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Introdu
tion
Combinatorial optimization is a �eld of applied mathemati
s and theoreti
al 
omputers
ien
e. A major topi
 in 
ombinatorial optimization are linear optimization problems.Said simply, a linear optimization problem requires the optimization of a linear fun
-tion over a dis
rete set of solutions. An intensively studied and well{known problemin 
ombinatorial optimization is the weighted mat
hing problem: it requires the 
om-putation of a mat
hing having maximum or minimum weight. A mat
hing M in anundire
ted graph G is a set of edges no two of whi
h share an endpoint. The edges ofG are asso
iated with weights and the total weight of a mat
hing M is the sum of allthe weights of the edges in M . M may further be restri
ted to being perfe
t, whi
h
onstitutes the weighted perfe
t mat
hing problem; a mat
hing M is perfe
t, if everyvertex in G has exa
tly one in
ident edge in M .Many variants and extensions of the weighted mat
hing problem exist. As an exampleof a variant, G might be restri
ted to being bipartite; this is 
alled the bipartite weightedmat
hing problem. An example of an extension, on the other hand, is the b{mat
hingproblem, where ea
h vertex may have up to b in
ident mat
hing edges.There are (at least) three types of appli
ations that motivate the investigation ofweighted mat
hing problems. (1) Dire
t appli
ations of the weighted mat
hing prob-lem exist. (2) Many other problems 
an be redu
ed to the weighted mat
hing problem.(3) Several algorithms (repeatedly) solve the weighted mat
hing problem in order toprogress. We will give examples of ea
h of the three appli
ation types stated. Someof these are widely known. Additionally, we wish to present two new appli
ations (oftype (2) and (3)) that were en
ountered during the writing of the thesis and thus havebeen, for us, a major sour
e of motivation.A 
lassi
 example of an appli
ation of type (1) is to optimize, i.e. in this 
ase to mini-mize, the time spent by a plotter pen in pen{up motion, i.e. moving from one point toanother without drawing. Reingold and Tarjan [RT81℄ showed this to be a weightedperfe
t mat
hing problem. We brie
y summarize their reasoning. Assume we wish toplot a 
onne
ted �gure, and assume further that the time spent by the plotter movingfrom one point to another is proportional to the Eu
lidean distan
e. We 
lassify thestarting and 
rossing points of the �gure (i.e. the points where a line starts or severallines 
ross) to be either odd or even. A point is odd when an odd number of linesemerge, otherwise it is even. A fundamental theorem in graph theory is that thereexists always an even number of odd points. Moreover, Euler proved that a �gure
an be tra
ed (starting and ending in the same point) with no pen{up motion i� it is
onne
ted and no odd points exist. Thus, we need to �nd a new set of lines su
h thatea
h odd point be
omes even and, moreover, the total time of pen{up motion along1



2 Introdu
tionthese lines is minimized. We thus de�ne a 
omplete graph G whose verti
es 
orrespondto the odd points of the �gure and whose edge weights 
orrespond to the Eu
lideandistan
e of these points. Minimizing the time of pen{up motion then means �nding aminimum{weight perfe
t mat
hing in G.An example of type (2), whi
h we would like to present as a motivating appli
ation forthe weighted mat
hing problem, is the so{
alled dominan
e problem. Its appli
ationstems from the �eld of 
omputational linguisti
s. A dominan
e problem is given by a
olle
tion of vertex disjoint rooted trees and a set of dominan
e wishes. A dominan
ewish is a dire
ted edge from a leaf of some tree to the root of some other tree | theleaf wishes to dominate the root. The task is to assemble the trees into a forest su
hthat every dominan
e wish is satis�ed, i.e. ea
h dire
ted edge redu
es to an an
estor{prede
essor relationship. Althaus et al. [ADK+00℄ re
ently showed that de
iding thesatis�ability of a dominan
e problem 
an be redu
ed to a weighted mat
hing problem.As an example of type (3), we 
onsider a fundamental 
ommuni
ation problem knownas gossiping: n pro
essing units are required to inter
hange their data with ea
h other.The underlying 
ommuni
ation network is modeled by a graph G. A pro
essing unit(i.e. vertex) is permitted to 
ommuni
ate with only one of its neighbours (i.e. adja
entverti
es) at a time. The task of stating an optimal gossiping s
hedule, su
h that inthe end every pro
essing unit knows the data of all other pro
essing units, is NP{hard.Beier and Sibeyn [BS00℄ use a mat
hing heuristi
 to 
ompute a good, sub{optimal gos-siping s
hedule. The heuristi
 
an be regarded as working in rounds. In ea
h round,weights are assigned (on the basis of di�erent 
riteria) to the 
onne
tions (i.e. edges)of the 
ommuni
ation network. Then, a maximum{weight mat
hing is 
omputed withrespe
t to these weights. The pairs of mat
hed pro
essing units 
ommuni
ate withea
h other. Another well{known example of this type is Christo�des' approximationalgorithm for the traveling salesman problem (see [Chr76℄). The problem is de�ned bya 
omplete graph G 
onsisting of n verti
es (whi
h represent 
ities), where the edgeweights 
orrespond to the Eu
lidean distan
es. The task is to �nd a tour of minimumlength. Christo�des' algorithm 
omputes a tour whose length is at most 3/2 as longas the length of an optimum tour; it is still the 
urrently best known approximationalgorithm for the traveling salesman problem. In a �rst step, the algorithm 
onstru
tsa minimum spanning tree T of G, and afterwards a minimum{weight perfe
t mat
hingM on the odd degree verti
es of T is 
omputed. The graph T [M then redu
es to atour with the desired property.Various other examples of the above{mentioned appli
ation types exist and 
an befound, for example, in Ball, Bodin and Dial [BBD83℄, Derigs and Metz [DM92℄, Bell[Bel94℄ and Ahuja, Magnanti and Orlin [AMO93℄.Mat
hing problems have been the subje
t of intensive resear
h over several de
ades.The earliest result in mat
hing theory we 
ame a
ross, widely known as K�onig's The-orem, dates ba
k to 1916 (see [K�on16℄). One of the 
ornerstones in mat
hing theoryis due to Edmonds [Edm65b, Edm65a℄. In 1965, he invented the famous blossom{shrinking algorithm, whi
h enables a solution for the weighted mat
hing problem tobe 
omputed in polynomial{time. A straightforward implementation, as originallyproposed by Edmonds himself, requires time O(n2m), where n and m denote thenumber of verti
es and edges in G, respe
tively. Sin
e then, the theoreti
al running{time of the blossom{shrinking approa
h has been su

essively improved. Both Lawler[Law76℄ and Gabow [Gab74℄ improved the asymptoti
 running{time to O(n3). Later,



Introdu
tion 3Galil, Mi
ali and Gabow [GMG86℄ a
hieved O(nm logn) and �nally Gabow [Gab90℄stated that Edmonds' blossom{shrinking algorithm 
an be implemented to run in timeO(n(m+n logn)). Somewhat better asymptoti
 time bounds 
an be a
hieved for integeredge weights using s
aling algorithms (see Gabow and Tarjan [GT91℄).The 
urrently most eÆ
ient 
odes implement variants of Edmonds' blossom{shrinkingalgorithm and are based on either the O(n2m) or O(n3) approa
h. For the time being,the best known implementation, named Blossom IV, is due to Cook and Rohe [CR97℄.Their implementation is based on earlier work by Applegate and Cook [App93℄. Theydo not 
laim a theoreti
al time bound, but, as we shall see, it 
annot be better than
(n3). Blossom IV is known to be highly eÆ
ient in pra
ti
e; the data stru
tures ituses are simple.The algorithms suggested by Galil, Mi
ali and Gabow [GMG86℄ and by Gabow [Gab90℄mainly a
hieve a better asymptoti
 time bound by using sophisti
ated data stru
tures.For example, the algorithm of Galil, Mi
ali and Gabow requires a data stru
ture 
on-
atenable priority queue, in whi
h the priorities of 
ertain subgroups of verti
es 
an beuniformly 
hanged by a single operation. Up to now, it has been an open question (andone expli
itly posed in [App93℄ and [CR97℄), whether or not the use of sophisti
ateddata stru
tures will help in pra
ti
e. We will answer this question in the aÆrmative:the implementation we shall present in this thesis is based on the ideas of Galil, Mi
aliand Gabow and turned out to be 
ompetitive | if not even superior | to Blossom IV.The stru
ture of the thesis is as follows. In Chapter 1, we will develop all details ofthe blossom{shrinking algorithm. We will start with the de�nition of some variants ofthe weighted mat
hing problem and introdu
e important 
on
epts, su
h as augmentingpaths, that are 
ru
ial to almost all mat
hing algorithms. The blossom{shrinking ap-proa
h will �rst be 
onsidered for the 
ardinality mat
hing 
ase. Linear programmingformulations for both the weighted mat
hing problem and the weighted perfe
t mat
h-ing problem will then be investigated. Duality theory will lead us towards a primal{dualmethod for the weighted mat
hing problem based on Edmonds' blossom{shrinking ap-proa
h. Finally, we will 
on
lude the 
hapter with a brief survey of the four di�erentrealizations mentioned above.In Chapter 2, we will illustrate the ideas underlying our implementation. Most ofthese are based on or have been developed from the ideas put forward by Galil, Mi
aliand Gabow [GMG86℄. We will outline how the blossom{shrinking approa
h 
an beimplemented using priority queues. The diÆ
ulty of handling varying priorities withinthese priority queues will be over
ome by taking advantage of the fa
t that these values
hange uniformly. Moreover, we will demonstrate in detail the need for 
on
atenablepriority queues.In Chapter 3 we will des
ribe our implementation and dis
uss some experimental re-sults. We implemented two versions of the algorithm: a single sear
h tree approa
h anda multiple sear
h tree approa
h. First, the results from Chapter 2 will be in
orporatedinto a single sear
h tree algorithm. Then, all ne
essary extensions and modi�
ations forthe multiple sear
h tree approa
h will be presented. The eÆ
ien
y of both algorithmsis 
onsiderably improved by using a heuristi
 to 
reate a better initial solution. We willdis
uss two heuristi
s: a greedy heuristi
 and a fra
tional mat
hing heuristi
. Finally,some running{time experiments will reveal the eÆ
ien
y of our algorithms in pra
ti
e.





Chapter 1Mat
hing Theory
In this 
hapter we will establish essential 
on
epts that are fundamental for later dis-
ussion. We begin with the de�nition of the mat
hing problem and outline some of itsvariants. Some useful notations su
h as the 
on
ept of augmenting paths will followand lead to a �rst generi
 algorithm solving mat
hing problems. Starting with the
ardinality mat
hing problem, we will present the main ideas of Edmonds' well{knownblossom{shrinking approa
h. Results from the �eld of 
ombinatorial optimization willguide us towards an extension of the blossom{shrinking approa
h for weighted mat
hingproblems.1.1 The Mat
hing Problem and its VariantsLet G = (V;E) be an undire
ted graph, where V and E denote the set of verti
es andedges, respe
tively. The number of verti
es and edges are referred to by n = jV j andm = jEj. Sin
e G is undire
ted, we will denote an edge e between two verti
es u and vas an unordered pair fu; vg, or uv for short. G is bipartite when a partition V = A _[Bof the verti
es of G exists and ea
h edge uv 2 E has exa
tly one vertex in A and onein B.An ordered sequen
e p = (e1; e2; : : : ; ek) of edges, with ei = uiui+1 2 E, 1 � i � k, is
alled a path from u1 to uk+1 in G. Alternatively, we will represent p by the sequen
ep = (u0; u1; : : : ; uk) of verti
es traversed. A path p is 
alled simple, when all verti
eson p are distin
t. Let C be a path starting and ending with the same vertex. C isthen 
alled a 
y
le. Moreover, C is said to be a simple 
y
le, when no other 
y
le is
ontained in C.A mat
hing M of G is a subset of edges su
h that no two edges of M share a 
ommonvertex (see Figure 1.1 for an example). All edges inM are said to be mat
hed and edgesin the di�eren
e E nM are unmat
hed. Analogously, a vertex u is said to be mat
hed ifthere exists an in
ident mat
hed edge uv 2 M ; otherwise u is unmat
hed or free. Theadja
ent vertex v of u with respe
t to a mat
hed edge e = uv is the mate of u. M is aperfe
t mat
hing when all verti
es of G are mat
hed and hen
e jM j = n=2.The mat
hing problem is to �nd a mat
hing in a graph G that meets 
ertain require-5



6 Chapter 1. Mat
hing Theory
a b

g

 h d efFigure 1.1: Let G be the graph depi
ted above. M = fag; 
h; dfg is a mat
hing of G.p = (e; f; d) is an example of an alternating path. p0 = (b; h; 
; d; f; e) is an augmenting path.M 0 =M �p0 = fag; bh; 
d; feg is a mat
hing in G with jM 0j = jM j+1. M 0 is perfe
t and hen
ea maximum{
ardinality mat
hing of G.ments. We will distinguish between two kinds of mat
hing problems: the unweightedand the weighted mat
hing problem. In the weighted mat
hing problem a weight fun
-tion w : E 7�! R on the edges of G is additionally given. The distin
tion is furtherre�ned on the basis of whether or not G is bipartite. Altogether we 
lassify four variantsof the mat
hing problem, whi
h are de�ned below.Maximum{Cardinality Bipartite Mat
hing Let G = (A _[B;E) be a bipartitegraph. The maximum{
ardinality bipartite mat
hing problem is to �nd a mat
hing Min G of maximum 
ardinality, i.e. jM j � jM 0j for any other mat
hing M 0 of G.Maximum{Cardinality Mat
hing Consider a general graph G = (V;E). In themaximum{
ardinality mat
hing problem a mat
hing M of maximum 
ardinality has tobe determined.In both 
ardinality 
ases, M need not ne
essarily be perfe
t. However, every perfe
tmat
hing of G forms a maximum{
ardinality mat
hing.Maximum{Weight Bipartite Mat
hing Let G = (A _[B;E;w) be a bipartitegraph with weight fun
tion w. Finding a mat
hing M with total weight w(M) =Pe2M w(e) and w(M) � w(M 0) for all other mat
hings M 0 of G 
onstitutes themaximum{weight bipartite mat
hing problem.In the maximum{weight bipartite perfe
t mat
hing problem M is further restri
ted tobeing perfe
t. This problem is also known as the maximum{weight assignment problem.Maximum{Weight Mat
hing The most general 
ase of all mat
hing problems isthe maximum{weight mat
hing problem. Given a general graph G = (V;E;w) with



1.2 Mat
hing Con
epts 7weight fun
tion w, the task is to �nd a mat
hing M having maximum weight w(M)among all possible mat
hings of G.As above, one might wish to obtain a perfe
t mat
hing of maximum weight. This
onstitutes the maximum{weight perfe
t mat
hing problem.Let G = (V;E;w) be an instan
e of a weighted mat
hing problem. One might wishto obtain a mat
hing of minimum instead of maximum weight in G. However, ea
hminimum{weight mat
hing problem 
an be redu
ed to an appropriate maximum{weightmat
hing problem by negating the signs of all weights. That is, a maximum{weightmat
hing M of G0 = (V;E;�w) will be a mimimum{weight mat
hing in G.Many other variants and extensions of the mat
hing problem exist; for example f{fa
tors, b{mat
hings, T{joins, et
. However, in the 
ontext of this thesis, we will onlyfo
us on the four variants de�ned above. For extensive sour
es 
on
erning all aspe
tsof mat
hing problems, see, for example, Lov�asz and Plummer [LP86℄ and Pulleyblank[Pul95℄.1.2 Mat
hing Con
eptsTwo 
on
epts are 
ru
ial to all mat
hing algorithms: alternating paths and augmentingpaths. The importan
e of both will be
ome 
lear shortly. Throughout this se
tion letG = (V;E) be a graph that might or might not be bipartite. All results apply to both
ases unless stated otherwise.De�nition 1.2.1 (Alternating Path) Let p = (e1; e2; : : : ; ek) be a simple path fromu to v and M a mat
hing in G. p is an alternating path with respe
t to M , when theedges along p are alternately in M and not in M .An alternating path p = (e1; : : : ; ek) with respe
t to M , where both endpoints u andv are free, 
an be used to augment the 
urrent mat
hing M . To see this, 
onsider thesymmetri
 di�eren
e M 0 of M and p: M 0 =M � p = (M n p) [ (p nM): M 0 equals Mex
ept that all mat
hing edges with respe
t to M on p are unmat
hed in M 0 and allnon{mat
hing edges with respe
t to M on p are mat
hed in M 0. It 
an easily be seenthat M 0 itself forms a mat
hing.1 Moreover, jM 0j = jM j + 1 and thus M has indeedbeen augmented. We will say M has been augmented by p to M 0 and p is 
alled anaugmenting path. See Figure 1.1 for an example.De�nition 1.2.2 (Augmenting Path) An alternating path p = (e1; : : : ; ek) withrespe
t to a mat
hing M is 
alled augmenting when both endpoints of p are free.The dis
ussion above gives rise to the idea that we 
an 
ompute a maximum{
ardinalitymat
hing by repeatedly seeking an augmenting path p to a 
urrent mat
hing M . Whenp exists, M is augmented by p and we pro
eed with the augmented mat
hing M � p.1Ea
h vertex that is mat
hed in M is also mat
hed in M 0. Only u and v are additionally mat
hedin M 0. But u and v were free in M and thus M 0 is a mat
hing.



8 Chapter 1. Mat
hing TheoryOtherwise, M is 
laimed to be maximum.The following lemma states that the latter 
on
lusion does in fa
t hold. It is due toBerge [Ber57℄.Lemma 1.2.1 M is a mat
hing of maximum 
ardinality i� there does not exist anaugmenting path with respe
t to M in G.Proof:Clearly, if there exists an augmenting path p with respe
t to M , then M 0 =M � p is amat
hing having 
ardinality jM 0j = jM j + 1. Thus, M is not a maximum{
ardinalitymat
hing.Assume that M is not a maximum{
ardinality mat
hing, i.e. there exists a mat
hingM 0 with jM 0j > jM j. We show that an augmenting path p with respe
t to M mustexist.Consider the graph eG 
ontaining the edges M �M 0 only. Ea
h vertex in eG has eitherdegree zero, one or two. Therefore, eG 
onsists of isolated verti
es, paths and 
y
les.Sin
e M and M 0 are mat
hings, the edges on every path and 
y
le are alternately inM and in M 0. All 
y
les must be of even length having as many edges in M as inM 0. Sin
e jM 0j > jM j, there must be at least one path, say p, in eG having more edgesout of M 0 than of M . The �rst and last edge of p must be in M 0 and hen
e p is anaugmenting path with respe
t to M . �Using Lemma 1.2.1 we state a �rst generi
 algorithm to 
ompute a maximum{
ardinality mat
hing:Algorithm 1.2.1 Generi
 algorithm for maximum{
ardinality mat
hing problems.let M be any mat
hingwhile there exists an augmenting path p with respe
t to Mrepla
e M by the augmented mat
hing M � pObserve that Algorithm 1.2.1 
an be re�ned to sear
h for an augmenting path fromea
h free vertex exa
tly on
e.p qWe show that if no augmenting path starting in a free vertex r with respe
t to a mat
hing Mexists, then there will never exist an augmenting path starting in r with respe
t to any othermat
hingM 0 obtained fromM by a series of augmentations: M 0 = ((M�p0)�p1)�: : : . Supposep0 is an augmenting path starting in r with respe
t to a mat
hing M 0 and no augmenting pathstarting in r with respe
t to M exists. Let e = uv denote the �rst edge in p0 with e 2 M 0 bute 62 M . One endpoint, say u, is rea
hable from r by an alternating path with respe
t toM . Thenon{existen
e of any augmenting path from r with respe
t to M implies, that no alternatingpath from u with respe
t to M starting with a mat
hed edge to any other free vertex exists.However, this is a 
ontradi
tion, sin
e e 
an in this 
ase never be mat
hed.x yIn the rest of this se
tion, a sear
h strategy for �nding an augmenting path in a bipartitegraph G will be 
onsidered 
losely. The diÆ
ulties arising for the general 
ase are thenindi
ated; they will be solved in Se
tion 1.3.
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fghie j(a)
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h� d+
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j+i? e?
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(b)Figure 1.2: Let G = (A _[B;E) be the graph given in (a). Edges in M are drawn bold. Apossible alternating tree T rooted at the free vertex 
 is depi
ted in (b). In the next step, T
an either be enlarged by taking the edges di and ie to T , or one of the two augmenting pathsp = (f; b; g; 
) and p0 = (j; d; h; 
) will be found.Let G = (A _[B;E) be a bipartite graph and M an arbitrary mat
hing. The sear
hstarts from a free vertex r of G and terminates either when an augmenting path p toanother free vertex has been found, or there does not exist an augmenting path startingin r.A tree T is grown from r su
h that ea
h path from a vertex u in T to the root ris alternating with respe
t to M . The verti
es of T are labeled either even or odd,stating that the alternating path to the root is of even or odd length. T is 
alled thealternating tree. Mat
hed verti
es that do not belong to T are said to be unlabeled. Allfree verti
es are initially labeled even. For short, we denote an even, odd or unlabeledvertex v by v+; v� or v?, respe
tively. In 
ases where a vertex label is, for example,either unlabeled or labeled even we use notions like vf?j+g et
.Initially, T 
onsists of the even vertex r+ only. The alternating tree is grown from evenverti
es u+ 2 T .Let v? 62 T be adja
ent to any vertex u+ 2 T . T is extended by taking the unmat
hededge uv and also the mat
hing edge of v to T , i.e. the edge vw, where w? 62 T is themate of v. Here, v and w get labeled odd and even, respe
tively.When an even vertex v+ 62 T is adja
ent to any vertex u+ 2 T , an augmenting pathp = (v; u; : : : ; r) with respe
t to M has been found.If at some stage the tree 
annot be grown and no adja
ent free vertex exists, the sear
hterminates due to the non{existen
e of an augmenting path beginning in r.A possible example s
enario for an alternating tree T in a bipartite graph 
an be seenin Figure 1.2.Let us try to apply the des
ribed sear
h to the general graph G illustrated in Fig-ure 1.3(a). Clearly, the path p = (g; 
; d; e; f; b; a; r) is augmenting. However, when an
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a b 
 d

