Z 2B

ueV BeO
subject to zg > 0 for all B € O. (1)
Yu + Yo + Z ZB > Wy foralluv € K, (2)

BeO

uv€Ed(B)

36 CHAPTER 1. MATCHING THEORY

Note that the reduced cost my, of an edge uv with respect to a dual solution (y, z) is
now defined differently:

Tyy = Yu T Yo — Wyy + g ZB

BeO
uv€Ed(B)

The complementary slackness conditions are thus:

(Pcs™) Tuy > 0 — Ty = 0 for all edges uv € F, (1)
zg > 0 = z(6(B) = 1 forall BeO. (2)

All details of the primal-dual method for the weighted perfect matching case apply.
However, the dual adjustment is performed differently in order to assure (J15) to (J7).
The potentials are adjusted for surface blossoms (trivial or non—trivial) only.

y = y,—06 forallot €T,
Yy = yy+4d forallv” €T,
Yo = Yo for all 01214} ¢ T,
2z = 2—0 forall Bt €T,
zy = zg+0 forall B €T,
Zg = 28 for all B2+ ¢ 7.

It seems one can implement the dual adjustment stated above more efficiently since
only surface blossoms have to be considered. However, the crux of using the linear
programming formulation (WpM*) is the computation of the reduced cost of an edge.

During the course of Algorithm 1.6.3 the reduced cost m,, of alive edges uv will have
to be computed frequently. Using the approach discussed in the preceding section,
this can be achieved by taking the potentials of 4 and v and the edge weight w,, into
consideration.'’ In the approach just sketched, one would additionally have to take
into consideration all potentials zg of blossoms B with uv € 4(B).

1.7 Survey of Different Realizations

Over the last four decades various polynomial-time realizations of the blossom-—
shrinking approach discussed in Section 1.6.3 have evolved. The first was suggested
by Edmonds himself as early as 1965. Its theoretical running time was bounded by
O(n?m). Permanent improvements regarding the theoretical running-time have been
achieved successively using different strategies and data structures. The current best
and optimal approach for general edge weights has a running—time of O(n(m+nlogn))
and is due to Gabow [Gab90]. We wish to use this section to portray the main ideas
behind four different polynomial-time realizations of the blossom—shrinking approach.

One can view the blossom—shrinking approach as working in phases. A phase terminates
when an additional violation has been eliminated, i.e. a violation of (¢s)(2) in the

" Remember that alive edges are not contained in any blossom and hence > z5 = 0.
BeO
uv€~y(B)

1.7 SURVEY OF DIFFERENT REALIZATIONS 37

maximum-weight matching and a violation of (wPM)(1) in the maximum-weight per-
fect matching case. Since at most n violations exist, where n denotes the number of
vertices in (G, we have O(n) phases. Next, we will argue that the number of dual
adjustments per phase is bounded by O(n). Therefore, observe that § = d; occurs at
most once in a phase. When § = §;, with i = 2,3, at least one (formerly non—-even
labeled) vertex becomes an even tree vertex. When a vertex has become an even tree
vertex it will stay even and reside in the tree until the end of the phase. Thus ¢ = §;,
i = 2,3, occurs O(n) times. Finally, whenever § = d,, a blossom gets expanded. Since a
blossom cannot contain more than n vertices this will also happen at most O(n) times.

A non trivial part of the algorithm is to maintain the surface graph G. We sketch the
idea of using a union—find data structure that additionally supports a split operation.
Each vertex knows its surface blossom, e.g. by a pointer, and each surface blossom
maintains a list of all its vertices. Identifying the surface blossom of a vertex thus takes
time O(1). Two blossom B; and B; are united by size. That is, w.l.o.g. let |B;| > |B;|.
The pointer of each vertex in B, is set to B;, the list of B; is appended to B; and B;
is destroyed. B; then represents the new blossom. Split operations, too, are done by
size. The list of a surface blossom B; is split into two lists B; and B;. Again, the larger
blossom, say B;, is reused and each pointer of a vertex in the smaller blossom is set
to Bj. By always resetting the pointers of the smaller blossom, we can assure that
each ﬁxed vertex contributes no more than O(logn) time to a series of n union or split
operations. Note, however, that the claimed time bound only holds for a series of split
followed by a series of union operations, or vice versa; and not for an arbitrary order
of intermixed union and split operations. But since a vertex can participate in a series
of at most O(n) split (expand steps) followed by a series of O(n) union (shrink steps)
operations, a total time of O(nlogn) per phase results. This will be sufficient for all
four realizations presented next.

The realizations differ in the way they find tight edges, determine the value of § and
perform a dual adjustment.

1.7.1 An O(n*m) Approach

A simple realization needs time O(m) to find tight edges and to determine the value
of § (each edge is inspected once). Performing a dual adjustment can be achieved
by explicitly updating the potential of each vertex and non trivial surface blossom
which takes time O(n). The total running-time is thus O(n%(n + m)) = O(n?m) or
O(n*), since m is bounded above by n2. This approach is essentially the one which was
suggested first by Edmonds [Edm65a].

1.7.2 An O(n*) Approach

The only parts that need more than O(n) time per dual adjustment in the above
realization are the identification of tight edges and the determination of 4, or, to be
more precise, the determination of d, and 3.2 As we shall see, either can be achieved

2Obviously, the determination of §; and 64 can easily be achieved in time O(n).

38 CHAPTER 1. MATCHING THEORY

in time O(n). The resulting O(n?) approach is due to Lawler [Law76].

We say an alive edge e incident to a surface blossom B (trivial or non—trivial) is a best
edge of B when its reduced cost is minimal, i.e.

Te = min {m,, : wv € §(B) and uwv is alive}.

When several such edges exist for B, the best edge of B refers to an arbitrary one of
these.

To handle dy, each vertex ul?It} & T stores its best edge uv from u to an even labeled
tree vertex v € T. Moreover, u stores the reduced cost m,, of its best edge. Since odd
vertices might leave T and get unlabeled (due to an expand step), the same data must
be available for each odd tree vertex u~ € T. Finding tight edges and determining d9
can then be achieved in time O(n) by inspecting each best edge of ul?l+} & T vertices.
A dual adjustment is performed by updating the reduced cost of all best edges of
ut?*} ¢ T vertices which takes at most O(n) time.

Each surface blossom ZS’+ € T stores for each adjacent surface blossom B+ € T, with
By # Bj, the best edge ey; = uv with u € By, and v € Bj. Moreover, Bk knows the
reduced cost ., of the best edge ey, of all best edges ey;. Flndlng tight edges is achieved
by inspecting all best edges of the blossom whose best edge has reduced cost zero. The
time needed to do so is bounded by O(n). By exploring the reduced cost 7, of the
best edge ex to each blossom B,:' € T, d3 can be determined in time O(n). Adjusting
the reduced cost 7, of each blossom B} € T needs time O(n).

It remains to be shown, however, that the information associated with the maintenance of)
and J3 can be kept correct without using time more than O(n?) per phase. Whenever a vertex
becomes an even tree vertex, its edges are scanned and the information for §, and d3 is updated.
When a new blossom By, is formed by s immediate subblossoms, it takes time O(sn) to set up
the data for By.'? The total cost T'(n) per phase to maintain 3 can then be computed by the
following recursion: T'(n) = O(sn) + T'(n — s). By induction it follows that T'(n) equals O(n?).
Since each edge is scanned at most twice in a phase (once from each endpoint) this contributes
Ltime O(m) per phase. Altogether, the approach needs time O(n(n? +m)) = O(n?).

Finally, observe that the idea of maintaining the best (alive) edge to each pair of even
surface blossoms gives a lower bound of €(n?) per phase.

1.7.3 An O(nmlogn) Approach

Another realization, which improves the theoretical running time to O(nmlogn), is
due to Galil, Micali and Gabow [GMGS86]. This approach is superior to the O(n?)

13We give details to derive the claimed time bound. Let B; , 1 <4 < |s/2], denote the immediate
odd subblossoms of By. Each B;, 1 < i < [s/2] is made even. All edges of the vertices contained in
Bi, 1 <i < |s/2], are scanned to update the information for d, and to determine the best edges e;;
of B; to other even tree blossoms Bf € T. Thereafter, the best edges e; and the reduced cost of the
best edge ey of all best edges of By, can be determined in time O(sn). We have to update the best edge
information of each blossom B+ € T adjacent to the new blossom Bjy. This will need time O(sn). To
see this, consider a fixed blossom B+ € T that is adjacent to By. Deleting all best edges e;; to an even
subblossom Bj" € T of By, takes time O(s). Updating the best edge e;i. to B; takes time O(1). Since
the number of adjacent blossoms is bounded by n the total time of O(sn) results.

1.7 SURVEY OF DIFFERENT REALIZATIONS 39

approach for sparse graphs. More or less the same ideas as in the O(n?) approach are
reused. However, priority queues will help to achieve an O(mlogn) time bound per
phase. We will not go into detail here but postpone the discussion to Chapter 2. Only
a few differences are outlined.

For example, d3 will be maintained by a priority queue. At first glance the usage of
priority queues does not seem to work, due to the frequent changes of the priorities after
a dual adjustment. Taking advantage of the fact that all priorities change uniformly
will help to circumvent this problem in an efficient way.

Another major difference to the O(n?®) approach is that we abandon the goal of only
keeping track of the alive edges between even tree blossoms. Instead, a lazy deletion
strategy is used to maintain d3. That is, every alive edge that might be of interest for
03 is inserted into d3. As a consequence, after a series of shrinkings, d3 might contain
edges that are no longer alive. These edges are deleted when they are encountered as
the minimal element of d3. Actually, this will be the only point where the running time
of O(m + nlogn) per phase is exceeded.

For the sake of completeness we state the theoretical running-time for finding tight
edges, for determining § and for performing a dual adjustment. Finding a new tight
edge will correspond to a delete min operation on a priority queue and thus takes, at
most, time O(logn). The same will hold for the determination of 6. To perform a
dual adjustment, however, will only take time O(1) and is thus an immense speed up
compared to the O(n?) approach.

1.7.4 An O(n(m+ nlogn)) Approach

In 1990, Gabow [Gab90] presented a data structure that can be used to realize a phase
of Edmonds’ blossom shrinking approach in theoretical running time O(m + nlogn).
Gabow claimes this time bound to be optimal: sorting » numbers can be reduced to
a search for an augmenting path in Edmonds’ blossom shrinking approach; originally,
a similar argument was given by Fredman and Tarjan [FT87] to prove optimality of
Dijkstra’s algorithm. Since each edge may be considered once during a search, a lower
bound of Q(m + nlogn) per phase results.

The details of the approach are complex and will not be given here. We attempt to
sketch the idea, although this is difficult without going into detail. As mentioned before,
only the maintenance of d3 needs special refinement. Therefore, a kind of alternating
tree T is grown. Bach blossom forming edge uv (i.e. the edge uv with u* € T and
vt € T) is replaced by two (directed) back edges ul and vl, where [denotes the lowest
common ancestor of 4 and v in 7. A shrink operation then corresponds to uniting
all surface blossoms along the cycle C; = (I,...,u,l) and Cy = (I,...,v,l). These
back edges are further partitioned into logn sets called packets. Roughly speaking, by
dealing with the packets’ minima (in terms of reduced cost) the desired time bound can
be achieved.

However, the underlying data structures are complex and we doubt that an implemen-
tation would be efficient in practice.

Chapter 2

O(nmlogn) Approach

The demanding and costly parts in Edmonds’ blossom shrinking approach are the per-
forming of dual adjustments and the determination of the value of § (see Section 1.6.3).
In 1986, Galil, Micali, and Gabow [GMG86] presented a strategy that enables a phase
of Edmonds’ blossom—shrinking approach to be realized in time O(mlogn). The time
bound is achieved by using a sophisticated data structure, which they call generalized
priority queues. Generalized priority queues support all standard priority queue opera-
tions. Additionally, the priorities of certain subgroups of elements in the queue can be
uniformly changed by a single operation.

The ideas we will develop in this chapter are similar to or have been developed from
the ideas of Galil et al. However, our approach differs with regard to the maintenance
of the varying priorities. Galil et al. handle these changes within the priority queue
data structure, whereas we will establish a series of formulae that enable us to compute
these priorities as needed.

First, we shall illustrate how the blossom potentials and reduced costs of edges can
be computed after a series of dual adjustments. As a consequence, the time required
to perform a dual adjustment will be reduced to O(1). Next, the concept of using
priority queues to determine the value § and thus also the responsible vertex, edge or
blossom will be considered more closely. Finally, an obvious but mistaken realization
will motivate the application of concatenable priority queues.

2.1 Varying Potentials and Reduced Costs

The frequent modifications of the blossom potentials and, consequently, the reduced
cost of edges caused by a dual adjustment make it difficult to realize a phase in the
blossom—shrinking approach efficiently. However, the a considerable advantage is that
these modifications occur in a uniform manner. In the subsequent sections we will
illustrate how to take advantage of that fact.

41

42 CHAPTER 2. O(nmlogn) APPROACH

2.1.1 Potential Update

Consider a dual adjustment that is performed during the course of Algorithm 1.6.3 (de-
scribed in Section 1.6.3). Let T denote the current alternating tree. A dual adjustment
by § affects the potentials of all vertices and non trivial surface blossoms as follows.
The vertex potential changes by —d for an even tree vertex v € T, by +¢ for an odd
tree vertex u~ € T and by 0 for an non-tree vertex u{?/*} ¢ T Correspondingly, the
potential of a non trivial surface blossom is adjusted by +20 for an even tree blossom
BT € T, by —2A for an odd tree blossom B~ € T and by 0 for a non-tree blossom
Bleltt g .

Therefore, after a series d1, 9, ..., d; of dual adjustments the so called actual potential
of a vertex or non—trivial surface blossom can be computed by taking its initial potential,
its status and the value of A = Zle d; into consideration. The status of a blossom
(trivial or non—trivial) is given by its label and the property of either being a tree or a
non-tree blossom.

More precisely, as long as the status of a vertex u does not change it is possible to
obtain its actual potential g, from its initial potential y, by the following formula:

Yu = Yu + oA,

Similarly, on the assumption that the status of a non trivial surface blossom B is
invariant, the actual potential zz can be computed via its initial potential zz:

zr = 2z — 20\,

The coefficient o depends on the current status of a blossom B (trivial or non trivial)
and will be called the status indicator:

—1 when BT €T,
o= 1 when B~ € T, and
0 when B2+t g T

However, the status of a blossom changes during the course of the algorithm and the
formulae given above are somewhat oversimplified. We next refine these formulae such
that arbitrary status changes can be handled as well.

Consider first of all a status change for a vertex u. Let Ay and As denote the sum of
dual adjustments before and after the status change and assume u changes its status
indicator from o to o’. Then,

Uu = Yu + 01 +0' Ay yu + (0 — ')A + o' A.

That is, we need to correct the potential y, by +(0 — o’)A at the point of time when
u changes its status indicator from o to o’ (and thus A = Ay).

Analogously, let us consider a status change for a non—trivial surface blossom B. It is

25 =25 — 2001 —20' Ay = 25— 2(0 — ')Ay — 20'A

2.1 VARYING POTENTIALS AND REDUCED COSTS 43

and therefore the potential zpz is corrected by —2(c — ¢’)A when the current status
indicator o of B changes to ¢’. Again, at this point A will equal A;.

As will become clear shortly, we cannot afford to correct the potential of each ver-
tex contained in a non—trivial surface blossom separately. Observe, however, that the
correction value of a vertex potential and that of the non—trivial surface blossom con-
taining that vertex differs by a multiplicative factor of —2. We can therefore simulate
the potential corrections by means of an offset assigned to each surface blossom, as
described next.

Each surface blossom B (trivial or non trivial) has an offset denoted by offsetz. The
actual potential of a vertex u is then computed by

.77’11, =Yy t+ O.ﬁ:gEtB + UAa (21)

where B corresponds to the surface blossom containing u (trivial or non trivial). Ac-
cordingly, the actual potential of a non—trivial surface blossom B can be obtained by

zZp = zB — 20ffset g — 20A\. (2.2)
A status change for a surface blossom B then reduces to an update of its offset value:
offsetg = offsety + (o0 — o')A, (2.3)

where A denotes the sum of dual adjustments up to the time of the status change.

During the course of the algorithm, the offset of a surface blossom B is adjusted as
in (2.3) whenever its status changes. The discussion of how to handle the offsets in a
shrink or an expand step is postponed to the next but one section.

2.1.2 Maintenance of Reduced Costs

For each vertex u!?/*} ¢ T and v~ € T we will need to keep track of the best edge uv
to an even labeled tree vertex and the reduced cost my, of that edge. We will do so by
assigning a pair (my,, uv) to each such vertex, where uv denotes an edge incident to w,
with v™ € T, having reduced cost my,,.

In the context of this chapter it would be sufficient to handle only one such pair per
vertex. However, we will consider a more general case where each vertex u is associated
with a series (7yy, , uv1), (Typy, U02), - . ., (Tyy, , uvy) of pairs. Bach pair (m,,,, uv;) keeps
an edge ww; incident to w, with 1)Z~+ € T', and the reduced cost m,,, of that edge.

This extended view will turn out to be reasonable in Chapter 3 (Section 3.4), where
various alternating trees are simultaneously grown and hence several edges and their
reduced costs will be associated with any vertex, i.e. also with even labeled tree vertices.
In the subsequent sections, we will explicitly mention when the results apply to the
extended view only.

The reduced costs of all edges associated with a vertex w may vary with dual adjust-
ments. As for the blossom potentials, we will elaborate a formula which enables the
actual reduced costs of these edges to be computed.

44 CHAPTER 2. O(nmlogn) APPROACH

For a vertex u™ € T, u~ € T or u!?I*} ¢ T, a dual adjustment by & changes the reduced
costs of all edges associated with « uniformly by —24, 0 or —d, accordingly. Therefore,
as long as u does not change its status, we can again compute the actual reduced cost
Tup; Of an edge uv; after a series of dual adjustments taking its initial reduced cost, the
status of u and the total dual adjustment value A into consideration. The computation
formula can even be expressed by means of u’s status indicator o as introduced in the
preceding section:
%m)i = Tyy; + (U - I)A

Let us, once again, consider the value by which the reduced cost m,,, has to be corrected,
when u changes its status indicator from o to o’. As before, Ay and A, denote the
sum of dual adjustments that have been performed before and after the status change:

Tuw; = Tup, + (0 — DA + (0 — 1)Ag = 7y, + (0 — ')Ay + (' — 1)A.

Thus, we would have to increase the reduced cost m,,, of each edge uv; by (o —o')A
whenever u changes its status. Observe that the offset of the surface blossom B con-
taining w is increased by exactly this amount, and we can therefore attain the same
result by computing the actual reduced cost with respect to that offset also:

%m;,; = Ty, + O.ﬁgetB + (U - I)A (24)

Thus, we postulate that the actual reduced cost m,,, of any edge uv; associated with u
is computed by Formula (2.4).

One final remark must be made here. Imagine that at some point of time a new edge
uvgy1 having actual reduced cost 'ﬁuvk“ is to be added to u. The reduced cost myqy,
that is actually stored with the new pair (7rm,k+1 , uvg1) of u must then equal

Tuvy1 = Ty, — Offsety — (0 — 1)A. (2.5)

We will therefore call 7y, ,, the stored reduced cost of the edge uvyy1, also.

2.1.3 Managing the Blossom Offsets

In the preceding two sections several formulae have been developed to compute both
the actual potential of a blossom and the actual reduced cost of edges associated with
a vertex. In either case, the value of interest is obtained by taking the offset of the
surface blossom into consideration. What remains to be shown is how one can handle
these offsets when a shrink or an expand step occurs.

Managing the Blossom Offsets — Shrink Step

Let B, with (immediate) subblossoms By, Bs, ..., Bo1, denote the blossom to be
formed. Each odd labeled subblossom B; is made even by adjusting its offset as previ-
ously described (see (2.3)). The offsets offsety, , offsety,, offsetp,, , may differ in
value. However, we want to achieve a situation where the actual potential and also the

2.1 VARYING POTENTIALS AND REDUCED COSTS 45

actual reduced costs associated with each vertex u € B; can be computed with respect
to the new surface blossom offset offsety.

The following strategy assures that the offsets of all (immediate) subblossoms B;, 1 <
1 < 2k + 1, are equally set to zero. The actual potential and reduced costs associated
with any vertex contained in the new blossom B can thus be computed with respect to
the offset offsetg = 0.

When a surface blossom B’ (trivial or non trivial) becomes an even tree blossom for
the first time during a phase, its offset offsetp is set to zero. Thus, in order to preserve
the validity of (2.1) and (2.2) for the computation of the actual potential 3, of each
vertex u € B’ and of the actual potential zg of B’ itself (when B’ is non—trivial only),
the following adjustments have to be performed:

Yu = Yu + offset, and
zp = zp — 20ffsetp.

In the extended view mentioned in the preceding section, even tree vertices are also
associated with a series of pairs. In this case, the stored reduced cost m,, of each such
pair (7myy, uv) associated with u is subject to correction:

Ty = Ty + O,ﬁgetB/.

We wish to emphasize that the described updates are performed for every blossom that
becomes an even tree blossom (an even tree blossom need not necessarily participate
in a shrink step). We thus decided to call this strategy the provident strategy.

Observe that the adjustments are performed at most once for a fixed vertex per phase.
Thus, the time required for the potential adjustments is O(n) per phase. The correction
of the reduced costs contributes time O(m t,q;) per phase, where £,q; denotes the time
needed by the operation to change the stored reduced cost.! We will keep the pairs
associated with a vertex in a priority queue (as will be explained in Section 3.4) and
thus £,q; is bounded by O(logn). In summary, a total time bound of O(n 4+ mlogn)
per phase results.

r il
We wish to present another strategy, in which the new offset offsety is determined by the offset
value offset™ of the (immediate) subblossom B; that survives in the following procedure.

We iterate over all (immediate) subblossoms of B. Initially, offset” is set to the offset of Bj.
In each stage i, 1 < i < 2k, the actual potential of each vertex contained in a subblossom
B; with j < i is computed with regard to the offset offset”. Let ¢; = Z;:] |B;| denote the
total number of these vertices. We use ¢;+1 to denote the number of vertices contained in the
subblossom B;y;. When ¢; > c¢;y1, offset™ survives and all vertices of B;y1 lose; otherwise
offsetp,,, survives and all vertices of the B;’s lose. offset™ is set to the survivor offset and the
other offset is denoted by offset; (the actual potentials of all loser vertices are computed with
respect to that offset). The potentials y, of all loser vertices u are adjusted such that their
actual potentials are computed correctly with respect to the offset offset™, i.e.

Yu = Yu + Oﬁcsetl — oﬁset*.

'The total number of pairs stored for all vertices will be bounded by O(m).

46 CHAPTER 2. O(nmlogn) APPROACH

As before, it is only in the extended view (where not only unlabeled and odd labeled vertices
but also even tree vertices are associated with a series of pairs) that the stored reduced cost
7wy Of each such pair (m,,, uv) needs to be adjusted:

Tuy = Tuy + Offset, — offset™.

We do not adjust the potentials zp, of the non—trivial subblossoms B; here, since they in any
case require a special treatment, as will be described below. We call this strategy the non
provident strategy, since the necessary adjustments are performed on demand, i.e. when the
corresponding vertex in fact participates in a shrink step.

Let us proceed to the determination of the time needed by these adjustments. Since we always
adjust the potentials and stored reduced costs of losing vertices only, the necessary adjustments
for a fixed vertex u will be performed at most O(log n) times per phase.? The cost for updating
the potential of u is O(1). Moreover, since the number of edges associated with u will be
no greater than its degree deg(u), the time required to adjust the stored reduced costs is
O(deg(u) taqj), where t.q; denotes (as above) the time needed by the operation to change the
stored reduced cost. We conclude that each vertex u contributes O((1 + deg(w) taq;j) logn) time
per phase. As mentioned previously, taq; is bounded by O(logn). Thus, summing over all
vertices we obtain a total time bound of O((n + mlogn)logn) = O(nlogn + m(logn)?) per
phase. That is, the theoretical time bound of O(mlogn) per phase is exceeded. In practice,
however, the non provident strategy turned out to be slightly more efficient than the provident
strategy (as will be presented in Section 3.6). It therefore seems to us that this strategy is
worth being considered.?> Our multiple search tree implementation (discussed in Section 3.4)
I_implements both the provident and the non—provident strategy.

After the new blossom B has been formed, the actual potential z5; of each non—trivial
subblossom B; is no longer affected by future dual adjustments. We therefore freeze the
potential of these blossoms by adopting the following convention. For any non-trivial
subblossom B;, we ensure that the potential zp, equals its actual potential zp,. Thus,
at the time of shrinking we set:

2B, = zB; — 20ffsetg, — 20,

and since every subblossom of B has been made even before, the above equation reduces
to
2B; = zB; — 20ffsetg, + 2A.

The time needed to perform these potential freezings is proportional to the number of
non-trivial subblossoms of B.

2There are n vertices and after each adjustment for u, u will reside in a group of cardinality at least
twice as large as before.

3Moreover, note that all stored reduced costs of a fixed vertex u are adjusted by the same amount.
Therefore, the underlying priority queue data structure, which organizes these reduced costs, could also
implement an operation, say change_all_priorities, which changes all priorities in the queue by the same
amount in time O(deg(u)). For example, assume the priority queue is realized by a balanced binary
tree (i.e. having height O(log(deg(u)))), where the items of the priority queue correspond to the leaves
of the tree. Then, traversing each vertex (i.e. non—leaf vertices too) of the tree and explicitly updating
the stored priority of that vertex will take time proportional to deg(u). As a consequence, the total
time needed by the non provident strategy would be reduced to O((n+ m)logn) per phase, as desired.

2.2 DETERMINATION OF § TOWARDS A PRIORITY QUEUE APPROACH 47

Managing the Blossom Offsets — Expand Step

The details for an expand step now ensue easily. Let B denote the odd surface blossom
that is going to be expanded. As for the shrink step, the (immediate) subblossoms of
B are denoted by By, Bs,...,Bag1. The actual potential and the actual reduced costs
associated with each vertex contained in B can be computed by the formulae established
above; these values depend on the offset offsetz of B, which is therefore assigned to each
of the subblossom offsets, i.e. offsety = offsetg. Moreover, each subblossom becomes
odd labeled and the potential zp; of all non—trivial subblossoms B; undergo unfreezing
with respect to the new offset:

2B; = 2B; + 20ffsetg. — 20A

which equals
2B; = 2B; + 20ffsetp, — 2A

since each B; is labeled odd. Obviously, the time required to unfreeze the blossom
potentials is proportional to the number of non—trivial subblossoms of B. Afterwards,
the necessary status changes for some of the subblossoms B;, for instance for those
that leave T', can be handled by an offset adjustment as discussed above (see Equation

(2.3)).

Summarizing, we have established a convenient way to handle the varying blossom
potentials as well as the reduced costs of edges associated with a vertex. The value
of interest can be computed on demand by the formulae developed. Here, making an
offset available to each surface blossom and keeping track of the total amount A of
dual adjustments turned out to be the key ideas. The additional overhead produced by
the offset maintenance has been proved to consume O(mlogn) time per phase. A dual
adjustment by d reduces to an increase of A by 0 and can thus be performed in time

O(1).

2.2 Determination of § — towards a Priority Queue Ap-
proach

We next consider more closely the idea of using priority queues to determine the value
of 4, and show how all priorities stored in a priority queue can be adjusted in a uniform
manner.

Recall that 0 is chosen as the minimum of the four values d1,d9,d3 and d4 (see Sec-
tion 1.6.3). In order to determine each one of these we keep a corresponding priority
queue deltal, delta2, delta8 and delta.* The priorities in each of the priority queues
change with each dual adjustment and at first glance there seems to be little hope that
this approach will turn out to be efficient. However, an essential observation is that

*We assume some familiarity with the priority queue data type. All standard operations, like insert,
delete min, find min etc, are assumed to take time no more than O(log n), where n denotes the number
of items stored in the priority queue. For a detailed discussion of these operations see, for example,
Cormen et al. [CLR92].

48 CHAPTER 2. O(nmlogn) APPROACH

one can arrange the priority queues such that all priorities decrease uniformly by the
dual adjustment value §. Consequently, the so called actual priority, denoted by p,
of any item in each of the priority queues can be computed from its stored priority p,
i.e. the priority which is stored with that item in the priority queue, and the total dual
adjustment value A as defined above.