f er g
C

(a) a gr b(b)Figure 1.3: Let G and M be as given in (a). C = (b; 
; d; e; f; b) is an odd length 
y
le. Byde�nition, B = fb; 
; d; e; fg forms a blossom. b is the base of B. For every vertex u 2 B an evenlength alternating path to the base exists. For example, p = (
; d; e; f; b) is the 
orrespondingpath for 
. The graph G0 = (V 0; E0) obtained from G by shrinking the blossom B is shown in(b). It is V 0 = fr; a; b; gg and E0 = fra; ab; gbg.alternating tree is grown from r, p 
ould be missed when 
 is labeled odd. It is due tothe existen
e of odd length 
y
les that augmenting paths are missed. Sin
e odd length
y
les 
annot o

ur in a bipartite graph it be
omes also perspi
uous why the 
urrentsear
h strategy operates 
orre
tly in the bipartite 
ase only.Edmonds was the �rst to 
ir
umvent this problem; he did so by using the 
on
ept ofblossoms, whi
h will be the subje
t of the next se
tion.1.3 Edmonds' Blossom{Shrinking Approa
hIn 1965, Edmonds extended the sear
h des
ribed in the pre
eding se
tion to the general
ase (see [Edm65b℄). The resulting algorithm is widely known as the blossom{shrinkingapproa
h and will be the subje
t of this se
tion.We �rst establish a general basis by introdu
ing the blossom 
on
ept and the idea ofshrinking. Thereafter, a di�erent interpretation of those 
on
epts, whi
h will be moreappropriate for the weighted mat
hing 
ase, is shown to be equivalent. Based on thatalternative interpretation, the sear
h for an augmenting path in a general graph isrevised at the end of this se
tion.Let G = (V;E) be a general graph. The following two notations will be helpful. Forany subset S � V we denote the edges of G having both endpoints in S by 
(S):
(S) = fuv 2 E : u 2 S and v 2 Sg:Conversely, we de�ne Æ(S) as the set of all edges having exa
tly one endpoint in S:Æ(S) = fuv 2 E : u 2 S and v 62 Sg:



1.3 Edmonds' Blossom{Shrinking Approa
h 11Note that Æ(fvg) denotes all edges in
ident to a vertex v. In that 
ase, we will writeÆ(v) for short.As mentioned above, it is due to the existen
e of an odd length 
y
le that our 
urrentsear
h might miss an augmenting path. Assume C denotes su
h an odd length 
y
leand, moreover, let C 
ontain a maximum number of mat
hing edges. This 
on
ept iswhat we 
all a blossom.De�nition 1.3.1 (Blossom) Let M be a mat
hing in G and B � V an odd 
ardi-nality subset of verti
es. B is a blossom, when 
(B) 
ontains a simple 
y
le C thattraverses all verti
es of B, and, moreover, a maximum number of edges along C aremat
hed, i.e. jM \ Cj = bjBj=2
.Figure 1.3(a) shows an example of a blossom. The only vertex in a blossom B that iseither free, or whose mat
hing edge is not 
ontained in 
(B), is 
alled the base of B. Bis free, when its base is free; otherwise, B is mat
hed.Our interest in the blossom 
on
ept stems from the following fa
t. Consider a blossomB with base b. For any arbitrary vertex u of B an even length alternating path p fromu to the base b must exist. Moreover, the �rst edge of p is a mat
hing edge and p liesex
lusively in B, i.e. e 2 
(B) for ea
h edge e in p. Edmonds observed that one 
anbene�t from that property by shrinking the blossom B into a single vertex, for exampleinto b. Informally, this means that all verti
es of B are 
ollapsed into b and all edges in
(B) be
ome non{existent. Let G0 denote the graph obtained from G by shrinking theblossom B (see Figure 1.3(b)). Formally, G0 = (V 0; E0) 
an be de�ned as follows.V 0 = (V n B) [ fbgand E0 = 
(V n B) [ fub : uv 2 Æ(B) and u 62 Bg:Let M 0 denote the mat
hing in G0 that 
orresponds to M , i.e. M 0 = M n 
(B). Theintention behind shrinking is that any augmenting path p0 with respe
t to M 0 in G0 
anbe lifted (as des
ribed in the proof below) to an augmenting path p with respe
t to Min G.Lemma 1.3.1 Let G0 be a graph obtained from G by shrinking a blossom B as de-s
ribed above. If an augmenting path p0 with respe
t to M 0 in G0 exists, then therealso exists an augmenting path p with respe
t to M in G.Proof:Let p0 be an augmenting path in G0. We 
onsider only the 
ase where p0 traverses b,sin
e otherwise p0 redu
es to an augmenting path in G. We 
an break p0 at b into p1and p2: p0 = (p1; b; p2). Let p2 be the path that starts with the non{mat
hing edge bv.When b is an endpoint of p0 and hen
e must be free, p1 is empty. Otherwise, p1 endswith the mat
hed edge ub. Due to the 
onstru
tion of G0, there must be a vertex w 2 Bsu
h that wv is an edge in G. Moreover, we know there must exist a possibly emptyeven length alternating path in 
(B) from w to b. Let pB denote that path in reversedorder, i.e. leading from b to w in G. The augmenting path p in G then 
onsists simplyof the 
on
atenation p1, pB and p2, where the �rst edge bv of p2 is repla
ed by wv. �
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hing TheoryWe will soon re�ne the sear
h strategy of Se
tion 1.2 su
h that it will work for generalgraphs. But �rst, we wish to argue that ea
h graph G(i) obtained from G by a seriesof shrinkings 
an be viewed as a nested family of odd 
ardinality subsets of V . Let usintrodu
e that notion next:N (V ) is a nested family of odd 
ardinality subsets of V , when(1) ea
h element S of N (V ) is a subset of V having odd 
ardinality, and(2) for two elements Si; Sj 2 N (V ) with Si 6= Sj, either Si � Sj, or Sj � Si, orSj \ Si = ; holds.Assume G(i) is obtained from G as given below.G = G(0) shrink B0�������! G(1) shrink B1�������! : : : shrink Bi�1�������! G(i)Let V (i) denote the set of verti
es in G(i). Ea
h vertex v 2 V (i) 
orresponds to an odd
ardinality set S(i)v � V whi
h 
an be de�ned re
ursively. We have S(0)v = fvg and fori > 0: S(i)v = 8><>:S(i�1)v when v 62 Bi�1,[u2Bi�1 S(i�1)u otherwise.Note that uniting an odd number of odd 
ardinality sets will result in an odd 
ardi-nality set. Therefore, ea
h S(i)v is indeed of odd 
ardinality. Moreover, observe that amaximum number bjS(i)v j=2
 of edges in 
(S(i)v ) are mat
hed; this 
an easily be shownby indu
tion on i.From the de�nition of S(i)v it follows thatN (V ) = i[j=0 [v2V (j) S(j)v !is a nested family of odd 
ardinality subsets of V .N (V ) provides suÆ
ient stru
tural information about the nesting of blossoms. Thenesting of blossoms will be of major importan
e in the weighted mat
hing 
ase lateron. Therefore, we rede�ne | or better, reinterpret | the 
on
ept of blossoms andintrodu
e some additional terms based on the view we are about to develop.Ea
h element B 2 N (V ) is 
alled a blossom of G.2 Moreover, we distinguish betweentrivial and non{trivial blossoms. A trivial blossom B = fvg 
orresponds to the vertexv in G. All non{singleton sets B 2 N (V ) are non{trivial blossoms; they 
ontain otherblossoms whi
h we 
all subblossoms: Bi is a subblossom of B if Bi � B.A maximum superset B 2 N (V ), i.e. B 6� S for all sets S 2 N (V ), is what we 
alla surfa
e blossom. Obviously, surfa
e blossoms are not 
ontained in other blossoms.Noti
e, that ea
h vertex in G(i) 
orresponds to a surfa
e blossom in N (V ).2We wish to emphasize that B does not form a blossom in the sense of De�nition 1.3.1: the simple
y
le C 
ontaining all verti
es of B does not ne
essarily have to exist. But it is assured, however, thatan even length path from ea
h vertex v 2 B to the base vertex exists.
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Figure 1.4: Example of a graph G after a series of shrinkings. There are four non{trivialblossoms: B1 = fa; b; 
g, B2 = fB1; d; e; f; gg, B3 = fh; i; jg and B4 = fl;m; n; o; pg. The nestedfamily of odd 
ardinality subsets of V equals N (V ) = ffag; fbg; : : : ; frg;B1;B2;B3;B4g. B1 isan immediate subblossom of B2; the trivial blossom fag is a subblossom, but not an immediatesubblossom of B2. The base of B2 and B1 is 
. Current surfa
e blossoms are B2;B3; fkg;B4; fqgand frg, of whi
h the �rst �ve form a new free blossom with base h.All edges e in G are 
lassi�ed as either dead or alive. An edge e is dead, when it lies ina blossom B, i.e. e 2 
(B); all other edges are alive. Thus, after a series of shrinkingsthe 
urrent graph G is viewed as being partitioned into surfa
e blossoms whi
h are
onne
ted by alive edges only. Therefore, G will also be 
alled the surfa
e graph.Let p = (e1; e2; : : : ; ek) be an ordered sequen
e of alive edges of G. We say p is a(surfa
e) path from B1 to Bk+1 in G, when ei 2 Æ(Bi) \ Æ(Bi+1) for 1 � i � k. pis simple, when additionally all blossoms Bi, 1 � i � k + 1, on p are distin
t. Thede�nitions for alternating and augmenting paths extend to surfa
e paths in the obviousway. A (surfa
e) 
y
le C = (e1; e2; : : : ; ek) in G is a path from a blossom B1 to itself.C is simple, when no other 
y
le is 
ontained in C.Suppose C = (e1; e2; : : : ; e2k+1) is a simple surfa
e 
y
le of odd length in G. LetB1;B2; : : : ;B2k+1 denote the odd number of surfa
e blossoms that lie on C. Moreover,let C 
ontain k mat
hing edges with respe
t to a mat
hing M in G. Then, a newblossom B = 2k+1[i=1 Bihas been found. We 
an shrink B by adding it to N (V ). Consequently, all blossomsBi, 1 � i � 2k + 1, stop being surfa
e blossoms and be
ome subblossoms of B. B is anew surfa
e blossom of G. The de�ning blossoms Bi, 1 � i � 2k+1, of B will be 
alledimmediate subblossoms of B. Figure 1.4 shows an example s
enario.
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hing TheoryAlgorithm 1.3.1 Generi
 algorithm to sear
h for an augmenting path p from a freevertex r. Let G be the underlying graph and M a mat
hing in G su
h that r is free.let r be the only even vertex of Twhile there does not exist an alive edge e = uv with u+ 62 T and v+ 2 T fif an alive edge uv with u+ 2 T and v? 62 T exists flet b be the base of Bv and w denote the mate of b, with w 2 Bwmake Bv an odd and Bw an even labeled blossom of Tadd the edges uv and bw to Tgelse if an alive edge uv with u+ 2 T and v+ 2 T exists fdetermine the lowest 
ommon an
estor Bl
a of Bu and Bv in Tlet p1 = (e1; : : : ; e2j) be the alternating path from Bl
a to Bu in T , andlet p2 = (e2j+2; : : : ; e2k+1) be the alternating path from Bv to Bl
a in Tall surfa
e blossoms on C = (p1; e2j+1 = uv; p2) de�ne a new blossom Bshrink B by making all surfa
e blossoms on C to subblossoms of BB gets labeled even and all edges in 
(B) are 
onsidered to be deadgelse terminate, T is abandoned sin
e no augmenting path for r existsgthere must exist an even length alternating surfa
e path p00 from Bv to Br in Tp0 = (e; p00) is an augmenting surfa
e path from Bu to Brraise p0 to an augmenting path p in the original graph G using Lemma 1.3.1By now we are well prepared to revise our sear
h for an augmenting path. At the endwe give a generi
 algorithm that seeks an augmenting path in a general graph G. Thealgorithm is based on the nested view of G developed above and will be fundamentalfor the weighted mat
hing problem.Let M be a mat
hing in G and r a free vertex with respe
t to M . As in the bipartite
ase, an alternating tree T is grown from r. However, T forms a tree with respe
t tothe surfa
e blossoms of G only, and the edges used by the sear
h are restri
ted to beingalive. For the sake of 
on
iseness, we denote the surfa
e blossom to a vertex u of G byBu. Moreover, we stipulate that ea
h vertex u retains the label of its surfa
e blossomBu, and u is said to be in T , when Bu is 
ontained in T .Shortly, it will be
ome apparent that non{trivial blossoms 
an o

ur only as even treeblossoms in the unweighted mat
hing 
ase. However, in the weighted mat
hing 
aselater on, non{trivial blossoms will also o

ur outside of T and 
an be even or odd treeblossoms. Therefore, we do some preparatory work by assuming non{trivial blossomsto be of any kind.Initially, T 
onsists of the even labeled vertex r+ only. The sear
h assumes the followinglabeling for all surfa
e blossoms outside of T : ea
h free surfa
e blossom is labeled evenand ea
h mat
hed surfa
e blossom is unlabeled. Four 
ases have to be distinguished.Let uv be an alive edge with u+ 2 T and v? 62 T . The base b of Bv must be mat
hed,sin
e Bv is unlabeled. Let w denote the mate of b in Bw. T is extended by making Bv
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h 15Algorithm 1.3.2 Generi
 algorithm to 
ompute a maximum{
ardinality mat
hing ina general graph G.let M be an arbitrary mat
hing in Glabel all free verti
es even and unlabel all mat
hed verti
esfor ea
h vertex r in G fif r is mat
hed 
ontinue with another vertexgrow an alternating tree T rooted in r as des
ribed in Algorithm 1.3.1if an augmenting path p with respe
t to M in G has been found frepla
e M by the augmented mat
hing M � punlabel all verti
es 
ontained in Tdelete all non{trivial surfa
e blossoms of Tdestroy Tgelse T has been abandoned
ontinue with another vertexgM is a maximum{
ardinality mat
hingan odd and Bw an even labeled tree blossom and taking uv and bw to T . This is whatwe will 
all a grow step hen
eforth.Let us assume there exists an alive edge uv with u+ 2 T and v+ 2 T . We determinethe lowest 
ommon an
estor surfa
e blossom Bl
a of Bu and Bv. That is, Bl
a is the�rst blossom that is both on the surfa
e tree path from Bu to Br and on the surfa
etree path from Bv to Br. Noti
e that from the way we built T , Bl
a must be labeledeven. Let p1 = (e1; : : : ; e2j) denote the even length surfa
e path from Bl
a to Bu andp2 = (e2j+2; : : : ; e2k+1) the even length surfa
e path from Bv to Bl
a in T . Obviously,C = (p1; e2j+1 = uv; p2) is an odd length surfa
e 
y
le and moreover, a maximumnumber k of edges on that 
y
le are mat
hed, i.e. we have dete
ted a blossom B. B isde�ned as the union of all surfa
e blossoms Bi on C, with 1 � i � 2k + 1. Sin
e forevery vertex v of B an even length alternating path to the base of B (this will a
tuallybe the base of Bl
a) exists, and therefore also an even length alternating path fromv to the root r of T , B gets labeled even.3 All blossoms Bi, 1 � i � 2k + 1, be
omesubblossoms of B and ea
h edge in 
(B) is no longer used by the sear
h. That 
ompletesthe des
ription of a so{
alled shrink step.When an alive edge uv with u+ 2 T and v+ 62 T is en
ountered, an augmenting surfa
epath p0 = (vu; p00) from Bv to Br is dire
tly available. Here, p00 denotes the even lengthalternating surfa
e path from Bu to Br in T . p0 
an be lifted to an augmenting path pin the original graph G by repeatedly applying Lemma 1.3.1.Last, when none of the above 
ases applies T is abandoned, sin
e no augmenting pathstarting in r exists. T retains its identity, i.e. all surfa
e blossoms in T stay in T andretain their label. T will never be looked at again.When an alternating tree T is abandoned, there are no edges from any vertex u+ 2 T3A
tually, that is the justi�
ation for the label of a vertex being determined by its surfa
e blossom.
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hing Theoryto any other vertex vf?j+g 62 T . Moreover, ea
h edge uv 
onne
ting two even verti
esu+ 2 T and v+ 2 T is dead, i.e. lies in a surfa
e blossom B+ 2 T . Ea
h odd surfa
eblossom B�i 2 T (whi
h is trivial in the unweighted mat
hing 
ase) is mat
hed by analive edge ij 2M with an even surfa
e blossom B+j 2 T , and B+r 2 T is the only surfa
eblossom that is free in T .The 
omplete sear
h for an augmenting path in a general graph G is summarized inAlgorithm 1.3.1.Combining the idea of Algorithm 1.2.1 with the sear
h just des
ribed yields a generi
algorithm for 
omputing a maximum{
ardinality mat
hing in a general graph G asgiven in Algorithm 1.3.2.p qIn the rest of this se
tion, we will prove optimality of M�, the mat
hing obtained by Algo-rithm 1.3.2, and thus establish 
orre
tness. The results to 
ome are interesting from a theo-reti
al point of view. However, the optimality 
riteria for the weighted mat
hing 
ase will beof another kind and only Algorithm 1.3.1 will be used. Therefore, the reader may also skipdire
tly to the next se
tion.Di�erent optimality 
riteria have evolved over several de
ades. Two of them will be 
onsideredmore 
losely. The �rst is due to Edmonds [Edm65b℄ and is based on the notion of an odd set
over. The se
ond is known as the Tutte{Berge Formula.Assume M� leaves t verti
es unmat
hed. The 
ardinality of M is thus b(n � t)=2
, where ndenotes the number of verti
es in G. For ea
h free vertex ri, 1 � i � t, an alternating tree Ti,whi
h has been abandoned by the sear
h, is rooted in Bri . As we outlined above, ea
h vertexu� 2 Ti, 1 � i � t, is mat
hed with a surfa
e blossom B+ 2 Ti and only the root blossom Briis free. Remember that all edges uv 
onne
ting two even verti
es must lie in the same blossomB+ 2 Ti for some 1 � i � t. All unlabeled verti
es u? are mat
hed with a vertex v? and forea
h tree Ti, there exists no edge uv with u? and v+ 2 Ti.Let C(V ) be a family of pairwise disjoint odd 
ardinality subsets of V . C(V ) is 
alled an oddset 
over of G when for every edge e 2 E: e 2 Æ(v) for a singleton set fvg 2 C(V ), or otherwisee 2 
(S) for a non{singleton set S 2 C(V ).The 
apa
ity 
ap(S) of a set S 2 C(V ) is de�ned as
ap(S) = (1 when S is a singleton set,bjSj=2
 otherwise.As 
an easily be veri�ed, the total 
apa
ity 
ap(C(V )) = PS2C(V ) 
ap(S) of an odd set 
overgives an upper bound for the 
ardinality of any mat
hing in G, i.e. jM j � 
ap(C(V )).4Edmonds 
onstru
ted an odd set 
over C(V ) of G having 
apa
ity equal to the 
ardinality ofM� and thus proved M� to be maximum.C(V ) = fv� 2 Ti : 1 � i � kg [ fB+ 2 Ti : 1 � i � k, and B is non{trivialg:When U 6= ;, we 
hoose some û 2 U and add fûg to C(V ). Additionally, U n û is added toC(V ), when jU j > 2.54Let M be a mat
hing in G. Ea
h edge e 2 M must be 
overed by some set S 2 C(V ) and thenumber of mat
hing edges 
overed by some S 2 C(V ) is 
learly bounded above by 
ap(S).5Let us see why C(V ) does indeed form an odd set 
over. Ea
h odd vertex v� 2 Ti, 1 � i � t,
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h 17Ea
h odd vertex v 
overs exa
tly 1 = 
ap(v) mat
hing edge of M�. We argued above thatthe number of mat
hed edges in an even surfa
e blossom B equals bjBj=2
 = 
ap(B). Finally,û 
overs exa
tly 1 = 
ap(û) mat
hing edge. If jU j > 2, all other b(jU j � 1)=2
 = 
ap(U n û)mat
hing edges are 
overed by U n û. Thus, we have jM�j = 
ap(C(V )) as desired. We 
an nowstate the optimality 
riteria whi
h is due to Edmonds [Edm65b℄.Lemma 1.3.2 Let G = (V;E) be a graph and M a mat
hing in G. Moreover, let C(V ) be anodd set 
over of G having 
apa
ity 
ap(C(V )). Then, M is a maximum{
ardinality mat
hingand C(V ) is an odd set 
over having minimum 
apa
ity, i� jM j = 
ap(C(V )).Another interesting possibility to obtain an upper bound on the 
ardinality of a mat
hing Min G is as follows.Let A � V be an arbitrary subset of verti
es of G. Removing ea
h vertex u 2 A and all itsin
ident edges from G, results in a new graph denoted by G n A. Let C1; C2; : : : ; Ck be the
onne
ted 
omponents in G n A having an odd number of verti
es. Ea
h Ci 
ontains eithera free vertex, or there exists a mat
hing edge uv 2 M with u 2 Ci and v 2 A. Sin
e M isa mat
hing, the endpoints in A of those edges must be distin
t. Therefore, at most jAj su
hmat
hing edges exist. Consequently, we 
an 
on
lude that at least k�jAj verti
es must be freewith respe
t to M . To put it di�erently, no more than n � (k � jAj) verti
es 
an be mat
hedby M .Let o

(G) denote the number of 
onne
ted 
omponents in G having an odd number of verti
es.The 
ardinality of a mat
hing M is thus bounded by jM j � b(n� o

(G nA) + jAj)=2
, for anyA � V .Again, we show optimality of M�. Choose A = fv� 2 Ti : 1 � i � kg. Obviously, o

(G n A)must be jAj + t, sin
e that is the total number of even surfa
e blossoms in all abandonedtrees Ti, 1 � i � k. Thus, the bound stated above be
omes tight, i.e. jM�j = b(n � t)=2
 =b(n � o

(G n A) + jAj)=2
, and M� is maximum. The following optimality 
riterion for amaximum{
ardinality mat
hing has just been proved. It is due to Berge [Ber58℄.Lemma 1.3.3 Let G = (V;E) be a graph having n verti
es and M a mat
hing in G. M is amaximum{
ardinality mat
hing, i� a set A � V exists with jM j = b(n� o

(G nA) + jAj)=2
.The dis
ussion above and Lemma 1.3.3 immediately imply the following 
orollary whi
h statesa 
ondition for the existen
e of a perfe
t mat
hing. It was originally proved by Tutte [Tut47℄.Corollary 1.3.1 A graph G = (V;E) has a perfe
t mat
hing i� for every set A � V of verti
eso

(G nA) � jAj.As an aside, observe that Algorithm 1.3.2 will �nd a perfe
t mat
hing, if there exists any. Butit 
an even prove the non{existen
e of a perfe
t mat
hing using Corrollary 1.3.1. To see this,
onsider any abandoned tree Ti. Let A denote the set of odd verti
es in Ti. Sin
e the number ofeven labeled surfa
e blossoms in Ti equals jAj+1, it is o

(G nA) = jAj+1 > jAj and we havethus proved that no perfe
t mat
hing exists. In 
on
lusion, we 
an state that Algorithm 1.3.2
an solve maximum{
ardinality perfe
t mat
hing problems as well.x y
overs all its in
ident edges. All edges lying in an even labeled surfa
e blossom B+ 2 Ti are 
overed byB 2 C(V ). Edges 
onne
ting two verti
es of U are 
overed by û or lie in 
(U n û) and are hen
e 
overedby U n û. Finally, no other edges exist as stated before.



18 Chapter 1. Mat
hing Theory1.4 LP Formulations for Weighted Mat
hing ProblemsIn the pre
eding se
tions, important mat
hing 
on
epts su
h as augmenting paths havebeen introdu
ed. Further, we a
quired a generi
 algorithm that 
an solve both variantsof the maximum{
ardinality mat
hing problem. The stated results serve as a goodbasis for the weighted 
ase 
onsidered in this and the subsequent se
tions.Fundamental �ndings in the area of 
ombinatorial optimization will guide us to a generi
algorithm for the weighted mat
hing problem. We assume familiarity with terms su
has linear programming formulations, relaxation, duality theory (weak and strong du-ality, 
omplementary sla
kness) as well as the 
on
epts behind primal{dual methods.For extensive sour
es 
on
erning these subje
ts, see Bertsimas and Tsitsiklis [BT97℄,Papadimitriou and Steiglitz [PS82℄ and Chv�atal [Chv83℄.We start with the dis
ussion of linear programming formulations for the weightedmat
hing problem.1.4.1 LP Formulation for the Weighted Mat
hing ProblemLet G = (V;E;w) be an instan
e of the maximum{weight mat
hing problem. Themaximum{weight mat
hing problem 
an be formulated as a zero{one integer linearprogramming problem. An in
iden
e ve
tor x is asso
iated with the edges of G. Ea
h
omponent xe is a de
ision variable having value 0 or 1. The relation between thein
iden
e ve
tor x and a mat
hing M is as follows:xe = (0 if e does not belong to the mat
hing M ,1 if e does belong to the mat
hing M .An in
iden
e ve
tor x 
orresponding to a given mat
hing M is 
alled the 
hara
teristi
ve
tor of M .Let S � E be a subset of edges and x an in
iden
e ve
tor asso
iated with the edges E ofG. x(S) is de�ned as the sum over all 
omponents xe with e 2 S, i.e. x(S) =Pe2S xe.We are now able to formulate the maximum{weight mat
hing problem as a zero{oneinteger linear program (iwm):(iwm) maximize wTxsubje
t to x(Æ(u)) � 1 for all u 2 V , (1)xe 2 f0; 1g for all e 2 E. (2)(iwm)(1) assures that ea
h vertex has at most one in
ident edge that is mat
hed. Notethat ea
h optimal solution x of (iwm) 
orresponds to a maximum{weight mat
hing M .And 
onversely, every 
hara
teristi
 ve
tor x to a maximum{weight mat
hing M is anoptimal solution to (iwm). Therefore, (iwm) does in fa
t formulate the maximum{weight mat
hing problem.A standard te
hnique in 
ombinatorial optimization is to relax the zero{one 
onstraint(iwm)(2) whi
h yields the linear programing relaxation (wm').



1.4 LP Formulations for Weighted Mat
hing Problems 19(wm') maximize wTxsubje
t to x(Æ(u)) � 1 for all u 2 V , (1)xe � 0 for all e 2 E. (2)Unfortunately, (wm') does not have zero{one solutions only.6 To see this, 
onsider agraph G = (V;E) having three verti
es V = fa; b; 
g that lie on a odd length 
y
le,i.e. E = fab; b
; 
ag. Assume further that we = 1 for all edges e 2 E. Then, x̂e = 1=2 forea
h edge e of G is an optimal solution to (wm') having obje
tive value 3=2. However,x̂ is not a solution to (iwm) (the obje
tive value of an optimal solution to (iwm) is 1).Consequently, the two formulations (iwm) and (wm') are not equal, or to put it dif-ferently, (wm') is said to be not as strong as (iwm). A measure for the strength ofa linear programming relaxation is the 
loseness of its feasible set to the 
onvex hullde�ned by the feasible in
iden
e ve
tors of the original integer program.In general, the feasible set F (lp) to a linear programming formulation (lp) 
onsists ofall feasible in
iden
e ve
tors to (lp). For example,F (wm') = fx : x satis�es (wm')(1) and (wm')(2)g:The 
onvex hull P(lp) of a feasible set F (lp) 
an be seen as a polyhedron spanned byF (lp).7For an integer linear programming formulation (ilp) and its relaxation (lp') the re-lation P(ilp) � P(lp') always holds, whereas one 
annot expe
t that the opposite doestoo. The relation between P(iwm) and P(wm') is a perfe
t example.Theorem 1.4.1 Two linear programming formulations (lp) and (lp') are equallystrong, i� P(lp) = P(lp').The question is, whether there exists a linear programming formulation similar to (wm')that is moreover as strong as (iwm).Let O denote the set of all non{singleton odd 
ardinality subsets of V :O = fB � V : jBj is odd and jBj � 3g:Consider the linear programming formulation (wm) below.6However, the two linear programing formulations (wm') and (iwm) have been proved to be equiv-alent for the bipartite weighted mat
hing problem. The proof is due to Birkho� [Bir46℄.7The 
onvex hull P of a �nite set S = fx1; x2; : : : ; xkg 2 Rn is de�ned as the set of all 
onvex
ombinations of S:P = fx =Pki=1 �ixi : Pki=1 �i = 1, xi 2 S and �i � 0, 1 � i � kg:More pre
isely, we would have to distinguish between a polyhedron P(lp) whi
h is de�ned by (i.e. isequal to) its feasible set F (lp) and a polyhedron P(lp) whi
h is de�ned by the 
onvex hull of its feasibleset F (lp) (e.g. in 
ases where (lp) is an integer linear program). However, we do not wish to go into thedetails of polyhedral 
ombinatori
s at this point. Instead, for a more extensive dis
ussion 
on
erningthese aspe
ts, the interested reader is referred to Cook et al. [CCPS98℄ and Bertsimas and Tsitsiklis[BT97℄.
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hing Theory(wm) maximize wTxsubje
t to x(Æ(u)) � 1 for all u 2 V , (1)x(
(B)) � bjBj=2
 for all B 2 O, (2)xe � 0 for all e 2 E. (3)(wm) equals (wm') ex
ept that a new series of 
onstraints (wm)(2) has been added.(wm)(2) states, that the number of mat
hed edges in 
(B), where B � V is a non{singleton odd 
ardinality set, is bounded above by bjBj=2
. Note that (wm)(2) 
oin
ideswith one's intuition. It 
an easily be observed that ea
h 
hara
teristi
 ve
tor x to agiven mat
hing M must satisfy (wm)(1){(3) and therefore: P(iwm) � P(wm).What 
onsequen
es does the additional 
onstraint (wm)(2) entail? As before, let usregard the graph G 
onsisting of an odd 
y
le only. Setting xe = 1=2 for all edges of Gis not a feasible solution to (wm), sin
e x(
(fa; b; 
g)) = 3=2 � 1.The idea arises that (wm) is a stronger formulation than (wm'). And indeed, as thefollowing lemma shows, the linear programming formulation (wm) is not only strongerthan (wm'), but as strong as (iwm).Lemma 1.4.1 Let P(iwm) and P(wm) represent the polyhedron of (iwm) and (wm),respe
tively. Then P(iwm) = P(wm).Lemma 1.4.1 is one of the 
ornerstones of the weighted mat
hing theory. It is due toEdmonds. Generally, one 
an prove Lemma 1.4.1 either dire
tly, or by an algorithmi
proof.We will do so by the latter method, i.e. we develop an algorithm that 
omputes amat
hingM and moreover, the 
hara
teristi
 ve
tor x to M will be an optimal solutionto (wm). Further details are deferred to Se
tion 1.6. Similar algorithmi
 proofs 
an befound in Pulleyblank [Pul95℄ and Cook et al. [CCPS98℄.The dire
t proof is 
omplex and not given here. Details 
an be found in the originalwork of Edmonds [Edm65a℄. Cook et al. [CCPS98, Chapter 6℄ and Lov�asz and Plummer[LP86℄ are also ex
ellent sour
es.1.4.2 LP Formulation for the Weighted Perfe
t Mat
hing ProblemThe linear programming formulation for the maximum{weight perfe
t mat
hing prob-lem slightly di�ers from (wm) and will be sket
hed next. In Se
tion 1.5 we will seethat under 
ertain 
onditions, ea
h maximum{weight perfe
t mat
hing problem 
an beredu
ed to the maximum{weight mat
hing problem and 
ontrariwise. Taking that fa
tinto 
onsideration, one may wonder if it is worth the e�ort to inspe
t the weightedperfe
t mat
hing 
ase separately. However, the di�eren
es between those two problemsregarding linear programming formulation aspe
ts are interesting to see and, more-over, both problems 
an be in
orporated into one generi
 algorithm easily as, will beexploited in Se
tion 1.6.Again, we start with the integer linear program. Sin
e every vertex has to be mat
hed



1.4 LP Formulations for Weighted Mat
hing Problems 21in the maximum{weight perfe
t mat
hing problem, the primal 
ondition (iwm)(1)be
omes an equality 
onstraint:(iwpm) maximize wTxsubje
t to x(Æ(u)) = 1 for all u 2 V , (1)xe 2 f0; 1g for all e 2 E. (2)In the perfe
t 
ase, too, the linear programming relaxation of (iwpm) is not as strongas (iwpm) itself. But as in the non{perfe
t 
ase, adding a new series of 
onstraintshelps. The 
orresponding linear program is (wpm).(wpm) maximize wTxsubje
t to x(Æ(u)) = 1 for all u 2 V , (1)x(
(B)) � bjBj=2
 for all B 2 O, (2)xe � 0 for all e 2 E. (3)At this point one observes that the formulation of (wm) is a generalization of (wpm),sin
e P(wpm) is a fa
e of P(wm). The following lemma states that (iwpm) is as strongas (wpm).Lemma 1.4.2 Let P(iwpm) and P(wpm) represent the polyhedron of (iwpm) and(wpm), respe
tively. Then P(iwpm) = P(wpm).As for Lemma 1.4.1, the generi
 algorithm in Se
tion 1.6 will prove 
orre
tness of thestated lemma. For alternative proofs all referen
es given for Lemma 1.4.1 apply.1.4.3 An Alternative LP Formulation for the Weighted Perfe
tMat
hing ProblemIn Se
tion 1.6 we will develop a primal{dual method that 
omputes an optimal solutionto the linear programming formulations given above. The details of that method dependon those �xed formulations. However, an alternative linear programming formulationfor the maximum{weight perfe
t mat
hing problem exists and will be the subje
t ofthis se
tion. The pros and 
ons of that alternative formulation with respe
t to theresulting primal{dual method will be dis
ussed in detail in Se
tion 1.6.5.In both 
ases, i.e. the perfe
t and non{perfe
t weighted mat
hing problem, we added aseries of 
onstraints to the relaxation of the integer linear program in order to obtain alinear program that is as strong as its integer linear program. Those 
onstraints havebeen of the form: x(
(B)) � bjBj=2
 for all B 2 O: (1.1)However, for the weighted perfe
t mat
hing problem, the same e�e
t 
an be a
hievedby a di�erent type of 
onstraint:x(Æ(B)) � 1 for all B 2 O: (1.2)
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hing Theory(1.2) means that at least one edge that leaves a non{singleton odd 
ardinality set B,i.e. is part of Æ(B), must be mat
hed.The alternative formulation for the maximum{weight perfe
t mat
hing problem is givenin (wpm*).(wpm*) maximize wTxsubje
t to x(Æ(u)) = 1 for all u 2 V , (1)x(Æ(B)) � 1 for all B 2 O, (2)xe � 0 for all e 2 E. (3)As mentioned above, it 
an be shown that (wpm*) is as strong as (iwpm). Thus,(wpm*) is indeed an alternative to (wpm).1.5 Redu
tionsWe intend to use this se
tion to show that ea
h instan
e of the maximum{weightmat
hing problem 
an be redu
ed to an instan
e of the maximum{weight perfe
t mat-
hing problem. Moreover, assuming the availability of a te
hnique to dis
over thenon{existen
e of a perfe
t mat
hing, the 
ontrary 
an be a
hieved as well.We will des
ribe these redu
tions by means of a transformation � su
h that(i1) for ea
h instan
e G = (V;E;w) of the maximum{weight mat
hing problem, amaximum{weight perfe
t mat
hing M 0 in G0 = �(G) 
an be translated to amaximum{weight mat
hing M in G, and(i2) under the assumption that a perfe
t mat
hing exists for an arbitrary in-stan
e G0 = (V 0; E0; w0) of the maximum{weight perfe
t mat
hing problem,a maximum{weight mat
hing M in G = ��1(G0) 
orresponds to a maximum{weight perfe
t mat
hing M 0 in G0.First, � will be 
onstru
ted suiting (i1) and after that the inverse transformation ��1satisfying (i2) will be given.1.5.1 Redu
ing theWeighted Mat
hing Problem to the Weighted Per-fe
t Mat
hing ProblemLet G = (V;E;w) be an instan
e of the maximum{weight mat
hing problem. We givea transformation �(G) = G0, where G0 = (V 0; E0; w0), and then pro
eed to show thatG0 satis�es (i1).Assume, eG = (eV ; eE; ew) is a 
opy of G. For ea
h vertex u, edge e and weight we of G,we denote the 
orresponding vertex, edge and weight in eG by eu, ee and ewee, respe
tively.Consider the graph G0 that 
onsists of G and eG. Moreover, let G0 have additional zero{
ost edges from ea
h vertex u of G to eu of eG. More pre
isely, G0 is given as V 0 = V _[ eV



1.5 Redu
tions 23and E0 = E _[ eE [ fueu : u 2 V and eu 2 eV g:The weight fun
tion w0 of G0 is de�ned as:w0e0 = 8><>:we0 when e0 2 E,ewe0 when e0 2 eE,0 when e0 = ueu with u 2 V and eu 2 eV .Lemma 1.5.1 Let G0 = �(G) as given above. Ea
h maximum{weight perfe
t mat-
hing M 0 in G0 then 
orresponds to a maximum{weight mat
hing M in G.Proof:Let M 0 be a maximum{weight perfe
t mat
hing in G0. The di�eren
eM 0 n fueu : u 2 V and eu 2 eV g =M _[ fMde
omposes into M � E and fM � eE. Sin
e M 0 is of maximum weight, M must be amaximum{weight mat
hing in G.Conversely, let M be a maximum{weight mat
hing in G and fM the 
orrespondingmat
hing in eG. ThenM 0 =M [ fM [ fueu 2 E0 : u free in G and eu free in eGgis a perfe
t mat
hing in G0 with weight w0(M 0) = 2w(M). �The stated lemma is often used to redu
e the proof of Lemma 1.4.1 to the proof ofLemma 1.4.2.1.5.2 Redu
ing the Weighted Perfe
t Mat
hing Problem to theWeighted Mat
hing ProblemConsider an instan
e G0 = (V 0; E0; w0) of the maximum{weight perfe
t mat
hing prob-lem. We will 
onstru
t a transformation ��1 that gives us an instan
e ��1(G0) = G,with G = (V;E;w), of the maximum{weight mat
hing problem satisfying (i2). How-ever, we wish to emphasize that the redu
tion to be stated is 
orre
t only when a perfe
tmat
hing does indeed exist in G0.In the dis
ussion that follows, we assume that all edge weights of G0 are non{negative.We may make this assumption, sin
e the weighted perfe
t mat
hing problem is nota�e
ted when all edge weights are modi�ed by adding a 
onstant 
 = maxfjwej : e 2 Eg.De�ne G = (V;E;w) with V = V 0 and E = E0. The edge weights in G will be setsu
h that ea
h maximum{weight mat
hing M in G is perfe
t. This 
an be a
hieved byadding a positive value L to the original edge weights of G0: we = w0e + L.Choosing L su
h that the total weight w(fM ) of ea
h perfe
t mat
hing fM in G is largerthan the total weight of any non{perfe
t mat
hingM in G yields the desired result. Letn = jV j denote the number of verti
es of G; n is assumed to be even, sin
e otherwise no
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hing Theoryperfe
t mat
hing exists in G0. Moreover, let C = max fw0e : e 2 E0g be the maximumedge weight in G0. By the de�nition of w, we have C + L � we � L. The totalweight w(fM ) of ea
h perfe
t mat
hing fM is thus bounded below by jfM j L = (n=2) L.Conversely, the total weight w(M) of a non{perfe
t mat
hing M 
annot be more thanjM j (C + L). Hen
e, 
hoosing L su
h that the relation(n=2) L > jM j (C + L) (1.3)holds, assures that ea
h maximum{weight mat
hingM in G will be perfe
t. The right{hand side of (1.3) maximizes for jM j = (n=2) � 1, sin
e that is the largest 
ardinalityof a non{perfe
t mat
hing possible. Therefore, 
hoosing L := (n=2) C > ((n=2)� 1) Chas the desired e�e
t.Lemma 1.5.2 LetG = ��1(G0) as given above and assume a perfe
t mat
hing exists inG0. Ea
h maximum{weight mat
hing M in G then 
orresponds to a maximum{weightperfe
t mat
hing M 0 in G0.Proof:Let M be a maximum{weight mat
hing in G. From the 
onstru
tion above, it immedi-ately follows that M must be perfe
t. The total weight of a maximum{weight perfe
tmat
hing in G0 is thus w0(M) = w(M)� jM j L = w(M)� (n=2) L.Conversely, let M 0 be a maximum{weight perfe
t mat
hing in G0 having total weightw0(M 0). M 0 is then a perfe
t mat
hing in G of weight w(M 0) = w0(M 0) + jM j L =w0(M 0) + (n=2) L. Due to the 
onstru
tion of G, no non{perfe
t mat
hing 
an havetotal weight larger than or equal to w(M 0). Thus, M 0 is a maximum{weight mat
hingin G. �Ea
h maximum{weight perfe
t mat
hing problem 
an thus be solved by an algorithmfor the maximum{weight mat
hing problem using Lemma 1.5.2 and a further te
hniqueto dis
over the non{existen
e of a perfe
t mat
hing in G (for example Corrollary 1.3.1).Mehlhorn and N�aher [MN99℄ use a similar 
onstru
tion to for
e a maximum{weightbipartite mat
hing algorithm to �nd a maximum{weight mat
hing along all maximum{
ardinality bipartite mat
hings.1.6 Primal{Dual MethodIn Se
tion 1.4.1 a linear programing formulation for the maximum{weight mat
hingproblem was introdu
ed. Based on that formulation, we will use duality theory toobtain a �rst high{level primal{dual method to 
ompute a maximum{weight mat
hingto a given instan
e. A primal{dual method based on the maximum{weight perfe
tmat
hing problem formulation of Se
tion 1.4.2 will then be outlined.Edmonds' blossom{shrinking approa
h will be extended in Se
tion 1.6.3 su
h that itbe
omes a 
on
rete derivation of those primal{dual methods. The resulting generi
algorithm establishes 
orre
tness of Lemma 1.4.1 and Lemma 1.4.2 and will serve asthe fundamental approa
h for our implementations.