More precisely, we ensure that a priority p stored in any of these four priority queues
corresponds to the actual priority p = p— A. As a consequence, when a new item having
(actual) priority p has to be inserted into one of the priority queues, the priority p which
is stored with that item is set to p + A, where A denotes the total dual adjustments
performed up to this point. We next discuss the semantics of the items contained in
each of the priority queues.

deltal consists of all items (p,u) with u™ € T. The actual priority p — A corresponds
to the actual potential y, of u.

Each item (p,uv) in delta2 represents the best edge of a vertex v1?I*} & T to an even
labeled tree vertex u™ € T. The actual reduced cost 7, of this edge equals the actual
priority p — A.

delta3 keeps track of the edges uv connecting two even labeled tree vertices u™ € T
and v € T. The edges inserted into delta3 are ensured to be alive; however, during
the course of the algorithm some of the edges stored in delta? might become dead. We
use a lazy deletion strategy for these edges: dead edges are simply discarded when they
occur as the minimal item of delta3. Each edge is represented by an item (p,uv) in
deltal. The actual priority p — A corresponds to one half of the actual reduced cost of
uv, i.e. p— A = Ty /2.

The priority queue delta4 contains for each odd labeled non trivial surface blossom
B~ € T an item (p, B). The actual priority p — A of this item is equal to one half of
the actual potential of B: p — A = z5/2.

I—VVe briefly argue that all actual priorities of deltal, delta2, delta3 and delta decrease by the_|
dual adjustment value §. The potentials of all vertices u™ € T are decreased by ¢ and therefore
the actual priorities of deltal decrease by d. Since only the potential of the endpoint u* € T'
for all edges uwv stored in delta2 is decreased by 4, each actual priority of delta2 decreases by
d. For each edge uv stored in delta8 the potential of both endpoints is decreased by 4. The
actual priority of each edge is one half of the reduced cost of that edge. Therefore, each actual
priority decreases by §. Finally, the potential of each non—trivial surface blossom is reduced by
L267 and its actual potential in delta4 thus decreases by 4.

Let us suppose that the priority queues deltal, delta?2, delta3 and delta are maintained
correctly. Each value 61, d9, 03 and d4 can then be determined by a find min operation
on deltal, delta2, delta3 and deltas, respectively. Moreover, finding the responsible
vertex, edge or blossom reduces to a delete min operation on the priority queue from
which § results. Summarizing, both the determination of § and also of the responsible
vertex, edge or blossom can be achieved in time O(logn).?

5A comment is in order at this point. delta3 might contain up to m items and thus an upper bound
of O(log m) results. At first sight, it seems that the stated time bound of O(logn) is exceeded; but
note that m < n?, and therefore O(log m) = O(log n).

2.3 A MISLEADING STRATEGY TRAPS AND PITFALLS 49

2.3 A Misleading Strategy — Traps and Pitfalls

Having the outlined ideas in mind, it seems as if one could immediately implement
the blossom shrinking approach that guarantees the stated time bound of O(m logn)
per phase. However, the realization described next will not fully comply with the
stated time bound. The reasons for our decision to present a mistaken realization are
substantiated by the following three arguments. First, we have been misled by this
realization ourselves. Second, it will serve as a basis that can easily be extended to a
correct approach. And finally, it will eventually provide us with an intuitive grasp such
that we will affirm the need for concatenable priority queues.

An alternating tree T is grown from a free vertex r as described in Algorithm 1.6.3.
Initially each vertex is a surface blossom having offset value 0, and the value of A is
set to 0. The initial potential stored with each vertex equals its actual potential. At
the beginning of a phase, each of the priority queues deltal, delta2, deltad and deltas
is made empty.

For each vertex ul?t} ¢ T or u= € T we keep track of its best edge uv to an even
labeled tree vertex and of the (stored) reduced cost m,, of that edge by means of a pair
(Tuy, uv). Moreover, we adopt the convention that a designated pair (oc, §)) is assigned
to u, when no such edge has been encountered during the current phase.

Whenever a vertex u becomes an even tree vertex, its actual potential 1, is computed
by (2.1) and a corresponding item (g, + A, u) is inserted into deltal. We go through
all incident edges uwv of u in order to keep delta? and delta3 correct; this will contribute
O(m) time per phase, since each vertex that becomes an even tree vertex will stay even
and remain in 7" for the rest of the phase. When uv is dead or is a tree edge, it is simply
discarded. Otherwise, uv is alive and we can thus compute its actual reduced cost:

Ty = Yu T Yo — Wy,

where y, is obtained by Formula (2.1) and w,, denotes the weight of that edge.6 The
action to be taken depends on the status of the endpoint v:

Case 1: o2t gT

We consider only the case where uv is the new best edge of v, since otherwise
nothing has to be done.

When (oc, §)) is the pair stored with v, uv will be the new best edge to v and
we therefore replace that pair by (my,,uv), where the stored reduced cost
Ty 18 computed by Formula (2.5). A new item (7, + A, uv) is inserted into
delta?2.

Otherwise, let (74, uv) denote the pair stored with v. We can compute the
actual reduced cost 7, of 4w by Equation (2.4). When 7, < Tg,, uv will

5Recall that the reduced cost my, of an edge uv has been defined as repeated below, where in the
current context the potentials refer to the actual potentials. Moreover, since uv is alive the sum over
all blossom potentials containing that edge must equal 0.

Ty = Yu + Yy — Wyy + 5 ZB.

BeO
uv€EY(B)

50 CHAPTER 2. O(nmlogn) APPROACH

be the new best edge of v. The pair stored with v is replaced by (my,, uv),
where m,, refers to the stored reduced cost (obtained by Equation (2.5)),
and the item stored for v in delta?2 is replaced by (Ty, + A, uv).

Case 2: vT €T
The item (7, /2 + A, uv) is simply inserted into delta3.

Case 3: v €T
The same description as for 0121t} ¢ T applies, but no item is inserted or
replaced in delta2.

When a non—tree blossom B enters 7', each item in delta2 corresponding to a vertex
u € B is deleted. Moreover, when B is non trivial and becomes an odd tree blossom, we
compute its actual potential zz by (2.2) and insert the item (z5/2 + A, B) into delta .

When a vertex v~ € T leaves T due to an expand step, we use the pair (my,, uv) stored
with v in order to set up an item for delta2; if (oo, () is assigned to v, we do nothing.
The actual reduced cost 7y, of uv is computed as in (2.4), and the item (7., + A, uv)
is inserted into delta2.

Determining 4, performing a dual adjustment and finding the responsible vertex, edge
or blossom are achieved as previously described. All remaining details, e.g. shrinking
or expanding a blossom etc., follow easily from the discussion above.

I—One final remark is in order at this point. Since an unlabeled vertex might become an odd tree)
vertex and then leave T again due to an expand step, one may wonder why it is sufficient to
maintain for each vertex v? & T and v~ € T the best edge uv to a vertex u* € T only. Note,
however, that once the best edge uv of a vertex v2 ¢ T has been used for a grow step, v will
stay in T for the rest of the phase — even if all blossoms containing v are expanded during that

Lphabse.

So far, it seems that the running—time of O(mlogn) per phase has been achieved.
Observe, however, that each vertex entering or leaving 7" causes a deletion or insertion
on delta2. In the rest of this section we will justify in detail the claim that it is due to
the expansion of blossoms that these insertions and deletions may be executed up to
O(n?) times and thus exceed the claimed time bound.

Readers who are not interested in these details are advised to skip to Section 2.4.

2.3.1 Maximum Height of a Blossom Tree

.
First, we need to introduce the concept of a so called blossom tree, which represents the nesting
of a blossom B.

Let B be a blossom. Each subblossom B; C B corresponds to a node u; in the blossom tree BTy
of B.”7 The root node u of BT stands for the blossom B itself. Consider a node u; in BT that
corresponds to a subblossom B; C B. The children of u; in BTz are the nodes u;, , u;,, - .., u;,,
where each u;;, 1 < j < k, corresponds to an immediate subblossom B; of B; (see Figure 2.1
for an example). From the construction of BTp it follows that the vertices contained in B

correspond to the leaves of BTg.

"In order to avoid confusion, we will use the term node when referring to vertices in the blossom
tree.

2.3 A MISLEADING STRATEGY TRAPS AND PITFALLS 51

BTp

(a) (b)

Figure 2.1: Let B be a blossom whose nesting structure is given in (a). The blossom tree
BTp of B is formed as depicted in (b). In BTg, the root node stands for B, each internal
(i.e. non-leaf) node represents a non—trivial subblossom of B and every leaf corresponds to a
vertex of B.

The cardinality p of a blossom B is defined as the number of vertices contained in B. Further-
more, a blossom is said to be of size s, when it contains s immediate subblossoms.

Lemma 2.3.1 Let B be a blossom of cardinality p and BTg the corresponding blossom tree.
The height h of BT is bounded by O(p).

Proof:

Let Ly denote the number of leaves in a blossom tree of height h. We have Ly = 1, since a
blossom tree of height zero represents a trivial blossom. A blossom tree of height one has at
least three leaves: L > 3.

Generally speaking, a blossom tree of height h has L, > L, 1 + 2 leaves. The recursion can
easily be solved:

Lp>Lp 14+2>L 9o4242>...2Lg+24+...42=2+1
~———
h times

Since the number of leaves in BTpg corresponds to the cardinality p of B, we obtain:
h<(p-1)/2 O

Lemma 2.3.1 implies that the height of a blossom tree BTg to a blossom B having maximum
cardinality may be O(n).

In Section 1.6.5, the disadvantage of computing the reduced cost of an edge using the alter-
native linear programming formulation of the maximum weight perfect matching problem was

52 CHAPTER 2. O(nmlogn) APPROACH

outlined.® Using the terms introduced above, the time required to compute the reduced cost
of an edge uv connecting the blossoms B, and B, is proportional to the height of the blossom
trees BT, and BTg,. That is, by Lemma 2.3.1, it takes time O(p, + p,) in the worst case to
compute the reduced cost of an edge uv, where p, and p, denote the cardinality of B, and B,,
respectively.

Applegate and Cook [App93] use the blossom tree to compute the reduced cost of an edge as
follows. For each blossom tree of a surface blossom B, they broadcast the sum of all blossom
potentials along the path from the root to each leaf. Each leaf in any blossom tree BTpg that
corresponds to a vertex u of B then knows the sum ¥, =y, + ZueBi zg,. The reduced cost of
an alive edge uv can then be computed by ¥, + ¥, — w,,. However, broadcasting the sum of
all potentials to each leaf in the blossom tree takes time O(p) for a blossom having cardinality

p.

In either case, a lower bound of Q(n?) per phase results for the algorithm based on the alternative

formulation.
L _

2.3.2 Expanding a Blossom — Number of Status Changes

I—Consider an odd tree blossom B~ € T with cardinality p. When B is expanded, some subblos-)
soms of B may leave T' and later become odd tree blossoms. Following the strategy described
above, each vertex of a blossom that leaves T is touched, e.g. in order to insert an appropriate
item into delta2. We are now interested in the number of these touches per phase.

More precisely, let e(p) denote the total number of status changes caused by vertices of B that
leave T' during a phase. Obviously, a blossom B with maximum nesting structure will form the
most disadvantageous case. Or to put it differently, a blossom B whose blossom tree BTz has
largest height possible will contribute most to e(p). Therefore, we consider €(p) which equals
e(p) in the worst case only, i.e. e(p) < é(p).

e(p) can easily be defined as a recursive function:

&(p) 0 for p <1, and
e =
P (p—2)+1+e(p—2) otherwise.

The recursion is substantiated as follows. Obviously, blossoms having cardinality p = 1 are triv-
ial and thus cannot contribute anything to €(p). Otherwise, when a blossom B with cardinality
p > 1is expanded, at least one vertex (namely the base) must stay in 7. A large subblossom of
cardinality p — 2 and a single vertex get unlabeled and thus contribute (p—2) + 1 to €(p). Later,
the large (sub)blossom might become an odd blossom of T and be expanded itself, producing
cost €(p — 2).

We are now interested in the number ¢ of applications of the recursion stated above such that
e(p — 2i) = 0. Since by definition €(p) = 0 for p < 1, we have i = (p — 1)/2, which is the
maximum height of the blossom tree BT. We thus have:

P

2

) = zi(in)Jrl:pTl(erl(% 1>>:p241

i=1

#Recall that, using the alternative linear programming formulation, the reduced cost m,, of an edge
uv was defined differently:
Tuy = Yu + Yy — Wyy + Z ZB.

Beo
uves(B)

2.4 CONCATENABLE PRIORITY QUEUES 53

At this point it becomes apparent that touching each vertex would increase the running—time

_to O(n?) per phase and hence destroy the claimed bound of O(mlogn).]

2.4 Concatenable Priority Queues

The problem indicated in the preceding section is overcome, however, using so—called
concatenable priority queues. A concatenable priority queue supports all the usual
priority queue operations plus the two additional operations specified below. The items
in a queue are regarded as forming a sequence.

concat(pql, pq2) concatenates the underlying sequences of pg! and pg2.
The resulting priority queue pg contains all items of pg! in their original order
followed by all items of pg2 in their original order.

split_at_item(pq, it) splits the sequence of pg at item it into pgl and pg2.
All items preceding the item it (inclusively) in pg then belong to pg! and all other
items belong to pg2.

As we will show at the end of this section, both operations can be achieved in time

O(logn).

Motivated by the fact that we cannot afford to insert an item into delta2 for each vertex
separately, one may think of inserting just one item for each surface blossom. Therefore,
we assume that each surface blossom B maintains its own concatenable priority queue,
which we will denote by Pg.

The queue Pg of a non—tree blossom B{?I*} ¢ T or an odd tree blossom B~ € T
incorporates all pairs stored with the vertices v € B. That is, every vertex v € B has
an item (m,,,uv) in Pg. The priority m,, equals the stored reduced cost of the best
edge uv connecting v to an even labeled tree vertex ut € T. As before, the item in
Pz corresponding to v may be set to (oo, () in order to indicate the non availability of
such an edge for v.

We also maintain a concatenable priority queue Pg for each even tree blossom BT € T.
Again, for each vertex v € B we have a corresponding item in Pg. However, the contents
of these items is set arbitrarily.

Each non tree blossom B1?/T} ¢ T sends its minimum item (Tyy, uv), representing the
best edge uv (along all best edges) of B, to delta2; however B does not send an item
to delta? when the minimum item equals (oc, (}). More precisely, let (p, uv) denote the
item in delta2 that has been sent by B. The actual priority p = p — A then equals the
actual reduced cost 7, of the best edge uv of B (which can be computed by (2.4)).
Whenever a non tree blossom B becomes a tree blossom, its corresponding item is
deleted from delta2. Conversely, when a tree blossom leaves T, a corresponding item is
inserted into delta2. Finally, when the minimum in a priority queue Pg with B{?/T} ¢ T
changes, the corresponding item in delta? is updated accordingly.

When a new blossom B is formed by Bp,Bs,...,Bosq1 the priority queues
Pg,, Pg,, ..., Ps,,_, are concatenated one after another and the resulting priority queue
Pg is assigned to B. Here, we keep track of each #;, 1 < i < 2k + 1, the last item in

54 CHAPTER 2. O(nmlogn) APPROACH

B;. Later, when B is expanded, the priority queues to By, Bs, ..., Bogy1 can easily be
recovered by splitting the priority queue of B at each item ¢;, 1 < i < 2k + 1. In
fact, we handle the concatenable priority queues for even tree blossoms only because of
structural reasons.

All other details apply as one would expect and as is described in Section 2.3.

Assuming that both operations concat and split_at_itern take O(logn) time, the claimed
time bound of O(mlogn) per phase is achieved. In order to demonstrate this, recall
that there will be at most O(n) concat and split_at_item operations during a phase.
Moreover, observe that only the maintenance of delta3 uses time O(m + nlogn) per
phase.

I—In the rest of this section, a realization of the data type concatenable priority queue based on_|
(a, b)—trees will be briefly outlined. We will concentrate mainly on the two additional operations
concat and split_at_item. For a more detailed discussion, see Aho et al. [AHUT74, Section 4.12]
and Mehlhorn [Meh84, Section IIL.5.3].

Many realizations of the priority queue data type use a balanced tree as the underlying data
structure, i.e. a tree T whose height is bounded by O(logn) where n denotes the number of
leaves in T.

Definition 2.4.1 ((a,b)—Tree) Let T = (V, E) denote a tree rooted at r. The number of
outgoing edges of a vertex u € V is denoted by outdeg(u). T is called an (a,b)—tree, with
b > 2a — 1, iff the following holds:

(1) for each non leaf vertex u € V, with u # r: outdeg(u) > a,

(2) for each non—leaf vertex u € V: outdeg(u) < b, and

(3) all leaves reside on the same level.

The next theorem states that each (a,b) tree is balanced in the sense mentioned above.

Theorem 2.4.1 Let T be an (a,b) tree of height h and let n denote the number of leaves in
T. For the height h of T it is:

logyn < h < 1+log,(n/2).°

All standard operations of the priority queue data type can be implemented for (a,b) trees
as well. Each such operation will take time (at most) O(logn) (see the references mentioned
above).

However, we want to emphasize a major difference to the common view of an (a, b)—tree T' that
represents a priority queue. Normally, the leaves are arranged in ascending order (e.g. from left
to right) with respect to the priority of an item. However, the kind of concatenable priority
queue we specified above requires the leaves to be part of a sequence (independently of their
priority).

Operation: concat(pql, pg2)

Let Th and T be the two (a,b)-trees of pgl and pg2 having height h; and hs, respectively.
When hy = hs, a new root vertex r is created and 77 and T5 become the left and right child of r.

9The right side can be understood by observing that the root 7 has outdeg(r) > 2 and every other
non leaf vertex u has outdeg(u) > a and thus n > 2a"~'.

2.4 CONCATENABLE PRIORITY QUEUES 55

Now assume h; > ho; the other case is treated analogously. Let v denote the rightmost vertex
in Ty of height hy — hs and let f denote the parent of v. The root of T5 becomes the rightmost
child of f. If, afterwards, f has more than b children the tree is repaired as we suppose to be
known (f is split into two vertices having [(b + 1)/2] and |(b+ 1)/2] children etc).

Lemma 2.4.1 Let pgql and pg2 denote two priority queues having n; and no items. A
concat(pql, pg?2) operation can be performed in time O(]logn, — logna|).

Operation: split_at_item(pq, it)

Consider the tree T that corresponds to the priority queue pg. Let v denote the leaf vertex in T
that stores the item it and let p denote the path from v up to the root vertex of T. By deleting
p, T decomposes into two forests; a forest Fj to the left which consists of all trees with leaves to
the left of v (inclusively) and a forest F). to the right which consists of all trees with leaves to
the right of v (exclusively). Let F; = (LT, LT; 1,...,LT}) be the ordered sequence (from left
to right) of all trees to the left and F, = (RT1, RT», ..., RT;) the ordered sequence (from left
to right) of all trees to the right. Iteratively concatenating all trees LTy, with k = 1,2,...,1,
results in a tree 17 which represents pgl. Analogously, the tree Ty of pg2 can be constructed
by concatenating all trees RT}, in the order £ =1,2,...,7.

Lemma 2.4.2 Let pq denote a priority queue containing n items. A split_at_item(pq, it) op-
eration for any item it of pg takes time O(logn).

Proof:

When p is deleted from T, there will be at most b — 1 trees of a fixed height h in F; U F,.. The
only exception are trees of height 0, of which there can be b many. The concatenation of b trees
of height h will result in a tree having height at most h 4+ 1. Therefore, at most b trees of any
given height occur during the concatenation process described above.

To concatenate two trees of the same height takes time O(1), and O(Ah) when their heights
differ by Ah. Therefore, the time spent concatenating all trees is O(bh + log Ahpay), where
Ahmax denotes the maximum difference of any two trees that are concatenated. Since Ahmyax
is bounded by O(logn), split_at_item takes O(logn) time. O

Chapter 3

Implementation and Tests

One major objective in the field of theoretical computer science is to obtain algorithms
that are efficient with respect to the theoretical running—time. However, not seldom
there is a big trade off between a theoretically efficient algorithm and its technical
feasibility. The utilization of complex data structures that make the algorithm fast in
theory often has a drastic impact on its efficiency in practice.

In this chapter we will present an implementation of Edmonds’ blossom shrinking ap-
proach based on the use of concatenable priority queues. At the time we started, it
was not foreseeable whether the implementation would be fast in practice. Moreover,
a highly efficient algorithm for the maximum weight perfect matching problem was
available such that there was little hope of improving upon it. The algorithm referred
to is known as the Blossom IV algorithm and is implemented in C. It is due to Cook
and Rohe [CR97] and is based on earlier work by Applegate and Cook [App93]. Cook
and Rohe do not claim a theoretical time bound, but it will be no better than Q(n?).

Our implementation is innovative in the sense that there is no other algorithm using
priority queues accessible at the moment. We used C++ as the programming language
since the algorithm uses and is intended to become part of the Library of Efficient
Data Structures and Algorithms, called LEDA for short, developed at the Max Planck
Institute for Computer Science in Saarbriicken, Germany.! We assume that the reader
is familiar with some basic data types and concepts of LEDA; most of the data types
used in our implementation will be self-explanatory.

We implemented two versions of Algorithm 1.6.3. A so—called single search tree ap-
proach and a multiple search tree approach. In the former, only one tree is grown at
a time, whereas in the latter various search trees are grown concurrently. Surprisingly,
the difference between these two approaches with regard to their practical efficiency is
immense. Both algorithms guarantee a worst case running time of O(nm logn).

The chapter is organized as follows. In Section 3.1 we will define the interface functions
and outline their functionality. Then, the data structure concat_pg, which realizes the

'For an extensive reference describing all issues concerning LEDA see the book by Mehlhorn and
Naher [MN99]. LEDA is freely available for academic research and teaching at:

http://www.mpi-sb.mpg.de/LEDA.

57

58 CHAPTER 3. IMPLEMENTATION AND TESTS

data type concatenable priority queue discussed in Section 2.4, is introduced. Since we
do not want to go into the implementation details of this data structure, all operations
needed will be specified in Section 3.2. After this, our implementation of the single
search tree algorithm will be presented. The ensuing differences for the multiple search
tree algorithm are the subject of Section 3.4. The efficiency of both algorithms is
considerably improved by constructing a better initial solution, as will be outlined in
Section 3.5 below. Finally, some running—time experiments will reveal the efficiency of
our implementation in practice.

3.1 Functionality

The function

list<edge> MAX WEIGHT MATCHING(const ugraph &G,
const edge_array<NT> &w,
bool check, int heur)

returns a maximum-weight matching and

list<edge> MAX_WEIGHT PERFECT MATCHING(const ugraph &G,
const edge_array<NT> &w,
bool check, int heur)

a maximum weight perfect matching for the undirected graph G (type ugraph) with
weight function w. Both functions accept edge weights of any number type NT.? The
matching is represented by the list of edges returned. When check is set to true, the
optimality of the computed matching is checked internally. Depending on the value of
heur, the algorithm starts either with an empty matching (heur = 0), a greedy matching
(heur = 1), or with a jump—start or fractional matching (heur = 2), as will be explained
in Section 3.5.

The interface functions are specified in the header file MWM.t. The user can switch
between the single search tree and the multiple search tree approach by defining the
token _SST_APPROACH.?

(MWM.t: mazimum weight matching algorithm)=
template<class NT>
list<edge> MAX_WEIGHT_MATCHING(const ugraph &G,
const edge_array<NT> &w,
bool check = true, int heur = 1) {
edge_array<NT> w_mod (G) ;
(scale edge weights)
node_array<NT> pot(G);
node_array<int> b(G, -1);

2We suppose, however, that the number type NT provides a division operation.

®That is, in order to use the single search tree approach, type #define _SST_APPROACH before the
file MWM. t is included.

3.1 FUNCTIONALITY 59

array<two_tuple<NT, int> > BT;

total_t = used_time();
#if defined(_SST_APPROACH)

list<edge> M = MWM_SST(G, w_mod, pot, BT, b, heur, false);
#else

list<edge> M = MWM_MST(G, w_mod, pot, BT, b, heur, false);
#endif

total_t = used_time(total_t);

check_t = used_time();

if (check) CHECK_MAX_WEIGHT_MATCHING(G, w_mod, M, pot, BT, b);

check_t = used_time(check_t);

return M;

}

We compute a maximum weight matching with respect to a modified weight function
w_mod which equals w unless the number type NT is int, where w_mod equals 4w.

(scale edge weights)=
edge e;
bool INT = LEDA_TYPE_ID(NT) == INT_TYPE_ID;
forall_edges(e, G) w_mod[e] = (INT 7 4xwl[e] : wlel);

Thus, the dual solution and also the reduced cost of each edge will remain integral
during the course of the algorithm (see also Lemma 1.6.1).*

When the _SST_APPROACH token has been defined, the function

list<edge> MWM_SST(const ugraph &G, const edge_array<NT> &w,
node_array<NT> &pot, array<two_tuple<NT, int> > &BT,
node_array<int> &b, int heur, bool perfect)

is called. Its implementation will be the subject of Section 3.3. The implementation
details of the function

list<edge> MWM_MST(const ugraph &G, const edge_array<NT> &w,
node_array<NT> &pot, array<two_tuple<NT, int> > &BT,
node_array<int> &b, int heur, bool perfect)

will be the subject of Section 3.4. Both functions compute a perfect matching iff perfect
is set to true. The total time needed (in CPU seconds) to compute an optimal matching
is stored in a global variable total_t (type float).

The additional parameters pot, b and BT are used to prove optimality of the computed
matching M. Their semantics is as follows. The potential of each vertex is stored
in the node_array pot. BT represents the nested family of odd cardinality sets (see
Section 1.3). Each two_tuple (zp,pp) in BT represents a non trivial blossom B having
potential zg and parent index pg. The parent index pg is set to —1 if B is a surface
blossom. Otherwise, pg stores the index of the entry corresponding to the immediate

* Apparently, the same purpose could have been achieved by a multiplication by two. However, the
edge weights are multiplied by four so as to ensure that one half the reduced cost of any edge remains
integral too.

60 CHAPTER 3. IMPLEMENTATION AND TESTS

superblossom of B.> The index range of BT is [0,...,k — 1], where k denotes the
number of non trivial blossoms. When B; is a subblossom of B, the index of the entry
corresponding to B; is smaller than the one of B. The parent index for a vertex w is
stored in the node_array b.

Using this data, the function

void CHECK MAX WEIGHT MATCHING(const ugraph &G,
const edge_array<NT> &w,
const list<edge> &M,
const node_array<NT> &pot,
const array<two_tuple<NT, int> > &BT,
const node_array<int> &b)

can check all optimality conditions given in Section 1.6. The time (in CPU seconds)
needed by the checker is kept in a global variable checker_t (type float). We will not
discuss the realization of that function and instead refer to Mehlhorn and Néher [MN99].

The interior of the function that computes a maximum—weight perfect matching looks
similar.

(MWM.t: mazimum—weight perfect matching algorithm)=

template<class NT>
list<edge> MAX_WEIGHT_PERFECT_MATCHING(const ugraph &G,
const edge_array<NT> &w,
bool check = true, int heur = 1) {

edge_array<NT> w_mod(G);
(scale edge weights)

node_array<NT> pot(G);
node_array<int> b(G, -1);
array<two_tuple<NT, int> > BT;

total_t = used_time();
#if defined(_SST_APPROACH)
list<edge> M = MWM_SST(G, w_mod, pot, BT, b, heur, true);

#telse

list<edge> M = MWM_MST(G, w_mod, pot, BT, b, heur, true);
#endif

total_t = used_time(total_t);

check_t = used_time();
CHECK_MAX_WEIGHT_PERFECT_MATCHING(G, w_mod, M, pot, BT, b);
check_t = used_time(check_t);

return M;

SThe immediate superblossom concept is defined analogously to the immediate subblossom concept
given in Section 1.3.

3.2 CONCATENABLE PRIORITY QUEUES (CONCAT_PQ) 61

3.2 Concatenable Priority Queues (concat_pq)

We implemented a data structure concat_pg supporting all needed operations of data
type concatenable priority queue as introduced in Section 2.4. The implementation
is based on (a,b)-trees; we chose a = 2 and b = 16. concat and split_at_item are
essentially realized as discussed at the end of Section 2.4. We do not intend to go into
the implementation details. Instead, the specification of all operations needed in the
subsequent sections is given.

In Section 1.7 we outlined the idea of using a union find data structure with split opera-
tion to handle the surface graph. The method we use in our implementation is different.
Since a concatenable priority queue will be assigned to each surface blossom, we de-
cided to extend the functionality of concat_pg such that it also enables the maintenance
of the surface graph. We use the underlying (a,b) trees to identify a setable object
(which will be the surface blossom) of a given item (which will correspond to a vertex).
The way this is achieved is as follows. Each root of an (a,b)—tree stores a pointer to
the object representing that tree. Traversing from an item it towards the root, we can
identify the (a,b)—tree object containing the item it. Moreover, each (a,b)—tree object
has a generic pointer owner (a generic pointer is of type voidx*) which is setable by the
user; see operation set_owner. Consequently, the owner of any item it can be identified
(operation get_owner) in time O(logn), where n denotes the number of items in the
(a,b)—tree.

1. Definition

An instance @ of the parameterized data type concat_pg<P,I> is a collection of items
(type c_pg_item). Every item contains a priority from a linearly ordered type P and an
information from an arbitrary type I. We use (p,i) to denote a c_pgitem with priority
p and information i. The data structure requires a designated element infinity of P,
with infinity > p for all p € P and equality holds only if p = infinity. An item (p,i)
with p = infinity is irrelevant to Q. The number of items in () is called the size of).
Q@ is empty when all its items are irrelevant, or when @) has size zero. A setable generic
pointer owner (type voidx) is associated with Q.

2. Creation

concat_pg<P,I> Q); creates an instance @ of type concat_pg<P,I>
based on the linear order defined by the global
compare function compare(const P&, const P&)
and initializes it with the empty priority queue.
infinity is set to the maximum value of type P.

3. Operations

c_pg-item Q.init(P p, I 1) initializes @ to the priority queue containing only
the item (p,i) and returns that item.

62

void

void

c_pg-item

v01d

bool

bool

int
bool

vo1d

v01d

void

CHAPTER 3. IMPLEMENTATION AND TESTS

Q.prio(c_pg_item it) returns the priority of item it. Precondition: it is
an item in Q).

Q.inf(c_pg_item it) returns the information of item it. Precondition:
it is an item in Q).

Q.concat(concat_pg<P, I>& pq, int dir = LEDA:: after)

concatenates () with pg. The items in () precede
(succeed) the items of pq, when dir = after (dir =
before). pq is made empty, i.e. contains no items
thereafter.

Q.splitat_item(c_pg_item it, concat_pq& pql, concat_pq& pq2)

splits @ at item it into pgl and pg2 such that
it is the last item of pq!. In case it = nil, pg2
becomes () and pgl becomes empty. The instance
(@ is empty thereafter, unless it is given as one of
the arguments.

Q.find.min() returns an item with minimal priority (nil if Q is
empty).
().deLmin() makes the item it = Q.find-min() irrelevant to

@ by setting its priority to infinity. The former
priority is returned.

Q).delitem(c_pg_item it) makes the item it irrelevant to Q. Precondition:
it is an item in Q).

Q).decrease_p(c_pg_item it, P x)

makes x the new priority of item 4¢. The func-
tion returns true iff the operation was successful,
i.e. Q.prio(it) was larger than x.

Q.increase_p(c_pg_item it, P x)

makes x the new priority of item it. The func-
tion returns true iff the operation was successful,
i.e. Q.prio(it) was smaller than z.

Q.size() returns the size of Q.

Q.empty() returns true, if () is empty, and false otherwise.

Q.reset() makes () the empty priority queue by setting all
priorities to infinity.

Q).clear() makes () the empty priority queue by deleting all
items.

Q.set.owner(GenPtr pt) sets owner of @ to the object pointed to by the
generic pointer pt (type voidsx).

3.3 SINGLE SEARCH TREE APPROACH 63

4. Friend Functions

GenPtr get.owner(c_pg_item it) returns the generic pointer owner of the instance
containing item .

5. Iteration
forall_items(it,) { “the items of) are successively assigned to it” }

forall(i, Q) { “the information parts of the items of @) are successively assigned to i” }

6. Implementation

All access operations take time O(1). concat and split_at_item take time O(logn), where
n is the (maximum) number of elements in the priority queue(s). Operations clear and
reset take time O(n). All other operations take time (at most) O(logn).

3.3 Single Search Tree Approach

In Chapter 1, we elaborated a generic algorithm (see Algorithm 1.6.3) of Edmonds’
blossom—shrinking approach. Most of the details for its realization based on priority
queues have been discussed in Chapter 2. In this section, the results established are
integrated into a single search tree implementation using priority queues.

A major task in implementing the blossom shrinking approach is concerned with
the representation of blossoms. We will first design a template class blossom (type
blossom<NT>) that keeps all necessary information, and turn to the implementation
of our algorithm afterwards.

3.3.1 Data Structures

In Chapter 2 we justified extensively the need for each surface blossom to maintain its
own concatenable priority queue.

Given the parameterized data type concat_pg<P, I> as specified in the last section, the
template class blossom can be defined as follows.

(SST.t: data structures)=
template<class NT> class vertex;
template<class NT> class blossom;
(class blossom: friend functions definition)

template<class NT>
class blossom : public virtual concat_pq<NT, vertex<NT>*> {
(class blossom: friend functions declaration)

public:
(class blossom: data members)

64 CHAPTER 3. IMPLEMENTATION AND TESTS

(class blossom: member functions)

LEDA_MEMORY (blossom<NT>) ;
};

Class blossom inherits all properties of the data type concat_pg<NT, vertex<NT> x >.
Additional data members and functions will be defined below. The information part
of each item points to an object of class vertex. Essentially, the template class vertez
comprises all data associated with a vertex. For the single search tree approach we
have:

(SST.t: data structures)+=
template<class NT> class vertex {
public:

NT pot;

node my_node;

node best_adj;

vertex(NT d, node u) {
pot = d;
my_node = u;
best_adj = nil;

}

LEDA_MEMORY (vertex<NT>) ;

I

Each object of type vertex<NT> stores its potential pot and its original vertex my_node.
The way we keep track of the best edge for my_node to an even tree vertex is by storing
this adjacent vertex in best_adj.

Data Members: A blossom is either even labeled, odd labeled or unlabeled. There-
fore, a new type LABEL is defined.
typedef enum {even, odd, unlabeled} LABEL;

Moreover, each blossom maintains its potential pot and its offset offset.

(class blossom: data members)=
LABEL label;
NT pot;
NT offset;

The base and mate (if any) vertex of a blossom are stored in base and mate, respectively.
Note that these two vertices represent the endpoints of the matching edge. In order
to organize the tree structure of the alternating tree, each odd blossom keeps track of
its discovery and predecessor vertex disc and pred. disc denotes the endpoint of the
non-matching tree edge which is contained in the blossom and pred refers to the other
endpoint (see Figure 3.1). We wish to emphasize that these data will only be kept
correctly for surface blossoms.

(class blossom: data members)+=

node base, mate;
node disc, pred;

3.3 SINGLE SEARCH TREE APPROACH 65

Figure 3.1: Consider the alternating tree T with root blossom B; as depicted above. Let
Bi denote the object of type blossom<NT> representing the blossom B;, 1 < i < 7. For
example, the entries of B3 are set to base = ws, mate = us and disc = pred = nil and
for B4 we have base = w4, mate = vy, disc = vz and pred = usz. The entries of all other
blossoms are set accordingly. Using this data, the (surface) tree path from each tree blos-
som to the root blossom can be identified easily. Bi,...,B; define a new blossom B. Let B
be the object corresponding to B. We have: B.shrink_path = <ui,v1,us,vs,...,u7,v7> and
B.subblossom_p = <&B2,&B3,...,&B7,&B1>.

Additionally, each non trivial blossom stores its defining surface cycle as a list of vertices
in shrink_path. All pointers of the immediate subblossom objects are collected in a list
subblossom_p.

(class blossom: data members)+=

list<node> shrink_path;
list<blossom<NT>*> subblossom_p;

We adopt the following order for the entries of these lists. Let C' = (e1,e9,...,€211)
denote the defining surface cycle of a blossom B. FEach edge e¢; = (u;,v;), 1 <
i < 2k + 1, of C is regarded as being directed such that v; 1 and wu;, with vy =
vok11, are contained in the same immediate subblossom B;. Assume further that
By refers to the subblossom containing the base. Then, shrink_path stores the list
of vertices <uy, vy, ug,v9,... usks1,vok+1> and subblossom_p consists of the pointers
<&B3,&Bs;,...,&Bog1,&B1>, where &B; denotes the pointer to the blossom object
that represents B;. Refer to Figure 3.1 for an example.

At the time of shrinking, the split_item entry of each (immediate) subblossom is set to
the last item of that blossom. This will enable restoration of the concatenable priority
queues in an expand step later on.

(class blossom: data members)+=

c_pq_item split_item;

There are some additional data members that will be introduced in the context they
are first needed.

66 CHAPTER 3. IMPLEMENTATION AND TESTS

Member Functions: We outline only some of the member functions; the remaining
functions will be filled in as needed. A function that returns the (stored) reduced cost
of the best edge (of all best edges incident to vertices) of a blossom is implemented as
follows.

(class blossom: member functions)=

const NT min_prio() const
{ return (find_min() 7 prio(find_min()) : INFINITY(NT)); }

Here, INFINITY (NT) simply returns the maximum value of type NT. The following
three functions return the appropriate entries stored in the information part of an item
it (type c_pg_item).

(class blossom: member functions)+=

const NT pot_of (c_pg_item it) const { return inf (it)->pot; 3
const node node_of (c_pg_item it) const { return inf(it)->my_node; 1}
const node best_adj(c_pq_item it) const { return inf(it)->best_adj; }

We must also provide a function to test whether or not a blossom is trivial: each blossom
containing just one item is said to be trivial.

(class blossom: member functions)+=

bool trivial() const { return size() == 1; }

Friend Functions: Given the item it of a vertex, the following function will return
a pointer to the blossom object containing that vertex.

(class blossom: friend functions declaration) =

friend blossom<NT>* blossom_of<NT>(c_pg_item it);

The function will also be used for testing whether or not two vertices are contained in
the same blossom.

When a new blossom object is created, we call set_owner(pt), where pt is the generic
pointer of the new blossom object. Consequently, we can later cast the pointer returned
by get_owner(it) to a pointer of type blossom<NT>x.

(class blossom: friend functions — definition)=

template<class NT> blossom<NT>* blossom_of(c_pq_item it) {
return (it 7 (blossom<NT>x) (get_owner(it)) : nil);

}

Constructor: We are now in a position to define the constructor of the class blossom.
As an optional argument, the base vertex b of the blossom to be created can be given.

(class blossom: member functions)+=
blossom(node b = nil) : concat_pq<NT, vertex<NT>*>() {

set_owner (leda_cast(this));
label = even;

3.3 SINGLE SEARCH TREE APPROACH 67

pot = offset = 0;
base = b; mate = nil;

disc = pred = nil;

markerl = marker2 = 0;
item_in_T = item_in_0 = nil;
item_in_pq = nil;

split_item nil;

}

leda_cast(this) simply casts the blossom pointer this to a generic pointer. The meaning
of the missing data members markerl, marker2, item_in_T, item_in_O and item_in_pq
will become clear shortly.

We also define a friend function that provides a more convenient way of constructing
and initializing a trivial blossom object. The function

(class blossom: friend functions — declaration)+=

friend c_pq_item new_blossom<>(NT d, node b, blossom<NT>* &B);

creates a new blossom object that consists only of the vertex b having potential d. After-
wards, B points to this new blossom object and the c¢_pg_item of the item corresponding
to b is returned.

(class blossom: friend functions definition)+=

template<class NT> c_pq_item new_blossom(NT d, node b, blossom<NT>* &B) {
B = new blossom<NT>(b);
vertex<NT> *v = new vertex<NT>(d, b);
return B->init (INFINITY(NT), v);

}

Note that we do not use the data member pot of the blossom class to store the potential
of b — in fact, that data member is only used to maintain the potential of a non—
trivial blossom. The priority of the item corresponding to b is set to INFINITY (NT)
indicating that currently no best edge is available.

3.3.2 Algorithm

Let us turn to the implementation of Algorithm 1.6.3 that realizes the ideas outlined in
Chapter 2. The algorithm maintains the lower bounds d1, ..., d4 by the following data
structures.

(local variables)=

NT deltal;
NT delta2a;
p-queue<NT, blossom<NT>*> delta2b;
p_queue<NT, edge> delta3;

p_queue<NT, blossom<NT>*> delta4;

node resp_dl;
edge resp_d2a;

68 CHAPTER 3. IMPLEMENTATION AND TESTS

deltal keeps track of the minimum (stored) potential of an even tree vertex that has
been encountered. deltal is only used in the non—perfect matching case. The (actual)
value of delta2a represents the (actual) reduced cost of the best edge of all best edges
from an even non—tree vertex to an even tree vertex. The responsible vertex or edge
of deltal and delta2a is stored in resp_dl and resp_d2a, respectively.® An item (p,pt)
in delta2b represents the best edge of an unlabeled blossom pointed to by pt. The
(actual) priority of p equals the (actual) reduced cost of this edge. Each edge e that
is a candidate for a shrink step has an item (p, e) in delta3. The (actual) priority of p
equals one half of the (actual) reduced cost of edge e. deltaj contains one item (p, pt)
for each non trivial tree blossom. pt is a pointer to the blossom object and the (actual)
priority of p equals one half of the (actual) potential of that blossom.

In Chapter 2 (Section 2.3 and Section 2.4) we have discussed the semantics of each item
in any of those priority queues in more detail; we will not repeat that discussion here.

A counter Delta is used to accumulate the total sum of dual adjustments that have
been performed up to the current stage of the algorithm.

(local variables)+=
NT Delta = 0;

We need a mechanism to identify the pg_item in delta2b or delta4 corresponding to a
blossom object. Therefore, we add the following data member to the blossom class.

(class blossom: data members)+=

pq_item item_in_pq;

Whenever a blossom sends an item to delta2b or deltas, the corresponding pq_item is
stored in item_in_pg of that blossom.

When a vertex becomes an even tree vertex, its incident edges will be scanned; it may
happen that several vertices become even tree vertices at once. Therefore, all new even
tree vertices are collected in a queue) which is realized by a singly linked list of vertices
(type node_slist).

(local variables)+=
node_slist Q(G);

At the end of a phase the current alternating tree is destroyed and all priorities in each
concatenable priority queue need to be reset to infinity. We therefore accumulate in T
all pointers to surface blossoms that are part of the current alternating tree; and in O
the pointers of all unlabeled surface blossoms (outside of T') that are adjacent to any
even tree blossom.

(local variables)+=

list<blossom<NT>*> T;
list<blossom<NT>*> 0O;

5In Chapter 2, we assumed that each even tree vertex has an item in a priority queue deltal; and
that each even non tree surface blossom has an item in a priority queue delta2. However, it is sufficient
in fact to keep track of the data as described above: initiating the corresponding step for resp_d! or
resp_-d2a will terminate the current phase.

3.3 SINGLE SEARCH TREE APPROACH 69

Since we must be able to identify a blossom’s item (type list_item) in T or O, each
blossom object stores this list_item in the data member item_in_T or item_in_O, respec-
tively.

(class blossom: data members)+=

list_item item_in_T;
list_item item_in_0O;

An array item_of (type node_array<c_pg_item>) is used to identify the corresponding
item (type c_pg_item) for each vertex of G.

(local variables)+=

node_array<c_pq_item> item_of (G);

Finally, we introduce some variables that are used frequently. M is a list of edges and
will be used to represent the resulting matching. The maximum value of number type
NT is stored in INFTY .

(local variables)+=
edge e;
node resp, opst, cur, adj, u, v, r;
blossom<NT> *RESP, *0PST, *CUR, *ADJ, *R;
list<edge> M;
const NT INFTY = INFINITY(NT);

The overall structure of the algorithm computing either a maximum weight matching
or a maximum-weight perfect matching is as follows.

(SST.t: algorithm)=
template<class NT>
list<edge> MWM_SST(const ugraph &G, const edge_array<NT> &w,
node_array<NT> &pot, array<two_tuple<NT, int> > &BT,
node_array<int> &b, int heur = 1, bool perfect = false) {
(local variables)
(initialization)
forall_nodes(r, G) {
R = _BLOSSOM_0F(r);
if (R->mate) continue;
(clear priority queues and Q)
R->status_change(even, Delta, T, Q);

bool terminate = false;

while (!terminate) {
(scan all edges of vertices in Q)
(determine lower bounds cand2b, ... , cand4)
if (delta2a == Delta) {

(augment step using best edge of deltaZa)
terminate = true;

}
else if (deltal == Delta) {

70 CHAPTER 3. IMPLEMENTATION AND TESTS

(alternate step using best node of deltal)
terminate = true;

}
else if (cand2b == Delta) {
(grow step using best edge of delta2b)

}
else if (cand3 == Delta) {

(shrink step using best edge of delta3)

}
else if (cand4 == Delta) {
(expand step using best blossom of delta)

}
else {
(dual adjustment)
}
}
}

(extract matching and checker information)
return M;

}

In a main loop, we iterate over all vertices r of G. When the blossom R of r is
unmatched, i.e. the mate of R equals nil, a phase is initiated. We define the following
macro in order to more elegantly retrieve the pointer to the blossom object containing
a given vertex.

(SST.t: data structures)+=

#define _BLOSSOM_OF(this_node) \
(this_node ? blossom_of<NT>(item_of[this _node]) : nil)

At the beginning of each phase, deltal, ..., deltaj are reset and the queue () is made
empty.

(clear priority queues and Q)=

deltal = delta2a = INFTY;
delta2b.clear(); delta3.clear(); delta4.clear();
Q.clear();

R is made an even tree blossom calling the member function

void status_change(LABEL 1, NT Delta, list<blossom<NT>*> &T, node_slist &Q)

the implementation of which will be given shortly. In the inner while loop, we first
scan all edges incident to vertices of () in order to maintain deltal, ..., deltaj correctly.
Then, the minimum priorities of delta2b, delta3 and delta are determined and stored
in cand2b, cand? and candj, respectively.

(determine lower bounds cand2b, ..., cand{)=
NT cand2b = (delta2b.empty() 7 INFTY : delta2b.prio(delta2b.find_min()));

NT cand3 (delta3.empty() 7 INFTY : delta3.prio(delta3.find_min()));
NT cand4 = (deltad4.empty() 7 INFTY : delta4.prio(delta4.find_min()));

3.3 SINGLE SEARCH TREE APPROACH 71

Thereafter, it is checked if any of those lower bounds equals zero.” If so, the appropriate
step is initiated. Note that between two consecutive dual adjustments, different steps
may have to be executed. We adopt the convention that all grow steps precede a
single shrink step, and, further, all shrink steps precede any expand step. This seems
reasonable to us, since extending the tree in grow steps is rather cheap compared to a
shrink step. Moreover, an expand step turned out to be more costly than a shrink step.
Finally, when we can choose between either an augment step or an alternate step, we
prefer the augment step. An augment step will decrease the number of free vertices by
two, whereas an alternate step produces only a decrease by one. When neither of these
steps can be executed, a dual adjustment is performed in order to progress.

(dual adjustment)=

NT delta = leda_min(deltal,
leda_min(delta2a,
leda_min(cand2b,
leda_min(cand3, cand4))));

if ((delta == INFTY) && perfect) return M; // return empty matching
Delta = delta; // corresponds to Delta += (delta - Delta)

A phase terminates, when either the case deltal == Delta (this never happens in the
perfect matching case) or delta2a == Delta has occurred; or delta can be chosen as
INFTY and thus no perfect matching exists (in the perfect matching case only). In
the latter case, we return the empty matching.

Initialization: Depending on the value assigned to the argument heur, the algorithm
uses a different method to compute an initial matching and the vertex potentials.

(initialization) =

int free = G.number_of_nodes();
node_array<node> mate(G, nil);
switch(heur) {
case 0: { (empty matching) break; }
case 1: { (greedy matching) break; }
(

default: { (jump start matching) break; }
}

All three methods use the node_array pot to store the initial potential of each vertex
and a node_array mate to represent the matching. free denotes the number of free
vertices.

When the initial matching leaves no vertex unmatched it will be optimal and we can
immediately return it.

"Remember that the actual priorities are computed by subtracting Delta from the stored priorities.
Therefore, an actual priority equals zero iff the stored priority equals Delta.

72 CHAPTER 3. IMPLEMENTATION AND TESTS

(initialization)+=
if (free == 0) {
(prepare solution)
return M;

}

Otherwise, for each vertex u of G a trivial blossom CUR with potential pot[u] is con-
structed; the corresponding c_pg_item is stored in item_of [u]. When mate|u] is different
from nil, the data member mate of CUR is set to the vertex mate[u] and CUR gets
unlabeled.

(initialization)+=
forall_nodes(u, G) {
item_of[u] = new_blossom<NT>(pot[u], u, CUR);

if (matel[u]) {
CUR->mate = mate[u];
CUR->label = unlabeled;
}
}

Starting with an empty matching, the potentials are set as outlined in Section 1.6.3.

(empty matching)=

forall_nodes(u, G) {
if (outdeg(u) == 0) { pot[u] = 0; continue; }
NT max = -INFTY;
forall_adj_edges(e, u) max = leda_max(w[e], max);
pot[ul = max/2;
}

For each vertex u we determine the value maz which is maximum along all edge weights
of incident edges. The potential of u is set to maz/2; pot[u] is set to zero, when no
incident edge exists.

The construction of a greedy matching or a jump start matching will be the subject of
Section 3.5. For now, it shall be sufficient to regard

(greedy matching)=
free = greedy_matching(G, w, pot, mate, perfect);

and

(jump start matching)=

free = jump_start(G, w, pot, mate, perfect);

as black—boxes that return the appropriate data in pot, mate and free.

In case all vertices are matched after the initial matching has been computed, M can
be constructed as shown below.

3.3 SINGLE SEARCH TREE APPROACH 73

(prepare solution)=
forall_edges(e, G) {
u = source(e);
v = target(e);
if (matel[u] && (mate[u] == v) &&
mate[v] && (mate[v] == u))
M.push(e);
}

For each edge e, it is checked whether the endpoints are the mates of each other, or
not; if so, e is a matching edge and added to M. Observe that the information needed
to check optimality is set correctly: pot contains the potential of each vertex; BT is
empty and all entries in the node_array b are set to —1, indicating that each vertex is
a surface blossom.

Performing a Status Change: We next outline the member function of class
blossom that realizes a status change.

(class blossom: member functions)+=
void status_change(LABEL 1, NT Delta, list<blossom<NT>#*> &T, node_slist &Q) {

if (1 == unlabeled) {
(make unlabeled non tree blossom)

}

else if (1 == odd) {
(make odd tree blossom)

}

else if (1 == even) {
(make even tree blossom)

}
label = 1;
}

The new status of the blossom object is determined by the given label [. The function
needs to adjust the offset of the blossom by some Delta as developed in Section 2.1.
Moreover, T' and () must be maintained correctly.

When a blossom gets unlabeled, its offset is adjusted depending on its current label
label and the list item item_in_T of that blossom is deleted from T'. Note that only tree
blossoms can get unlabeled.

(make unlabeled non tree blossom)=

assert((label '= 1) && item_in_T);

offset += (label == odd ? Delta : -Delta);
T.del(item_in_T);

item_in_T = nil;

We only allow non-tree blossoms to become odd tree blossoms.® The offset is decreased
by Delta and its pointer is added to T

8Why a blossom can change its status from being an even labeled non tree blossom to an odd labeled
tree blossom will become apparent when the realization of an augment step is inspected more closely.

74 CHAPTER 3. IMPLEMENTATION AND TESTS

(make odd tree blossom)=
assert((label '= 1) && !item_in_T);
offset -= Delta;
item_in_T = T.append(this);

Consider the case where a blossom becomes an even tree blossom. When its label is
odd, we only need to update the offset. Otherwise, the blossom is a non—tree blossom.
The offset gets adjusted and its pointer is added to T'.

(make even tree blossom)=
assert((label !'= 1) || 'item_in_T);
if (label == odd) offset += 2x%Delta;
else { // non-tree blossom
offset += Delta;
item_in_T = T.append(this);

}
(append all vertices to Q)

There is something more to do here: all vertices contained in the blossom object must
be appended to (). Therefore, we iterate over all items 4t of the blossom and append
the vertex of this item (i.e. node_of (it)) to Q). Some preparatory work is done as well.

(append all vertices to Q)=
c_pq_item it;
forall_items(it, *this) {

inf (it)->pot += offset;
Q.append (node_of (it));

}
if (!'trivial()) pot -= 2xoffset;
offset = 0;

The potential of each vertex contained in the blossom and the potential of the blossom
itself (if non trivial) is adjusted such that these actual potentials are computed correctly
with respect to the new offset offset = (0. Since every vertex of the blossom has to be
inspected anyway, it is reasonable to use the provident strategy (see Section 2.1.3) at
this point.

Scanning New Even Vertices: For all vertices that have been added to @), i.e. the
vertices that have recently become even tree vertices, the incident edges have to be
scanned in order to keep the data in the global priority queues deltal to delta4 as well
as the reduced cost of edges associated with vertices correctly.

(scan all edges of vertices in Q)=

NT cur_pot, adj_pot, actual_p, stored_p;
while (!Q.empty()) {
cur = Q.popQ);
CUR _BLOSSOM_OF (cur) ;
cur_pot = compute_potential (CUR, Delta, item_of [cur]);

if (!perfect) {
(try to improve deltal)

3.3 SINGLE SEARCH TREE APPROACH 75

}

forall_adj_edges(e, cur) {
adj = opposite(cur, e);
ADJ = _BLOSSOM_OF (adj);
(discard dead and tree edges)

adj_pot = compute_potential(ADJ, Delta, item_of[adj]);
actual_p = cur_pot + adj_pot - wl[el;

(prune edges)

if ((ADJ->label == even) && !'ADJ->item_in_T) {
(new delta2a edge encountered)

}
else if (ADJ->1label == unlabeled) {
(new delta2b edge encountered)

}

else if (ADJ->label == even) // ADJ is even tree blossom
delta3.insert(actual_p/2 + Delta, e);

else if (ADJ->1label == odd) {
stored_p = actual_p - ADJ->offset;
ADJ->improve_connection(item_of [adj], stored_p, cur);

}

}
}

For each vertex cur of () we compute its actual potential cur_pot calling the template
function compute_potential, which is essentially a realization of the Formulae (2.1) and
(2.2) of Section 2.1. The function can also be asked to compute the actual potential of
a blossom CUR by setting it to nil.

(SST.t: helpers)=

template<class NT>

NT compute_potential(blossom<NT> *CUR, NT Delta, c_pq_item it = nil) {
int a = (it == nil ? -2 : 1);
int sigma = 0;
if (CUR->item_in_T) sigma = (CUR->label == even 7 -1 : 1);
NT stored = (it == nil ? CUR->pot : CUR->pot_of (it));
return stored + a * CUR->offset + a * sigma * Delta;

}

When cur_pot is the new minimum potential of all even tree vertices, deltal and resp_d1
are set accordingly (only in non perfect matching case).

(try to improve deltal)=

if (cur_pot < deltal - Delta) {
deltal = cur_pot + Delta;
resp_dl = cur;
// if (deltal == Delta) break;
}

When the new (actual) value of deltal equals zero, i.e. deltal == Delta, we could also
immediately break the scan step. The alternate step for resp_dl would decrease the
number of free vertices by one and terminate the phase. However, we defer this step

76 CHAPTER 3. IMPLEMENTATION AND TESTS

and complete the scanning procedure instead. The reason for doing so is that delta2a
might also get decreased to zero and the corresponding augment step will then decrease
the number of free vertices by two.