1.6 Primal{Dual Method 25We will 
omplete this se
tion by showing a useful property of the dual solution tothe maximum{weight mat
hing and maximum{weight perfe
t mat
hing problem and,moreover, dis
uss the pros and 
ons of a similar algorithm for the maximum{weightperfe
t mat
hing problem using the alternative formulation of Se
tion 1.4.3.1.6.1 Primal{Dual Method for the Maximum{Weight Mat
hingProblemWe repeat the linear programing formulation of the maximum{weight mat
hing problem
onsidered in Se
tion 1.4.1:(wm) maximize wTxsubje
t to x(Æ(u)) � 1 for all u 2 V , (1)x(
(B)) � bjBj=2
 for all B 2 O, (2)xe � 0 for all e 2 E. (3)We will use duality theory in order to derive a primal{dual method that 
omputesan optimal solution to (wm). The main idea is to 
ompute a mat
hing M whose
hara
teristi
 ve
tor x is a feasible and moreover optimal solution to (wm). We willassure optimality of x by a feasible solution to the dual linear program of (wm) thatsatis�es all 
omplementary sla
kness 
onditions with x.The dual linear program (wm) to (wm) is given next. Ea
h vertex u and ea
h non{singleton odd 
ardinality set B has an asso
iated dual variable yu and zB, respe
tively.(wm) minimize Xu2V yu + XB2O bjBj=2
 zBsubje
t to yu � 0 for all u 2 V , (1)zB � 0 for all B 2 O, (2)yu + yv + XB2Ouv2
(B) zB � wuv for all uv 2 E. (3)We will 
all yu and zB the dual value, or alternatively the potential of vertex u andblossom B. (wm)(3) states that the potentials of the endpoints of an edge e = uv plusthe sum of all potentials of non{trivial odd 
ardinality sets 
ontaining that edge mustbe greater or equal to the weight of e.To simplify further notations, we introdu
e the notion of the redu
ed 
ost of an edge e.De�nition 1.6.1 (Redu
ed Cost) Let (y; z) be a solution to the dual linear program(wm). The redu
ed 
ost �uv of an edge e = uv with respe
t to (y; z) is de�ned as:�uv = yu + yv � wuv + XB2Ouv2
(B) zB:An edge e = uv is 
alled tight, when its redu
ed 
ost �uv equals zero. Note that(wm)(3) 
an be repla
ed by �uv � 0 for all edges uv of E. Thus, (wm)(3) assures thatthe redu
ed 
ost of ea
h edge is non{negative.
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hing TheoryLet us dedu
e the 
omplementary sla
kness 
onditions for (wm) and (wm). Given aprimal feasible solution x to (wm) and a dual feasible solution (y; z) to (wm), then xand (y; z) are optimal i� the 
omplementary sla
kness 
onditions (
s)(1){(3) hold.(
s) xuv > 0 =) �uv = 0 for all edges uv 2 E, (1)yu > 0 =) x(Æ(u)) = 1 for all nodes u 2 V , (2)zB > 0 =) x(
(B)) = bjBj=2
 for all B 2 O. (3)What do the above 
onstraints mean? We now pro
eed to give an interpretation.(
s)(1) requires that mat
hed edges must be tight. Be
ause of (
s)(2), free verti
esmust have potential zero. Finally, due to (
s)(3), when a non{singleton odd 
ardinalityset B has potential di�erent from zero, then a maximum number of edges in B mustbe mat
hed, i.e. 
(B) 
ontains bjBj=2
 mat
hed edges. We will also say B must be full.Observe that ea
h non{trivial blossom is a non{singleton odd 
ardinality set that isfull.Assume now that the following four invariants hold for x and (y; z):(i1) x is a feasible solution to (wm),(i2) (y; z) is a feasible solution to (wm),(i3) (
s)(1) holds, and(i4) (
s)(3) holds.Maintaining (i1) to (i4) we will alter the solutions x and (y; z) su
h that the violationsof (
s)(2) are su

essively redu
ed. Eventually, (
s)(2) will hold too and we will thushave obtained optimal solutions x and (y; z) to (wm) and (wm).Let r be a vertex that violates (
s)(2), i.e. r is free and yr > 0. Our purpose is eitherto mat
h r (and thus alter the primal solution x), or to adjust the dual solution (y; z)su
h that the potential of r equals zero. Having a
hieved either of those, r will nolonger violate (
s)(2). The following strategy realizes the outlined idea.First, we try to mat
h r. However, noti
e that by (
s)(1) tight edges are quali�ed tobe mat
hing edges only. The attempt to mat
h r using all 
urrent tight edges mightfail. In this 
ase, a so{
alled dual adjustment by some Æ > 0 is performed. That is, thedual solution (y; z) gets adjusted to (y0; z0) su
h that(i5) the obje
tive value of (wm) stri
tly de
reases,(i6) the invariants (i1) to (i4) remain true for (y0; z0),(i7) in general, new tight edges exist with respe
t to (y0; z0), and(i8) the potential of r stri
tly de
reases.(i5) assures that the dual solution 
onverges with its optimum.8 When new tight edgesresult from the dual adjustment, the attempt to mat
h r is 
ontinued. Note that (i7)will hold in general only, i.e. not every dual adjustment will produ
e new tight edges.98A
tually, if (i5) did not hold, the termination 
ould not even be guaranteed for real weights (seeAr�aoz and Edmonds [AE85℄).9The reason for this will be
ome 
lear shortly. For the time being, the reader is asked to a

ept thatwe 
annot guarantee ea
h dual adjustment to produ
e new tight edges, sin
e we must preserve (i6).



1.6 Primal{Dual Method 27Eventually, after a series of dual adjustments either suÆ
iently many tight edges willexist su
h that r 
an be mat
hed, or the potential of r will drop to zero (due to (i8)).We summarize the dis
ussed primal{dual method in Algorithm 1.6.1.Algorithm 1.6.1 Generi
 primal{dual method for the maximum{weight mat
hingproblem.let x and (y; z) satisfy (i1) to (i4)while there exists a free vertex r with yr > 0 frepeat ftry to mat
h r using tight edges onlyif r is not mat
hed yetperform dual adjustment by Æ > 0 su
h that (i5) to (i8) holdg until yr = 0 or r is mat
hedgThe only missing details that have to be �lled in are how to �nd the initial feasiblesolutions x and (y; z) that satisfy (i1) to (i4), how to mat
h free verti
es using tightedges and how to perform a dual adjustment satisfying (i5) to (i8). We will 
ome ba
kto these details in Se
tion 1.6.3.1.6.2 Di�eren
es in Weighted Perfe
t Mat
hing CaseSome minor 
hanges in the primal{dual method ensue for the maximum{weight perfe
tmat
hing problem. (wpm) introdu
ed in Se
tion 1.4.2 is used as the linear programingformulation for the maximum{weight perfe
t mat
hing problem.(wpm) maximize wTxsubje
t to x(Æ(u)) = 1 for all u 2 V , (1)x(
(B)) � bjBj=2
 for all B 2 O, (2)xe � 0 for all e 2 E. (3)(wpm) equals (wm) ex
ept that (wpm)(1) is an equality 
onstraint. Consequently,the non{negativity 
onstraints for all verti
es in (wm) do not o

ur in the dual linearprogram (wpm) of (wpm).(wpm) minimize Xu2V yu + XB2O bjBj=2
 zBsubje
t to zB � 0 for all B 2 O, (1)yu + yv + XB2Ouv2
(B) zB � wuv for all uv 2 E. (2)Thus, the 
omplementary sla
kness 
onditions for a primal solution x of (wpm) and adual solution (y; z) of (wpm) are 
omprised of (
s)(1) and (
s)(3) only. We repeatthem as (p
s)(1) and (p
s)(2) below:
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hing Theory(p
s) xuv > 0 =) �uv = 0 for all edges uv 2 E, (1)zB > 0 =) x(
(B)) = bjBj=2
 for all B 2 O. (2)The des
ription and arguments given for the non{perfe
t 
ase no longer make sensenow. In the perfe
t 
ase, we therefore maintain primal and dual solutions x and (y; z)that satisfy the invariants (j1) to (j4).(j1) x satis�es all 
onditions of (wpm) ex
ept (wpm)(1),(j2) (y; z) is a feasible solution to (wpm),(j3) (p
s)(1) holds, and(j4) (p
s)(2) holds.Gradually, the violations of (wpm)(1) are de
reased su
h that in the end, x be
omes aprimal feasible solution and thus is optimal, or one dis
overs that the obje
tive value of(wpm) is unbounded and therefore, no perfe
t mat
hing exists (by weak duality). Asbefore, tight edges are used to mat
h a free vertex r. If the 
urrent tight edges do notsuÆ
e to mat
h r, a dual adjustment by Æ > 0 is performed. Æ must be 
hosen su
hthat(j5) the obje
tive value of (wpm) stri
tly de
reases,(j6) the invariants (j1) to (j4) remain true for the adjusted dual solution (y0; z0),(j7) in general, new tight edges exist with respe
t to (y0; z0).The obje
tive value of (wpm) is unbounded, when Æ 
an be made arbitrarily large,i.e. Æ =1. The modi�ed generi
 algorithm redu
es to:Algorithm 1.6.2 Generi
 primal{dual method for the maximum{weight perfe
t mat-
hing problem.let x and (y; z) satisfy (j1) to (j4)while there exists a free vertex r frepeat ftry to mat
h r using tight edges onlyif r is not mat
hed yet f
hoose Æ > 0 su
h that (j5) to (j7) holdif Æ =1 terminate, sin
e no perfe
t mat
hing existselse perform dual adjustment by Ægg until r is mat
hedg1.6.3 The Blossom{Shrinking Approa
h RevisitedBased on the primal{dual methods dis
ussed in the pre
eding se
tions we will extendEdmonds' blossom{shrinking approa
h (see Se
tion 1.3) su
h that it 
an solve instan
esof the weighted mat
hing problem (non{perfe
t and perfe
t). We will �rst fo
us on the
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hing problem and outline the di�eren
es for the perfe
t mat
hing
ase thereafter.The following three details are still open and will be �lled in next:1. 
onstru
ting the initial solutions x and (y; z) to (wm) and (wm) that satisfy (i1)to (i4),2. mat
hing a free vertex r with non{zero potential using tight edges only, and3. performing a dual adjustment by Æ > 0 and assuring the validity of (i5) to (i8).Throughout this se
tion, let G = (V;E;w) be an instan
e of the maximum{weightmat
hing problem. x will denote the 
hara
teristi
 ve
tor to a mat
hing M of G. Wewill often not distinguish between a mat
hing M and its 
hara
teristi
 ve
tor x, anduse one notion for the other.Finding Initial SolutionsClearly, the empty mat
hing M = ;, i.e. xe = 0 for ea
h edge e 2 E, is a feasiblesolution to (wm). For ea
h vertex u the potential is set to yu = max fwe=2 : e 2 Æ(u)g.The approa
h will use the potentials zB of blossoms only. That is, the potential zB ofea
h non{singleton odd 
ardinality set is regarded as being set to zB = 0. Ex
eptionsare the potentials that are asso
iated with a non{trivial blossom B; these 
an have valuezB > 0. Initially, no non{trivial blossoms exist. We thus obtain a feasible solution (y; z)to the dual linear program (wm).Moreover, note that x and (y; z) satisfy both 
onditions (
s)(1) and (
s)(3). Insummary, we 
an state that x and (y; z) meet the invariants (i1) to (i4).Di�erent possibilities to obtain better initial solutions will be the subje
t of Se
tion 3.5.For now, assume we start with the solutions x and (y; z) above.Redu
ing the Violations of (
s)(2)Consider a free vertex r with non{zero potential yr > 0. First, we will des
ribe theattempt to mat
h r using tight edges only. The dual adjustment step, whi
h is trig-gered when the sear
h does not su

eed due to insuÆ
iently many tight edges, will be
onsidered more 
losely afterwards.Mat
hing a free vertex r using tight edges. From the dis
ussion in Se
tion 1.3one immediately observes that the task of mat
hing r redu
es to a sear
h for an aug-menting path starting with r. Therefore, we grow an alternating tree T rooted at ras des
ribed in Algorithm 1.3.1. However, in the weighted mat
hing 
ase it is 
ru
ialthat only tight edges are used by the sear
h in order to preserve (
s)(1). All details ofAlgorithm 1.3.1 apply.In the 
ase where a blossom B is shrunk, B is full, and, therefore, its potential zBbe
omes a

essible for future dual adjustments, as will be explained below.
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hing TheoryWhen an augmenting path p 
onsisting of tight edges has been found, the 
urrentmat
hing M is augmented by p to M 0. As a result, r will be mat
hed thereafter andthe new 
hara
teristi
 ve
tor x0 ofM 0 no longer violates (
s)(2), as desired. All surfa
eblossoms in T get unlabeled and T is destroyed. However, note the following di�eren
e.In the unweighted mat
hing 
ase, all non{trivial surfa
e blossoms have been deletedwhen T was destroyed (see also Algorithm 1.3.2). For the weighted mat
hing 
ase thesituation is di�erent. It is 
ru
ial that non{trivial surfa
e blossoms with zB > 0 retaintheir identity; deleting them would 
hange the dual solution. As a 
onsequen
e, non{trivial blossoms 
an o

ur outside of an alternating tree or as even or odd labeled treeblossoms.When T is abandoned by the sear
h this is due to the non{existen
e of further tightedges uv in
ident to any vertex u+ 2 T . In su
h 
ases, a dual adjustment is initiated asdes
ribed below. New tight edges might exist thereafter and the sear
h resumes withT .Performing a dual adjustment. Consider a situation where the sear
h for an aug-menting path from r fails be
ause there are no more tight edges in
ident to any vertexu+ 2 T .We want to alter the potentials (y; z) of the verti
es and non{singleton odd 
ardinalitysets su
h that (i5) to (i8) are met. One way to a
hieve this is by adjusting (y; z) to(y0; z0) as stated below. The value of Æ > 0 will be determined shortly.y0v = yv � Æ for all v+ 2 T ;y0v = yv + Æ for all v� 2 T ;y0v = yv for all vf?j+g 62 T ;z0B = zB + 2Æ for all B+ 2 T ;z0B = zB � 2Æ for all B� 2 T ;z0B = zB for all Bf?j+g 62 T :Note that the adjustment has to be interpreted as follows. The potentials of all verti
esin T are adjusted | in
luding those that are 
ontained in a non{trivial blossom. Onthe other hand, a potential zB of a non{singleton odd 
ardinality set B is only adjustedwhen B is a non{trivial surfa
e blossom of G.We demonstrate that all 
onditions stated above are met when a dual adjustment byan appropriate value Æ is performed.First, we 
laim that the obje
tive value of (wm) stri
tly de
reases by Æ. Sin
e Æ > 0,that will imply the 
orre
tness of (i5). We 
onsider the rate of 
hange �f = f 0 � f inthe obje
tive value of (wm), where f and f 0 denote the obje
tive value before and afterthe dual adjustment, respe
tively. The rate of 
hange that is 
ontributed to �f by atrivial blossom u or non{trivial blossom B is denoted by �fu and �fB. An odd labeledtrivial surfa
e blossom v� 2 T obviously 
ontributes �fv� = Æ to �f . Analogously,�fv+ = �Æ for an even labeled trivial surfa
e blossom v+ 2 T . Let B� be an odd



1.6 Primal{Dual Method 31labeled non{trivial surfa
e blossom of T . Then,�fB� = jBjÆ + bjBj=2
 (�2Æ) = jBjÆ � (jBj � 1)Æ = Æ:Analogously, for an even labeled non{trivial surfa
e blossom B+ 2 T we have:�fB+ = jBj(�Æ) + bjBj=2
 (2Æ) = �jBjÆ + (jBj � 1)Æ = �Æ:We 
an 
on
lude the argument now by observing that T always 
ontains more eventhan odd surfa
e blossoms (trivial or non{trivial). More pre
isely, let n+ denote thenumber of even surfa
e blossoms in T . Correspondingly, let n� be the total number ofodd surfa
e blossoms in T . Sin
e ea
h even surfa
e blossom ex
ept the root is mat
hedwith an odd surfa
e blossom in T , we have: n+ = n� + 1. The total rate of 
hange inthe obje
tive value is therefore �f = n+(�Æ) + n�Æ = �Æ.Let us prove that invariant (i6) holds. We start with the feasibility 
onditions (i1) and(i2). x stays feasible if it was so before the dual adjustment, sin
e x is not altered atall.Ensuring that the adjusted dual solution (y0; z0) is dual feasible entails some restri
tionson the value of Æ. First, Æ 
annot be larger than the smallest potential of an evenlabeled vertex u+ 2 T . Se
ond, the potential of all non{trivial blossoms must staynon{negative, and therefore Æ is bounded above by the minimal value zB=2 of an oddnon{trivial surfa
e blossom B� 2 T . Finally, the redu
ed 
ost of all edges must benon{negative after the dual adjustment. This point demands 
loser inspe
tion.We only 
onsider edges e = uv with at least one endpoint in T ; the redu
ed 
osts ofedges having none of its endpoints in T do not 
hange. Let �uv denote the redu
ed 
ostof e before the dual adjustment and assume further that e does not lie in a blossom B,i.e. e 62 
(B) for a blossom B. We distinguish �ve 
ases.Case 1: u+ 2 TCase 1a: u+ 2 T and v+ 2 Tboth endpoints of e are de
reased by Æ. Sin
e the new redu
ed
ost �uv � 2Æ is restri
ted to being non{negative, we obtain anupper bound of Æ � �uv=2.Case 1b: u+ 2 T and vf?j+g 62 Tthe redu
ed 
ost �uv of e will 
hange by �Æ, resulting in anotherbound: Æ � �uvCase 2: u+ 2 T and v� 2 Tsin
e u is de
reased and v in
reased by Æ, the redu
ed 
ost �uv of e will not
hange.Case 3: u� 2 TCase 3a: u� 2 T and v� 2 Tthe potential of ea
h endpoint u and v is in
reased by Æ. Thenew redu
ed 
ost �uv + 2Æ of e is, obviously, non{negative.Case 3b: u� 2 T and vf?j+g 62 Tthe redu
ed 
ost �uv in
reases to �uv + Æ and will hen
e stayfeasible.
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B� u+r+ e0 e(a) d�p?