All edges e incident to cur are considered. The potential of each adjacent vertex adj
is computed so as to enable the computation of the actual reduced cost actual_p of e.
However, dead edges or tree edges are discarded:

(discard dead and tree edges)=

// do not consider edges within a blossom
if (CUR == ADJ) continue;

// do not consider tree edges

if ((ADJ->label == odd) &&
((ADJ->base == adj && ADJ->mate == cur) ||
(ADJ->disc == adj && ADJ->pred == cur))) continue;

Moreover, we use a pruning strategy. Since a phase terminates when the stored priority
of deltal (in non perfect case only) or delta2a equals Delta, we can discard all edges e
whose stored priority exceeds the minimum value of deltal and delta2a. We will say e
is hopeless. Note, in the case where e is a candidate edge for a shrink step, its stored
priority in delta8 will equal actual_p/2 + Delta.’

(prune edges)=
#if !defined (_NO_PRUNING)
if ((ADJ->label == even) && ADJ->item_in T) {
if (actual_p/2 + Delta > leda_min(deltal, delta2a)) continue;

}
else if (actual_p + Delta > leda_min(deltal, delta2a)) continue;

#endif

Depending on the status of ADJ, four cases are distinguished. First, when ADJ is an
even non—tree blossom, a new delta2a edge has been encountered.

(new deltala edge encountered)=

if (actual_p < delta2a - Delta) {
delta2a = actual_p + Delta;
resp_d2a = e;
if (delta2a == Delta) break;

}

We check whether e is the new best edge of delta2a; if necessary, we update the value of
delta2a and set resp_d2a, accordingly. In case where the new (actual) value of delta2a
equals zero, we break the scan step immediately.

Second, when ADJ is an unlabeled non—tree blossom, a new delta2b edge has been
encountered.

9The user can switch off the pruning strategy by defining the token _NO_PRUNING (#define
_NO_PRUNING) before the file MWM. t is included.

3.3 SINGLE SEARCH TREE APPROACH 7

(new delta2b edge encountered)=
stored_p = actual_p - ADJ->offset + Delta;
if (ADJ->improve_connection(item_of[adj], stored_p, cur))
if (ADJ->item_in_pq)
delta2b.decrease_p(ADJ->item_in_pq, actual_p + Delta);
else {
ADJ->item_in_pq = delta2b.insert(actual_p + Delta, ADJ);
ADJ->item_in_0 = 0.append(ADJ);
}

The stored reduced cost stored_p of e is computed according to (2.5) (as described in
Section 2.1.2). We check whether e is the new best edge of adj to an even labeled tree
vertex and, if so, update the data of the corresponding item by the following member
function:

(class blossom: member functions)+=
bool improve_connection(c_pq_item it, NT x, node u) {
if (!'it) return false;
NT o0ld_min = min_prio();
if (decrease_p(it, x)) inf(it)->best_adj = u;
return old_min != min_prio();

}

When the new priority z is less than the one currently stored with if, i.e. function
decrease_p returns true, the best_adj entry is set to u. The function returns true iff the
minimum priority of the blossom object has changed.

In case e is the new best edge of AD.J, we either decrease the corresponding item in
delta2b (if there exists any), or insert an appropriate one. In the latter case, ADJ is
additionally inserted into O.

The last two cases are easy. For an even tree blossom ADJ, an appropriate item is
simply inserted into delta8d; and for an odd tree blossom AD.J, we call the member
function improve_connection as described above.

Alternate Step: We come to the alternate step which is initiated when the actual
value of the minimum item in deltal equals zero. Remember that this will never happen
in the perfect matching case.

(alternate step using best node of deltal)=
RESP = _BLOSSOM_QF (resp_di);
RESP->base = resp_di;
alternate_path(RESP, item_of);
(destroy alternating tree T)
RESP->label = even;

First, the surface blossom RESP of resp_d1 is retrieved. The alive edges along the
even length path from RESP to the root blossom of the tree are alternately unmatched
and matched. RESP will become free. The base of RESP is set to resp_d1, since that
vertex has (actual) potential zero and thus is allowed to stay unmatched. The current
alternating tree gets destroyed (as will be described below). Thereafter, RESP will

78 CHAPTER 3. IMPLEMENTATION AND TESTS

be an unlabeled non—tree blossom. Remember, however, that free non—tree blossoms
are supposed to be even. Therefore, RESP’s label is corrected to even (we do not call
status_change).

Next, we describe the function alternate_path which alternates the alive edges along the
tree path from RESP to the root blossom of the tree. More precisely, each matching
edge along this path will become non-matching and each non—matching edge becomes
matching. Recall that matching edges are represented by means of the data members
base and mate of class blossom. The function will be reused in the augment step below.

(SST.t: helpers)+=

template<class NT>
void alternate_path(blossom<NT>* RESP, node_array<c_pq_item> &item_of) {
if (!'RESP) return;
blossom<NT> *CUR = RESP;
node pred = RESP->base, disc = nil, mate;
while (CUR) {
if (CUR->label == even) {
mate = CUR->mate;
CUR->mate = disc;
CUR->base = pred;
CUR = _BLOSSOM_OF (mate) ;
}
else { // CUR->label == odd
pred = CUR->pred;
disc = CUR->disc;
CUR->mate = pred;
CUR->base = disc;
CUR = _BLOSSOM_OF (pred);
}
}
}

Starting at CUR = RESP, we follow the tree path towards the root. We keep the
following invariants: pred and disc denote the predecessor and discovery vertex, re-
spectively, of the odd blossom which has been considered most recently; initially, pred
is set to the base of RESP and disc is set to nil. For an even labeled tree blossom CUR,
we store the former mate in mate and set its data members mate and base to disc and
pred, respectively. After this, the blossom to be inspected next is retrieved by using the
former mate information stored in mate. When CUR is an odd tree blossom, pred and
disc are set, and the mate and base data members of CUR are set accordingly. The
next blossom to consider is the blossom of pred.

Augment Step: When the actual reduced cost of resp_d2a equals zero, the current
(surface) matching is augmented. We need to determine the two surface blossoms RESP
and OPST of the endpoints of edge e = resp_d2a.

3.3 SINGLE SEARCH TREE APPROACH 79

(determine RESP and OPST of e)=

resp = source(e);

opst = target(e);
RESP = _BLOSSOM_OF (resp);
OPST = _BLOSSOM_OF (opst) ;

if (!0PST->item_in_T) {
leda_swap(resp, opst);
leda_swap (RESP, 0OPST);
}

// invariant: OPST is tree blossom

OPST denotes the blossom that is contained in the alternating tree T'. First, the even
non tree blossom RESP is made an odd tree blossom (here we need to allow an even
non—tree blossom to become an odd tree blossom); its pred and disc entries are set
appropriately.

(augment step using best edge of delta2a)=

e = resp_d2a;

(determine RESP and OPST of e)
RESP->status_change(odd, Delta, T, Q);
RESP->pred = opst;

RESP->disc = resp;
alternate_path(RESP, item_of);

(destroy alternating tree T')

Then, the edges along the tree path from RESP (traversing OPST) towards the root
blossom of T" are alternated calling alternate_path. Finally, the alternating tree T' gets
destroyed, as described next.

Destroy Tree: T stores all pointers to the surface blossoms contained in the alter-
nating tree. For each such blossom CUR, we reset the priorities of all items to infinity
by calling the member function reset (see Section 3.2), and perform a status change:
CUR gets unlabeled.

(destroy alternating tree T)=
forall(CUR, T) {
if (CUR->label == odd) {
CUR->disc = CUR->pred = nil;
CUR->item_in_pq = nil;
}
CUR->reset () ;
CUR->status_change(unlabeled, Delta, T, Q);
}
T.clear();

For an odd tree blossom CUR, the data members disc and pred as well as item_in_pq
have to be set to nil. Finally, T is made empty.

Every unlabeled non tree blossom that is adjacent to any even tree blossom contains
at least one item whose priority differs from infinity. All those items need to be reset
(to infinity).

80 CHAPTER 3. IMPLEMENTATION AND TESTS

(destroy alternating tree T)+=

forall(CUR, 0) {
CUR->reset();
CUR->item_in_pq = nil;
CUR->item_in_0 = nil;

}

0.clear();

The pointers of all unlabeled surface blossoms adjacent to any even tree blossom have
been collected in O. Therefore, we call the member function reset for each surface
blossom pointed to by an entry CUR of O; nil gets assigned to CUR’s data members
item_in_pq and item_in_0. Alternatively, one could also delete each connection from a
vertex contained in CUR to an even tree vertex separately. However, it turned out that
calling reset once for each such surface blossom is more efficient. O is afterwards made
empty.

Grow Step: The implementation of a grow step is as follows. First, we retrieve the
unlabeled non tree blossom RESP having actual priority zero in delta2b.

(grow step using best edge of delta2b)=

RESP = delta2b.inf(delta2b.find_min());
delta2b.del_item(RESP->item_in_pq) ;
RESP->item_in_pq = nil;

The item of RESP in delta2b is deleted and item_in_pq is set to nil. The best edge of
RESP is stored with the minimum item. Using the member functions of class blossom,
it is not difficult to obtain resp and opst, the two endpoints of that edge.

(grow step using best edge of delta2b)+=
c_pq_item best = RESP->find_min();
resp = RESP->node_of (best) ;

RESP->best_adj (best);

opst

The vertex resp is contained in RESP, and opst denotes the even labeled vertex in the
alternating tree. RESP becomes an odd tree vertex having opst and resp as predecessor
and discovery vertex, respectively.

(grow step using best edge of delta2b)+=
RESP->status_change(odd, Delta, T, Q);
RESP->pred = opst;

RESP->disc

resp;

RESP is deleted from O and its data member item_in_O is set to nil, since it is no
longer an unlabeled non—tree blossom; notice that RESP must have an item in O.

(grow step using best edge of delta2b)+=

0.del_item(RESP->item_in_0);
RESP->item_in_0 = nil;

We do not need to delete the connection stored with resp from RESP. This will be
done when the tree gets destroyed later on.

3.3 SINGLE SEARCH TREE APPROACH 81

Finally, when RESP is a non—trivial blossom, an item representing RESP and one half
of the value of its potential is inserted into delta4 .

(grow step using best edge of delta2b)+=
if (!'RESP->trivial())
RESP->item_in_pq =
deltad.insert (compute_potential (RESP, Delta)/2 + Delta, RESP);

The mate blossom MATE of RESP is also added to T. MATE becomes an even tree
blossom.

(grow step using best edge of delta2b)+=

node mate = RESP->mate;

blossom<NT> *MATE = _BLOSSOM_OF (mate);

MATE->status_change(even, Delta, T, Q);

if (MATE->item_in_pq) {
delta2b.del_item(MATE->item_in_pq);
MATE->item_in_pq = nil;
0.del_item(MATE->item_in_0);
RESP->item_in_0 = nil;

}

When MATE has an item in delta2b it must be removed; we also delete its item from

0.

Shrink Step: A shrink step is more complex. The minimum item in delta8 containing
the new tight edge e is deleted and the blossoms RESP and OPST containing the
endpoints resp and opst of e are determined (as described above).

(shrink step using best edge of delta8)=

e = delta3.inf(delta3.find_min());

delta3.del_min();

(determine RESP and OPST of e)

if (RESP == 0OPST) continue; // dead edge encountered;

In case e is dead, i.e. RESP and OPST refer to the same blossom, we simply discard
e and continue with the main algorithm. Otherwise, we have to determine the lowest
common ancestor blossom LCA of RESP and OPST as well as the shrink path, i.e. the
defining odd length surface cycle, of the new blossom.

(shrink step using best edge of deltad)+=

blossom<NT> *L.CA;
list<node> P1, P2;
list<blossom<NT>*> subl, sub2;

(determine LCA and shrink path of RESP and OPST)

The code chunk which implements this will be presented shortly. For the time being,
assume subl and P1 correspond to the lists subblossom_p and shrink_path of the new
blossom as described in Section 3.3.1. We construct a new surface blossom SUPER
whose base and mate equal those of LCA. Note that the priority queue of SUPER

82 CHAPTER 3. IMPLEMENTATION AND TESTS

is empty. Its actual potential is set to zero (the stored potential must hence equal
—2Delta); and P1 is assigned to its data member shrink_path.

(shrink step using best edge of deltad)+=
blossom<NT> *SUPER = new blossom<NT>(LCA->base);
SUPER->pot = -2xDelta;
SUPER->mate = LCA->mate;
SUPER->shrink_path = P1;

Subsequently, the priority queues of all subblossoms CUR of SUPER are concatenated
one after another, calling the member function append_subblossom discussed below.
When CUR is an odd tree blossom and has sent an item to delta/, this item is deleted.
Finally, SUPER is added to the list of 7'

(shrink step using best edge of delta3)+=
forall(CUR, subl) {
if (CUR->item_in_pq) {
deltad.del_item(CUR->item_in_pq);
CUR->item_in_pq = nil;
}
SUPER->append_subblossom(CUR, Delta, T, Q);

}
SUPER->item_in_T = T.append (SUPER);

We next need to fill in details of the member function append_subblossom which helps
to concatenate the subblossoms.

(class blossom: member functions)+=

void append_subblossom(blossom<NT> *CUR, NT Delta,
list<blossom<NT>*> &T, node_slist &Q) {
if (CUR->label == odd)
CUR->status_change(even, Delta, T, Q);
if (!CUR->trivial())
CUR->pot += -2xCUR->offset + 2xDelta;
T.del(CUR->item_in_T);
CUR->item_in_T = nil;
concat (*CUR) ;
CUR->split_item = last_item();

subblossom_p.append (CUR) ;
}

Each odd subblossom is made even by calling the member function status_change. In
case CUR is non trivial, its potential gets frozen as explained (in Section 2.1.3). CUR
is deleted from T, since it is no longer a surface blossom. The priority queue of CUR
gets concatenated to that of the blossom object by calling the inherited function concat.
split_item of CUR is set to the last item of the resulting priority queue (which is the last
item of CUR), and CUR is appended to the subblossom_p list of the current blossom
object.

3.3 SINGLE SEARCH TREE APPROACH 83

Determination of the Lowest Common Ancestor: We will determine the lowest
common ancestor blossom of RESP and OPST by traversing the two tree paths towards
the root in a lock—step fashion.'”

We introduce an additional counter lock, which is initially set to zero and will be
incremented each time a lowest common ancestor has to be determined; since lock
might get incremented up to n? times, type double has been chosen (in order to prevent
an overflow as might occur for type int).

(local variables)+=
double lock = 0;

Moreover, each blossom occupies two markers called marker? and marker2.

(class blossom: data members)+=

double markerl, marker?2;

The way we determine the lowest common ancestor is as follows. We traverse the tree
paths from RESP and OPST towards the root. For each even blossom CURI on the
first path (starting with RESP), we set marker! to lock; and for each even tree blossom
CUR2 on the second path (starting with OPST), we set marker2 to lock. The lowest
common ancestor blossom is encountered when either marker2 of CURI or markerl
of CUR2 equals lock.

(determine LCA and shrink path of RESP and OPST)=

blossom<NT> *CUR1 = RESP, *CUR2 = 0OPST;
CUR1->markerl = CUR2->marker2 = ++lock;

P1.push(resp); P2.push(opst);

while (CUR1->marker?2 != lock && CUR2->markerl !'= lock &&
(CUR1->mate '= nil || CUR2->mate !'= nil)) {

if (CUR1->mate) {
subl.push(CUR1) ;
P1.push(CUR1->base); P1.push(CUR1->mate);
CUR1 = _BLOSSOM_OF (CUR1->mate);
subl.push(CUR1) ;
P1.push(CUR1->disc); P1.push(CUR1->pred);
CUR1 = _BLOSSOM_QOF (CUR1->pred) ;
CUR1->markerl = lock;

}

if (CUR2->mate) {
sub2.push(CUR2) ;
P2.push(CUR2->base) ; P2.push(CUR2->mate);
CUR2 = _BLOSSOM_OF (CUR2->mate) ;
sub2.push(CUR2) ;
P2.push(CUR2->disc); P2.push(CUR2->pred);
CUR2 = _BLOSSOM_OF (CUR2->pred) ;

'0A trivial method to determine the lowest common ancestor of RESP and OPST is as follows.
Starting at RESP we trace the tree path up to the root, marking each traversed blossom. After this,
following the tree path from OPST, the first marked blossom we meet will be the lowest common
ancestor. However, that method uses time O(n) per determination and thus would not comply with
our worst case bound of O(mlogn) per phase.

84 CHAPTER 3. IMPLEMENTATION AND TESTS

CUR2->marker?2 = lock;
}

}
subl.push(CUR1); sub2.push(CUR2);

While we are tracing the paths towards the lowest common ancestor, we keep track
of the subblossoms and edges traversed on either path. The lists sub! and sub2 (type
list<blossom<NT>x>) contain the pointers of all traversed surface blossoms from RESP
and OPST to CUR1 and CUR2 in reversed order, respectively. P1 and P2 (type
list<node>) consist of all vertex pairs representing the (directed) alive path from RESP
and OPST to CUR1 and CUR2 in reversed order, respectively.

Assume the while loop above is left, since marker! of CUR2 equals lock. CUR2 then
denotes the lowest common ancestor blossom LCA. We correct subl and P1 such that
the head of subl! equals LCA and the first vertex pair of PI corresponds to the first
(directed) edge on the reversed tree path from RESP to LCA. The case where CUR1
equals the lowest common ancestor blossom LCA is treated analogously.

(determine LCA and shrink path of RESP and OPST)+=

if (CUR2->markerl == lock) { // CUR2 is LCA
while (subl.head() != CUR2) {
subl.pop(); subl.pop();
Pl.pop(); Pl.pop();
Pil.pop(); Pl.pop();
}
}
else if (CUR1->marker2 == lock) { // CUR1 is LCA
while (sub2.head() !'= CUR1) {
sub2.pop(); sub2.pop();
P2.pop(); P2.pop();
P2.pop(); P2.pop();
}
}
// subl.head() == sub2.head() == LCA
LCA = subl.pop();
sub2.reverse(); subl.conc(sub2);
P2.reverse(); Pl.conc(P2);

Finally, the concatenation of sub! and sub2 (the first element of sub? is popped and
sub2 is reversed beforehand) yields the desired list sub! corresponding to the list
subblossom_p of the new blossom object as specified previously. Analogously, the con-
catenation of P71 with the reversed path P2 corresponds to the shrink_path of the new
blossom.

Expand Step: The responsible blossom RESP which is going to be expanded can
easily be obtained from delta/ .

(expand step using best blossom of delta)=

RESP = delta4.inf(delta4.find_min());
delta4d.del_item(RESP->item_in_pq) ;

3.3 SINGLE SEARCH TREE APPROACH 85

Next, we need to recover the data for each (immediate) subblossom of RESP. Therefore,
we define a new member function ezxpand which restores the priority queue for each
subblossom of RESP and unfreezes the potential if necessary. RESP is deleted from T
and the pointers of all subblossoms are added to T

(expand step using best blossom of deltaf)+=

RESP->expand (Delta) ;

forall (CUR, RESP->subblossom_p)
CUR->item_in_T = T.append(CUR);

T.del(RESP->item_in_T);

The details of the member function expand are discussed next. Later on, we will also
use that member function to expand an even or unlabeled non—tree blossom. We iterate
over all (immediate) subblossoms of the blossom object stored in the subblossom_p list.
For each subblossom CUR we split the current priority queue of the blossom object at
CUR’s split_item into two. The first of which gets assigned to CUR and the remaining
becomes the new current priority queue of the blossom object (which will be split in
the next iteration). At the end, all subblossom priority queues are restored and the
priority queue of the blossom object is empty.

(class blossom: member functions)+=
void expand(NT Delta) {

blossom<NT> *CUR;
forall(CUR, subblossom_p) {
split_at_item(CUR->split_item, *CUR, *this);
CUR->offset = offset;
CUR->1label = label;
if (!'CUR->trivial() && label == odd)
CUR->pot += 2*xoffset + 2*Delta;
else if (!'CUR->trivial()) {
assert (!CUR->item_in_T);
assert (CUR->label == even || CUR->label == unlabeled);
CUR->pot += 2xoffset;
}
}
}

Moreover, the offset of each subblossom CUR is set to the offset value of the blossom
object. Recall that at the time of shrinking, we arranged that each subblossom is labeled
even. However, the actual potential of each vertex, and the reduced cost associated with
it, is computed correctly with respect to the status of the blossom object containing that
vertex. Therefore, each subblossom is labeled according to the blossom object (calling
status_change would be wrong). Finally, the potential of each non trivial subblossom
CUR gets unfrozen (by the formula given in Section 2.1.3).

We can now determine the base blossom BASE and the discovery blossom DISC of
RESP as follows.

86 CHAPTER 3. IMPLEMENTATION AND TESTS

(expand step using best blossom of delta)+=
blossom<NT> *BASE = _BLOSSOM_OF (RESP->base);
blossom<NT> *DISC = _BLOSSOM_OF (RESP->disc);
int dist = RESP->restore_matching(BASE, DISC);

(extend alternating tree)
delete RESP;

The matching needs to be restored for the subblossoms. We do so by calling the
member function restore_matching which will be the subject of the next paragraph. In
the code chunk to extend the alternating tree, we will set up some additional data for
the subblossoms along the even length (alive) path from BASFE to DISC, and, moreover,
remove the remaining subblossoms from 7'. Finally, we can destroy the blossom object
pointed to by RESP.

Restoring the Matching: The member function restore_matching restores the
matching data for all subblossoms of the blossom object.

(class blossom: member functions)+=
int restore_matching(blossom<NT> *BASE, blossom<NT> *DISC) {

(cyclically rotate subblossom_p and shrink_path list)
(alternately match/unmatch subblossoms along subblossom_p)
return dist;

}

The idea is simple. We start at the base blossom BASFE and alternately unmatch and
match the edges along the odd length (alive) cycle (represented by shrink_path). First
of all, we need to cyclically rotate the lists subblossom_p and shrink_path until the base
blossom BASE occurs at the end of subblossom_p:

(eyclically rotate subblossom_p and shrink_path list)=

while (subblossom_p.tail() != BASE) {
subblossom_p.append (subblossom_p.pop());
shrink_path.append(shrink_path.pop());
shrink_path.append(shrink_path.pop());

}

Note that the i—th vertex pair of shrink_path corresponds to the incoming edge of the
i th subblossom on subblossom_p. The mate and base entries of the BASE blossom are
set to mate and base of the blossom object, respectively.

(alternately match/unmatch subblossoms along subblossom_p)=

BASE->mate = mate;
BASE->base = base;

Then, the subblossoms along the subblossom_p list are matched pairwise. In the process,
we keep track of the position dist of DISC in subblossom_p; we start counting with 1.

3.3 SINGLE SEARCH TREE APPROACH 87

(alternately match/unmatch subblossoms along subblossom_p)+=

node b, m;

int dist, pos =1
list_item p_it shrink_path.first();

list_item sub_it = subblossom_p.first();
blossom<NT> *CUR = subblossom_p.inf(sub_it), *ADJ;

while (CUR != BASE) {
if (CUR == DISC) dist = pos;
sub_it = subblossom_p.succ(sub_it); pos++;
ADJ subblossom_p.inf (sub_it);
if (ADJ == DISC) dist = pos;

p_it = shrink_path.succ(p_it);
p_it = shrink_path.succ(p_it); b = shrink_path.inf(p_it);

p_it = shrink_path.succ(p_it); m shrink_path.inf (p_it);
CUR->base = b; CUR->mate = m;
ADJ->base = m; ADJ->mate = b;
sub_it = subblossom_p.succ(sub_it); pos++;
CUR = subblossom_p.inf (sub_it);
p_it = shrink_path.succ(p_it);
}
if (CUR == DISC) dist = pos;

Extending the Alternating Tree: We need to set up some additional data, such as
the pred and disc pointers etc., for the subblossoms of RESP lying on the even length
(alive) path from BASE to DISC. Furthermore, all remaining subblossoms must leave
T. The way we achieve the desired result is by another traversal of the blossom cycle.
We start at the base blossom BASE and follow the even length path to DISC, setting
up the necessary data for each tree blossom on this path. After this, all remaining
subblossoms on the blossom cycle become unlabeled and leave T'.

Remember that dist stores the position of DISC in subblossom_p and that BASE is the
last element in this list. Moreover, we know that the number of elements in subblossom_p
is odd. When dist is odd, the reversal of subblossom_p contains all subblossoms of
the even length path from BASE to DISC followed by all subblossoms that leave T'.
Otherwise, when dist is even, we move BASE to the head of subblossom_p. Again,
subblossom_p then consists of the subblossoms of the even length path from BASE to
DISC followed by the subblossoms leaving T'.

(extend alternating tree)=

if (dist % 2) {
RESP->subblossom_p.reverse();
RESP->shrink_path.reverse();

}
else RESP->subblossom_p.push(RESP->subblossom_p.Pop());

We establish the following invariant for the vertex pairs along shrink_path. The i—th
vertex pair of shrink_path corresponds to the outgoing edge of the i-th subblossom in
subblossom_p.

88 CHAPTER 3. IMPLEMENTATION AND TESTS

Next, we turn to the set up of the data for the subblossoms staying in T'. First, the
discovery and predecessor vertices of DISC are set accordingly.

(extend alternating tree)+=

DISC->disc = RESP->disc;
DISC->pred = RESP->pred;

Next, the first two elements CUR and AD. are popped from the subblossom_p list;
CUR corresponds to an odd blossom and ADJ to an even blossom. We set the pred
and disc entries for CUR; and in case CUR is non—trivial, insert an item in delta4 .
ADJ is made even. This process is repeated until the current blossom CUR equals

DISC.

(extend alternating tree)+=
CUR = RESP->subblossom_p.pop();

while (CUR != DISC) {

ADJ = RESP->subblossom_p.pop();
RESP->shrink_path.pop(Q);
adj = RESP->shrink_path.pop();
CUR->pred = adj; CUR->disc = cur;
if (!CUR->trivial())

CUR->item_in_pq =

deltad.insert (compute_potential (CUR, Delta)/2 + Delta, CUR);

ADJ->status_change(even, Delta, T, Q);

RESP->shrink_path.pop();
RESP->shrink_path.pop();

CUR = RESP->subblossom_p.pop();
}
// send item for DISC also
if (!'CUR->trivial())
CUR->item_in_pq =
delta4.insert(compute_potential (CUR, Delta)/2 + Delta, CUR);

cur

Finally, each remaining blossom CUR in subblossom_p gets unlabeled (and is thereby
removed from T'). When the priority queue of CUR is not empty, its best edge is sent
to delta2b and CUR is inserted into O. Moreover, the pred and disc entries of CUR
need to be set to nil.

(extend alternating tree)+=

while (!RESP->subblossom_p.empty()) {
CUR = RESP->subblossom_p.pop();
CUR->status_change(unlabeled, Delta, T, Q);
if (!CUR->empty()) {
CUR->item_in_pq = delta2b.insert(CUR->min_prio() + CUR->offset, CUR);
CUR->item_in_0 = 0.append(CUR);
}
CUR->pred = CUR->disc = nil;
}

This concludes the discussion of all details concerned with an expand step.

3.3 SINGLE SEARCH TREE APPROACH 89

Extracting Matching and Checker Information: The algorithm terminates with
a surface matching. We have to extract the original matching M (type list<edge>) by
expanding all non—trivial blossoms (which are either labeled even or unlabeled).

(extract matching and checker information)=
int k = 0;
forall_nodes(v, G)
unpack_blossom(_BLOSSOM_OF(v), item_of, pot, b, BT, k, -1, Delta);
if (k !'= 0) BT.resize(k);
forall_edges(e, G)
if (_BLOSSOM_OF (source(e))->mate == target(e)) M.push(e);

We use a function unpack_blossom which recursively expands all subblossoms to a given
blossom; simultaneously, the information needed by the checker will be constructed.
A surface blossom is expanded completely, the first time when one of its vertices is
considered. When all blossoms are expanded, we have to reset the index range of
BT to [0,...,k — 1], where k will refer to the number of non—trivial surface blossoms.
Finally, each matching edge is added to M.

We turn to the description of the function unpack_blossom:

(SST.t: helpers)+=

template<class NT>

void unpack_blossom(blossom<NT> *RESP, const node_array<c_pq_item> &item_of,
node_array<NT> &pot, node_array<int> &b,
array<two_tuple<NT, int> > &BT,
int &k, int parent, NT Delta) {

if (RESP->trivial()) {
(set up checker data for trivial blossom)

}
else {
(set up checker data for non trivial blossom)

RESP->expand (Delta) ;

blossom<NT> *BASE = _BLOSSOM_OF (RESP->base);
blossom<NT> *DISC = nil;
RESP->restore_matching (BASE, DISC);

blossom<NT>* CUR;
forall (CUR, RESP->subblossom_p)
unpack_blossom(CUR, item_of, pot, b, BT, k, idx, Delta);
delete RESP;
}
}

The function creates the data pot, b and BT needed for the checker. We discussed
the semantics of these arrays in Section 3.1 and will not repeat the discussion here. k
denotes the index that is used to store the next non—trivial blossom data in BT. We
use parent to pass the parent index of a non trivial surface blossom to its (immediate)
subblossoms.

First, assume RESP is a trivial blossom containing only the vertex cur. When RESP
has already been expanded, i.e. b[cur] = —1, we immediately leave unpack_blossom.

90 CHAPTER 3. IMPLEMENTATION AND TESTS

Otherwise, we simply set up its checker data:

(set up checker data for trivial blossom)=
node cur = RESP->node_of (RESP->first_item());
if (b[cur] != -1) return;
pot [cur] = compute_potential (RESP, Delta, item_of [cur]);
blcur] = parent;

The actual potential of the vertex cur is computed and entered in pot[cur]. b[cur] is
set to the parent index parent (of the smallest non trivial blossom containing cur; or
—1).

When RESP is non—trivial, its checker data is set up as follows.

(set up checker data for non trivial blossom)=
if (k > BT.high()) BT.resize(2xk+1);
BT[k].first() = compute_potential (RESP, Delta);
BT [k] .second() = parent;
int idx = k++;

We double the size of BT whenever k exceeds the highest index of BT. The actual
potential of RESP is computed and stored in the first component of BT[k]. RESP’s
parent index is stored in the second component. We keep the current value of k in idz
(which will be used as the parent index for the recursive calls) and increment k.

Subsequently, the subblossoms are expanded and the matching is restored for the (im-
mediate) subblossoms of RESP. The functions needed to achieve this were discussed
for the expand step (see above). Each immediate subblossom gets expanded recursively,
by calling unpack_blossom for it. The parent index for the recursive calls is set to the
index value idz of RESP in BT.

3.4 Multiple Search Tree Approach

The efficiency of a priority queue based implementation of Edmonds’ blossom—shrinking
approach is substantially improved when several trees are grown simultaneously. We
next sketch the basic ideas underlying our multiple search tree approach. The imple-
mentation details will be presented in the subsequent sections.

An alternating tree T; is rooted at each free vertex r;. Each tree T; is extended as in the
single search tree approach. That is, we perform alternate, grow, shrink and expand
steps as before. However, an augment step is performed differently: when a tight edge
uv, ut € T; and v € T; with T; # Tj exists, the current matching is augmented along
the two tree paths (from u and v to their roots), and v and v get matched. A dual
adjustment by & changes the potentials of all vertices and surface blossoms as explained
in Section 1.6.3. As before, the value of § is determined by the lower bounds ¢4, ..., d4;
01 is only taken into account in the non perfect matching case. But note that the
definition of §3 needs to be refined now. The reduced cost of an edge uv, with u™ € Tj,
vt € T and T; # T}, decreases by 26 for a dual adjustment. Therefore, the reduced
costs of those edges have to be taken into consideration as well. More precisely, we

3.4 MULTIPLE SEARCH TREE APPROACH 91

redefine d3 as follows:

63 = min {mu,/2 : ut €T, vt € T;},
uvekE

where T; and Tj refer to any of the alternating trees (different or equal).

In the multiple search tree approach, each vertex u keeps its best connection to an
alternating tree T;. An edge uv; incident to u is called a best connection from u to 15,
when

(1) wv; is an even tree vertex in Tj, and

(2) the (stored) reduced cost my,, is minimal along all other (stored) reduced costs
Tuw; s with 7);_ €T, ie. Tuw; = minijEE{ﬂ—uvj : U;— € Tv}

When several best connections from u to a fixed tree T; exist, the best connection from
u to T; will refer to any of those.

For each vertex u we have a priority queue P, which stores the best connections from u
to all existing alternating trees. However, even tree vertices form an exception: when
u™ € T; is an even tree vertex contained in an alternating tree T}, we do not keep the
best connection from wu to its own tree T; in P,. When wuw; is the best connection from
u to T;, the corresponding item in P, equals (my,,, v;), where m,,, denotes the (stored)
reduced cost of that edge.

As before, each surface blossom B (trivial or non—trivial) is associated with a con-
catenable priority queue Pg. Each vertex u € B has a representative item in Pg. The
representative item of a vertex u in Py corresponds to the minimum of all best connec-
tions of u (with regard to the reduced costs). Thus, the minimum item in Py represents
the best connection of B.

In Section 2.1 we presented a strategy to handle the varying priorities for each of these
priority queues.

An alternating tree T; collects all edges uv that are candidates for a shrink step,
ie. uT, vt € T;, in a priority queue Pr,. The priority stored with each such edge
uv corresponds to the (stored) reduced cost of that edge. In the non perfect matching
case, T; knows its even vertex u; € T; whose (stored) potential is minimum along all
even tree vertices in T;.

The way we will use the data associated with each surface blossom or alternating tree is
as follows. Again, the lower bounds 41, ..., ds that determine the value of § are realized
by means of the priority queues deltal to delta .

In the non—perfect matching case, each alternating tree 7; has a corresponding item
(Yu;, ui) in deltal . uj’ € T; denotes the even vertex stored with T; as introduced before;
and y,, equals the (stored) potential of w;.

Each non tree blossom B1?1+} sends its best connection to delta2. An even labeled non
tree blossom will only occur in the non—perfect matching case. The (actual) priority of
each item in delta2 equals the (actual) reduced cost of the represented edge.

03 is realized by two priority queues delta8a and delta3b. Generally speaking, delta3a
keeps best connections that can be used for an augment step, and delta3b collects
candidate edges for a shrink step. More precisely, for each best connection of an even

92 CHAPTER 3. IMPLEMENTATION AND TESTS

tree blossom Bt € T}, we have an appropriate item in delta3a.!' An alternating tree T}
sends its best candidate edge uv from Py, to delta3b. In both priority queues, the actual
priorities will correspond to one half of the actual reduced cost of the corresponding
edges.

Finally, in delta/ we collect all odd tree blossoms. The actual priority of each item
equals one half of the actual potential of the corresponding blossom.

The ideas outlined should suffice for the moment. All remaining details will become
clear in the rest of this section, where we discuss our implementation of a multiple
search tree approach. Many particulars have been presented for the single search tree
approach in the preceding section. We will therefore focus on the ensuing modifications
and extensions.

3.4.1 Data Structures

We come to the data structures of our implementation.

(MST.t: data structures)=

template<class NT> class blossom;
template<class NT> class vertex;
template<class NT> class tree;

(class blossom)
(class vertex)
(class tree)

As before, blossoms are represented by an object of class blossom. All data members
and most of the member functions that have been introduced for that class in the
preceding section will be reused.

Definition of the Additional Class vertez:

We define a class wvertex which keeps all data associated with a vertex. Its overall
structure is given below.

(class vertex)=

template<class NT>
class vertex : public virtual p_queue<NT, node> {
public:

NT pot;

node my_node;

h_array<node, pg_item> ITEM_OF;

(class vertex: member functions)

LEDA_MEMORY (vertex<NT>) ;
};

Here, we need to have each even tree vertex keep track of its best connections to other, i.e. different,
alternating trees.

3.4 MULTIPLE SEARCH TREE APPROACH 93

Class vertez inherits all properties of a priority queue (type p_queue<NT, node>). The
priorities are of type NT and the information part refers to a vertex. Each best con-
nection uv; of a vertex u to an alternating tree 7T; is represented by an item (my,,, v;)
in the priority queue. As before, pot is set to the (stored) potential u and my_node
denotes the vertex u itself. We will need to identify the item corresponding to u’s
best connection to a given tree T;. Therefore, we use a hashing array ITEM_OF (type
h_array<node, pg-item>) which maps the root vertex r; of a tree T; to the appropriate
item (type pg_item). h_array is a dynamic data type provided by LEDA. It is imple-
mented by hashing with chaining. All access operations take expected time O(1). The
operations of this data type that are used will be explained briefly at the time they are
first needed.

Constructor: The constructor of class vertez is trivial. It simply creates a new vertex
object for a vertex u having potential d.

(class verter: member functions)=

vertex(NT d, node u) : p_queue<NT, node>() { pot = d; my_node = u; }

The object is initialized with the empty priority queue, and ITEM_OF is undefined for
all vertices.

Member Functions: We come to some standard access functions. min_prio returns
the priority of the minimum item; and min_inf the information part.

(class vertex: member functions)+=

NT min_prio() const
{ return (find_min() ? prio(find_min()) : INFINITY(NT)); }

node min_inf() const
{ return (find_min() ? inf(find_min()) : nil); }

As before, INFINITY (NT) or nil is returned, respectively, when the priority queue is
empty.
We also need to redefine the member function best_adj of class blossom:

(class blossom: member functions)+=

const node best_adj(c_pq_item it) const { return inf(it)->min_inf(); }

This function returns the vertex stored with the minimum item in the priority queue
of a vertex object (inf(it)).

The following member function tries to improve the best connection of a vertex object
to a tree, say T, rooted at r.

(class vertex: member functions)+=
bool decrease_p(node u, NT x, node r) {

NT old_min = min_prio();
if (!ITEM_OF.defined(r))

94 CHAPTER 3. IMPLEMENTATION AND TESTS

ITEM_OF[r] = insert(x, u);
else {
pg_item it = ITEM_OF[r];
if (prio(it) > x) {
p_queue<NT, node>::decrease_p(it, x);
p_queue<NT, node>::change_inf(it, u);
}
}
return old_min != min_prio();

}

u denotes the even tree vertex in T', and x will correspond to the (stored) reduced cost
of the edge from my_node to u. First, we check whether the vertex object stores an item
representing a best connection to 7. We do so by means of a defined operation provided
by the data type h_array. defined(r) returns true, iff an item has been set for r. In the
case where 7 is not defined for ITEM_OF, we insert a new item (z,u) representing the
best connection to T. ITEM_OF[r] is set to the corresponding pg_item (and henceforth
defined for 7). Otherwise, we can retrieve the item it of the current best connection to
T by an access operation ITEM_OF[r]. When z is smaller than the priority currently
stored with i, the priority of it is decreased to x and the information is changed to u.
The function returns true, iff the minimum priority of the vertex object has changed.

We will need a member function to delete the best connection of a vertex object to a
tree rooted at r.

(class vertex: member functions)+=
bool del(node r) {

if ('ITEM_OF.defined(r)) return false;
NT o0ld_min = min_prio();
del_item(ITEM_OF[r]);

ITEM_OF .undefine(r);

return old_min != min_prio();

}

Given the root vertex r, we can look up its item using the access operation ITEM_OF[r];
when ITEM_OF is not defined for r nothing has to be done. This item is deleted from
the priority queue and ITEM_OF becomes undefined for r by calling undefine(r). If the
minimum priority has changed due to the deletion, the function returns ¢rue; otherwise
false.

Definition of the Additional Class tree:

We define a new class tree to maintain the necessary data for the alternating trees.

(class tree)=
(class tree: friend functions definition)

template<class NT> class tree {
(class tree: friend functions — declaration)

public:

node root;

3.4 MULTIPLE SEARCH TREE APPROACH 95

node dl_node;
list<blossom<NT>*> my_blossoms;
p_queue<NT, edge> d3b_edges;
pg_item item_in_d3b;
(class tree: member functions)
LEDA_MEMORY (tree<NT>) ;

I

An object T of class tree (type tree< NT>) stores its root vertex in root. The pointers of
all surface blossoms contained in 1" are collected in a list my_blossoms. dI1_node denotes
an even vertex of 7' having minimum potential (along all even vertices of T'); this entry
will be used in the non perfect matching case only. Additionally, each alternating tree
T has its own priority queue d3b_edges. An item (p, e) in d3b_edges represents an edge e
having (stored) reduced cost p; moreover, e is a candidate for a shrink step, i.e. ¢ = uv
with u™,»* € T. The minimum item of d3b_edges is sent as a representative to a global
priority queue delta3b. item_in_d3b enables the identification of this item in delta3b.

I—VVe briefly explain why we decided to keep a separate priority queue for each alternating tree.)
One could, alternatively, simply insert all these edges in the global priority queue delta3b. But
when an alternating tree 7" is destroyed after an augment step, we would need a mechanism to
identify all candidate edges of T in delta3b. Each such edge would have to be deleted separately
from delta3b consuming time O(logm); or O(mlogm) in total.

In our strategy, however, we simply delete the representative of T' (accessible by item_in_d3b)
Land make the priority queue d3b_edges empty. This will take total time O(logm + m).

Each blossom stores a pointer to its alternating tree. That is, we add the following
data member to the blossom class:

(class blossom: data members)+=

tree<NT> *my_tree;

When a new blossom object is constructed, my_tree is set to nil. Furthermore, an access
operation tree_root is defined to return the root vertex of the alternating tree containing
the blossom.

(class blossom: member functions)+=

const node tree_root() const { return (my_tree ? my_tree->root : nil); }

Constructor: The construction of a tree object is trivial. di1_node and item_in_d3b
are set to nil. A root vertex r for the tree object to be created can be given as an
optional argument.

(class tree: member functions)=

tree(node r = nil) { root = r; di_node = nil; item_in_d3b = nil; }

Initially, my_blossoms is empty and d3b_edges contains no items.

Member Functions: At this, we present only some basic member functions. The
remaining ones will be introduced when required.

96 CHAPTER 3. IMPLEMENTATION AND TESTS

A blossom object (pointed to by) B is added to a tree as follows:

(class tree: member functions)+=

void add(blossom<NT> *B)
{ B->item_in_T = my_blossoms.append(B); B->my_tree = this; }

B is appended to the list my_blossom of the alternating tree. The item (type list_item)
of B in my_blossoms is stored in the data member item_in_T of B; and my_tree of B is
set to the current tree object.

Conversely, the removal of a blossom B from an alternating tree is realized by remove:

(class tree: member functions)+=

void remove(blossom<NT> *B)
{ my_blossoms.del(B->item_in_T); B->item_in_T = nil; B->my_tree = nil; }

The operations needed to retrieve the priority or information part of the minimum item
in d3b_edges are given below.

(class tree: member functions)+=
const NT min_prio() comnst {
return (d3b_edges.find min() 7 \
d3b_edges.prio(d3b_edges.find min()) : INFINITY(NT)); }
const edge min_inf() const
{ return (d3b_edges.find _min() 7 \
d3b_edges.inf (d3b_edges.find min()) : nil); }

We define an operation ins: it inserts an item (z,e) for an edge e having (stored)
reduced cost z into the priority queue d3b_edges.

(class tree: member functions)+=
bool ins(NT x, edge e) {
pg_item old_min = d3b_edges.find min();
d3b_edges.insert(x, e);
return (old_min != d3b_edges.find_min());

}

The function returns true, iff the minimum item in d3b_edges has changed.

Friend Functions: We declare a function new_tree that allows us to create a new
tree object more comfortably.

(class tree: friend functions declaration)=

friend tree<NT>* new_tree<>(node r, blossom<NT>* &B);

It constructs a new tree object that represents an alternating tree rooted at r. B is
the only blossom contained in this tree. The function returns a pointer to the new tree
object.

3.4 MULTIPLE SEARCH TREE APPROACH 97

(class tree: friend functions — definition)=

template<class NT> tree<NT>* new_tree(node r, blossom<NT>* &B) {
tree<NT>* T = new tree<NT>(r);
B->item_in_T = T->my_blossoms.append(B);
return T;

}

3.4.2 Algorithm

The data structures introduced above will suffice for our multiple search tree algorithm.
We now proceed to present the implementation details of the algorithm. Altogether,
five priority queues will be needed:

(local variables)+=
node_pq<NT> deltal(G);

deltal is a specialized priority queue of type node_pg<NT>. A node_pq is realized more
efficiently than a priority queue of type p_queue<NT, node>. However, it can only be
used with the restriction that each vertex occurs in at most one node_pq. The data type
suits our purposes perfectly. For each tree we set the priority of its d1_node in deltal
to the (stored) potential of the vertex. Note that deltal will only be used, however, in
the non perfect case.

(local variables)+=
p_queue<NT, blossom<NT>*> delta?2;

delta? contains an item (p,pt) for each non tree blossom. The actual priority of p
equals the actual reduced cost of the best connection of the blossom pointed to by pt.
In the perfect matching case, each such non-tree blossom will be unlabeled; however,
in the non perfect matching case also even labeled non tree blossoms will occur.

(local variables)+=

p_queue<NT, blossom<NT>*> delta3a;
p_queue<NT, tree<NT>*> delta3b;

In delta3a, each item (p,pt) refers to an even tree blossom (pointed to by pt). The
actual priority of p equals one half of the actual reduced cost of the best connection of
this blossom.

Each alternating tree T sends an item (p, pt) to delta3b. pt is a pointer to T'. The actual
priority of p corresponds to one half of the actual reduced cost of the best candidate
edge for a shrink step in 7' (stored in d3b_edges).

(local variables)+=
p_queue<NT, blossom<NT>*> delta4;

An item (p,pt) in deltaj represents an odd tree blossom (pointed to by pt) having
actual potential equal to one half of the actual priority of p.

Many local variables, as introduced for the single search tree algorithm, are needed here
as well. For instance, the node_array item_of, the singly linked list of nodes @ (type

98 CHAPTER 3. IMPLEMENTATION AND TESTS

node_slist), the global counter Delta, the list of matching edges M (type list<edge>), etc.
We will not discuss their meaning again, but refer to the description in the preceding
section.

The overall structure of the algorithm changes slightly.

(MST.t: algorithm)=
template<class NT>
list<edge> MWM_MST (const ugraph &G, const edge_array<NT> &w,
node_array<NT> &pot, array<two_tuple<NT, int> > &BT,
node_array<int> &b, int heur = 1, bool perfect = false) {

(local variables)

int free = G.number_of_nodes();
(initialization)

while (free) {

(scan all edges of vertices in Q)
(determine lower bounds candl, ... , candj)
if (cand3a == Delta) {
(augment step using best connection of blossom in delta3a)
free -= 2;
}
else if (candl == Delta) {
(alternate step using best node of deltal)
free -= 1;
}
else if (cand2 == Delta) {
(grow or augment step using best connection of blossom in delta2)

}
else if (cand3b == Delta) {
(shrink step using best edge in delta3b)

}
else if (cand4 == Delta) {
(expand step using best blossom of delta4)
}
else {
(dual adjustment)
}
}

(extract matching and checker information)
return M;

}

The counter free has to be interpreted as follows. In the perfect matching case, free
simply refers to the number of free vertices. But in the non—perfect matching case,
free denotes the number of free vertices having (actual) potential larger than zero,
i.e. the number of vertices that violate (Cs)(2) (see Section 1.6.1). An alternate step
will decrease free by 1, whereas an augment step decreases free by 2.

We determine the minimum value cand1, cand2, candSa, cand3b and cand4 of each
priority queue deltal, delta2, delta3a, delta3b and delta, respectively:

3.4 MULTIPLE SEARCH TREE APPROACH 99

(determine lower bounds candl, ..., candl)=

NT candl = (deltal.empty() 7 INFTY : deltal.prio(deltal.find_min()));
NT cand?2 (delta2.empty() 7 INFTY : delta2.prio(delta2.find_min()));
NT cand3a = (delta3a.empty() 7 INFTY : delta3a.prio(delta3a.find_min()));
NT cand3b = (delta3b.empty() 7 INFTY : delta3b.prio(delta3b.find min()));
NT cand4 = (deltad.empty() 7 INFTY : delta4d.prio(deltad.find min()));

When any of these values equals Delta (and hence the actual priority equals zero),
the appropriate step is initiated. Regarding the specific order of these steps, the same
arguments apply as were given for the single search tree approach. The realization of
each step will be discussed below.

We perform a dual adjustment as follows. The code is similar to the one discussed for
the single search tree algorithm.

(dual adjustment)=

NT delta = leda_min(candl,
leda_min(cand?2,
leda_min(cand3a,
leda_min(cand3b, cand4))));

if ((delta == INFTY) && perfect) return M; // return empty matching
Delta = delta; // corresponds to Delta += (delta - Delta)

When the value of free drops to zero, the algorithm terminates. We extract the matching
and checker information in exactly the same way as has been described for the single
search tree approach; therefore, the code realizing this will not be repeated here.

Initialization: The initialization differs only slightly. As before, depending on the
value of heur we construct either an empty matching, a greedy matching or a jump
start matching. Remember that the node_arrays mate and pot represent the constructed
matching and the vertex potentials. What differs is the way we set up the data for each
blossom:

(initialization)+=
forall_nodes(u, G) {
item_of[u] = new_blossom<NT>(pot[u], u, CUR);
if (matelu]) {
CUR->mate = mate[u];
CUR->1label = unlabeled;

}
else {
CUR->my_tree = new_tree<NT>(u, CUR);

Q.append (u) ;
}
}

For each vertex u of G we construct a trivial blossom CUR consisting of u only. The
potential of u is set to pot[u]. When u is matched, its mate is stored in the data member
mate of CUR, and CUR gets unlabeled. Otherwise, we construct a new alternating
tree which is rooted at u. C'UR is the only blossom of this tree object; we let my_tree

100 CHAPTER 3. IMPLEMENTATION AND TESTS

of CUR point to the object. u is added to () such that the priority queue data for each
adjacent vertex of u will be set up correctly when all edges incident to any vertex in)
are scanned for the first time.

Performing a Status Change: We next revise the member function of class blossom
that performs a status change. The overall structure remains the same.

(class blossom: member functions)+=
void status_change(LABEL 1, NT Delta, node_slist &Q) {
if (1 == unlabeled) {
assert((label '= 1) && item_in_T);
offset += (label == odd 7 Delta : -Delta);
my_tree->remove (this);
}
else if (1 == odd) {
assert((label '= 1) && !item_in_T);
offset -= Delta;
my_tree->add(this);
}
else if (1 == even) {
assert((label !'= 1) || 'item_in_T);
if (label == odd) offset += 2%Delta;
else { // non-tree blossom
offset += Delta;
my_tree->add(this) ;
}
(append all vertices to Q)

}
label = 1;
}

We adjust the offset value of the blossom object as outlined for the single search tree
approach. The blossom object is added to or removed from the alternating tree using
the member functions add and remowve of class tree, respectively. What differs, however,
is the action to be taken when a blossom becomes an even tree blossom.

(append all vertices to Q)=
c_pq_item it;
forall_items(it, *this) {
Q.append (node_of (it));
delete_connection(it, my_tree->root);
(adjust vertex potential and priorities (in provident case))

}

(adjust blossom potential and offset (in provident case))

We add each vertex of the blossom object to the list () and also delete the best con-
nection for each such vertex to the current tree; the member function delete_connection
will be discussed below. We do so in order to comply with the convention that each
even tree vertex keeps its best connections to every different tree.

Another difference is that we do not use the provident strategy (see Section 2.1.3) as

3.4 MULTIPLE SEARCH TREE APPROACH 101

in the case of the single search tree approach. That is, the potential and priorities
associated with each vertex of the blossom are not adjusted so as to compute their
actual value with respect to the offset offset = 0. Instead, we implement the non—
provident strategy. We will come back to this point when the implementation of a
shrink step is considered more closely.

We have experimented with both strategies for the multiple search tree approach. The
non—provident strategy seems to be slightly more efficient in practice and is thus used
by default.

r al
However, we briefly state all additional details for the implementation of the provident strat-

egy.]Q

(adjust vertex potential and priorities (in provident case))=
#ifdef _PROVIDENT
if (offset != 0) {
inf (it) ->pot += offset;
if (inf(it)->empty()) continue;
inf (it)->adjust_priorities (offset);
increase_p(it, prio(it) + offset);
}
#endif

As before, we iterate over all items it of the blossom object. When the blossom offset differs
from zero, the potential of each vertex (inf(it)) contained in the current blossom object is
adjusted as described in Section 2.1.3. Moreover, we need to increase all priorities stored with
each vertex object by offset. This is achieved by calling the member function adjust_priorities
of class vertex. Its implementation will be discussed for the shrink step, later on. The priority
of item it is also increased by offset, calling the inherited function increase_p.

(adjust blossom potential and offset (in provident case))=
#ifdef _PROVIDENT
if (!ltrivial()) pot -= 2%offset;
offset = 0;
#endif

LFinally, the blossom potential is adjusted (when non trivial) and offset is set to zero.

What remains to be presented is the member function delete_connection of class blos-
som:

(class blossom: member functions)+=
bool delete_connection(c_pq_item it, node r) {

if (!'it) return false;
NT o0ld_min = min_prio();
if (inf(it)->del(r))
if (inf(it)->empty())
del_item(it);
else
increase_p(it, inf(it)->min_prio());
return old_min != min_prio();

}

"2Defining the token _PROVIDENT (#define _PROVIDENT), before the file MWM. t is included, forces the
algorithm to use the provident instead of the non provident strategy.

102 CHAPTER 3. IMPLEMENTATION AND TESTS

For a given item it (type c_pq_item), the function deletes the best connection from
the corresponding vertex object (pointed to by inf(it)) to the tree rooted at r. The
realization is simple: we use the member function del of class vertex to delete the
corresponding item in the priority queue of the vertex object. When del returns true,
i.e. when the minimum item has been changed due to this operation, we need to update
the priority of it in the concatenable priority queue. Two cases are distinguished: when
the priority queue of the vertex object is empty, it is deleted (its priority is set to
infinity); otherwise, the priority of it is increased to the new minimum priority stored
in the priority queue of the vertex object. The function returns true iff the minimum
priority of the blossom has changed.

Scanning New Even Vertices: We next give some details of the scanning proce-
dure. All edges e incident to a vertex cur in () are inspected in order to correctly
maintain the priority queues deltal to deltaj as well as the priorities associated with
each vertex, tree or blossom. Most of the details are similar to those discussed for the
single search tree approach.

(scan all edges of vertices in Q)=

NT cur_pot, adj_pot, actual_p, stored_p;

while (!Q.empty()) {
cur = Q.popQO);
CUR _BLOSSOM_OF (cur) ;
cur_pot = compute_potential (CUR, Delta, item_of [cur]);
if (!perfect) {

(try to improve deltal)

}
forall_adj_edges(e, cur) {

adj
ADJ

opposite(cur, e);
_BLOSSOM_OF (adj);

(discard dead and tree edges)

adj_pot = compute_potential(ADJ, Delta, item_of[adj]);
actual_p = cur_pot + adj_pot - wlel;

if ('ADJ->item_in_T) {
(new delta2 edge encountered)

}

else if ((ADJ->label == even) && (ADJ->my_tree != CUR->my_tree)) {
(new deltala edge encountered)

}

else if ((ADJ->label == even) && (ADJ->my_tree == CUR->my_tree)) {
(new delta3b edge encountered)

}

else if (ADJ->1label == odd) {
stored_p = actual_p - ADJ->offset;
ADJ->improve_connection(item_of [adj], stored_p, cur, CUR->tree_root());

}
}
}

In the non perfect matching case, we need to keep the even tree vertex dI_node for

3.4 MULTIPLE SEARCH TREE APPROACH 103

each alternating tree. Recall that the vertex di_node is supposed to denote the vertex
that has minimum potential along all even tree vertices contained in the tree object.

(try to improve deltal)=

if (!CUR->my_tree->d1_node) {
deltal.insert(cur, cur_pot + Delta);
CUR->my_tree->dl_node = cur;
}
else if (cur_pot < deltal.prio(CUR->my_tree->d1_node) - Delta) {
deltal.del(CUR->my_tree->d1_node);
deltal.insert(cur, cur_pot + Delta);
CUR->my_tree->dl_node = cur;
}

When no vertex is stored in d1_node of the tree object containing CUR, we simply set
this data member to cur and insert an appropriate item into deltal. Otherwise, we
look up the current stored potential of dI_node (in deltal). When the actual potential
of di_node is larger than the actual potential cur_pot of cur, we proceed as follows.
d1_node is deleted from deltal and the new vertex cur is inserted with its stored
potential cur_pot + Delta. Moreover, the vertex stored in d1_node is replaced by cur.

When ADJ is a non tree blossom, we have possibly discovered a new best connection
from adj to the alternating tree containing CUR; let T' denote the object representing
this alternating tree.