B+j
b�q?

r+ u+ee0 (b)Figure 1.5: Let B be an odd blossom in the alternating tree T as depi
ted in (a). Immediatesubblossoms of B are d;Bj ; b; q and p. Bj is the only non{trivial subblossom of B. When B isexpanded (see (b)), all immediate subblossoms along the even length path from d to b be
omepart of T and are labeled appropriately. p and q are unlabeled and leave T .Consider the 
ase now where e = uv 2 
(B) is embedded in a blossom B. Its redu
ed
ost �uv will not 
hange, sin
e the potentials of the endpoints u and v are both de
reasedor in
reased by Æ, whereas the potential of B is in
reased or de
reased by 2Æ, respe
tively.A
tually, this is the motivation for only 
hanging the potential of non{trivial surfa
eblossoms.We 
on
lude by noting that we have obtained the following bounds for the value of Æin order to stay dual feasible. Æ = minfÆ1; Æ2; Æ3; Æ4gwhere Æ1 = minu2V fyu : u+ 2 Tg;Æ2 = minuv2E f�uv : u+ 2 T; vf?j+g 62 Tg;Æ3 = minuv2E f�uv=2 : u+ 2 T; v+ 2 Tg;Æ4 = minB2O fzB=2 : B� 2 Tg:The 
onvention of de�ning the minimum of an empty set to be 1 is adopted here aswell.Finally, from the dis
ussion above one 
an immediately aÆrm the validity of (
s)(1)and (
s)(3). This 
on
ludes the veri�
ation of (i6).The only invariants not having been aÆrmed yet are (i7) and (i8). Let Æ be 
hosenas stated above. Ea
h vertex u, edge e or non{trivial blossom B that is responsible forone of the bounds Æi, with 1 � i � 4, is 
alled the responsible vertex, edge or blossom,respe
tively.
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 algorithm of the blossom{shrinking approa
h to 
ompute amaximum{weight mat
hing (perfe
t or non{perfe
t) in a general graph G.let M be the empty mat
hingset yu = max fwe=2 : e 2 Eg for ea
h vertex u in Glabel ea
h vertex u in G evenfor ea
h vertex r in G fif r is mat
hed 
ontinue with another vertexlet Br be the only blossom of Trepeat fif non{perfe
t mat
hing 
ase and a vertex u+ in T with yu = 0 exists flet p0 denote the alternating surfa
e path from Bu to Brlift p0 to an alternating path p from u to r using Lemma 1.3.1repla
e M by M � pgelse if an alive edge uv with u+ in T and �uv = 0 exists f
ase v? 62 T : grow step
ase v+ 2 T : shrink step
ase v+ 62 T : augment stepgelse if there exists an odd blossom B� 2 T with zB = 0expand step for Belse fdetermine Æ a

ordinglyif Æ =1 and perfe
t mat
hing 
aseterminate, no perfe
t mat
hing existsperform dual adjustment by Ægg until r is mat
hedgConsider the 
ase Æ = Æ1. The potential yu of the responsible vertex u+ 2 T will bede
reased to zero by the dual adjustment. Sin
e u is even, an even (possibly zero)length alternating path p from u to r exists. p starts with a mat
hing edge and endswith a non{mat
hing edge. We 
an mat
h r by repla
ing M by M � p. Note that uwill thereafter be free. However, this is legal sin
e the potential of u equals zero. Thus,the number of violations of (
s)(2) has indeed de
reased by one.Assume now that Æ = Æi for i = 2; 3. Let e = uv be the responsible edge to Æi.Obviously, e will be
ome tight and 
an thus be used either to extend T (Æ = Æ2) or toshrink a new blossom (Æ = Æ3).Finally, let Æ = Æ4 and B� 2 T be the responsible blossom. Then, zB of B will drop tozero after the dual adjustment and thus 
annot parti
ipate in another dual adjustment.The a
tion to be taken is to expand B, whi
h is somehow the opposite to shrinking ablossom. B gets expanded by raising all its immediate subblossoms to the surfa
e. Sin
eB is an odd blossom of T , there must be a mat
hing tree edge e and a non{mat
hing
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hing Theorytree edge e0 in
ident to B. Let b and d denote the endpoint of e and e0 that is 
ontainedin B. There must exists an even length alternating path p from Bd to Bb, the immediatesubblossoms of B 
ontaining d and b, lying ex
lusively in 
(B). Moreover, all edges inp are tight. We add p and thus all immediate subblossoms lying on p to T and labelthem a

ording to their even or odd length distan
e to the root blossom Br of T . Allother immediate subblossoms of B not lying on p get unlabeled and leave the tree T .In Figure 1.5 an example is given of a so{
alled expand step.Obviously, (i7) holds whenever Æ = Æi, with i = 2; 3. Moreover, note that Æ = Æ1 willhappen at most on
e per sear
h and the o

urren
es of Æ = Æ4 during a sear
h arebounded by O(n).10 Finally, when the potentials are adjusted in the way stated above,(i8) 
ertainly holds.Let us brie
y 
onsider the di�eren
es for the maximum{weight perfe
t mat
hing 
ase.The initial solutions 
onstru
ted above will 
ertainly validate (j1) to (j4). Moreover,the details to mat
h a free vertex using only tight edges stay the same. Moreover, thestated dual adjustment will assure invariants (j5) to (j7). The only di�eren
e is thatthe potentials of even tree verti
es are no longer restri
ted to being non{negative. Asa 
onsequen
e, Æ is not bounded above by Æ1. Therefore, 
hoosingÆ = minfÆ2; Æ3; Æ4gyields the desired result for the maximum{weight perfe
t mat
hing problem. Note thatÆ = 1 might in fa
t happen in the perfe
t 
ase, whereas this is prevented by theexisten
e of Æ1 in the non{perfe
t 
ase.Finally, we summarize Edmonds' blossom{shrinking approa
h to �nd a maximum{weight mat
hing (perfe
t or non{perfe
t) in a general graph by the generi
 algorithmdepi
ted in Algorithm 1.6.3.1.6.4 Half{Integrality of the Dual SolutionWe will use this se
tion to prove an important property of the dual solution 
onstru
tedby the approa
h des
ribed in the pre
eding se
tion.Lemma 1.6.1 Let (y; z) be an optimal solution to (wm), where all edge weights areintegral. Then (y; z) is half{integral, or more pre
isely:yu � 0 (mod 12) for all u 2 V , and (1)zB � 0 (mod 1) for all B 2 O. (2)Proof:Assume the algorithm starts with the initial solution (y; z) as des
ribed above, i.e. yu =max fwe=2 : e 2 Eg for ea
h vertex u and zB = 0 for all non{singleton odd 
ardinalitysets B. When we is integral for ea
h edge e, (1) and (2) hold.10Observe that on
e a blossom be
omes an even tree blossom, it will stay even labeled and in T forthe rest of the sear
h.



1.6 Primal{Dual Method 35Let (y; z) be a dual solution satisfying (1) and (2). Consider a dual adjustment byÆ > 0 and let (y0; z0) be the resulting dual solution. (1) and (2) will remain true for(y0; z0) when Æ 
an be proved to be half{integral. Æ is obviously half{integral whenÆ = Æ1 or Æ = Æ4 (a
tually, Æ is integral i� Æ = Æ4). The redu
ed 
ost �uv of an edgeuv is guaranteed to be half{integral by de�nition and (1) and (2). Thus Æ = Æ2 ishalf{integral. Finally, 
onsider the 
ase Æ = Æ3. We will show that the redu
ed 
ost�uv of an edge uv with u+ 2 T and v+ 2 T must be integral. To see this, note that alledges e = ûv̂ in T are tight and all edge weights are integral. Thus, for these edges wehave: yû + yv̂ + XB2Oûv̂2
(B) zB = wûv̂whi
h implies that yû + yv̂ � 0 (mod 1) must hold for any two verti
es û and v̂ inT . Thus we 
an infer that the redu
ed 
ost �uv of the edge uv is integral, and this
on
ludes the proof. �One 
an immediately aÆrm the following 
orollary for the maximum{weight perfe
tmat
hing 
ase.Corollary 1.6.1 Let (y; z) be an optimal solution to (wpm), where all edge weightsare integral. Then (y; z) is half{integral.1.6.5 Using the Alternative LP Formulation | Algorithmi
 Conse-quen
esAs was mentioned above, the details of the primal{dual method we have developeddepend on the underlying linear programming formulation. Using the alternative linearprogramming formulation (wpm*) introdu
ed in Se
tion 1.4.3 one may hope to obtaina di�erent approa
h for the maximum{weight perfe
t mat
hing problem | whi
h 
ouldbe implemented more eÆ
iently.The di�eren
es of a primal{dual method based on the linear programming formulation(wpm*) are the subje
t of this se
tion.(wpm*) maximize wTxsubje
t to x(Æ(u)) = 1 for all u 2 V , (1)x(Æ(B)) � 1 for all B 2 O, (2)xe � 0 for all e 2 E. (3)The dual linear program (wpm*) to (wpm*) is given below.(wpm*) minimize Xu2V yu + XB2O zBsubje
t to zB � 0 for all B 2 O. (1)yu + yv + XB2Ouv2Æ(B) zB � wuv for all uv 2 E, (2)
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hing TheoryNote that the redu
ed 
ost �uv of an edge uv with respe
t to a dual solution (y; z) isnow de�ned di�erently: �uv = yu + yv � wuv + XB2Ouv2Æ(B) zBThe 
omplementary sla
kness 
onditions are thus:(p
s*) xuv > 0 =) �uv = 0 for all edges uv 2 E, (1)zB > 0 =) x(Æ(B)) = 1 for all B 2 O. (2)All details of the primal{dual method for the weighted perfe
t mat
hing 
ase apply.However, the dual adjustment is performed di�erently in order to assure (j5) to (j7).The potentials are adjusted for surfa
e blossoms (trivial or non{trivial) only.y0v = yv � Æ for all v+ 2 T ;y0v = yv + Æ for all v� 2 T ;y0v = yv for all vf?j+g 62 T ;z0B = zB � Æ for all B+ 2 T ;z0B = zB + Æ for all B� 2 T ;z0B = zB for all Bf?j+g 62 T :It seems one 
an implement the dual adjustment stated above more eÆ
iently sin
eonly surfa
e blossoms have to be 
onsidered. However, the 
rux of using the linearprogramming formulation (wpm*) is the 
omputation of the redu
ed 
ost of an edge.During the 
ourse of Algorithm 1.6.3 the redu
ed 
ost �uv of alive edges uv will haveto be 
omputed frequently. Using the approa
h dis
ussed in the pre
eding se
tion,this 
an be a
hieved by taking the potentials of u and v and the edge weight wuv into
onsideration.11 In the approa
h just sket
hed, one would additionally have to takeinto 
onsideration all potentials zB of blossoms B with uv 2 Æ(B).1.7 Survey of Di�erent RealizationsOver the last four de
ades various polynomial{time realizations of the blossom{shrinking approa
h dis
ussed in Se
tion 1.6.3 have evolved. The �rst was suggestedby Edmonds himself as early as 1965. Its theoreti
al running{time was bounded byO(n2m). Permanent improvements regarding the theoreti
al running{time have beena
hieved su

essively using di�erent strategies and data stru
tures. The 
urrent bestand optimal approa
h for general edge weights has a running{time of O(n(m+n logn))and is due to Gabow [Gab90℄. We wish to use this se
tion to portray the main ideasbehind four di�erent polynomial{time realizations of the blossom{shrinking approa
h.One 
an view the blossom{shrinking approa
h as working in phases. A phase terminateswhen an additional violation has been eliminated, i.e. a violation of (
s)(2) in the11Remember that alive edges are not 
ontained in any blossom and hen
e PB2Ouv2
(B) zB = 0:



1.7 Survey of Different Realizations 37maximum{weight mat
hing and a violation of (wpm)(1) in the maximum{weight per-fe
t mat
hing 
ase. Sin
e at most n violations exist, where n denotes the number ofverti
es in G, we have O(n) phases. Next, we will argue that the number of dualadjustments per phase is bounded by O(n). Therefore, observe that Æ = Æ1 o

urs atmost on
e in a phase. When Æ = Æi, with i = 2; 3, at least one (formerly non{evenlabeled) vertex be
omes an even tree vertex. When a vertex has be
ome an even treevertex it will stay even and reside in the tree until the end of the phase. Thus Æ = Æi,i = 2; 3, o

urs O(n) times. Finally, whenever Æ = Æ4, a blossom gets expanded. Sin
e ablossom 
annot 
ontain more than n verti
es this will also happen at most O(n) times.A non{trivial part of the algorithm is to maintain the surfa
e graph G. We sket
h theidea of using a union{�nd data stru
ture that additionally supports a split operation.Ea
h vertex knows its surfa
e blossom, e.g. by a pointer, and ea
h surfa
e blossommaintains a list of all its verti
es. Identifying the surfa
e blossom of a vertex thus takestime O(1). Two blossom Bi and Bj are united by size. That is, w.l.o.g. let jBij > jBj j.The pointer of ea
h vertex in Bj is set to Bi, the list of Bj is appended to Bi and Bjis destroyed. Bi then represents the new blossom. Split operations, too, are done bysize. The list of a surfa
e blossom Bi is split into two lists Bi and Bj. Again, the largerblossom, say Bi, is reused and ea
h pointer of a vertex in the smaller blossom is setto Bj. By always resetting the pointers of the smaller blossom, we 
an assure thatea
h �xed vertex 
ontributes no more than O(log n) time to a series of n union or splitoperations. Note, however, that the 
laimed time bound only holds for a series of splitfollowed by a series of union operations, or vi
e versa; and not for an arbitrary orderof intermixed union and split operations. But sin
e a vertex 
an parti
ipate in a seriesof at most O(n) split (expand steps) followed by a series of O(n) union (shrink steps)operations, a total time of O(n logn) per phase results. This will be suÆ
ient for allfour realizations presented next.The realizations di�er in the way they �nd tight edges, determine the value of Æ andperform a dual adjustment.1.7.1 An O(n2m) Approa
hA simple realization needs time O(m) to �nd tight edges and to determine the valueof Æ (ea
h edge is inspe
ted on
e). Performing a dual adjustment 
an be a
hievedby expli
itly updating the potential of ea
h vertex and non{trivial surfa
e blossomwhi
h takes time O(n). The total running{time is thus O(n2(n +m)) = O(n2m) orO(n4), sin
e m is bounded above by n2. This approa
h is essentially the one whi
h wassuggested �rst by Edmonds [Edm65a℄.1.7.2 An O(n3) Approa
hThe only parts that need more than O(n) time per dual adjustment in the aboverealization are the identi�
ation of tight edges and the determination of Æ, or, to bemore pre
ise, the determination of Æ2 and Æ3.12 As we shall see, either 
an be a
hieved12Obviously, the determination of Æ1 and Æ4 
an easily be a
hieved in time O(n).
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hing Theoryin time O(n). The resulting O(n3) approa
h is due to Lawler [Law76℄.We say an alive edge e in
ident to a surfa
e blossom B (trivial or non{trivial) is a bestedge of B when its redu
ed 
ost is minimal, i.e.�e = min f�uv : uv 2 Æ(B) and uv is aliveg:When several su
h edges exist for B, the best edge of B refers to an arbitrary one ofthese.To handle Æ2, ea
h vertex uf?j+g 62 T stores its best edge uv from u to an even labeledtree vertex v+ 2 T . Moreover, u stores the redu
ed 
ost �uv of its best edge. Sin
e oddverti
es might leave T and get unlabeled (due to an expand step), the same data mustbe available for ea
h odd tree vertex u� 2 T . Finding tight edges and determining Æ2
an then be a
hieved in time O(n) by inspe
ting ea
h best edge of uf?j+g 62 T verti
es.A dual adjustment is performed by updating the redu
ed 
ost of all best edges ofuf?j+g 62 T verti
es whi
h takes at most O(n) time.Ea
h surfa
e blossom B+k 2 T stores for ea
h adja
ent surfa
e blossom B+j 2 T , withBk 6= Bj, the best edge ekj = uv with u 2 Bk and v 2 Bj. Moreover, Bk knows theredu
ed 
ost �ek of the best edge ek of all best edges ekj. Finding tight edges is a
hievedby inspe
ting all best edges of the blossom whose best edge has redu
ed 
ost zero. Thetime needed to do so is bounded by O(n). By exploring the redu
ed 
ost �ek of thebest edge ek to ea
h blossom B+k 2 T , Æ3 
an be determined in time O(n). Adjustingthe redu
ed 
ost �ek of ea
h blossom B+k 2 T needs time O(n).p qIt remains to be shown, however, that the information asso
iated with the maintenan
e of Æ2and Æ3 
an be kept 
orre
t without using time more than O(n2) per phase. Whenever a vertexbe
omes an even tree vertex, its edges are s
anned and the information for Æ2 and Æ3 is updated.When a new blossom Bk is formed by s immediate subblossoms, it takes time O(sn) to set upthe data for Bk.13 The total 
ost T (n) per phase to maintain Æ3 
an then be 
omputed by thefollowing re
ursion: T (n) = O(sn) + T (n� s). By indu
tion it follows that T (n) equals O(n2).Sin
e ea
h edge is s
anned at most twi
e in a phase (on
e from ea
h endpoint) this 
ontributestime O(m) per phase. Altogether, the approa
h needs time O(n(n2 +m)) = O(n3).x yFinally, observe that the idea of maintaining the best (alive) edge to ea
h pair of evensurfa
e blossoms gives a lower bound of 
(n2) per phase.1.7.3 An O(nm logn) Approa
hAnother realization, whi
h improves the theoreti
al running{time to O(nm logn), isdue to Galil, Mi
ali and Gabow [GMG86℄. This approa
h is superior to the O(n3)13We give details to derive the 
laimed time bound. Let B�i , 1 � i � bs=2
, denote the immediateodd subblossoms of Bk. Ea
h Bi, 1 � i � bs=2
 is made even. All edges of the verti
es 
ontained inBi, 1 � i � bs=2
, are s
anned to update the information for Æ2 and to determine the best edges eijof Bi to other even tree blossoms B+j 2 T . Thereafter, the best edges ekj and the redu
ed 
ost of thebest edge ek of all best edges of Bk 
an be determined in time O(sn). We have to update the best edgeinformation of ea
h blossom B+j 2 T adja
ent to the new blossom Bk. This will need time O(sn). Tosee this, 
onsider a �xed blossom B+j 2 T that is adja
ent to Bk. Deleting all best edges eji to an evensubblossom B+i 2 T of Bk takes time O(s). Updating the best edge ejk to Bj takes time O(1). Sin
ethe number of adja
ent blossoms is bounded by n the total time of O(sn) results.
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h for sparse graphs. More or less the same ideas as in the O(n3) approa
h arereused. However, priority queues will help to a
hieve an O(m log n) time bound perphase. We will not go into detail here but postpone the dis
ussion to Chapter 2. Onlya few di�eren
es are outlined.For example, Æ3 will be maintained by a priority queue. At �rst glan
e the usage ofpriority queues does not seem to work, due to the frequent 
hanges of the priorities aftera dual adjustment. Taking advantage of the fa
t that all priorities 
hange uniformlywill help to 
ir
umvent this problem in an eÆ
ient way.Another major di�eren
e to the O(n3) approa
h is that we abandon the goal of onlykeeping tra
k of the alive edges between even tree blossoms. Instead, a lazy deletionstrategy is used to maintain Æ3. That is, every alive edge that might be of interest forÆ3 is inserted into Æ3. As a 
onsequen
e, after a series of shrinkings, Æ3 might 
ontainedges that are no longer alive. These edges are deleted when they are en
ountered asthe minimal element of Æ3. A
tually, this will be the only point where the running{timeof O(m+ n log n) per phase is ex
eeded.For the sake of 
ompleteness we state the theoreti
al running{time for �nding tightedges, for determining Æ and for performing a dual adjustment. Finding a new tightedge will 
orrespond to a delete min operation on a priority queue and thus takes, atmost, time O(log n). The same will hold for the determination of Æ. To perform adual adjustment, however, will only take time O(1) and is thus an immense speed{up
ompared to the O(n3) approa
h.1.7.4 An O(n(m+ n logn)) Approa
hIn 1990, Gabow [Gab90℄ presented a data stru
ture that 
an be used to realize a phaseof Edmonds' blossom{shrinking approa
h in theoreti
al running{time O(m + n logn).Gabow 
laimes this time bound to be optimal: sorting n numbers 
an be redu
ed toa sear
h for an augmenting path in Edmonds' blossom{shrinking approa
h; originally,a similar argument was given by Fredman and Tarjan [FT87℄ to prove optimality ofDijkstra's algorithm. Sin
e ea
h edge may be 
onsidered on
e during a sear
h, a lowerbound of 
(m+ n logn) per phase results.The details of the approa
h are 
omplex and will not be given here. We attempt tosket
h the idea, although this is diÆ
ult without going into detail. As mentioned before,only the maintenan
e of Æ3 needs spe
ial re�nement. Therefore, a kind of alternatingtree T is grown. Ea
h blossom forming edge uv (i.e. the edge uv with u+ 2 T andv+ 2 T ) is repla
ed by two (dire
ted) ba
k edges ul and vl, where l denotes the lowest
ommon an
estor of u and v in T . A shrink operation then 
orresponds to unitingall surfa
e blossoms along the 
y
le C1 = (l; : : : ; u; l) and C2 = (l; : : : ; v; l). Theseba
k edges are further partitioned into log n sets 
alled pa
kets. Roughly speaking, bydealing with the pa
kets' minima (in terms of redu
ed 
ost) the desired time bound 
anbe a
hieved.However, the underlying data stru
tures are 
omplex and we doubt that an implemen-tation would be eÆ
ient in pra
ti
e.





Chapter 2O(nm logn) Approa
h
The demanding and 
ostly parts in Edmonds' blossom{shrinking approa
h are the per-forming of dual adjustments and the determination of the value of Æ (see Se
tion 1.6.3).In 1986, Galil, Mi
ali, and Gabow [GMG86℄ presented a strategy that enables a phaseof Edmonds' blossom{shrinking approa
h to be realized in time O(m log n). The timebound is a
hieved by using a sophisti
ated data stru
ture, whi
h they 
all generalizedpriority queues. Generalized priority queues support all standard priority queue opera-tions. Additionally, the priorities of 
ertain subgroups of elements in the queue 
an beuniformly 
hanged by a single operation.The ideas we will develop in this 
hapter are similar to or have been developed fromthe ideas of Galil et al. However, our approa
h di�ers with regard to the maintenan
eof the varying priorities. Galil et al. handle these 
hanges within the priority queuedata stru
ture, whereas we will establish a series of formulae that enable us to 
omputethese priorities as needed.First, we shall illustrate how the blossom potentials and redu
ed 
osts of edges 
anbe 
omputed after a series of dual adjustments. As a 
onsequen
e, the time requiredto perform a dual adjustment will be redu
ed to O(1). Next, the 
on
ept of usingpriority queues to determine the value Æ and thus also the responsible vertex, edge orblossom will be 
onsidered more 
losely. Finally, an obvious but mistaken realizationwill motivate the appli
ation of 
on
atenable priority queues.2.1 Varying Potentials and Redu
ed CostsThe frequent modi�
ations of the blossom potentials and, 
onsequently, the redu
ed
ost of edges 
aused by a dual adjustment make it diÆ
ult to realize a phase in theblossom{shrinking approa
h eÆ
iently. However, the a 
onsiderable advantage is thatthese modi�
ations o

ur in a uniform manner. In the subsequent se
tions we willillustrate how to take advantage of that fa
t.

41
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h2.1.1 Potential UpdateConsider a dual adjustment that is performed during the 
ourse of Algorithm 1.6.3 (de-s
ribed in Se
tion 1.6.3). Let T denote the 
urrent alternating tree. A dual adjustmentby Æ a�e
ts the potentials of all verti
es and non{trivial surfa
e blossoms as follows.The vertex potential 
hanges by �Æ for an even tree vertex u+ 2 T , by +Æ for an oddtree vertex u� 2 T and by 0 for an non{tree vertex uf?j+g 62 T . Correspondingly, thepotential of a non{trivial surfa
e blossom is adjusted by +2Æ for an even tree blossomB+ 2 T , by �2� for an odd tree blossom B� 2 T and by 0 for a non{tree blossomBf?j+g 62 T .Therefore, after a series Æ1; Æ2; : : : ; Æk of dual adjustments the so{
alled a
tual potentialof a vertex or non{trivial surfa
e blossom 
an be 
omputed by taking its initial potential,its status and the value of � = Pki=1 Æi into 
onsideration. The status of a blossom(trivial or non{trivial) is given by its label and the property of either being a tree or anon{tree blossom.More pre
isely, as long as the status of a vertex u does not 
hange it is possible toobtain its a
tual potential eyu from its initial potential yu by the following formula:eyu = yu + ��:Similarly, on the assumption that the status of a non{trivial surfa
e blossom B isinvariant, the a
tual potential ezB 
an be 
omputed via its initial potential zB:ezB = zB � 2��:The 
oeÆ
ient � depends on the 
urrent status of a blossom B (trivial or non{trivial)and will be 
alled the status indi
ator:� = 8><>: �1 when B+ 2 T ,1 when B� 2 T , and0 when Bf?j+g 62 T .However, the status of a blossom 
hanges during the 
ourse of the algorithm and theformulae given above are somewhat oversimpli�ed. We next re�ne these formulae su
hthat arbitrary status 
hanges 
an be handled as well.Consider �rst of all a status 
hange for a vertex u. Let �1 and �2 denote the sum ofdual adjustments before and after the status 
hange and assume u 
hanges its statusindi
ator from � to �0. Then,eyu = yu + ��1 + �0�2 �=�1+�2= yu + (� � �0)�1 + �0�:That is, we need to 
orre
t the potential yu by +(� � �0)� at the point of time whenu 
hanges its status indi
ator from � to �0 (and thus � = �1).Analogously, let us 
onsider a status 
hange for a non{trivial surfa
e blossom B. It isezB = zB � 2��1 � 2�0�2 = zB � 2(� � �0)�1 � 2�0�
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ed Costs 43and therefore the potential zB is 
orre
ted by �2(� � �0)� when the 
urrent statusindi
ator � of B 
hanges to �0. Again, at this point � will equal �1.As will be
ome 
lear shortly, we 
annot a�ord to 
orre
t the potential of ea
h ver-tex 
ontained in a non{trivial surfa
e blossom separately. Observe, however, that the
orre
tion value of a vertex potential and that of the non{trivial surfa
e blossom 
on-taining that vertex di�ers by a multipli
ative fa
tor of �2. We 
an therefore simulatethe potential 
orre
tions by means of an o�set assigned to ea
h surfa
e blossom, asdes
ribed next.Ea
h surfa
e blossom B (trivial or non{trivial) has an o�set denoted by o�setB. Thea
tual potential of a vertex u is then 
omputed byeyu = yu + o�setB + ��; (2.1)where B 
orresponds to the surfa
e blossom 
ontaining u (trivial or non{trivial). A
-
ordingly, the a
tual potential of a non{trivial surfa
e blossom B 
an be obtained byezB = zB � 2o�setB � 2��: (2.2)A status 
hange for a surfa
e blossom B then redu
es to an update of its o�set value:o�setB = o�setB + (� � �0)�; (2.3)where � denotes the sum of dual adjustments up to the time of the status 
hange.During the 
ourse of the algorithm, the o�set of a surfa
e blossom B is adjusted asin (2.3) whenever its status 
hanges. The dis
ussion of how to handle the o�sets in ashrink or an expand step is postponed to the next but one se
tion.2.1.2 Maintenan
e of Redu
ed CostsFor ea
h vertex uf?j+g 62 T and u� 2 T we will need to keep tra
k of the best edge uvto an even labeled tree vertex and the redu
ed 
ost �uv of that edge. We will do so byassigning a pair (�uv; uv) to ea
h su
h vertex, where uv denotes an edge in
ident to u,with v+ 2 T , having redu
ed 
ost �uv.In the 
ontext of this 
hapter it would be suÆ
ient to handle only one su
h pair pervertex. However, we will 
onsider a more general 
ase where ea
h vertex u is asso
iatedwith a series (�uv1 ; uv1); (�uv2 ; uv2); : : : ; (�uvk ; uvk) of pairs. Ea
h pair (�uvi ; uvi) keepsan edge uvi in
ident to u, with v+i 2 T , and the redu
ed 
ost �uvi of that edge.This extended view will turn out to be reasonable in Chapter 3 (Se
tion 3.4), wherevarious alternating trees are simultaneously grown and hen
e several edges and theirredu
ed 
osts will be asso
iated with any vertex, i.e. also with even labeled tree verti
es.In the subsequent se
tions, we will expli
itly mention when the results apply to theextended view only.The redu
ed 
osts of all edges asso
iated with a vertex u may vary with dual adjust-ments. As for the blossom potentials, we will elaborate a formula whi
h enables thea
tual redu
ed 
osts of these edges to be 
omputed.
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hFor a vertex u+ 2 T , u� 2 T or uf?j+g 62 T , a dual adjustment by Æ 
hanges the redu
ed
osts of all edges asso
iated with u uniformly by �2Æ, 0 or �Æ, a

ordingly. Therefore,as long as u does not 
hange its status, we 
an again 
ompute the a
tual redu
ed 
oste�uvi of an edge uvi after a series of dual adjustments taking its initial redu
ed 
ost, thestatus of u and the total dual adjustment value � into 
onsideration. The 
omputationformula 
an even be expressed by means of u's status indi
ator � as introdu
ed in thepre
eding se
tion: e�uvi = �uvi + (� � 1)�:Let us, on
e again, 
onsider the value by whi
h the redu
ed 
ost �uvi has to be 
orre
ted,when u 
hanges its status indi
ator from � to �0. As before, �1 and �2 denote thesum of dual adjustments that have been performed before and after the status 
hange:e�uvi = �uvi + (� � 1)�1 + (�0 � 1)�2 = �uvi + (� � �0)�1 + (�0 � 1)�:Thus, we would have to in
rease the redu
ed 
ost �uvi of ea
h edge uvi by (� � �0)�whenever u 
hanges its status. Observe that the o�set of the surfa
e blossom B 
on-taining u is in
reased by exa
tly this amount, and we 
an therefore attain the sameresult by 
omputing the a
tual redu
ed 
ost with respe
t to that o�set also:e�uvi = �uvi + o�setB + (� � 1)�: (2.4)Thus, we postulate that the a
tual redu
ed 
ost e�uvi of any edge uvi asso
iated with uis 
omputed by Formula (2.4).One �nal remark must be made here. Imagine that at some point of time a new edgeuvk+1 having a
tual redu
ed 
ost e�uvk+1 is to be added to u. The redu
ed 
ost �uvk+1that is a
tually stored with the new pair (�uvk+1 ; uvk+1) of u must then equal�uvk+1 = e�uvk+1 � o�setB � (� � 1)�: (2.5)We will therefore 
all �uvk+1 the stored redu
ed 
ost of the edge uvk+1, also.2.1.3 Managing the Blossom O�setsIn the pre
eding two se
tions several formulae have been developed to 
ompute boththe a
tual potential of a blossom and the a
tual redu
ed 
ost of edges asso
iated witha vertex. In either 
ase, the value of interest is obtained by taking the o�set of thesurfa
e blossom into 
onsideration. What remains to be shown is how one 
an handlethese o�sets when a shrink or an expand step o

urs.Managing the Blossom O�sets | Shrink StepLet B, with (immediate) subblossoms B1;B2; : : : ;B2k+1, denote the blossom to beformed. Ea
h odd labeled subblossom Bi is made even by adjusting its o�set as previ-ously des
ribed (see (2.3)). The o�sets o�setB1 ; o�setB2 ; : : : ; o�setB2k+1 may di�er invalue. However, we want to a
hieve a situation where the a
tual potential and also the
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tual redu
ed 
osts asso
iated with ea
h vertex u 2 Bi 
an be 
omputed with respe
tto the new surfa
e blossom o�set o�setB.The following strategy assures that the o�sets of all (immediate) subblossoms Bi, 1 �i � 2k + 1, are equally set to zero. The a
tual potential and redu
ed 
osts asso
iatedwith any vertex 
ontained in the new blossom B 
an thus be 
omputed with respe
t tothe o�set o�setB = 0.When a surfa
e blossom B0 (trivial or non{trivial) be
omes an even tree blossom forthe �rst time during a phase, its o�set o�setB0 is set to zero. Thus, in order to preservethe validity of (2.1) and (2.2) for the 
omputation of the a
tual potential eyu of ea
hvertex u 2 B0 and of the a
tual potential ezB0 of B0 itself (when B0 is non{trivial only),the following adjustments have to be performed:yu = yu + o�setB0 , andzB0 = zB0 � 2o�setB0 :In the extended view mentioned in the pre
eding se
tion, even tree verti
es are alsoasso
iated with a series of pairs. In this 
ase, the stored redu
ed 
ost �uv of ea
h su
hpair (�uv; uv) asso
iated with u is subje
t to 
orre
tion:�uv = �uv + o�setB0 :We wish to emphasize that the des
ribed updates are performed for every blossom thatbe
omes an even tree blossom (an even tree blossom need not ne
essarily parti
ipatein a shrink step). We thus de
ided to 
all this strategy the provident strategy.Observe that the adjustments are performed at most on
e for a �xed vertex per phase.Thus, the time required for the potential adjustments is O(n) per phase. The 
orre
tionof the redu
ed 
osts 
ontributes time O(mtadj) per phase, where tadj denotes the timeneeded by the operation to 
hange the stored redu
ed 
ost.1 We will keep the pairsasso
iated with a vertex in a priority queue (as will be explained in Se
tion 3.4) andthus tadj is bounded by O(log n). In summary, a total time bound of O(n +m logn)per phase results.p qWe wish to present another strategy, in whi
h the new o�set o�setB is determined by the o�setvalue o�set� of the (immediate) subblossom Bi that survives in the following pro
edure.We iterate over all (immediate) subblossoms of B. Initially, o�set� is set to the o�set of B1.In ea
h stage i, 1 � i � 2k, the a
tual potential of ea
h vertex 
ontained in a subblossomBj with j � i is 
omputed with regard to the o�set o�set�. Let 
i = Pij=1 jBj j denote thetotal number of these verti
es. We use 
i+1 to denote the number of verti
es 
ontained in thesubblossom Bi+1. When 
i � 
i+1, o�set� survives and all verti
es of Bi+1 lose; otherwiseo�setBi+1 survives and all verti
es of the Bj 's lose. o�set� is set to the survivor o�set and theother o�set is denoted by o�set l (the a
tual potentials of all loser verti
es are 
omputed withrespe
t to that o�set). The potentials yu of all loser verti
es u are adjusted su
h that theira
tual potentials are 
omputed 
orre
tly with respe
t to the o�set o�set�, i.e.yu = yu + o�set l � o�set�:1The total number of pairs stored for all verti
es will be bounded by O(m).
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hAs before, it is only in the extended view (where not only unlabeled and odd labeled verti
esbut also even tree verti
es are asso
iated with a series of pairs) that the stored redu
ed 
ost�uv of ea
h su
h pair (�uv ; uv) needs to be adjusted:�uv = �uv + o�set l � o�set�:We do not adjust the potentials zBi of the non{trivial subblossoms Bi here, sin
e they in any
ase require a spe
ial treatment, as will be des
ribed below. We 
all this strategy the non{provident strategy, sin
e the ne
essary adjustments are performed on demand, i.e. when the
orresponding vertex in fa
t parti
ipates in a shrink step.Let us pro
eed to the determination of the time needed by these adjustments. Sin
e we alwaysadjust the potentials and stored redu
ed 
osts of losing verti
es only, the ne
essary adjustmentsfor a �xed vertex u will be performed at most O(logn) times per phase.2 The 
ost for updatingthe potential of u is O(1). Moreover, sin
e the number of edges asso
iated with u will beno greater than its degree deg(u), the time required to adjust the stored redu
ed 
osts isO(deg(u) tadj), where tadj denotes (as above) the time needed by the operation to 
hange thestored redu
ed 
ost. We 
on
lude that ea
h vertex u 
ontributes O((1 + deg(u) tadj) logn) timeper phase. As mentioned previously, tadj is bounded by O(logn). Thus, summing over allverti
es we obtain a total time bound of O((n + m logn) logn) = O(n logn + m(logn)2) perphase. That is, the theoreti
al time bound of O(m logn) per phase is ex
eeded. In pra
ti
e,however, the non{provident strategy turned out to be slightly more eÆ
ient than the providentstrategy (as will be presented in Se
tion 3.6). It therefore seems to us that this strategy isworth being 
onsidered.3 Our multiple sear
h tree implementation (dis
ussed in Se
tion 3.4)implements both the provident and the non{provident strategy.x yAfter the new blossom B has been formed, the a
tual potential ezBi of ea
h non{trivialsubblossom Bi is no longer a�e
ted by future dual adjustments. We therefore freeze thepotential of these blossoms by adopting the following 
onvention. For any non{trivialsubblossom Bi, we ensure that the potential zBi equals its a
tual potential ezBi . Thus,at the time of shrinking we set:zBi = zBi � 2o�setBi � 2��;and sin
e every subblossom of B has been made even before, the above equation redu
esto zBi = zBi � 2o�setBi + 2�:The time needed to perform these potential freezings is proportional to the number ofnon{trivial subblossoms of B.2There are n verti
es and after ea
h adjustment for u, u will reside in a group of 
ardinality at leasttwi
e as large as before.3Moreover, note that all stored redu
ed 
osts of a �xed vertex u are adjusted by the same amount.Therefore, the underlying priority queue data stru
ture, whi
h organizes these redu
ed 
osts, 
ould alsoimplement an operation, say 
hange all priorities, whi
h 
hanges all priorities in the queue by the sameamount in time O(deg(u)). For example, assume the priority queue is realized by a balan
ed binarytree (i.e. having height O(log(deg(u)))), where the items of the priority queue 
orrespond to the leavesof the tree. Then, traversing ea
h vertex (i.e. non{leaf verti
es too) of the tree and expli
itly updatingthe stored priority of that vertex will take time proportional to deg(u). As a 
onsequen
e, the totaltime needed by the non{provident strategy would be redu
ed to O((n+m) log n) per phase, as desired.
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h 47Managing the Blossom O�sets | Expand StepThe details for an expand step now ensue easily. Let B denote the odd surfa
e blossomthat is going to be expanded. As for the shrink step, the (immediate) subblossoms ofB are denoted by B1;B2; : : : ;B2k+1. The a
tual potential and the a
tual redu
ed 
ostsasso
iated with ea
h vertex 
ontained in B 
an be 
omputed by the formulae establishedabove; these values depend on the o�set o�setB of B, whi
h is therefore assigned to ea
hof the subblossom o�sets, i.e. o�setBi = o�setB. Moreover, ea
h subblossom be
omesodd labeled and the potential zBi of all non{trivial subblossoms Bi undergo unfreezingwith respe
t to the new o�set:zBi = zBi + 2o�setBi � 2��whi
h equals zBi = zBi + 2o�setBi � 2�sin
e ea
h Bi is labeled odd. Obviously, the time required to unfreeze the blossompotentials is proportional to the number of non{trivial subblossoms of B. Afterwards,the ne
essary status 
hanges for some of the subblossoms Bi, for instan
e for thosethat leave T , 
an be handled by an o�set adjustment as dis
ussed above (see Equation(2.3)).Summarizing, we have established a 
onvenient way to handle the varying blossompotentials as well as the redu
ed 
osts of edges asso
iated with a vertex. The valueof interest 
an be 
omputed on demand by the formulae developed. Here, making ano�set available to ea
h surfa
e blossom and keeping tra
k of the total amount � ofdual adjustments turned out to be the key ideas. The additional overhead produ
ed bythe o�set maintenan
e has been proved to 
onsume O(m log n) time per phase. A dualadjustment by Æ redu
es to an in
rease of � by Æ and 
an thus be performed in timeO(1).2.2 Determination of Æ | towards a Priority Queue Ap-proa
hWe next 
onsider more 
losely the idea of using priority queues to determine the valueof Æ, and show how all priorities stored in a priority queue 
an be adjusted in a uniformmanner.Re
all that Æ is 
hosen as the minimum of the four values Æ1; Æ2; Æ3 and Æ4 (see Se
-tion 1.6.3). In order to determine ea
h one of these we keep a 
orresponding priorityqueue delta1 , delta2 , delta3 and delta4 .4 The priorities in ea
h of the priority queues
hange with ea
h dual adjustment and at �rst glan
e there seems to be little hope thatthis approa
h will turn out to be eÆ
ient. However, an essential observation is that4We assume some familiarity with the priority queue data type. All standard operations, like insert,delete min, �nd min et
, are assumed to take time no more than O(log n), where n denotes the numberof items stored in the priority queue. For a detailed dis
ussion of these operations see, for example,Cormen et al. [CLR92℄.
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hone 
an arrange the priority queues su
h that all priorities de
rease uniformly by thedual adjustment value Æ. Consequently, the so{
alled a
tual priority, denoted by ep,of any item in ea
h of the priority queues 
an be 
omputed from its stored priority p,i.e. the priority whi
h is stored with that item in the priority queue, and the total dualadjustment value � as de�ned above.More pre
isely, we ensure that a priority p stored in any of these four priority queues
orresponds to the a
tual priority ep = p��. As a 
onsequen
e, when a new item having(a
tual) priority ep has to be inserted into one of the priority queues, the priority p whi
his stored with that item is set to ep + �, where � denotes the total dual adjustmentsperformed up to this point. We next dis
uss the semanti
s of the items 
ontained inea
h of the priority queues.delta1 
onsists of all items hp; ui with u+ 2 T . The a
tual priority p�� 
orrespondsto the a
tual potential eyu of u.Ea
h item hp; uvi in delta2 represents the best edge of a vertex vf?j+g 62 T to an evenlabeled tree vertex u+ 2 T . The a
tual redu
ed 
ost e�uv of this edge equals the a
tualpriority p��.delta3 keeps tra
k of the edges uv 
onne
ting two even labeled tree verti
es u+ 2 Tand v+ 2 T . The edges inserted into delta3 are ensured to be alive; however, duringthe 
ourse of the algorithm some of the edges stored in delta3 might be
ome dead. Weuse a lazy{deletion strategy for these edges: dead edges are simply dis
arded when theyo