(new delta2 edge encountered)=
stored_p = actual_p - ADJ->offset + Delta;
if (ADJ->improve_connection(item_of[adj], stored_p, cur, CUR->tree_root()))
if (ADJ->item_in_pq)
delta2.decrease_p(ADJ->item_in_pq, actual_p + Delta);
else
ADJ->item_in_pq = delta2.insert(actual_p + Delta, ADJ);

We compute the stored reduced cost stored_p of that edge and try to improve the con-
nection from adj to T by calling improve_connection, which will be discussed shortly.
The function returns true if the minimum priority of AD.J has changed, i.e. the cur-
rently inspected edge is the new best connection of ADJ. If so, we either decrease the
corresponding priority in delta2 (when AD.J has an item in delta2), or insert a new
item into delta2.

We proceed in a similar way when AD. represents an even tree blossom contained in
a different tree:

(new delta8a edge encountered)=

stored_p = actual_p - ADJ->offset + 2x%Delta;
if (ADJ->improve_connection(item_of[adj], stored_p, cur, CUR->tree_root())) {
if (ADJ->item_in_pq)
delta3a.decrease_p(ADJ->item_in_pq, actual_p/2 + Delta);
else
ADJ->item_in_pq = delta3a.insert(actual_p/2 + Delta, ADJ);

104 CHAPTER 3. IMPLEMENTATION AND TESTS

The member function improve_connection of class blossom is implemented as follows.

(class blossom: member functions)+=
bool improve_connection(c_pq_item it, NT x, node u, node r) {
if (!'it) return false;
NT old_min = min_prio();
if (inf(it)->decrease_p(u, x, r)) decrease_p(it, x);
return old_min != min_prio();

}

For a given item it (type c_pg_item), we try to improve the best connection from the
corresponding vertex (pointed to by inf(it)) to the tree rooted at r. z denotes the
(stored) reduced cost of the newly discoverd connection, and u refers to an even vertex
contained in the tree rooted at . We use the member function decrease_p of class
vertex. Its implementation has been described before. When this connection is the
new minimum item of the priority queue of the vertex, i.e. decrease_p returns true, the
priority of item it is decreased to = as well. The function returns true iff the minimum
priority of the blossom object has changed.

We next discuss the case where ADJ is an even tree blossom contained in the same
tree as CUR.

(new delta3h edge encountered)=
tree<NT> *T = CUR->my_tree;
if (T->ins(actual_p/2 + Delta, e))
if (T->item_in_d3b)
delta3b.decrease_p(T->item_in_d3b, actual_p/2 + Delta);
else
T->item_in_d3b = delta3b.insert(actual_p/2 + Delta, T);

Using the member function ins of class tree, we insert the new candidate edge e into
the priority queue d3b_edges of T. When e is the new minimum edge of this tree (ins
returns true), we update T’s item in delta3b accordingly.

Alternate Step: An alternate step will only be initiated in the non perfect matching
case. The responsible vertex resp which attains the minimum in deltal is retrieved.
RESP denotes the surface blossom of resp.

(alternate step using best node of deltal)=

resp = deltal.del_min();

RESP = _BLOSSOM_OF (resp);
RESP->base = resp;
alternate_path(RESP, item_of);

The edges along the tree path are alternated starting from RESP. RESP will become
free, and hence we must set the base of RESP to resp; resp’s actual potential equals
zero and is thus allowed to stay free. The function alternate_path has been given in the
preceding section.

3.4 MULTIPLE SEARCH TREE APPROACH 105

(alternate step using best node of deltal)+=

slist<blossom<NT>*> correct;
RESP->my_tree->destroy_tree(correct, deltal, delta3a,

delta3b, deltad4, Delta, Q, item_of);
correct_pgs(correct, delta2, delta3a);
RESP->label = even;

The tree object containing RESP is destroyed by calling the member function
destroy_tree, which will be the subject of the next paragraph. Destroying an alter-
nating tree object is more complicated than in the single search tree approach: we
need to remove all best connections to this tree. As a consequence, the minimum item
of some non—tree blossoms or even labeled tree blossoms may change, and thus their
corresponding items in delta?2 and delta3a need to be adjusted. destroy_tree will return
these blossoms (represented by their pointers) in a list correct. Calling correct_pgs for
this list will achieve the desired result. Finally, we have to set the label of RESP to
even (destroy_tree makes RESP unlabeled).

Destroy Tree: When a tree object T is going to be destroyed, it is not sufficient to
delete the corresponding items of each even or odd tree blossom from delta3a or deltas ;
we also have to delete all best connections to this tree. We tried two different strategies
to achieve the latter goal.

One of the strategies is as follows: we keep all vertices that store a best connection
to 1" in a list. When T gets destroyed, we traverse this list and simply delete each
such connection. The time needed to do so is O(nlogn), since there can be at most n
vertices.

Another possibility is to inspect each edge uv incident to any even vertex ut € T.
When v (still) stores a best connection to T, it gets deleted.'> The time required by
this method is O(deg(T) + nlogn), where deg(T) refers to the total number of edges
incident to all even vertices contained in 7. Obviously, deg(7T) is bounded by m, the
number of edges.

Although the first strategy looks better with respect to the theoretical running—time,
the latter turned out to be more efficient in practice. We therefore decided to use the
latter strategy.

(class tree: member functions)+=

void destroy_tree(slist<blossom<NT>*> &correct,

node_pq<NT> &deltal,
p_queue<NT, blossom<NT>*> &delta3a,
p_queue<NT, tree<NT>*> &delta3b,
p_queue<NT, blossom<NT>*> &delta4,
NT Delta, node_slist &Q, node_array<c_pq_item> &item_of) {

blossom<NT>* CUR;

forall(CUR, my_blossoms) {

if (CUR->label == even)
CUR->delete_all_connections(item_of, correct);

(delete item of CUR from delta3a or deltal)

!3Note that a vertex v may be considered several times due to the existence of different edges
w1v, u2v, ... where ul uf, ... €T.

106 CHAPTER 3. IMPLEMENTATION AND TESTS

if (!CUR->min_changed) {
correct.push(CUR) ;
CUR->min_changed = true;
}
CUR->pred = CUR->disc = nil;
CUR->status_change(unlabeled, Delta, Q);
}
(delete item of tree from deltal and delta3b)
delete this;
}

We iterate over all blossoms CUR contained in the tree. When CUR is even, the best
connection from each adjacent vertex of CUR to the tree is deleted. The way we achieve
this is by calling the member function delete_all_connections of class vertex. We will
come back to the realization of this member function shortly.

When CUR has sent an item to delta3a (in the case where CUR is even) or an item to
delta4 (in the case where CUR is odd) we delete that item.

(delete item of CUR from delta8a or delta)=
if (CUR->item_in_pq) {
if (CUR->label == even)
delta3a.del_item(CUR->item_in_pq) ;
else
deltad.del_item(CUR->item_in_pq);
CUR->item_in_pq = nil;
}

In correct (type slist<blossom<NT>x>), we collect all non tree blossoms or even labeled
tree blossoms whose corresponding item in delta?2 or delta3a needs to be adjusted. Each
tree blossom CUR will become an unlabeled non tree blossom and thus we add CUR to
correct. Since we want each such blossom to occur only once in this list, we introduce
a new data member for class blossom:

(class blossom: data members)+=

bool min_changed;

Initially, min_changed is set to false. Whenever a blossom object is stored in correct,
min_changed will be set to true. The pred and disc entries of CUR are set to nil and
the status of CUR is changed to unlabeled.

Finally, the priority stored for di_node in deltal has to be removed. Moreover, when
the alternating tree has an item in delta3b, we delete this item as well.

(delete item of tree from deltal and delta3b)=

if (d1_node)
deltal.del(d1_node);

if (item_in_d3b)
delta3b.del_item(item_in_d3b);

We now discuss the member function delete_all_connections of class blossom.

3.4 MULTIPLE SEARCH TREE APPROACH 107

(class blossom: member functions)+=

void delete_all_connections(const node_array<c_pq_item> &item_of,
slist<blossom<NT>*> &correct) {
edge e;
c_pq_item it;
node cur, adj;
blossom<NT> *ADJ;
forall_items(it, *this) {
cur = node_of (it);
forall_adj_edges(e, cur) {
adj = opposite(cur, e);
ADJ = blossom_of<NT>(item_of[adj]);
bool min_changed = ADJ->delete_connection(item_of[adj], tree_root());
if (min_changed && !'ADJ->min_changed && ADJ->label != odd) {
correct.append (ADJ) ;
ADJ->min_changed = true;
}
}
}
}

For each vertex cur contained in the blossom object, we inspect each incident edge
e. adj denotes the vertex which is adjacent to cur with respect to e. The blossom
containing adj is pointed to by ADJ. We delete the best connection from adj to the
tree containing the current blossom by calling delete_connection. The implementation
details for this function have already been given above. When the minimum of ADJ has
changed and AD.J is either labeled even or unlabeled we add ADJ to correct. However,
this will be done only when AD.J is not already contained in correct.

Correcting Global Priority Queues: We come to the corrections that are neces-
sary for the blossoms stored in the list correct. Note that each blossom in correct is
either a non—tree blossom or an even tree blossom.

(MST.t: helpers)+=

template<class NT>

void correct_pqs(slist<blossom<NT>*> &correct,
p_queue<NT, blossom<NT>*> &deltaZ2,
p_queue<NT, blossom<NT>*> &delta3a) {

blossom<NT> *CUR;
forall (CUR, correct) {
if (CUR->item_in_pq) {
(delete item of CUR from delta2 or delta3a)
}
if (ICUR->empty()) {
(insert item for CUR in delta2 or delta3a)
}
CUR->min_changed = false;
}

correct.clear();

108 CHAPTER 3. IMPLEMENTATION AND TESTS

For each blossom CUR, we first delete its item (if any) from delta2 or delta3a:

(delete item of CUR from delta2 or delta3a)=

if (!'CUR->item_in_T)
delta2.del_item(CUR->item_in_pq) ;

else
delta3a.del_item(CUR->item_in_pq);

CUR->item_in_pq = nil;

and then insert a new item (if necessary) into delta2 or delta3a:

(insert item for CUR in delta2 or delta3a)=

if (!'CUR->item_in_T)
CUR->item_in_pq = delta2.insert(CUR->min_prio() + CUR->offset, CUR);
else
CUR->item_in_pq = delta3a.insert ((CUR->min_prio() + CUR->offset)/2, CUR);

The data member min_changed of CUR is set to false, and, eventually, correct is made
empty.

Augment Step: When the actual priority of the minimum item in delta3a equals
zero, an augment step is initiated. Most of the details given previously suffice for the
discussion of the implementation details of this step.

(augment step using best connection of blossom in delta3a)=
RESP = delta3a.inf(delta3a.find_min());
delta3a.del_item(RESP->item_in_pq) ;
RESP->item_in_pq = nil;

We retrieve the even tree blossom RESP stored in the information part of the minimum
item and then delete this item from delta3a.

The best connection of RESP corresponds to the new tight edge that we will use to
augment the matching. We define a member function best_edge for class blossom as
follows:

(class blossom: member functions)+=

void best_edge(node &resp, node &opst) const {
resp = node_of (find_min());
opst = best_adj(find_min());

}

This member function allows us to determine the endpoints of the best connection to
a given blossom more elegantly.

(augment step using best connection of blossom in delta8a)+=

RESP->best_edge(resp, opst);
OPST = _BLOSSOM_OF (opst);

resp corresponds to the vertex contained in the blossom RESP and opst denotes the
other endpoint contained in OPST. OPST represents an even tree blossom. Note that

3.4 MULTIPLE SEARCH TREE APPROACH 109

the trees containing RESP and OPST are distinct. The two tree paths from RESP
and OPST to their roots are alternated, calling the function alternate_path for each
blossom.

(augment step using best connection of blossom in delta3a)+=

alternate_path(RESP, item_of);
alternate_path(OPST, item_of);
RESP->base = OPST->mate = resp;
RESP->mate = OPST->base = opst;

After this, we match RESP and OPST with each other by setting their base and mate
entries appropriately. What remains to be done is to delete the two trees containing
RESP and OPST. The function used to achieve this has been discussed above.

(augment step using best connection of blossom in delta8a)+=

slist<blossom<NT>*> correct;
RESP->my_tree->destroy_tree(correct, deltal, delta3a,

delta3b, deltad, Delta, Q, item_of);
OPST->my_tree->destroy_tree(correct, deltal, delta3a,

delta3b, deltad, Delta, Q, item_of);
correct_pgs(correct, delta2, delta3a);

Finally, we update the items in delta?2 and delta3a for blossoms collected in correct.

Grow or Augment Step: The priority queue delta2 keeps all best connections of
non—tree blossoms. In the perfect matching case, each such blossom will be unlabeled
and thus its best connection can be used for a grow step. However, since alternate steps
might occur in the non—perfect matching case, non—tree blossoms can also be labeled
even. We will use the best connection of an even non tree blossom to augment the
matching.

(grow or augment step using best connection of blossom in delta2)=
RESP = delta2.inf(delta2.find_min());
delta2.del_item(RESP->item_in_pq) ;

RESP->item_in_pq = nil;
if (RESP->label == even) {

(augment step using best connection of RESP)

}
else {

(grow step using best connection of RESP)
}

The blossom object RESP is retrieved from delta2 and the minimum item is deleted
from delta2. If RESP is labeled even, an augment step for the best connection of RESP
is initiated; otherwise, we use the best connection of RESP for a grow step. Let us
consider the augment step first.

(augment step using best connection of RESP)=

RESP->best_edge(resp, opst);
OPST = _BLOSSOM_OF (opst) ;

110 CHAPTER 3. IMPLEMENTATION AND TESTS

We extract the vertices resp and opst. resp is part of the blossom RESP and the
blossom containing opst is denoted by OPST. The blossom object OPST represents
an even tree blossom.

(augment step using best connection of RESP)+=

alternate_path(OPST, item_of);
RESP->base = 0OPST->mate = resp;
RESP->mate = OPST->base = opst;
RESP->label = unlabeled;

The way we augment the matching is as follows. We call alternate_path for OPST. All
edges along the tree path from OPST to the root are alternated; OPST becomes free.
We then match RESP and OPST and set the label of RESP to unlabeled.

The tree of OPST is destroyed and the priority queues delta2 and delta3a are corrected
as discussed before. free is decreased by 1 (not by 2), since the number of free vertices
with potential larger than zero has been decreased by 1.4

(augment step using best connection of RESP)+=

slist<blossom<NT>*> correct;
OPST->my_tree->destroy_tree(correct, deltal, delta3a,

delta3b, deltad, Delta, Q, item_of);
correct_pgs(correct, delta2, delta3a);
free -= 1;

We come to the grow step. The best connection stored with the unlabeled blossom
RESP is retrieved.

(grow step using best connection of RESP)=

RESP->best_edge(resp, opst);
OPST = _BLOSSOM_OF (opst);

OPST denotes an even tree blossom. We make RESP an odd tree blossom of the tree
that contains OPST.

(grow step using best connection of RESP)+=

RESP->my_tree = OPST->my_tree;
RESP->status_change(odd, Delta, Q);
RESP->pred = opst;
RESP->disc = resp;
if (!'RESP->trivial())

RESP->item_in_pq =

delta4.insert (compute_potential (RESP, Delta)/2 + Delta, RESP);

When RESP is non—trivial, we insert a representative item for RESP into delta .

The mate blossom MATE of RESP is also added to the alternating tree. MATE
becomes an even tree blossom.

" Note that all vertices in RESP already satisfied the complementary slackness condition (cs)(2)
before the augment step, i.e. we have decreased free for each of these vertices in some earlier step.

3.4 MULTIPLE SEARCH TREE APPROACH 111

(grow step using best connection of RESP)+=

node mate = RESP->mate;
blossom<NT> *MATE = _BLOSSOM_OF (mate) ;
MATE->my_tree = OPST->my_tree;
MATE->status_change(even, Delta, Q);
if (MATE->item_in_pq) {
delta2.del_item(MATE->item_in_pq);
if (!'MATE->empty())
MATE->item_in_pq =
delta3a.insert ((MATE->min_prio() + MATE->offset)/2, MATE);
else MATE->item_in_pq = nil;
}

When MATE has an item in delta2, we delete that item. The best connection (if any)
of MATE to another (distinct) tree is inserted into delta3a.

Shrink Step: We next describe the realization of a shrink step. Each item in delta3b
represents the best candidate edge (for a shrink step) of an alternating tree. First of
all, we determine the tree object T whose best candidate edge has (actual) reduced cost
Zero.

(shrink step using best edge in delta3b)=

tree<NT> *T = delta3b.inf(delta3b.find_min());
delta3b.del_item(T->item_in_d3b);
T->item_in_d3b = nil;

The new tight edge e itself is stored in the information part of the minimum item of
T’s priority queue d3b_edges.

(shrink step using best edge in delta3b)+=

e = T->min_inf ();

T->d3b_edges.del_min();

resp = source(e); RESP = _BLOSSOM_OF (resp);
opst = target(e); OPST = _BLOSSOM_OF (opst);

resp and opst refer to the endpoints of e. We let RESP and OPST denote the blossoms
containing these endpoints. The lowest common ancestor blossom LCA and the shrink
path P1 now have to be determined.

(shrink step using best edge in delta3b)+=

blossom<NT> *LCA;
list<node> P1, P2;
list<blossom<NT>*> subl, sub2;

(determine LCA and shrink path of RESP and OPST)

The code realizing this has been discussed in detail for the single search tree approach;
it is not repeated here. A new blossom object SUPER is created and some of its data
members are set appropriately.

112 CHAPTER 3. IMPLEMENTATION AND TESTS

(shrink step using best edge in delta3b)+=

blossom<NT> *SUPER = new blossom<NT>(LCA->base);
SUPER->mate LCA->mate;

SUPER->my_tree =T;

SUPER->shrink_path P1;

Recall that the immediate subblossom objects are collected in the list subl. For each
such object CUR, we delete its item (if any) from delta or delta3a depending on the
status of CUR.

(shrink step using best edge in delta3b)+=
forall (CUR, subl) {
if (CUR->item_in_pq) {
if (CUR->label == odd)
deltad.del_item(CUR->item_in_pq) ;
else
delta3a.del_item(CUR->item_in_pq);
CUR->item_in_pq = nil;
}
SUPER->append_subblossom(CUR, Delta, Q);

}

CUR is made a subblossom of the new blossom SUPER by calling the member function
append_subblossom. The implementation of append_subblossom differs from the one
presented for the single search tree approach. It realizes the non—provident strategy
(see Section 2.1.3) as will be discussed below.

(shrink step using best edge in delta3b)+=

SUPER->pot = 2*(SUPER->offset - Delta);
T->add (SUPER) ;
if (!SUPER->empty())
SUPER->item_in_pq =
delta3a.insert ((SUPER->min_prio() + SUPER->offset)/2, SUPER);

Finally, the stored potential of SUPER is set such that its actual potential equals zero.
We need to add SUPER to T and (possibly) insert an item that represents its best
connection into delta?a. Finally, we delete all dead edges contained in the priority
queue d38b_edges of T' as shown below and (if necessary) insert a new representative into

delta3b.

(shrink step using best edge in delta3b)+=

T->del_dead_edges (item_of);
if (!T->d3b_edges.empty())
T->item_in_d3b = delta3b.insert(T->min_prio(), T);

Deleting all dead (minimum) edges from d3b_edges of a given tree object is simple. We
simply delete the minimum item from d3b_edges until its edge e is alive (CUR != ADJ),
or d3b_edges is empty.

3.4 MULTIPLE SEARCH TREE APPROACH 113

(class tree: member functions)+=
void del_dead_edges(const node_array<c_pq_item> &item_of) {
blossom<NT> *CUR, *ADJ;

while (!d3b_edges.empty()) {
edge e = min_inf();
CUR = blossom_of<NT>(item_of [source(e)]);
ADJ blossom_of<NT>(item_of [target(e)]);

if (CUR !'= ADJ) break;
else d3b_edges.del_min();

The member function append_subblossom is realized as follows. Each call makes CUR
a subblossom of the blossom object.

(class blossom: member functions)+=
void append_subblossom(blossom<NT>* CUR, NT Delta, node_slist &Q) {

if (CUR->label == odd)
CUR->status_change(even, Delta, Q);

if (!CUR->trivial())
CUR->pot += -2xCUR->offset + 2xDelta;

if (offset != CUR->offset) {
(adjust potentials and priorities of smaller group)

}

CUR->my_tree->remove (CUR) ;
concat (*CUR) ;
CUR->split_item = last_item();
subblossom_p.append (CUR) ;

}

As in the single search tree approach, CUR is made even, when it refers to an odd
subblossom. Moreover, the potential of a non trivial subblossom is frozen, as explained
before. When the offset currently assigned to the blossom object differs from the offset
value of CUR we adjust the vertex potentials and associated reduced costs of the smaller
group. After that, all actual values (potentials and reduced costs) are computed with
respect to the same offset value offset. We can, therefore, concatenate the priority
queue of CUR to the priority queue of the blossom object and append CUR to the
subblossom_p list. CUR is removed from its alternating tree.

The ideas underlying the unification of different offset values of two blossoms have been
given in Section 2.1.3. We now proceed to present our realization.

The actual potentials and priorities associated with each vertex contained in the cur-
rent blossom object are computed with respect to the value offset. Correspondingly,
the actual potentials and priorities of a vertex contained in the subblossom CUR are
computed with regard to the offset value of CUR. First of all, we determine the blossom
SMALIL B that contains fewer vertices. The other blossom is referred to as LARGE_B.
The difference of their offset values is stored in adjustment.

114 CHAPTER 3. IMPLEMENTATION AND

(adjust potentials and priorities of smaller group)=

blossom<NT>* SMALL_B = (size() < CUR->size() 7 this : CUR);
blossom<NT>* LARGE_B = (size() < CUR->size() ? CUR : this);

NT adjustment = SMALL_B->offset - LARGE_B->offset;

Next, we iterate over all items of the smaller blossom SMALL B.

(adjust potentials and priorities of smaller group)+=
c_pq_item it;
forall_items(it, *SMALL_B) {
SMALL_B->inf (it)->pot += adjustment;
if (SMALL_B->inf(it)->empty()) continue;

SMALL_B->inf (it)->adjust_priorities(adjustment);
NT cur_prio = SMALL_B->prio(it);
if (adjustment < 0)
SMALL_B->decrease_p(it, cur_prio + adjustment);
else
SMALL_B->increase_p(it, cur_prio + adjustment);
}
offset = LARGE_B->offset;

TESTS

For each item 4t, we adjust the potential of the corresponding vertex by adjustment.
When the priority queue associated with this vertex is not empty, we also need to adjust
all priorities contained in this queue. The member function adjust_priorities (which will
be discussed next) of class vertez has been implemented to achieve this. Finally, the

priority of it is decreased or increased by adjustment as well.

The priorities in a priority queue of a vertex object are adjusted by a value adjustment

as follows.

(class vertex: member functions)+=
void adjust_priorities(NT adjustment) {
if (adjustment == 0) return;

node r;
pg_item it;
NT cur_prio;
forall_defined(r, ITEM_OF) {
it = ITEM_OF[r];
cur_prio = prio(it);
if (adjustment < 0)

p_queue<NT, node>::decrease_p(it, cur_prio + adjustment);

else { // simulate increase_p
node v = inf(it);
del_item(it);
ITEM_QOF[r] = insert(cur_prio + adjustment, v);
}
}
}

We iterate over all root vertices r for which an item it (type pg_item) has been defined.
When the value of adjustment is smaller than zero, we simply decrease the current
priority of it by adjustment, calling operation decrease_p. Otherwise, we simulate an

3.5 CONSTRUCTING BETTER INITIAL SOLUTIONS 115

increase_p operation by deleting it and then inserting it with the new priority again.
The new item (type pg-item) needs to be set for ITEM_OF]r]. Note that we do in
fact need the functionality of the forall_defined iterator provided by the data type class
h_array.

This concludes our description of the implementation details for the shrink step. We
next consider the expand step.

Expand Step: Only a few minor changes ensue for the expansion of a blossom. Most
details are exactly the same as for the single search tree approach.

(expand step using best blossom of deltad)=

RESP = delta4.inf(deltad4.find_min());
delta4d.del_item(RESP->item_in_pq) ;

The responsible blossom RESP is retrieved from delta4 and the corresponding item is
deleted. After that, RESP is expanded by calling the member function ezpand. All
details of this function have been discussed for the expand step in the single search tree
approach.

(expand step using best blossom of delta)+=

RESP->expand(Delta) ;

forall(CUR, RESP->subblossom_p)
RESP->my_tree->add (CUR) ;

RESP->my_tree->remove (RESP) ;

What differs here is the way we add each subblossom CUR to the tree containing
RESP, and the way we subsequently remove RESP from its tree: we do so by using
the member functions add and remowve, respectively.

We restore the matching for the immediate subblossoms, extend the alternating tree
and, finally, destroy the blossom object RESP. Again, the code realizing this is exactly
the same as before.

(expand step using best blossom of deltaf)+=
blossom<NT> *xBASE _BLOSSOM_OF (RESP->base) ;
blossom<NT> *DISC = _BLOSSOM_OF (RESP->disc);
int dist = RESP->restore_matching(BASE, DISC);

(extend alternating tree)
delete RESP;

3.5 Constructing Better Initial Solutions

The performance of both algorithms is considerably improved when a heuristic is used
to construct an initial matching and the vertex potentials. We will discuss two heuris-
tics in this section: a greedy heuristic and a fractional matching heuristic.

The greedy heuristic will set the initial vertex potentials as in the empty matching
case and then choose a matching within the tight edges in a greedy fashion. The time

116 CHAPTER 3. IMPLEMENTATION AND TESTS

required by this heuristic will be O(n + m).

The fractional matching heuristic first solves the fractional matching problem; the frac-
tional matching problem only comprises of constraints (1) and (3) of (WM) or (WPM)
(see Section 1.4), respectively. The solution to this problem will be half integral and,
moreover, the edges with value % will form vertex disjoint odd length cycles. The initial
matching will then consist of all edges having value 1 and of [|C|/2] edges from every
odd length cycle C. Constructing an initial matching and the vertex potentials in this
way will take time O(n(m + nlogn)).

The function

int greedy matching(const ugraph &G, const edge_array<NT> &w,
node_array<NT> &pot, node_array<node> &mate,
bool perfect);

realizes the greedy heuristic and

int jump_start(const ugraph &G, const edge_array<NT> &w,
node_array<NT> &pot, node_array<node> &mate,
bool perfect);

implements the fractional matching heuristic. Given an undirected graph G and a
weight function w, either function constructs an initial matching of G and, moreover,
returns the vertex potentials in a node_array pot. The matching is represented by a
node_array mate: an edge e = uw is a matching edge iff the endpoints u and v are mates
of each other, i.e. mate[u] ==wv and mate[v] == u. The function returns the number of
free vertices.

The computed matching and the vertex potentials will satisfy the following conditions:

(cl) the reduced cost of each edge is non—negative,
(c2) each matching edge is tight, and

(c3) when perfect is set to false: each potential is non negative.

We present the implementation details of each function in the subsequent sections.

3.5.1 Greedy Heuristic

The idea underlying the construction of a greedy matching is simple. We compute
the initial potential pot[u] of each vertex u as for the empty matching, i.e. we set
the potential pot[u] to one half of the weight of the heaviest incident edge: potlu] =
max{w./2 : e € §(u)}. When u is an isolated vertex, we set pot[u] = 0, since it will
never be matched. The reduced costs of all edges will then satisfy (c1) and, moreover,
(c3) is also satisfied.!®

'5(c3) only holds under the assumption that all edge weights are non-negative. We may make
this assumption here, since the weighted matching problem is not affected when a positive constant
¢ = max{|we| : e € E} is added to all edge weights.

3.5 CONSTRUCTING BETTER INITIAL SOLUTIONS 117

(greedy.t: initialize vertex potentials)=
edge e;
node u, v;
pot.init(G, -INFINITY(NT));

forall_nodes(u, G)

if (outdeg(u) == 0) pot[u] = O;
forall_edges(e, G) {

u = source(e);

v = target(e);

pot[u] = leda_max(pot[ul, (wlel/2));

pot[v] = leda_max(potl[v], (wlel/2));
}

After this, we inspect each edge e = uv of G: when e is tight and, moreover, neither u
nor v is matched, we make e a matching edge (u is made a mate of v and vice versa).
Note that (¢2) is met. The number of free vertices is kept in free.

(greedy.t: construct greedy matching)=

int free = G.number_of_nodes();
mate.init (G, nil);

forall_edges(e, G) {
u = source(e);
v = target(e);
if ((pot[u] + potlv] == wlel) &&
(mate[u] == nil) && (matel[v] == nil)) {
mate[v] = u;
mate[u] =
free -= 2;

}

A

}

In the non perfect matching case, the vertex potentials are not restricted to being non

negative. We can therefore tighten the reduced costs of edges that are incident to free
vertices.

(greedy.t: adjust vertex potentials in non—perfect case)=

if (perfect) {
forall_nodes(u, G) {
if ('mate[u]) {
NT slack = INFINITY(NT);
forall_adj_edges(e, u) {
v = opposite(u, e);
slack = leda_min(pot[u] + pot[v] - w[le], slack);
}
pot[ul -= slack;
}
}
}

We inspect all edges uv incident to a free vertex v and determine the value slack, which
refers to the minimum reduced cost of these edges. The reduced cost of each such edge
will also stay non negative when we decrease the value of pot[u] by slack.

118 CHAPTER 3. IMPLEMENTATION AND TESTS

The complete greedy algorithm to compute an initial matching and the vertex potentials
satisfying (c1) to (¢3) now reduces to:

(greedy.t: algorithm)=

template<class NT>

int greedy_matching(const ugraph &G, const edge_array<NT> &w,
node_array<NT> &pot, node_array<node> &mate,
bool perfect) {

(greedy.t: initialize vertex potentials)
(greedy.t: construct greedy matching)
(greedy.t: adjust vertex potentials in non perfect case)

return free;

}

Obviously, the time required by this function will be O(n 4+ m).

3.5.2 Fractional Matching Problem

Let us consider the linear programming formulation (FwWpPM) of the so—called fractional
(perfect) matching problem to a given instance G = (V, E,w).'® (FwPM) is the linear
programming relaxation of (IWPM) presented in Section 1.4.2.

(FWPM) maximize wl'z
subject to z(d0(u)) = 1 forallueV, (1)
Tuy > 0 forall uv € E. (2)

The following theorem states that an optimal solution to (FWPM) meets certain re-
quirements.

Theorem 3.5.1 (Half-Integrality of Fractional Matching Problem) Let x be
an optimal solution to (FwpM) and let PU"WPM) denote the convex hull defined by

the incidence vectors of (FwpM). Then, z is half integral, i.e. z, € {0, %, 1} for all
e € E. Moreover, the edges e for which z, = % form vertex disjoint odd length cycles

if 2 is a vertex of P(FWPM) 17

I—We sketch a constructive proof of Theorem 3.5.1.

First, we show that every optimal solution z to (FWPM) must be half-integral. As mentioned
previously (see Section 1.4), Birkhoff [Bir46] proved that every optimal solution to the fractional
matching problem is integral when G is restricted to being bipartite. We construct a bipartite

6 There also exists a fractional non—perfect matching problem: (FwpMm)(1) is replaced by z(6(u)) < 1
for all u € V. However, we will concentrate on the perfect matching case here. All results to come can
easily be transferred to the non perfect case using the reduction presented in Section 1.5.

17 At this point we assume that the reader is familiar with certain concepts and results from the field
of polyhedral combinatorics. We briefly summarize the two results needed here (for a more extensive
discussion see Cook et al. [CCPS98]). (1) A vector v of a polyhedron P is a wvertex of P"") iff v
cannot be written as a convex combination of vectors in P**)\ v. (2) If an optimal solution to a linear
program (LP) exists, then (LP) has also an optimal solution z, which is a vertex of the corresponding
polyhedron P

3.5 CONSTRUCTING BETTER INITIAL SOLUTIONS 119

graph G' = (AUB) as follows. For each vertex v in G we have a vertex v’ € A and a vertex

v" € B. Each edge e = uv in G corresponds to two edges ¢’ = u'v" and €’ = u"v' in G'.

The weight of each edge e’ and e" in G' equals the weight of the corresponding edge e in G.
An optimal solution z’ to (Fwpm) for G' = (AUB, E',w') will be integral. Thus, choosing

Te = %(T’e, + x!,,) gives us a half integral solution which is optimal for the fractional matching

problem for G = (V, E,w), as desired.

We now proceed to prove that all edges e with z, = % form vertex disjoint odd length cycles

FWPM)

if is a vertex of P! . Clearly, every edge e with z, =]5 must be part of a cycle, since

x(0(u)) = 1 for all u € V. Moreover, all cycles are vertex disjoint. Let z be an optimal solution
and assume there exists an even length cycle C' with z, = % for each edge e € C. We show that

 is not a vertex of the convex hull PFWP™) defined by the incidence vectors of (Fwpm). We
define a vector d as follows: d, = 0 for all e ¢ C and d, is alternately set to % and —]5 for the
edges e along C. Then, x + d as well as x — d are feasible solutions to (FWPM) (and at least one

of those has objective value larger or equal to that of z). Since z can be written as a convex

Lcombina‘nion z = 3(z+d)+ L(z —d), v cannot be a vertex of PFVM).,

|
Theorem 3.5.1 gives rise to the idea that one can use an optimal solution of (FWPM)
to construct an initial matching M. This idea was put forward by Derigs and Metz
[DM86]. We proceed as follows. First, we compute an optimal (vertex) solution z
to (FWPM) using a primal-dual method which is similar to (but considerably simpler
than) the one developed in Section 1.6. The computed solutions (primal and dual) will
meet the following conditions:

(11) each edge e with z, > 0 is tight,
(12) the reduced cost of each edge is non negative,

(13) in the non perfect matching case: all vertex potentials are non negative.

The initial matching M is then constructed as follows. Each edge e with z, = 1 is
added to M. Moreover, we add [|C|/2] edges of every odd length cycle C' to M. Due
to the feasibility of (11) to (13), the invariants (c1) to (¢3) will hold for M and the
computed vertex potentials.

A realization of a primal-dual method for the fractional matching problem is as follows.
We describe a single search tree approach. The algorithm starts with an initial matching
M (z. € {0,1}) and vertex potentials such that (11) to (13) are met. Initially, every
matched vertex is unlabeled and every free vertex is labeled even. The algorithm
proceeds in phases. In each phase an alternating tree T is grown from a free vertex r;
a vertex r is said to be free in this context, when z(d(r)) = 0. Only tight edges are
used by the algorithm. The details for an alternate step (in the non perfect case), a
grow step and an augment step are identical to those given for the blossom-shrinking
approach. However, when a tight edge uv with u™ € T and v* € T exists, we proceed
differently. z. is set to % for all edges along the encountered odd length cycle C', and
the edges along the tree path from the lowest common ancestor of 4 and v to the root
r get alternately unmatched and matched (r becomes matched). After this, all vertices
in T are unlabeled and T is destroyed. When a tight edge uv with ™ € T and v? ¢ T
is encountered and v is moreover part of a half-valued odd length cycle, the edges along
the odd length cycle get alternately unmatched and matched starting in v (v becomes
free) and then all edges along the path p = (v,u,...,r) get alternately matched and
unmatched (v and r become matched). Following this, all vertices in T' get unlabeled
and T is destroyed.

120 CHAPTER 3. IMPLEMENTATION AND TESTS

A dual adjustment is performed as in the blossom—shrinking approach: each potential
of an even tree vertex is decreased by d, each potential of an odd tree vertex is increased
by ¢ and all other vertex potentials stay the same. The value of § is only determined
by the lower bounds d1, d2 and d3 (see Section 1.6.3).

Implementation: We now come to our implementation. The algorithm can be asked
to solve either the fractional perfect matching problem or the fractional non perfect
matching problem (depending on the argument perfect). It guarantees a worst—case
running time of O(n(m + nlogn)). As before, priority queues are used to determine
the value of § and to identify new tight edges. Most of the ideas presented in the
preceding sections are reused.

Besides some standard variables, we have two additional node_arrays: label, which
stores the label to each vertex, and pred, which stores the predecessor vertex of each
odd vertex u in the alternating tree.

(fractional.t: local variables)=

edge e;
node u, v, r;

node_array<int> label(G);
node_array<node> pred(G, nil);

The value of ¢ is determined by means of the following data structures:

(fractional.t: local variables)+=

NT deltal;

NT delta2a;
node_pg<NT> delta2b(G);
node resp_dil;
edge resp_d2a;
node_array<edge> resp_d2b(G);
NT Delta = 0;

deltal stores the minimum (stored) potential of an even tree vertex resp_d1. By resp_d2a
and delta2a we keep track of the best edge that will terminate the current phase. More
precisely, resp_d2a may denote an edge uv with u* € T and v{?/*} ¢ T v will lie on
a half valued cycle if v2 € T. The actual value of delta2a corresponds to the actual
reduced cost of uv. Otherwise, resp_d2a refers to an edge uv with u™ € T and v* € T.
Then, the actual value of deltaZ2a then equals one half of the actual reduced cost of uwv.
We use a node_array resp_d2b and a node_pq delta2b to maintain the best edge uv with
ut € T of each vertex v? ¢ T'; v° is not part of an odd length cycle. resp_d2b[v] stores
the edge uv and the (actual) priority of delta2b[v] refers to the (actual) reduced cost of
uv. As before, we accumulate the total amount of dual adjustments in Delta:

(fractional.t: local variables)+=
slist<edge> tight;
slist<node> Q;
node_slist T(G) ;

3.5 CONSTRUCTING BETTER INITIAL SOLUTIONS 121

A list tight is used to collect all edges that have recently become tight and can thus
be used by the algorithm. @ and T are essentially used as in the single search tree
algorithm of the blossom—shrinking approach: () stores all new even vertices, and T
keeps all vertices that are part of the alternating tree.

The overall structure of our algorithm is as follows.

(fractional.t: algorithm)=
template<class NT>
int jump_start(const ugraph &G, const edge_array<NT> &w,
node_array<NT> &pot, node_array<node> &mate,
bool perfect) {

(fractional.t: local variables)
(fractional.t: initialization)

forall_nodes(r, G) {
if (matel[r] || pred[r]) continue;

(clear priority queues, @ and tight)
pot[r] += Delta;
T.append(r); Q.append(r);
bool terminate = false;
while (!terminate) {

(scan all edges of vertices in Q)

if (deltal == Delta) {
(alternate step using best node of deltal)

}
else if (!tight.empty()) {
(use all tight edges)
}
else {
(dual adjustment)
(extract tight edges)
}
}
}
(match all odd length cycles)

return free;

}

The initialization is simple: we compute a greedy matching and label all vertices ap-
propriately.

(fractional.t: initialization) =

int free = greedy_matching(G, w, pot, mate, perfect);

if (free == 0) return free;
forall_nodes(u, G)
label[u] = (mate[u] ? unlabeled : even);

Next, a phase is initiated for each free vertex r. We use the following convention to

122 CHAPTER 3. IMPLEMENTATION AND TESTS

determine the value x(d(u)) to a given vertex u:

0 when mate[u] = nil and pred|u] = nil,
z(0(u)) = < 3 when mate[u] = nil and pred|[u] # nil,
1 when mate[u] # nil.

For a half valued odd length cycle C we will set the pred[u] entry of each ver-
tex u € C such that the cycle can be traversed following these entries, i.e. C' =
u, pred[u], pred[pred[u]],. ...

At the beginning of each phase, deltal and delta2a are reset and delta2b, () and T are
made empty.

(clear priority queues, Q and tight)=

deltal = delta2a = INFINITY(NT);
delta2b.clear();
Q.clear(); tight.clear();

The free vertex r is added to T and entered into (). Due to the status change of
r, we have to adjust its potential by + Delta (see formula (2.3), Section 2.1); we do
not maintain an offset for each vertex, but instead adjust its potential when a status
change occurs. In a while loop, all edges incident to vertices in () are scanned as will
be explained below. Afterwards, we initiate an alternate step when the actual value
of deltal equals zero (this will only happen in the non perfect case), or use the tight
edges collected in tight to extend 7. When neither case applies, a dual adjustment is
performed.

(dual adjustment)=

NT cand2b = (delta2b.empty() 7 \
INFINITY(NT) : delta2b.prio(delta2b.find min()));

NT delta = leda_min(deltal, leda_min(delta2a, cand2b));
if (delta == INFINITY(NT) && perfect) {
mate.init (G, nil);

return 0O;

}
Delta = delta; // corresponds to Delta += (delta - Delta)

When the actual value of deltal equals zero, we immediately resume the while loop.
When delta2a has actual value zero, the responsible edge resp_d2a is appended to tight
(resp-d2a is the only element). The next step will terminate the phase; note that @ is
empty. Otherwise, all new tight edges are retrieved from delta2b and added to tight.

(extract tight edges)=

if (deltal == Delta)
continue;

else if (delta2a == Delta) {
tight.append(resp_d2a);
resp_d2a = nil;

}

else {
while (!delta2b.empty() &&

3.5 CONSTRUCTING BETTER INITIAL SOLUTIONS 123

(delta2b.prio(delta2b.find_min()) == Delta)) {
u = delta2b.del_min();
tight.append(resp_d2b[u]);
resp_d2b[u] = nil;
}
}

Finally, the algorithm terminates with an optimal solution to the fractional matching
problem. We alternately match and unmatch (z, € {0,1}) the edges along all existing
odd length cycles to obtain the final matching. Exactly one vertex per cycle (which is
u below) will become free.

(match all odd length cycles)=

forall_nodes(u, G)
if (predf[ul) {
alternate_cycle(u, mate, pred);
free++;

}

The function alternate_cycle is easily defined as follows.

(fractional.t: helpers)=

void alternate_cycle(node u, node_array<node> &mate,
node_array<node> &pred) {
node curl = pred[u];
while (curl !'= u) {
mate[pred[curl]] = curl;
mate[curl] = pred[curl];
node h = pred[curi];
pred[curl] = nil;
curl = h;
h = pred[curl];
pred[curl] = nil;
curl = h;
}
pred[u] = nil;
}

Starting with cur! = predfu], we traverse the odd length cycle, alternately matching
and unmatching the edges along this cycle by setting the mate and pred entries appro-
priately.

All remaining details will be filled in subsequently.

Scanning New Even Vertices: As in the blossom—shrinking approach, all edges
incident to any vertex that has recently become an even tree vertex need to be inspected.
This is necessary so as to maintain deltal, delta2a as well as delta2b correctly.

(scan all edges of vertices in Q)=
while (!Q.empty()) {

u = Q.pop();
NT pot_u = pot[u] - Delta;

124 CHAPTER 3. IMPLEMENTATION AND TESTS

if (!perfect) {
(try to improve deltal)
}
forall_adj_edges(e, u) {
v = opposite(u, e);
if (labell[v] == odd) continue;
NT pot_v = pot[v] - (((labell[v] == even) && T.member(v)) 7 Delta : 0);
NT pi = pot_u + pot_v - wlel;
if (pi == 0) {
(add edge e to tight)
}
else {
(prune edges)
if ((label[v] == unlabeled) && matel[v]) {
(new delta2b edge encountered)

}
else {
(new delta2a edge encountered)
}
}
}
}

We compute the actual potential pot_u for each even tree vertex u in (). The actual
potential of a vertex u will be determined as stated in Section 2.1 (formula (2.1)); the
only difference is that no offset exists.

deltal is only maintained in the non perfect matching case.

(try to improve deltal)=
if (pot_u < leda_min(deltal, delta2a) - Delta) {
deltal = pot_u + Delta;
resp_dl = u;
if (deltal == Delta) break;
}

All edges e = uv incident to u are considered. When the adjacent vertex v of u is odd
we simply continue, since nothing has to be done. Otherwise, we compute the actual
potential pot_v of v and the actual reduced cost pi of uv. When e is tight, i.e. pi equals
zero, we add e to the list tight.

(add edge e to tight)=

if ((label[v] == unlabeled) && mate[v]) tight.append(e);
else {

tight.clear(); Q.clear();

tight.append(e);

break;

}

If we have encountered a tight edge that will terminate the current phase, we proceed
as follows. Q and tight are emptied and e becomes the only element of tight; we break
the scanning procedure.

Otherwise, the actual reduced cost pi is larger than zero. As for our single search tree

3.5 CONSTRUCTING BETTER INITIAL SOLUTIONS 125

algorithm of the blossom—shrinking approach, we prune hopeless edges; i.e. edges whose
stored priority in delta2a or delta2h exceeds the minimum value of deltal and delta2a.'®

(prune edges)=

#if !defined(_NO_PRUNING)
if (labellv] == even && T.member(v)) {

if (pi/2 + Delta >= leda_min(deltal, delta2a)) continue;
}
else if (pi + Delta >= leda_min(deltal, delta2a)) continue;
#endif

When v is an unlabeled vertex and does not lie on a half-valued cycle, we check whether
or not e is the new best edge for v. If it is, we set resp_d2b[v] to e and store the (stored)
reduced cost of e in delta2b.

(new delta2h edge encountered)=
if (delta2b.member(v)) {
if (pi < delta2b.prio(v) - Delta) {
delta2b.decrease_p(v, pi + Delta);
resp_d2b[v] = e;
}
}
else {
delta2b.insert(v, pi + Delta);
resp_d2b[v] = e;
}

When v is not of the kind above, we have discovered a new edge for delta2a. A check is
performed to determine whether e is the new best edge of delta2a; if it is, delta2a and
resp-d2a are set appropriately. Note that p: must be halved in the case where v is an
even labeled tree vertex.

(new delta2a edge encountered)=
if ((labell[v] == even) && T.member(v)) pi /= 2;

if (pi < delta2a - Delta) {
delta2a = pi + Delta;
resp_d2a = e;

}

Alternate Step: Let us consider the alternate step. The edges along the (even
length) tree path from resp_dl towards the root r get alternately unmatched and
matched.

(alternate step using best node of deltal)=

alternate_path(resp_dl, label, mate, pred);
destroy_tree(T, label, pot, mate, pred, Delta);
label[resp_d1] = even;

terminate = true;

8 Define the token _NO_PRUNING (#define _NO_PRUNING) to switch off this strategy.

126 CHAPTER 3. IMPLEMENTATION AND TESTS

After this, T is destroyed and the phase terminates. Note that destroy_tree will set the
label of resp_d1 to unlabeled. We therefore need to correct it to even.

We give the implementation details of the function alternate_path, which alternates the
edge along the tree path starting with the given vertex u.

(fractional.t: helpers)+=

void alternate_path(node u, node_array<int> &label,
node_array<node> &mate, node_array<node> &pred) {

node cur u;

node pre = nil, nxt;
while (cur) {
if (label[cur] == even) {
nxt = matel[cur];

mate[cur] = pre;
cur = nxt;

}

else {

pre = cur;
mate[cur] = pred[cur];
nxt = pred[cur];
pred[cur] = nil;
cur = nxt;

}
}
}

Following the path from u towards the root, the mate and pred entries are set appro-
priately for each vertex on the path.

The current alternating tree 1" is easily destroyed.

(fractional.t: helpers)+=

template<class NT>
void destroy_tree(node_slist &T, node_array<int> &label, node_array<NT> &pot,
node_array<node> &mate, node_array<node> &pred, NT Delta) {

node v;

while (!T.empty()) {
v = T.popQ);
if (labell[v] == even) pot[v] -= Delta;
else {

pot[v] += Delta;
if (mate[v]) pred[v] = nil; // only for vertices not on cycle

}
label[v] = unlabeled;

}
}

Each vertex v is removed from T'. Depending on the status of v, its potential pot[v]
needs to be adjusted as stated in formula (2.3). Moreover, when u is an odd vertex,
pred[u] is set to nil; however, it is crucial that pred[u] is not set to nil when u is part

3.5 CONSTRUCTING BETTER INITIAL SOLUTIONS 127

of a half-valued cycle.™

Using Tight Edges: All edges that can be used by the algorithm are collected in
tight. In a while loop, we retrieve each such edge e = wv and act accordingly. We
ensure that u always denotes a tree vertex.

(use all tight edges)=

while (!tight.empty()) {
e = tight.popQ);
u = (T.member (source(e)) 7 source(e) : target(e));
v = opposite(u, e);
if (labell[v] == odd || labell[u] == odd) continue;

if (label[v] == unlabeled) {
if (matel[v]) {
(grow step using edge e)
}
else { // v on half-valued cycle
(alternate cycle and tree path using edge e)
terminate = true;

break;
}
}
else { // label[v] == even
if (T.member(v)) {
(construct half valued cycle)
terminate = true;
break;
}
else {
(augment step using edge e)
terminate = true;
break;
}
}
}

It may happen that tight stores two edges e = uv and €’ = v'v to the same unlabeled
vertex v (not lying on a half-valued cycle). Assume €’ is used before e. Then, v will be
labeled odd, when e is considered later on; e is of no use. We therefore continue with
the next tight edge when either of the endpoints v or u is odd.

Grow Step: We turn to the description of a grow step using a tight edge e = uv; u
is an even tree vertex. v becomes an odd tree vertex with predecessor vertex wu.

9That we need to take this case into account will become clear later on, when the construction of a
half valued cycle is discussed.

128 CHAPTER 3. IMPLEMENTATION AND TESTS

(grow step using edge €)=
labell[v] = odd;
pred[v] = u;
pot[v] -= Delta;
T.append (v) ;
delta2b.del(v);
resp_d2b[v] = nil;

The potential of v is adjusted according to its status change. We delete the best edge
data for v from delta2b and resp_d2b.

The mate m of v is also added to T'. m becomes an even tree vertex and is added to
Q. Its entry in delta2b as well as in resp_d2b is deleted.

(grow step using edge e)+=
node m = matel[v];
label[m] = even;
pot[m] += Delta;
T.append(m) ;
Q.append (m) ;
delta2b.del(m);
resp_d2b[m] = nil;

Alternate Cycle and Tree Path: We next consider the case where e = uv is a
tight edge with ™ € T, v € T and v lies on a half-valued cycle C. We alternately
unmatch and match the edges along C' starting at v; the function alternate_cycle to
achieve this has already been presented. v will afterwards be free.

(alternate cycle and tree path using edge e)=

alternate_cycle(v, mate, pred);
alternate_path(u, label, mate, pred);

mate[u] = v;

matel[v] = u;

destroy_tree(T, label, pot, mate, pred, Delta);
free——;

We alternately unmatch and match the edges along the tree path from u to r calling
alternate_path and finally match u and v with each other. T is subsequently destroyed.

Constructing a Half-Valued Cycle: When a tight edge e = wv is of the kind
uT € T and v™ € T, we proceed as follows. We determine the lowest common ancestor
vertex [ca of u and v by calling the function seek_lca. Starting in lca the edges along the
tree path are alternately unmatched and matched by the function alternate_path (lca
becomes free). Then, a new half-valued cycle C' = (lca, ..., u,v, ..., lca) is constructed,
calling construct_cycle. Finally, the tree T is destroyed and free is decreased by one,
since the root r is now matched.

3.5 CONSTRUCTING BETTER INITIAL SOLUTIONS 129

(construct half valued cycle)=

node lca;

seek_lca(u, v, lca, mate, pred, P1, P2, lock);
alternate_path(lca, label, mate, pred);
construct_cycle(u, v, lca, mate, pred);
destroy_tree(T, label, pot, mate, pred, Delta);
free——;

The lowest common ancestor vertex is determined in lock—step fashion as discussed
before. We therefore additionally introduce the following local data structures.

(fractional.t: local variables)+=
double lock = 0;

node_array<double> P1(G, 0);
node_array<double> P2(G, 0);

The determination of the lowest common ancestor vertex is achieved as follows.

(fractional.t: helpers)+=

void seek_lca(node u, node v, node &lca,
node_array<node> &mate, node_array<node> &pred,
node_array<double> &P1, node_array<double> &P2,
double &lock) {

node curl = u, cur2 = v;

Pi[curl] = P2[cur2] ++lock;

while ((P1[cur2] !'= lock) && (P2[curl] '= lock) &&
(mate[curl] || matel[cur2])) {

if (matelcuri]) {
curl = pred[mate[curl]];
Pi[curl] = lock;

}
if (mate[cur2]) {
cur2 = pred[mate[cur2]];
P2[cur2] = lock;
}
}
if (P1[cur2] == lock) // cur2 is lca
lca = cur2;
else if (P1[curl] == lock) // curl is lca
lca = curl;
else lca = nil;

}

We follow the two tree paths from u and v towards the root r. All even vertices on
the path from u to r are marked by lock using the node_array P1 and all even vertices
on the path from v to r are marked by lock using the node_array P2. When either
P1[cur2] or P2[curl] equals lock, the lowest common ancestor /ca has been found.

We now discuss the details of the half-valued cycle construction. The idea is simple.
Let p, and p, denote the two tree paths from u and v to the lca vertex, respectively.
First, the pred entries of all vertices along p, are set such that they represent the
reversed path of p,. Then, the pred entries of all vertices along p, are set such that

130 CHAPTER 3. IMPLEMENTATION AND TESTS

they represent p, itself. Finally, we set pred[u] to v and obtain the representation of C
as desired.

(fractional.t: helpers)+=

void construct_cycle(node u, node v, node lca,
node_array<node> &mate, node_array<node> &pred) {

node curl = u, cur2 = v;
while (curl !'= lca) {
// set pred data to reversed tree path; delete mate entries
node h = matel[curi];
mate[curl] = nil;
curl = pred[h];
pred[h] = mate[h];
mate[h] = nil;
pred[curl] = h;
}
while (cur2 != lca) {
// set pred data to tree path; delete mate entries
node h = mate[cur2];
pred[cur2] = mate[cur2];
mate[cur2] = nil;
mate[h] = nil;
cur2 = pred[h];
}
pred[u] = v;

Augment Step: The only detail that has not been presented yet is how to perform
an augment step for a tight edge e = uv with u™ € T and v* & T. We first alternately
unmatch and match the edges along the tree path from u to the root vertex r (u becomes
free). Thereafter, u and v are matched with each other (v becomes unlabeled), the tree
T is destroyed and free is decreased by 2.

(augment step using edge e)=
alternate_path(u, label, mate, pred);
mate[u] = v;
mate [v] u;
label[v] = unlabeled;
destroy_tree(T, label, pot, mate, pred, Delta);
free -= 2;

This concludes the discussion of all the details involved in the construction of an initial
matching M and the vertex potentials by solving the fractional matching problem.

3.6 Experimental Results

We performed several experiments in order to rate the practical efficiency of our algo-
rithms. The comparisons we made are as follows.

3.6 EXPERIMENTAL RESULTS 131

(1) Comparison of different strategies: single search tree approach with and with-
out pruning strategy, multiple search tree approach with and without provident
strategy.

(2) Comparison of the single search tree approach with the multiple search tree ap-
proach, and the effect of using different heuristics.

(3) Comparison of our multiple search tree approach with other matching algorithms
available in LEDA.

(4) Comparison of our multiple search tree approach with the currently most efficient
algorithm, Blossom IV, of Cook and Rohe [CR97].

In this section we will discuss the results of these comparisons. In summary, they reveal
the efficiency of our algorithms in practice. We wish to state that our multiple search
tree approach is (at least) competitive to Blossom IV: so far, we have not encountered
an instance on which our algorithm is inferior (if the comparison is fair, as we are
about to explain). However, we would like to leave the decision on whether or not our
algorithm is superior to Blossom IV to the reader. We decided so, due to the fact that
Blossom IV uses a so called price and repair strategy for complete geometric instances
that we have not yet implemented for our algorithm. The price and repair strategy
significantly improves the running—time of Blossom IV on these instances. Due to the
lack of a similar strategy for our algorithm, the comparisons on complete geometric
instances are regarded to be not quite fair.

Experimental Setting: We experimented with three kinds of instances: Delaunay
instances, (sparse and dense) random instances and complete geometric instances.

For the Delaunay instances we chose n random points in the unit square and computed
the Delaunay triangulation (using the LEDA Delaunay implementation). The edge
weights correspond to the Euclidean distances scaled to integers in the range [0, ..., 2'6).
Delaunay graphs are known to contain perfect matchings (see Dillencourt [Dil90]).

For the random instances we created random graphs with n vertices. The number of
edges for sparse graphs was chosen as m = an for small values of a, a < 10.

The number of edges for dense graphs is about 20%, 40% and 60% of the density of a
complete graph, i.e. m = dn(n — 1)/2, with d € {0.2,0.4,0.6}.