ur as the minimal item of delta3 . Ea
h edge is represented by an item hp; uvi indelta3 . The a
tual priority p�� 
orresponds to one half of the a
tual redu
ed 
ost ofuv, i.e. p�� = e�uv=2.The priority queue delta4 
ontains for ea
h odd labeled non{trivial surfa
e blossomB� 2 T an item hp;Bi. The a
tual priority p � � of this item is equal to one half ofthe a
tual potential of B: p�� = ezB=2.p qWe brie
y argue that all a
tual priorities of delta1 , delta2 , delta3 and delta4 de
rease by thedual adjustment value Æ. The potentials of all verti
es u+ 2 T are de
reased by Æ and thereforethe a
tual priorities of delta1 de
rease by Æ. Sin
e only the potential of the endpoint u+ 2 Tfor all edges uv stored in delta2 is de
reased by Æ, ea
h a
tual priority of delta2 de
reases byÆ. For ea
h edge uv stored in delta3 the potential of both endpoints is de
reased by Æ. Thea
tual priority of ea
h edge is one half of the redu
ed 
ost of that edge. Therefore, ea
h a
tualpriority de
reases by Æ. Finally, the potential of ea
h non{trivial surfa
e blossom is redu
ed by2Æ, and its a
tual potential in delta4 thus de
reases by Æ.x yLet us suppose that the priority queues delta1 , delta2 , delta3 and delta4 are maintained
orre
tly. Ea
h value Æ1; Æ2; Æ3 and Æ4 
an then be determined by a �nd min operationon delta1 , delta2 , delta3 and delta4 , respe
tively. Moreover, �nding the responsiblevertex, edge or blossom redu
es to a delete min operation on the priority queue fromwhi
h Æ results. Summarizing, both the determination of Æ and also of the responsiblevertex, edge or blossom 
an be a
hieved in time O(log n).55A 
omment is in order at this point. delta3 might 
ontain up to m items and thus an upper boundof O(logm) results. At �rst sight, it seems that the stated time bound of O(log n) is ex
eeded; butnote that m � n2, and therefore O(logm) = O(log n).



2.3 A Misleading Strategy | Traps and Pitfalls 492.3 A Misleading Strategy | Traps and PitfallsHaving the outlined ideas in mind, it seems as if one 
ould immediately implementthe blossom{shrinking approa
h that guarantees the stated time bound of O(m logn)per phase. However, the realization des
ribed next will not fully 
omply with thestated time bound. The reasons for our de
ision to present a mistaken realization aresubstantiated by the following three arguments. First, we have been misled by thisrealization ourselves. Se
ond, it will serve as a basis that 
an easily be extended to a
orre
t approa
h. And �nally, it will eventually provide us with an intuitive grasp su
hthat we will aÆrm the need for 
on
atenable priority queues.An alternating tree T is grown from a free vertex r as des
ribed in Algorithm 1.6.3.Initially ea
h vertex is a surfa
e blossom having o�set value 0, and the value of � isset to 0. The initial potential stored with ea
h vertex equals its a
tual potential. Atthe beginning of a phase, ea
h of the priority queues delta1 , delta2 , delta3 and delta4is made empty.For ea
h vertex uf?j+g 62 T or u� 2 T we keep tra
k of its best edge uv to an evenlabeled tree vertex and of the (stored) redu
ed 
ost �uv of that edge by means of a pair(�uv; uv). Moreover, we adopt the 
onvention that a designated pair (1; ;) is assignedto u, when no su
h edge has been en
ountered during the 
urrent phase.Whenever a vertex u be
omes an even tree vertex, its a
tual potential eyu is 
omputedby (2.1) and a 
orresponding item heyu +�; ui is inserted into delta1 . We go throughall in
ident edges uv of u in order to keep delta2 and delta3 
orre
t; this will 
ontributeO(m) time per phase, sin
e ea
h vertex that be
omes an even tree vertex will stay evenand remain in T for the rest of the phase. When uv is dead or is a tree edge, it is simplydis
arded. Otherwise, uv is alive and we 
an thus 
ompute its a
tual redu
ed 
ost:e�uv = eyu + eyv � wuv;where eyv is obtained by Formula (2.1) and wuv denotes the weight of that edge.6 Thea
tion to be taken depends on the status of the endpoint v:Case 1: vf?j+g 62 TWe 
onsider only the 
ase where uv is the new best edge of v, sin
e otherwisenothing has to be done.When (1; ;) is the pair stored with v, uv will be the new best edge to v andwe therefore repla
e that pair by (�uv; uv), where the stored redu
ed 
ost�uv is 
omputed by Formula (2.5). A new item he�uv +�; uvi is inserted intodelta2 .Otherwise, let (�ûv; ûv) denote the pair stored with v. We 
an 
ompute thea
tual redu
ed 
ost e�ûv of ûv by Equation (2.4). When e�uv < e�ûv, uv will6Re
all that the redu
ed 
ost �uv of an edge uv has been de�ned as repeated below, where in the
urrent 
ontext the potentials refer to the a
tual potentials. Moreover, sin
e uv is alive the sum overall blossom potentials 
ontaining that edge must equal 0.�uv = yu + yv � wuv + XB2Ouv2
(B) zB:
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hbe the new best edge of v. The pair stored with v is repla
ed by (�uv; uv),where �uv refers to the stored redu
ed 
ost (obtained by Equation (2.5)),and the item stored for v in delta2 is repla
ed by he�uv +�; uvi.Case 2: v+ 2 TThe item he�uv=2 +�; uvi is simply inserted into delta3 .Case 3: v� 2 TThe same des
ription as for vf?j+g 62 T applies, but no item is inserted orrepla
ed in delta2 .When a non{tree blossom B enters T , ea
h item in delta2 
orresponding to a vertexu 2 B is deleted. Moreover, when B is non{trivial and be
omes an odd tree blossom, we
ompute its a
tual potential ezB by (2.2) and insert the item hezB=2 +�;Bi into delta4 .When a vertex v� 2 T leaves T due to an expand step, we use the pair (�uv; uv) storedwith v in order to set up an item for delta2 ; if (1; ;) is assigned to v, we do nothing.The a
tual redu
ed 
ost e�uv of uv is 
omputed as in (2.4), and the item he�uv +�; uviis inserted into delta2 .Determining Æ, performing a dual adjustment and �nding the responsible vertex, edgeor blossom are a
hieved as previously des
ribed. All remaining details, e.g. shrinkingor expanding a blossom et
., follow easily from the dis
ussion above.p qOne �nal remark is in order at this point. Sin
e an unlabeled vertex might be
ome an odd treevertex and then leave T again due to an expand step, one may wonder why it is suÆ
ient tomaintain for ea
h vertex v? 62 T and v� 2 T the best edge uv to a vertex u+ 2 T only. Note,however, that on
e the best edge uv of a vertex v? 62 T has been used for a grow step, v willstay in T for the rest of the phase | even if all blossoms 
ontaining v are expanded during thatphase.x ySo far, it seems that the running{time of O(m log n) per phase has been a
hieved.Observe, however, that ea
h vertex entering or leaving T 
auses a deletion or insertionon delta2 . In the rest of this se
tion we will justify in detail the 
laim that it is due tothe expansion of blossoms that these insertions and deletions may be exe
uted up toO(n2) times and thus ex
eed the 
laimed time bound.Readers who are not interested in these details are advised to skip to Se
tion 2.4.2.3.1 Maximum Height of a Blossom Treep qFirst, we need to introdu
e the 
on
ept of a so{
alled blossom tree, whi
h represents the nestingof a blossom B.Let B be a blossom. Ea
h subblossom Bi � B 
orresponds to a node ui in the blossom tree BTBof B.7 The root node u of BTB stands for the blossom B itself. Consider a node ui in BTB that
orresponds to a subblossom Bi � B. The 
hildren of ui in BTB are the nodes ui1 ; ui2 ; : : : ; uik ,where ea
h uij , 1 � j � k, 
orresponds to an immediate subblossom Bj of Bi (see Figure 2.1for an example). From the 
onstru
tion of BTB it follows that the verti
es 
ontained in B
orrespond to the leaves of BTB.7In order to avoid 
onfusion, we will use the term node when referring to verti
es in the blossomtree.
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B

(a)
BTB

(b)Figure 2.1: Let B be a blossom whose nesting stru
ture is given in (a). The blossom treeBTB of B is formed as depi
ted in (b). In BTB, the root node stands for B, ea
h internal(i.e. non{leaf) node represents a non{trivial subblossom of B and every leaf 
orresponds to avertex of B.The 
ardinality p of a blossom B is de�ned as the number of verti
es 
ontained in B. Further-more, a blossom is said to be of size s, when it 
ontains s immediate subblossoms.Lemma 2.3.1 Let B be a blossom of 
ardinality p and BTB the 
orresponding blossom tree.The height h of BTB is bounded by O(p).Proof:Let Lh denote the number of leaves in a blossom tree of height h. We have L0 = 1, sin
e ablossom tree of height zero represents a trivial blossom. A blossom tree of height one has atleast three leaves: L1 � 3.Generally speaking, a blossom tree of height h has Lh � Lh�1 + 2 leaves. The re
ursion 
aneasily be solved:Lh � Lh�1 + 2 � Lh�2 + 2 + 2 � : : : � L0 + 2 + : : :+ 2| {z }h times = 2h+ 1Sin
e the number of leaves in BTB 
orresponds to the 
ardinality p of B, we obtain:h � (p� 1)=2. �Lemma 2.3.1 implies that the height of a blossom tree BTB to a blossom B having maximum
ardinality may be O(n).In Se
tion 1.6.5, the disadvantage of 
omputing the redu
ed 
ost of an edge using the alter-native linear programming formulation of the maximum{weight perfe
t mat
hing problem was
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houtlined.8 Using the terms introdu
ed above, the time required to 
ompute the redu
ed 
ostof an edge uv 
onne
ting the blossoms Bu and Bv is proportional to the height of the blossomtrees BTBu and BTBv . That is, by Lemma 2.3.1, it takes time O(pu + pv) in the worst 
ase to
ompute the redu
ed 
ost of an edge uv, where pu and pv denote the 
ardinality of Bu and Bv,respe
tively.Applegate and Cook [App93℄ use the blossom tree to 
ompute the redu
ed 
ost of an edge asfollows. For ea
h blossom tree of a surfa
e blossom B, they broad
ast the sum of all blossompotentials along the path from the root to ea
h leaf. Ea
h leaf in any blossom tree BTB that
orresponds to a vertex u of B then knows the sum �u = yu +Pu2Bi zBi . The redu
ed 
ost ofan alive edge uv 
an then be 
omputed by �u + �v � wuv . However, broad
asting the sum ofall potentials to ea
h leaf in the blossom tree takes time O(p) for a blossom having 
ardinalityp.In either 
ase, a lower bound of 
(n2) per phase results for the algorithm based on the alternativeformulation.x y2.3.2 Expanding a Blossom | Number of Status Changesp qConsider an odd tree blossom B� 2 T with 
ardinality p. When B is expanded, some subblos-soms of B may leave T and later be
ome odd tree blossoms. Following the strategy des
ribedabove, ea
h vertex of a blossom that leaves T is tou
hed, e.g. in order to insert an appropriateitem into delta2 . We are now interested in the number of these tou
hes per phase.More pre
isely, let e(p) denote the total number of status 
hanges 
aused by verti
es of B thatleave T during a phase. Obviously, a blossom B with maximum nesting stru
ture will form themost disadvantageous 
ase. Or to put it di�erently, a blossom B whose blossom tree BTB haslargest height possible will 
ontribute most to e(p). Therefore, we 
onsider ee(p) whi
h equalse(p) in the worst 
ase only, i.e. e(p) � ee(p).ee(p) 
an easily be de�ned as a re
ursive fun
tion:ee(p) = (0 for p � 1, and(p� 2) + 1 + ee(p� 2) otherwise.The re
ursion is substantiated as follows. Obviously, blossoms having 
ardinality p = 1 are triv-ial and thus 
annot 
ontribute anything to ee(p). Otherwise, when a blossom B with 
ardinalityp > 1 is expanded, at least one vertex (namely the base) must stay in T . A large subblossom of
ardinality p�2 and a single vertex get unlabeled and thus 
ontribute (p�2)+1 to ee(p). Later,the large (sub)blossom might be
ome an odd blossom of T and be expanded itself, produ
ing
ost ee(p� 2).We are now interested in the number i of appli
ations of the re
ursion stated above su
h thatee(p � 2i) = 0. Sin
e by de�nition ee(p) = 0 for p � 1, we have i = (p � 1)=2, whi
h is themaximum height of the blossom tree BTB. We thus have:ee(p) = p�12Xi=1 (p� 2i) + 1 = p� 12 �p+ 1��p� 12 + 1�� = p2 � 148Re
all that, using the alternative linear programming formulation, the redu
ed 
ost �uv of an edgeuv was de�ned di�erently: �uv = yu + yv �wuv + XB2Ouv2Æ(B) zB:



2.4 Con
atenable Priority Queues 53At this point it be
omes apparent that tou
hing ea
h vertex would in
rease the running{timeto O(n2) per phase and hen
e destroy the 
laimed bound of O(m logn).x y2.4 Con
atenable Priority QueuesThe problem indi
ated in the pre
eding se
tion is over
ome, however, using so{
alled
on
atenable priority queues. A 
on
atenable priority queue supports all the usualpriority queue operations plus the two additional operations spe
i�ed below. The itemsin a queue are regarded as forming a sequen
e.
on
at(pq1 ; pq2 ) 
on
atenates the underlying sequen
es of pq1 and pq2 .The resulting priority queue pq 
ontains all items of pq1 in their original orderfollowed by all items of pq2 in their original order.split at item(pq ; it) splits the sequen
e of pq at item it into pq1 and pq2 .All items pre
eding the item it (in
lusively) in pq then belong to pq1 and all otheritems belong to pq2 .As we will show at the end of this se
tion, both operations 
an be a
hieved in timeO(log n).Motivated by the fa
t that we 
annot a�ord to insert an item into delta2 for ea
h vertexseparately, one may think of inserting just one item for ea
h surfa
e blossom. Therefore,we assume that ea
h surfa
e blossom B maintains its own 
on
atenable priority queue,whi
h we will denote by PB.The queue PB of a non{tree blossom Bf?j+g 62 T or an odd tree blossom B� 2 Tin
orporates all pairs stored with the verti
es v 2 B. That is, every vertex v 2 B hasan item h�uv; uvi in PB. The priority �uv equals the stored redu
ed 
ost of the bestedge uv 
onne
ting v to an even labeled tree vertex u+ 2 T . As before, the item inPB 
orresponding to v may be set to h1; ;i in order to indi
ate the non{availability ofsu
h an edge for v.We also maintain a 
on
atenable priority queue PB for ea
h even tree blossom B+ 2 T .Again, for ea
h vertex v 2 B we have a 
orresponding item in PB. However, the 
ontentsof these items is set arbitrarily.Ea
h non{tree blossom Bf?j+g 62 T sends its minimum item h�uv; uvi, representing thebest edge uv (along all best edges) of B, to delta2 ; however B does not send an itemto delta2 when the minimum item equals h1; ;i. More pre
isely, let hp; uvi denote theitem in delta2 that has been sent by B. The a
tual priority ep = p�� then equals thea
tual redu
ed 
ost e�uv of the best edge uv of B (whi
h 
an be 
omputed by (2.4)).Whenever a non{tree blossom B be
omes a tree blossom, its 
orresponding item isdeleted from delta2 . Conversely, when a tree blossom leaves T , a 
orresponding item isinserted into delta2 . Finally, when the minimum in a priority queue PB with Bf?j+g 62 T
hanges, the 
orresponding item in delta2 is updated a

ordingly.When a new blossom B is formed by B1;B2; : : : ;B2k+1 the priority queuesPB1 ; PB2 ; : : : ; PB2k+1 are 
on
atenated one after another and the resulting priority queuePB is assigned to B. Here, we keep tra
k of ea
h ti, 1 � i � 2k + 1, the last item in
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hBi. Later, when B is expanded, the priority queues to B1;B2; : : : ;B2k+1 
an easily bere
overed by splitting the priority queue of B at ea
h item ti, 1 � i � 2k + 1. Infa
t, we handle the 
on
atenable priority queues for even tree blossoms only be
ause ofstru
tural reasons.All other details apply as one would expe
t and as is des
ribed in Se
tion 2.3.Assuming that both operations 
on
at and split at item take O(logn) time, the 
laimedtime bound of O(m log n) per phase is a
hieved. In order to demonstrate this, re
allthat there will be at most O(n) 
on
at and split at item operations during a phase.Moreover, observe that only the maintenan
e of delta3 uses time O(m + n logn) perphase.p qIn the rest of this se
tion, a realization of the data type 
on
atenable priority queue based on(a; b){trees will be brie
y outlined. We will 
on
entrate mainly on the two additional operations
on
at and split at item . For a more detailed dis
ussion, see Aho et al. [AHU74, Se
tion 4.12℄and Mehlhorn [Meh84, Se
tion III.5.3℄.Many realizations of the priority queue data type use a balan
ed tree as the underlying datastru
ture, i.e. a tree T whose height is bounded by O(logn) where n denotes the number ofleaves in T .De�nition 2.4.1 ((a,b){Tree) Let T = (V;E) denote a tree rooted at r. The number ofoutgoing edges of a vertex u 2 V is denoted by outdeg(u). T is 
alled an (a; b){tree, withb � 2a� 1, i� the following holds:(1) for ea
h non{leaf vertex u 2 V , with u 6= r: outdeg(u) � a,(2) for ea
h non{leaf vertex u 2 V : outdeg(u) � b, and(3) all leaves reside on the same level.The next theorem states that ea
h (a; b){tree is balan
ed in the sense mentioned above.Theorem 2.4.1 Let T be an (a; b){tree of height h and let n denote the number of leaves inT . For the height h of T it is: logb n � h � 1 + loga(n=2):9All standard operations of the priority queue data type 
an be implemented for (a; b){treesas well. Ea
h su
h operation will take time (at most) O(logn) (see the referen
es mentionedabove).However, we want to emphasize a major di�eren
e to the 
ommon view of an (a; b){tree T thatrepresents a priority queue. Normally, the leaves are arranged in as
ending order (e.g. from leftto right) with respe
t to the priority of an item. However, the kind of 
on
atenable priorityqueue we spe
i�ed above requires the leaves to be part of a sequen
e (independently of theirpriority).Operation: 
on
at(pq1 ; pq2 )Let T1 and T2 be the two (a; b){trees of pq1 and pq2 having height h1 and h2, respe
tively.When h1 = h2, a new root vertex r is 
reated and T1 and T2 be
ome the left and right 
hild of r.9The right side 
an be understood by observing that the root r has outdeg(r) � 2 and every othernon{leaf vertex u has outdeg(u) � a and thus n � 2ah�1.