Complete geometric instances were induced by n random points in a n X n square and
their Euclidean distance.

The running times of all our experiments are stated in seconds and are the average of
t = 5 runs, unless stated otherwise. All experiments were performed on a Sun Ultra
Sparc, 333 Mhz.

Different Strategies We discuss the influence of the usage of different strategies for
each approach. The comparisons were made on sparse random graphs with n vertices
and a fixed @« = 10. Both algorithms computed a maximum weight matching; the
greedy heuristic was used.

132 CHAPTER 3. IMPLEMENTATION AND TESTS

The single search tree approach (SST) has been implemented to use a pruning strategy
by default. Table 3.1 implies this to be reasonable.

n @ SST;H, SST;:rqu t
10000 6 37.42 28.17 5
20000 6 125.95 99.60 5
40000 6 428.78 364.67 5

Table 3.1: Effect of pruning strategy for single search tree algorithm (SST).

We compared the single search tree algorithm using the pruning strategy (SST,,+)
with the single search tree algorithm not using the pruning strategy (SST,,,-). The
running—time of the single search tree algorithm is considerably improved using the
pruning strategy. Recall that the pruning strategy is also implemented for the fractional
matching heuristic.

For the multiple search tree approach, the user may choose between the provident
and the non—provident strategy. As mentioned previously, the non—provident strategy
(MST,,,-) seems to us to be slightly superior to the provident strategy (MST .+).
However, the differences are negligible, as indicated in Table 3.2.

n @ MST;M MST;O, t
10000 6 13.14 12.89 5
20000 6 29.20 28.59 5
40000 6 67.02 66.01 5

Table 3.2: Effect of non provident strategy for multiple search tree algorithm (MST).

In the subsequent comparisons, we will always use the strategies that are chosen by
default. That is, the single search tree approach as well as the fractional matching
heuristic use the pruning strategy, and the multiple search tree approach implements
the non—provident strategy.

Single Search Tree vs. Multiple Search Tree Approach: We compared the
single search tree approach (SST) to the multiple search tree approach (MST) using
different heuristics. The results are given in Table 3.3.

n SST- MST~ SSTt MST* GY SST* MST* FM t
10000 37.01 6.27 24.05 4.91 0.13 5.79 3.20 0.40 5
20000 142.93 14.81 89.55 11.67 0.24 18.54 8.00 0.83 5
40000 593.58 31.53 367.37 25.51 0.64 76.73 17.41 1.78 5

Table 3.3: SST vs. MST algorithm and effect of greedy and fractional matching heuristics.

Both algorithms computed a maximum weight perfect matching on Delaunay instances
with n vertices. Either no heuristic (), the greedy heuristic (*) or the fractional
matching heuristic (*) was used. The time needed to construct a greedy or a fractional
matching is given in columns GY and FM, respectively.

3.6 EXPERIMENTAL RESULTS 133

The fractional matching heuristic is computationally more intensive than the greedy
heuristic. However, the fractional matching heuristic improves the overall running
time of both algorithms significantly. We draw attention to the fact that the difference
between the two heuristics is more pronounced for the single search tree approach. The
multiple search tree approach is superior to the single search tree approach.

I—VVe will attempt to give an interpretation for the better running—time performance of the mul-)
tiple search tree approach. We take a closer look at the number of dual adjustments that were
performed during the course of the algorithms. Our algorithms can be asked to output certain
statistical information (not documented in the preceding sections). We give a sample output
below.

MST SST

INIT: 0.28 sec. INIT: 0.19 sec.

MATCHING: 14.40 sec. MATCHING: 40.07 sec.

EXTRACT: 0.14 sec. EXTRACT: 0.12 sec.

CHECKER: 0.23 sec. CHECKER: 0.22 sec.

ADJUSTMENTS : 7663 ADJUSTMENTS : 13428

SCAN: 29295 5.91 sec. (avg. 0.20 msec.) SCAN: 81237 4.93 sec. (avg. 0.06 msec.)
GROW: 16593 0.44 sec. (avg. 0.03 msec.) GROW: 62265 0.86 sec. (avg. 0.01 msec.)
SHRINK: 8 0.00 sec. (avg. 0.00 msec.) SHRINK: 155 0.11 sec. (avg. 0.71 msec.)
EXPAND: 5 0.00 sec. (avg. 0.00 msec.) EXPAND : 148 0.16 sec. (avg. 1.08 msec.)
ALTERNATE: 43 0.00 sec. (avg. 0.00 msec.) ALTERNATE: 258 0.21 sec. (avg. 0.81 msec.)
AUGMENT : 4983 7.40 sec. (avg. 1.49 msec.) AUGMENT : 4983 0.44 sec. (avg. 0.09 msec.)
DESTROY TREE: 10000 6.54 sec. (avg. 0.65 msec.) DESTROY TREE: 5241 0.57 sec. (avg. 0.11 msec.)
TOTAL TIME (without checking): 14.84 sec. TOTAL TIME (without checking): 40.39 sec.

Both algorithms computed a maximum weight matching on the same random instance with
n = 10000, m = 60000 and edge weights in the range [0,...,2'S). No heuristic was used.

We first of all observe that the multiple search tree approach needs to perform fewer dual
adjustments than the single search tree approach. This is to be expected; we consider the rate
of change Af of the dual objective value. For the single search tree approach we observed
that Af = —§, when a dual adjustment is performed by ¢ (cf. discussion on page 30). In the
multiple search tree approach, however, we have a decrease by § for each existing tree. That is,
Af = —td, where t refers to the number of alternating trees that currently exist when a dual
adjustment is performed.

Further, it seems to us that the single search tree approach needs to initiate needless steps, since
it is forced to search from a fixed free vertex. Note, for example, that the average number of
scan, alternate, grow, shrink and expand steps per augmentation differs drastically. However,
Lthis statement is vague.

In the comparisons that follow, we chose the multiple search tree approach using the
fractional matching heuristic (MST*) as the canonical implementation.

Comparisons to Matching Algorithms in LEDA: LEDA provides an algorithm
for each of the four variants of the matching problem introduced in Chapter 1: a
maximum cardinality bipartite matching algorithm (BCM), a maximum cardinality
matching algorithm (GCM), a maximum—weight bipartite matching algorithm (BWM)
and a maximum weight matching algorithm (GWM). The theoretical running time of
the algorithms are as follows: O(y/nm) for BCM, O(nma(n, m)) for GCM (« denotes
the inverse Ackermann function), O(n(m + nlogn)) for BWM and O(n3) for GWM.
For a detailed description of the underlying algorithms and their implementations see
the book by Mehlhorn and Ndher [MN99, Chapter 7].

134 CHAPTER 3. IMPLEMENTATION AND TESTS

We compared our MST algorithm to each of the algorithms. The tests were performed
on sparse random graphs with n vertices and an edges. In the cardinality cases, unit
weights (w, = 1) were used by our algorithm. The results can be seen in Table 3.4.
Due to the time intensity of GWM, the comparisons were made on small instances only
with n = 10000.

n o BCM MST* GCM MST* BWM MST* GWM MST* t
10000 4 0.73 1.14 0.55 1.94 3.67 1.57 58543 144 5
10000 6 0.92 0.67 0.50 0.91 7.81 3.95 883.66 3.96)
10000 8 1.28 0.74 0.45 1.18 9.82 6.62 897.81 6.25 3
20000 4 1.81 2.69 1.42 5.19 9.30 3.31 — 3.42 5
20000 6 2.23 1.61 1.42 5.06 29.64 11.05 — 10.05 5
20000 8 3.06 1.65 1.29 256 3562 18.05 — 18.53 3
40000 4 5.52 8.04 4.26 919 2445 839 — 8.23 5
40000 6 5.92 4.54 3.86 14.10 109.35 32.50 - 30.22 5
40000 8 7.41 4.31 3.66 9.69 128.66 51.13 — 56.46)

Table 3.4: Comparison of our MST algorithm to the matching algorithms available in LEDA.

We draw attention to the fact that, for bipartite instances, our algorithm is competitive
with the specialized algorithms in LEDA. In the bipartite case, the fractional matching
heuristic will always compute an optimal matching. That is, MST essentially reduces
to the fractional matching algorithm discussed in the preceding section.

Blossom IV: The Blossom IV algorithm of Cook and Rohe [CR97] is the most ef-
ficient code currently available for weighted perfect matchings in general graphs. The
efficiency of Blossom IV is revealed in two papers:

(1) In [CR97] Blossom IV is compared to the implementation of Applegate and
Cook [App93]. It is shown that Blossom IV is substantially faster.

(2) In [App93] the Applegate and Cook implementation is compared to other imple-
mentations. The authors show that their code is superior to all other codes.

Blossom IV can be asked to run either a single search tree approach, a multiple search
tree approach or a refinement of the multiple search tree approach called the variable
0 approach. In the variable § approach, each alternating tree 7)., chooses its own dual
adjustment value 6,, so as to maximize the decrease in the dual objective value. A
heuristic is used to make these choices, since the determination of optimum 4,,’s would
be too costly. The experiments in [CR97] show that the variable § approach is superior
to the other approaches in practice.

We compared our MST algorithm to the multiple search tree approach (B4) as well as
to the variable d approach (B4,,;) of Blossom IV. Blossom IV (B4 and B4,,;) also uses
a fractional matching heuristic to compute an initial matching (indicated by *).

Delaunay Instances: We give the experiments on Delaunay instances with n vertices
in Table 3.5.

3.6 EXPERIMENTAL RESULTS 135

n B4* B4, MST* t
10000 73.57 411 3.37 5
20000 282.20 12.34 7.36 5
40000 1176.58 29.76 15.84 5

Table 3.5: MST algorithm vs. Blossom IV (B4 and B4,,,) on Delaunay instances.

Observe that the variable ¢ approach (B4y,.) is significantly faster than the multi-
ple search tree approach (B4). Our MST algorithm is competitive to the variable §
approach B4y,;.

Asymptotics: In Table 3.6 we compared Blossom IV to our MST approach on ran-
dom instances; we varied n for a fixed a = 6.

n a B4* B4, MST* t
10000 6 20.94 18.03 3.51 5
20000 6 82.96 53.87 9.97 5
40000 6 194.48 177.28 29.05 5

Table 3.6: MST algorithm vs. Blossom IV (B4 and B4,,,) on random instances.

Both algorithms, B4,,, and MST, seem to grow less than quadratically as a function
in n. B4y, takes about six times as long as our multiple search tree approach MST. In
Table 3.7 we additionally varied a.

n a B4* B4;,. MST* t
10000 6 20.90 20.22 3.49)
10000 8 48.50 22.83 5.18 5
10000 10 37.49 30.78 5.41 5
20000 6 96.34 54.08 10.04 5
20000 8 175.55 89.75 12.20 5
20000 10 264.80 102.53 15.06 5
40000 6 209.84 202.51 29.27)
40000 8 250.51 249.83 36.18 5
40000 10 710.08 310.76 46.57 5

Table 3.7: MST algorithm vs. Blossom IV (B4 and B4,,,) on random instances.

A log log plot indicating the asymptotics of Blossom IV (B4,,,) and our MST algorithm
on random instances (« = 6) is depicted in Figure 3.2.

Influence of Edge Weights: Table 3.8 shows the influence of edge weights on the
running—time. We took random instances with m = 4n edges and random edge weights
in the range [1,...,b] and varied b.

136 CHAPTER 3. IMPLEMENTATION AND TESTS

sec.
.0
B4}, --o-- .
MST* —+— .o -
1000 ’
100
10
1 I I 1 I 1 1 1 I 1 1 1 1 I 1 1 1 1 I

10000 20000 40000 80000 160000 320000 "

Figure 3.2: Asymptotics of MST algorithm and Blossom IV (B4,,,) on random instances.

n a b B4* B4}, MST* t
10000 40000 1 3.98 3.99 0.85 1
10000 40000 10 2.49 3.03 2.31 1
10000 40000 100 3.09 3.10 2.58 1
10000 40000 1000 17.41 8.40 291 1
10000 40000 10000 13.69 11.91 2.78 1
10000 40000 100000 12.06 11.20 2.69 1

Table 3.8: MST algorithm vs. Blossom IV (B4 and B4,,,). Influence of edge weights.

Both B4 and B4y, are sensitive to different edge weights. Their running—time signif-
icantly depends on the range of chosen edge weights. The running time of our MST
algorithm is stable (except for the unweighted case (b = 1), which is simpler).

I_We attempt an explanation. When the range of edge weights is small, a single dual adjustment)
is more likely to produce more than one tight edge. In addition to or as a consequence of this,
it seems to us that the number of dual adjustments needed to compute an optimal matching is
smaller. Table 3.9 indicates that this assumption is in fact true. We recorded the number of
dual adjustments needed by Blossom IV (B4y,,) and our MST algorithm.

n e b B4}, MST* t
10000 4 1 0 0 1
10000 4 10 2094 2076 1
10000 4 100 5269 5101 1
10000 4 1000 7487 7091 1
10000 4 10000 8063 7877 1
10000 4 100000 8491 8134 1

Table 3.9: MST algorithm vs. Blossom IV (B4 and B4.,;). Number of dual adjustments.

3.6 EXPERIMENTAL RESULTS

137

Since Blossom IV needs time O(n) to perform a dual adjustment, whereas our implementation

needs time O(mlogn) for all dual adjustments in a phase, our MST algorithm is less harmed

when the edge weights are chosen from a large range.

Observe that, although the variable § approach (B4y,,) of Blossom IV was used, our algorithm

Lneeds less dual adjustments.

Variance:

Table 3.10 gives information about the variance in running time of Blos-
som IV (B4y,,) and our MST algorithm. For each algorithm the best, worst and average
time of five random instances, with n vertices and o = 6, is given. The fluctuation seems

to be about the same for the B4,,, and the MST algorithm.

n ! B4, MST* t
best worst, average best worst average

10000 6 16.88 20.03 18.83 3.34 4.22 3.78 5

20000 6 49.02 60.74 55.15 9.93 11.09 10.30 5

40000 6 162.91 198.11 180.88 25.13 32.24 29.09 5

Table 3.10: MST algorithm vs. Blossom IV (B4,,,) on random instances. Variance.

Dense Random Instances:

The experiments suggest that our MST algorithm is
superior to B4,,, on sparse instances. Table 3.11 shows the running—time on dense
instances with n vertices and about 20%, 40% and 60% density. Our MST algorithm

is competitive to B4y, on these instances as well.

|

n m B4* B4, MST* t
1000 100000 6.97 5.84 1.76 5
1000 200000 16.61 11.35 3.88 5
1000 300000 18.91 18.88 9.79 5
2000 200000 46.71 38.86 8.69 5
2000 400000 70.52 70.13 16.37 5
2000 600000 118.07 115.66 23.46 5
4000 400000 233.16 229.51 42.32 5
4000 800000 473.51 410.43 92.55 5
4000 1200000 523.40 522.52 157.00 5

Table 3.11: Comparison of MST algorithm to Blossom IV (B4 and B4,,). Dense graphs.

Complete Random Instances and Price and Repair:

Blossom IV provides a

so called price and repair heuristic for complete geometric instances. The instances are
implicitly represented by a set of points in an n X n square (the edge weights correspond
to the Euclidean distance). Using the price and repair strategy significantly improves
the running time of Blossom IV on these instances. We have not yet implemented
such a heuristic for our algorithm. We compared our MST algorithm to Blossom IV
on complete geometric instances (B4, did not and B4y did use the price and repair
strategy). Our algorithm requires an explicit representation of the underlying graph
and we thus were only able to experiment with rather small instances. The results are
presented in Table 3.12.

138 CHAPTER 3. IMPLEMENTATION AND TESTS

n B4, B4:par MST* t
1000 37.01 0.43 24.05 5
2000 225.93 1.10 104.51 5
4000 1789.44 4.33 548.19 5

Table 3.12: MST algorithm vs. Blossom IV (B4,,, and B4P2). Effect of price and repair.

var

The idea underlying the price and repair heuristic is simple. Instead of running the
algorithm on the complete set of edges, the price and repair heuristic starts with a
sparse subgraph. Once an optimum weighted matching is computed for the sparse
subgraph a check is performed to determine whether or not the computed matching is
also optimum for the complete graph. This is what is called pricing. Some of the edges
having negative reduced cost are added to the current graph, with the matching and
the potentials being modified such that all preconditions of the matching algorithm are
satisfied. The algorithm is resumed so as to repair the matching for the current graph.
This process is repeated until the obtained matching is optimum for the complete graph.

There are several natural choices for the selection of the sparse subgraph. For example,
a minimum weight matching will have a natural tendency to avoid heavy edges. Thus,
taking the k lightest edges incident to any vertex seems to be a reasonable choice. In
fact, this was the way Applegate and Cook [App93] constructed the initial subgraph
(they called it the k—nearest neighbour graph). Another choice, proposed by Cook
and Rohe [CR97], is to use the Delaunay triangulation of the point set as the initial
subgraph. For more extensive sources related to the price and repair strategy see Derigs
and Metz [DM91], Applegate and Cook [App93] and Cook and Rohe [CR97].

“Worse—case’ Instances for Blossom IV: A demanding task would be to imple-
ment a generator, which constructs instances that force either algorithm, i.e. our MST
or the Blossom IV algorithm, into its worst case. Random graphs tend to be rather
simple instances; during the performance of our experiments, for example, many ran-
dom instances occurred that had been solved almost optimal by the fractional matching
heuristic. So far, we have not been able to generate worst—case instances for either al-
gorithm. However, we wish to conclude this section with two ‘worse case’ instances
that demonstrate the superiority of our algorithm to Blossom IV.

The first ‘worse—case’ instance for Blossom IV is simply a chain. We constructed a
chain having 2n vertices and 2n — 1 edges. The edge weights along the chain were
alternately set to 0 and 2 (the edge weight of the first and last edge equals 0). Blossom
IV (B4y,r) and our MST algorithm were asked to compute a maximum—weight perfect
matching. Note that the fractional matching heuristic will always compute an optimal
solution on instances of this kind. Table 3.13 shows the results.

n B4, MST* 7
10000 94.75 0.25 1
20000 466.86 0.64 1
40000 2151.33 2.08 1

Table 3.13: Comparison of MST algorithm to Blossom IV (B4y,,) on chains.

3.6 EXPERIMENTAL RESULTS 139

The running—time of Blossom IV grows more than quadratically (as a function of n),
whereas the running time of our MST algorithm grows about linearly with n. We
present our argument as to why this is to be expected. First of all, the greedy heuristic
will match all edges having weight 2; the two outer vertices remain unmatched. Each
algorithm will then have to perform O(n) dual adjustments so as to obtain the opti-
mum matching. A dual adjustment takes time O(n) for Blossom IV (each potential
is explicitly updated), whereas it takes O(1) for our MST algorithm. Thus, Blossom
IV will need time O(n?) for all these adjustments and, on the other hand, the time
required by our MST algorithm will be O(n). The idea of testing both algorithms on
this kind of chains is due to Kurt Mehlhorn (personal communication).

Another ‘worse—case’ instance for Blossom IV occurred in VLSI-Design having n =
151780 vertices and m = 881317 edges. Kindly, Andreas Rohe made this instance
available to us. We compared the Blossom IV algorithms (B4 and B4,,) to our MST
algorithm. We ran our algorithm with the greedy heuristic (MST™) as well as with the
fractional matching heuristic (MST*). The results are given in Table 3.14.

n m B4* B4:,, MSTF MST* t
151780 881317 200010.74 200810.35 3172.70 5993.61 1
(332.01) (350.18) (5.66) (3030.35)

Table 3.14: Comparison of MST algorithm to Blossom IV (B4,,;) on boese.edg instance.

The second row states the times that were needed by the heuristics. Observe that both
Blossom IV algorithms need more than two days to compute an optimum matching,
whereas our algorithm solves the same instance in less than an hour. For our MST
algorithm the fractional matching heuristic did not help at all on this instance: to
compute a fractional matching took almost as long as computing an optimum matching
for the original graph (using the greedy heuristic).

Open Problems

We have described a priority queue based O(nm logn) algorithm of Edmonds’ blossom
shrinking approach. Two implementations, a single search tree and a multiple search
tree algorithm, were presented. The additional programming expenditure for the mul-
tiple search tree algorithm turned out to be well worth the effort when efficiency in
practice is considered.

Our multiple search tree algorithm is competitive with the most efficient known im-
plementation, Blossom IV, due to Cook and Rohe [CR97]. Blossom IV implements
a refinement of a multiple search tree approach, called the variable & approach, and
only requires simple data structures. We can thus provide an affirmative answer to
the question whether or not sophisticated data structures such as concatenable priority
queues help in practice.

Our research raises several questions. (1) The variable § algorithm is substantially faster
than the other algorithms of Blossom IV. Would it be possible to integrate the variable
d approach into a priority queue based O(nmlogn) algorithm? Moreover, it would
be interesting to see if an O(nmlogn) variable ¢ algorithm will improve the practical
efficiency as dramatically as for Blossom IV. (2) A price and repair strategy is worth
considering for the O(nmlogn) algorithm as well. We expect that such a strategy will
improve the running time of our algorithm on dense and complete instances tremen-
dously. (3) As previously mentioned, a generator of instances forcing either algorithm
into its worst case would be of use. (4) Recently, Stefan Néher (personal commu-
nication) observed that using a static variant of the graph data structure in LEDA
(currently, we use a dynamic graph data structure) improves the overall running time
of other graph algorithms by a factor of about two. Most likely, a similar effect can
be achieved for our algorithm too. (5) Our fractional matching heuristic also uses pri-
ority queue data structures. So far, however, it only implements a single search tree
approach. We believe that a fractional matching heuristic based on the multiple search
tree approach would further improve the running time. Possibly, this would also result
in a more efficient algorithm for bipartite matching problems. (6) At the end of Chap-
ter 1, we (very roughly) sketched the ideas underlying an O(n(m + nlogn)) approach.
Although we doubt that an efficient implementation of this approach is possible, it is
worth attempting to falsify our hypothesis.

141

Bibliography

[ADKT00] E. Althaus, D. Duchier, A. Koller, K. Mehlhorn, J. Niehren, and S. Thiel.

[AES5]

[AHUT74]

[AMO93]

[App93]

[BBD83]

[Bel94]

[Ber57]

[Ber58]

[Bir46]

[BSOO]

[BT97]

An efficient algorithm for the dominance problem. Submitted, 2000.

J. Ardoz and J. Edmonds. A case of non convergent pivoting in assignment
problems. Discrete Appl. Math., 11:95-102, 1985.

A. V. Aho, J. E. Hopcroft, and J. D. Ullmann. The design and analysis of
computer algorithms. Addison-Wesley, 1974.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows : theory,
algorithms and applications. Prentice Hall, 1993.

W. Applegate, D. and Cook. Solving large-scale matching problems. In
David S. Johnson and Catherine C. McGeoch, editors, Network Flows and
Matchings, volume 12 of DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, pages 557 576, Providence, RI, 1993. American
Mathematical Society.

M. O. Ball, L. D. Bodin, and R. Dial. A matching based heuristic for
scheduling mass transit crews and vehicles. Transportation Science, 17:4
31, 1983.

C. E. Bell. Weighted matching with vertex weights: an applicaton to
scheduling training sessions in NASA space shuttle cockpit simulators. Fu-
ropean Journal of Operational Research, 73:443 449, 1994.

C. Berge. Two theorems in graph theory. In Proceedings of the National
Academy of Sciences, volume 43, pages 842-844, USA, 1957.

C. Berge. Sur le couplage maximum dun graphe. C. R. Acad. Sci. Paris
Sér. I Math., 247:258-259, 1958.

G. Birkhoff. Tres observaciones sobre el algebra lineal. Rev. Fac. Ci. Ezac-
tas, Puras y Aplicadas Univ. Nac. Tucuman, Ser. A 5:147 151, 1946.

R. Beier and J. Sibeyn. A powerful heuristic for telephone gossiping. Tech-
nical report, Max Planck Institut fiir Informatik, 2000.

D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization, vol-
ume 6. Athena Scientific, 1997.

143

144

BIBLIOGRAPHY

[CCPS98] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver.

[Chr76]

[Chv83]
[CLRY2]

[CR97]

[Dil90]

[DMS6]

[DM91]

[DM92]

[Edm65a]

[Edm65b]

[FT87]

[GabT74]

[Gab85]

[Gab90)]

Combinatorial optimization. Wiley-interscience series in discrete mathe-
matics and optimization. Wiley, 1st edition, 1998.

N. Christofides. Worst case analysis of a new heuristic for the travelling
salesman problem. Technical report, Graduate School of Industrial Admin-
istration, Carnegie Mellon University, Pittsburgh, PA, 1976.

V. Chvatal. Linear programming. W. H. Freeman and Co., 1983.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms.
The MIT electrical engineering and computer science series. MIT Press, 6th
printing edition, 1992.

W. Cook and A. Rohe. Computing minimum—-weight perfect matchings.
Technical Report 97863, Forschungsinstitut fiir Diskrete Mathematik, Uni-
versitat Bonn, 1997.

M. B. Dillencourt. Toughness and delaunay triangulations. Discrete and
Computational Geometry, 5:575-601, 1990.

U. Derigs and A. Metz. On the use of optimal fractional matchings for solv-
ing the (integer) matching problem. Mathematical Programming, 36:263—
270, 1986.

U. Derigs and A. Metz. Solving (large scale) matching problems combina-
torially. Mathematical Programming, 50:113 122, 1991.

U. Derigs and A. Metz. A matching—based approach for solving deliv-
ery/pickup vehicle routing problem with time constraints. Operations Re-
search Spektrum, 14:91-106, 1992.

J. Edmonds. Maximum matching and a polyhedron with (0,1) vertices.
Journal of Research of the National Bureau of Standards, 69B:125-130,
1965.

J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics,
17:449 467, 1965.

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34, 1987.

H. N. Gabow. Implementation of algorithms for mazimum matching and
nonbipartite graphs. PhD thesis, Stanford University, 1974.

H. N. Gabow. A scaling algorithm for weighted matching on general graphs.
In 26th Annual Symposium on Foundations of Computer Science, pages 90
100. IEEE Computer Society Press, October 1985.

H. N. Gabow. Data structures for weighted matching and nearest common
ancestors with linking. In David Johnson, editor, Proceedings of the 1st
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’90), pages
434 443, San Francisco, CA, USA, January 1990. STAM.

BIBLIOGRAPHY 145

[GGS89)

[GKT99]

[GMG86]

[GT91]

[K6n16]

[LawT76]

[LP86]

[Mehs4]

[MN99]

[PS82]

[Pul95]

[RTS1]

[Tut47]

H. N. Gabow, Z. Galil, and T. H. Spencer. Efficient implementation of
graph algorithms using contraction. Journal of the ACM, 36, 1989.

H. N. Gabow, H. Kaplan, and R. E. Tarjan. Unique maximum matching
algorithms. To appear in STOC, 1999.

Z. Galil, S. Micali, and H. N. Gabow. An O(EV log V) algorithm for find-
ing a maximal weighted matching in general graphs. SIAM J. Computing,
15:120 130, 1986.

H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph
matching problems. Journal of the ACM, 38:815-853, 1991.

D. Konig. Uber Graphen und ihre Anwendung auf Determinatentheorie und
Mengenlehre. Math. Ann., 77:453-465, 1916.

E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart and Winston, New York, 1976.

L. Lovéasz and M. D. Plummer. Matching theory, volume 121/29 of North
Holland mathematics studies. North—Holland, 1986.

K. Mehlhorn. Data structures and algorithms. Volume 1: Sorting and
searching, volume 1 of EATCS monographs on theoretical computer science.
Springer, 1984.

K. Mehlhorn and S. Naher. LEDA : a platform for combinatorial and geo-
metric computing. Cambridge University Press, 1999.

C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization algo-
rithms and complezity. Prentice-Hall, 1982.

W. R. Pulleyblank. Matchings and extensions. In Ronald L. Graham,
Martin Grotschel, and Laszlo Lovasz, editors, Handbook of combinatorics,
volume 1, pages 179 232, Amsterdam, 1995. Elsevier.

E. M. Reingold and R. E. Tarjan. On a greedy heuristic for complete match-
ing. SIAM Journal of Computing, 10:676-681, 1981.

W. T. Tutte. The factorisation of linear graphs. .J. London Math. Soc.,
22:107 111, 1947.