2.4 Con
atenable Priority Queues 55Now assume h1 > h2; the other 
ase is treated analogously. Let v denote the rightmost vertexin T1 of height h1 � h2 and let f denote the parent of v. The root of T2 be
omes the rightmost
hild of f . If, afterwards, f has more than b 
hildren the tree is repaired as we suppose to beknown (f is split into two verti
es having d(b+ 1)=2e and b(b+ 1)=2
 
hildren et
).Lemma 2.4.1 Let pq1 and pq2 denote two priority queues having n1 and n2 items. A
on
at(pq1 ; pq2 ) operation 
an be performed in time O(j logn1 � logn2j).Operation: split at item(pq ; it)Consider the tree T that 
orresponds to the priority queue pq . Let v denote the leaf vertex in Tthat stores the item it and let p denote the path from v up to the root vertex of T . By deletingp, T de
omposes into two forests; a forest Fl to the left whi
h 
onsists of all trees with leaves tothe left of v (in
lusively) and a forest Fr to the right whi
h 
onsists of all trees with leaves tothe right of v (ex
lusively). Let Fl = (LTi; LTi�1; : : : ; LT1) be the ordered sequen
e (from leftto right) of all trees to the left and Fr = (RT1; RT2; : : : ; RTj) the ordered sequen
e (from leftto right) of all trees to the right. Iteratively 
on
atenating all trees LTk, with k = 1; 2; : : : ; i,results in a tree T1 whi
h represents pq1 . Analogously, the tree T2 of pq2 
an be 
onstru
tedby 
on
atenating all trees RTk in the order k = 1; 2; : : : ; j.Lemma 2.4.2 Let pq denote a priority queue 
ontaining n items. A split at item(pq ; it) op-eration for any item it of pq takes time O(logn).Proof:When p is deleted from T , there will be at most b� 1 trees of a �xed height h in Fl [ Fr. Theonly ex
eption are trees of height 0, of whi
h there 
an be b many. The 
on
atenation of b treesof height h will result in a tree having height at most h+ 1. Therefore, at most b trees of anygiven height o

ur during the 
on
atenation pro
ess des
ribed above.To 
on
atenate two trees of the same height takes time O(1), and O(�h) when their heightsdi�er by �h. Therefore, the time spent 
on
atenating all trees is O(bh + log�hmax), where�hmax denotes the maximum di�eren
e of any two trees that are 
on
atenated. Sin
e �hmaxis bounded by O(logn), split at item takes O(logn) time. �x y





Chapter 3Implementation and Tests
One major obje
tive in the �eld of theoreti
al 
omputer s
ien
e is to obtain algorithmsthat are eÆ
ient with respe
t to the theoreti
al running{time. However, not seldomthere is a big trade{o� between a theoreti
ally eÆ
ient algorithm and its te
hni
alfeasibility. The utilization of 
omplex data stru
tures that make the algorithm fast intheory often has a drasti
 impa
t on its eÆ
ien
y in pra
ti
e.In this 
hapter we will present an implementation of Edmonds' blossom{shrinking ap-proa
h based on the use of 
on
atenable priority queues. At the time we started, itwas not foreseeable whether the implementation would be fast in pra
ti
e. Moreover,a highly eÆ
ient algorithm for the maximum{weight perfe
t mat
hing problem wasavailable su
h that there was little hope of improving upon it. The algorithm referredto is known as the Blossom IV algorithm and is implemented in C. It is due to Cookand Rohe [CR97℄ and is based on earlier work by Applegate and Cook [App93℄. Cookand Rohe do not 
laim a theoreti
al time bound, but it will be no better than 
(n3).Our implementation is innovative in the sense that there is no other algorithm usingpriority queues a

essible at the moment. We used C++ as the programming languagesin
e the algorithm uses and is intended to be
ome part of the Library of EÆ
ientData Stru
tures and Algorithms, 
alled LEDA for short, developed at the Max{Plan
kInstitute for Computer S
ien
e in Saarbr�u
ken, Germany.1 We assume that the readeris familiar with some basi
 data types and 
on
epts of LEDA; most of the data typesused in our implementation will be self{explanatory.We implemented two versions of Algorithm 1.6.3. A so{
alled single sear
h tree ap-proa
h and a multiple sear
h tree approa
h. In the former, only one tree is grown ata time, whereas in the latter various sear
h trees are grown 
on
urrently. Surprisingly,the di�eren
e between these two approa
hes with regard to their pra
ti
al eÆ
ien
y isimmense. Both algorithms guarantee a worst{
ase running{time of O(nm logn).The 
hapter is organized as follows. In Se
tion 3.1 we will de�ne the interfa
e fun
tionsand outline their fun
tionality. Then, the data stru
ture 
on
at pq , whi
h realizes the1For an extensive referen
e des
ribing all issues 
on
erning LEDA see the book by Mehlhorn andN�aher [MN99℄. LEDA is freely available for a
ademi
 resear
h and tea
hing at:http://www.mpi-sb.mpg.de/LEDA.57
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on
atenable priority queue dis
ussed in Se
tion 2.4, is introdu
ed. Sin
e wedo not want to go into the implementation details of this data stru
ture, all operationsneeded will be spe
i�ed in Se
tion 3.2. After this, our implementation of the singlesear
h tree algorithm will be presented. The ensuing di�eren
es for the multiple sear
htree algorithm are the subje
t of Se
tion 3.4. The eÆ
ien
y of both algorithms is
onsiderably improved by 
onstru
ting a better initial solution, as will be outlined inSe
tion 3.5 below. Finally, some running{time experiments will reveal the eÆ
ien
y ofour implementation in pra
ti
e.3.1 Fun
tionalityThe fun
tionlist<edge> MAX WEIGHT MATCHING(
onst ugraph &G,
onst edge array<NT> &w,bool 
he
k, int heur)returns a maximum{weight mat
hing andlist<edge> MAX WEIGHT PERFECT MATCHING(
onst ugraph &G,
onst edge array<NT> &w,bool 
he
k, int heur)a maximum{weight perfe
t mat
hing for the undire
ted graph G (type ugraph) withweight fun
tion w. Both fun
tions a

ept edge weights of any number type NT .2 Themat
hing is represented by the list of edges returned. When 
he
k is set to true, theoptimality of the 
omputed mat
hing is 
he
ked internally. Depending on the value ofheur , the algorithm starts either with an empty mat
hing (heur = 0), a greedy mat
hing(heur = 1), or with a jump{start or fra
tional mat
hing (heur = 2), as will be explainedin Se
tion 3.5.The interfa
e fun
tions are spe
i�ed in the header �le MWM.t. The user 
an swit
hbetween the single sear
h tree and the multiple sear
h tree approa
h by de�ning thetoken SST APPROACH.3hMWM.t: maximum{weight mat
hing algorithmi�template<
lass NT>list<edge> MAX_WEIGHT_MATCHING(
onst ugraph &G,
onst edge_array<NT> &w,bool 
he
k = true, int heur = 1) {edge_array<NT> w_mod(G);hs
ale edge weightsinode_array<NT> pot(G);node_array<int> b(G, -1);2We suppose, however, that the number type NT provides a division operation.3That is, in order to use the single sear
h tree approa
h, type #define SST APPROACH before the�le MWM.t is in
luded.



3.1 Fun
tionality 59array<two_tuple<NT, int> > BT;total_t = used_time();#if defined(_SST_APPROACH)list<edge> M = MWM_SST(G, w_mod, pot, BT, b, heur, false);#elselist<edge> M = MWM_MST(G, w_mod, pot, BT, b, heur, false);#endiftotal_t = used_time(total_t);
he
k_t = used_time();if (
he
k) CHECK_MAX_WEIGHT_MATCHING(G, w_mod, M, pot, BT, b);
he
k_t = used_time(
he
k_t);return M;}We 
ompute a maximum{weight mat
hing with respe
t to a modi�ed weight fun
tionw mod whi
h equals w unless the number type NT is int , where w mod equals 4w.hs
ale edge weightsi�edge e;bool INT = LEDA_TYPE_ID(NT) == INT_TYPE_ID;forall_edges(e, G) w_mod[e℄ = (INT ? 4*w[e℄ : w[e℄);Thus, the dual solution and also the redu
ed 
ost of ea
h edge will remain integralduring the 
ourse of the algorithm (see also Lemma 1.6.1).4When the SST APPROACH token has been de�ned, the fun
tionlist<edge> MWM SST(
onst ugraph &G, 
onst edge array<NT> &w,node array<NT> &pot, array<two tuple<NT, int> > &BT,node array<int> &b, int heur, bool perfe
t)is 
alled. Its implementation will be the subje
t of Se
tion 3.3. The implementationdetails of the fun
tionlist<edge> MWM MST(
onst ugraph &G, 
onst edge array<NT> &w,node array<NT> &pot, array<two tuple<NT, int> > &BT,node array<int> &b, int heur, bool perfe
t)will be the subje
t of Se
tion 3.4. Both fun
tions 
ompute a perfe
t mat
hing i� perfe
tis set to true. The total time needed (in CPU se
onds) to 
ompute an optimal mat
hingis stored in a global variable total t (type 
oat ).The additional parameters pot , b and BT are used to prove optimality of the 
omputedmat
hing M . Their semanti
s is as follows. The potential of ea
h vertex is storedin the node array pot . BT represents the nested family of odd 
ardinality sets (seeSe
tion 1.3). Ea
h two tuple (zB; pB) in BT represents a non{trivial blossom B havingpotential zB and parent index pB. The parent index pB is set to �1 if B is a surfa
eblossom. Otherwise, pB stores the index of the entry 
orresponding to the immediate4Apparently, the same purpose 
ould have been a
hieved by a multipli
ation by two. However, theedge weights are multiplied by four so as to ensure that one{half the redu
ed 
ost of any edge remainsintegral too.



60 Chapter 3. Implementation and Testssuperblossom of B.5 The index range of BT is [0; : : : ; k � 1℄, where k denotes thenumber of non{trivial blossoms. When Bi is a subblossom of B, the index of the entry
orresponding to Bi is smaller than the one of B. The parent index for a vertex u isstored in the node array b.Using this data, the fun
tionvoid CHECK MAX WEIGHT MATCHING(
onst ugraph &G,
onst edge array<NT> &w,
onst list<edge> &M,
onst node array<NT> &pot,
onst array<two tuple<NT, int> > &BT,
onst node array<int> &b)
an 
he
k all optimality 
onditions given in Se
tion 1.6. The time (in CPU se
onds)needed by the 
he
ker is kept in a global variable 
he
ker t (type 
oat). We will notdis
uss the realization of that fun
tion and instead refer to Mehlhorn and N�aher [MN99℄.The interior of the fun
tion that 
omputes a maximum{weight perfe
t mat
hing lookssimilar.hMWM.t: maximum{weight perfe
t mat
hing algorithmi�template<
lass NT>list<edge> MAX_WEIGHT_PERFECT_MATCHING(
onst ugraph &G,
onst edge_array<NT> &w,bool 
he
k = true, int heur = 1) {edge_array<NT> w_mod(G);hs
ale edge weightsinode_array<NT> pot(G);node_array<int> b(G, -1);array<two_tuple<NT, int> > BT;total_t = used_time();#if defined(_SST_APPROACH)list<edge> M = MWM_SST(G, w_mod, pot, BT, b, heur, true);#elselist<edge> M = MWM_MST(G, w_mod, pot, BT, b, heur, true);#endiftotal_t = used_time(total_t);
he
k_t = used_time();CHECK_MAX_WEIGHT_PERFECT_MATCHING(G, w_mod, M, pot, BT, b);
he
k_t = used_time(
he
k_t);return M;}5The immediate superblossom 
on
ept is de�ned analogously to the immediate subblossom 
on
eptgiven in Se
tion 1.3.



3.2 Con
atenable Priority Queues ( 
on
at pq ) 613.2 Con
atenable Priority Queues ( 
on
at pq )We implemented a data stru
ture 
on
at pq supporting all needed operations of datatype 
on
atenable priority queue as introdu
ed in Se
tion 2.4. The implementationis based on (a; b){trees; we 
hose a = 2 and b = 16. 
on
at and split at item areessentially realized as dis
ussed at the end of Se
tion 2.4. We do not intend to go intothe implementation details. Instead, the spe
i�
ation of all operations needed in thesubsequent se
tions is given.In Se
tion 1.7 we outlined the idea of using a union{�nd data stru
ture with split opera-tion to handle the surfa
e graph. The method we use in our implementation is di�erent.Sin
e a 
on
atenable priority queue will be assigned to ea
h surfa
e blossom, we de-
ided to extend the fun
tionality of 
on
at pq su
h that it also enables the maintenan
eof the surfa
e graph. We use the underlying (a; b){trees to identify a setable obje
t(whi
h will be the surfa
e blossom) of a given item (whi
h will 
orrespond to a vertex).The way this is a
hieved is as follows. Ea
h root of an (a; b){tree stores a pointer tothe obje
t representing that tree. Traversing from an item it towards the root, we 
anidentify the (a; b){tree obje
t 
ontaining the item it . Moreover, ea
h (a; b){tree obje
thas a generi
 pointer owner (a generi
 pointer is of type void�) whi
h is setable by theuser; see operation set owner . Consequently, the owner of any item it 
an be identi�ed(operation get owner ) in time O(log n), where n denotes the number of items in the(a; b){tree.1. De�nitionAn instan
e Q of the parameterized data type 
on
at pq<P; I> is a 
olle
tion of items(type 
 pq item). Every item 
ontains a priority from a linearly ordered type P and aninformation from an arbitrary type I. We use hp; ii to denote a 
 pq item with priorityp and information i. The data stru
ture requires a designated element in�nity of P ,with in�nity � p for all p 2 P and equality holds only if p = in�nity . An item hp; iiwith p = in�nity is irrelevant to Q. The number of items in Q is 
alled the size of Q.Q is empty when all its items are irrelevant, or when Q has size zero. A setable generi
pointer owner (type void�) is asso
iated with Q.2. Creation
on
at pq<P; I> Q; 
reates an instan
e Q of type 
on
at pq<P; I>based on the linear order de�ned by the global
ompare fun
tion 
ompare(
onst P&; 
onst P&)and initializes it with the empty priority queue.in�nity is set to the maximum value of type P .3. Operations
 pq item Q:init(P p; I i) initializes Q to the priority queue 
ontaining onlythe item hp; ii and returns that item.
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 pq item it) returns the priority of item it. Pre
ondition: it isan item in Q.I Q:inf(
 pq item it) returns the information of item it. Pre
ondition:it is an item in Q.void Q:
on
at(
on
at pq<P; I>& pq ; int dir = LEDA ::after )
on
atenates Q with pq . The items in Q pre
ede(su

eed) the items of pq , when dir = after (dir =before). pq is made empty, i.e. 
ontains no itemsthereafter.void Q:split at item(
 pq item it ; 
on
at pq& pq1 ; 
on
at pq& pq2 )splits Q at item it into pq1 and pq2 su
h thatit is the last item of pq1 . In 
ase it = nil , pq2be
omes Q and pq1 be
omes empty. The instan
eQ is empty thereafter, unless it is given as one ofthe arguments.
 pq item Q:�ndmin( ) returns an item with minimal priority (nil if Q isempty).P Q:del min( ) makes the item it = Q:�nd min() irrelevant toQ by setting its priority to in�nity . The formerpriority is returned.void Q:del item(
 pq item it) makes the item it irrelevant to Q. Pre
ondition:it is an item in Q.bool Q:de
rease p(
 pq item it ; P x)makes x the new priority of item it. The fun
-tion returns true i� the operation was su

essful,i.e. Q:prio(it) was larger than x.bool Q:in
rease p(
 pq item it ; P x)makes x the new priority of item it. The fun
-tion returns true i� the operation was su

essful,i.e. Q:prio(it) was smaller than x.int Q:size( ) returns the size of Q.bool Q:empty( ) returns true, if Q is empty, and false otherwise.void Q:reset( ) makes Q the empty priority queue by setting allpriorities to in�nity .void Q:
lear( ) makes Q the empty priority queue by deleting allitems.void Q:set owner(GenPtr pt) sets owner of Q to the obje
t pointed to by thegeneri
 pointer pt (type void�).



3.3 Single Sear
h Tree Approa
h 634. Friend Fun
tionsGenPtr get owner(
 pq item it) returns the generi
 pointer owner of the instan
e
ontaining item it .5. Iterationforall items(it;Q) f \the items of Q are su

essively assigned to it" gforall(i;Q) f \the information parts of the items of Q are su

essively assigned to i" g6. ImplementationAll a

ess operations take time O(1). 
on
at and split at item take time O(logn), wheren is the (maximum) number of elements in the priority queue(s). Operations 
lear andreset take time O(n). All other operations take time (at most) O(log n).3.3 Single Sear
h Tree Approa
hIn Chapter 1, we elaborated a generi
 algorithm (see Algorithm 1.6.3) of Edmonds'blossom{shrinking approa
h. Most of the details for its realization based on priorityqueues have been dis
ussed in Chapter 2. In this se
tion, the results established areintegrated into a single sear
h tree implementation using priority queues.A major task in implementing the blossom{shrinking approa
h is 
on
erned withthe representation of blossoms. We will �rst design a template 
lass blossom (typeblossom<NT>) that keeps all ne
essary information, and turn to the implementationof our algorithm afterwards.3.3.1 Data Stru
turesIn Chapter 2 we justi�ed extensively the need for ea
h surfa
e blossom to maintain itsown 
on
atenable priority queue.Given the parameterized data type 
on
at pq<P; I> as spe
i�ed in the last se
tion, thetemplate 
lass blossom 
an be de�ned as follows.hSST.t: data stru
turesi�template<
lass NT> 
lass vertex;template<
lass NT> 
lass blossom;h
lass blossom: friend fun
tions | de�nitionitemplate<
lass NT>
lass blossom : publi
 virtual 
on
at_pq<NT, vertex<NT>*> {h
lass blossom: friend fun
tions | de
larationipubli
:h
lass blossom: data membersi
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lass blossom: member fun
tionsiLEDA_MEMORY(blossom<NT>);};Class blossom inherits all properties of the data type 
on
at pq<NT ; vertex<NT> � >.Additional data members and fun
tions will be de�ned below. The information partof ea
h item points to an obje
t of 
lass vertex . Essentially, the template 
lass vertex
omprises all data asso
iated with a vertex. For the single sear
h tree approa
h wehave:hSST.t: data stru
turesi+�template<
lass NT> 
lass vertex {publi
:NT pot;node my_node;node best_adj;vertex(NT d, node u) {pot = d;my_node = u;best_adj = nil;}LEDA_MEMORY(vertex<NT>);};Ea
h obje
t of type vertex<NT> stores its potential pot and its original vertex my node .The way we keep tra
k of the best edge for my node to an even tree vertex is by storingthis adja
ent vertex in best adj .Data Members: A blossom is either even labeled, odd labeled or unlabeled. There-fore, a new type LABEL is de�ned.typedef enum {even, odd, unlabeled} LABEL;Moreover, ea
h blossom maintains its potential pot and its o�set o�set .h
lass blossom: data membersi�LABEL label;NT pot;NT offset;The base and mate (if any) vertex of a blossom are stored in base andmate, respe
tively.Note that these two verti
es represent the endpoints of the mat
hing edge. In orderto organize the tree stru
ture of the alternating tree, ea
h odd blossom keeps tra
k ofits dis
overy and prede
essor vertex dis
 and pred . dis
 denotes the endpoint of thenon{mat
hing tree edge whi
h is 
ontained in the blossom and pred refers to the otherendpoint (see Figure 3.1). We wish to emphasize that these data will only be kept
orre
tly for surfa
e blossoms.h
lass blossom: data membersi+�node base, mate;node dis
, pred;
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v7 u7 v6 u6 v5B�7 B+6
u5

Figure 3.1: Consider the alternating tree T with root blossom B1 as depi
ted above. LetBi denote the obje
t of type blossom<NT> representing the blossom Bi, 1 � i � 7. Forexample, the entries of B3 are set to base = v2, mate = u2 and dis
 = pred = nil andfor B4 we have base = u4, mate = v4, dis
 = v3 and pred = u3. The entries of all otherblossoms are set a

ordingly. Using this data, the (surfa
e) tree path from ea
h tree blos-som to the root blossom 
an be identi�ed easily. B1; : : : ;B7 de�ne a new blossom B. Let Bbe the obje
t 
orresponding to B. We have: B:shrink path = <u1; v1; u2; v2; : : : ; u7; v7> andB:subblossom p = <&B2 ;&B3 ; : : : ;&B7 ;&B1>.Additionally, ea
h non{trivial blossom stores its de�ning surfa
e 
y
le as a list of verti
esin shrink path . All pointers of the immediate subblossom obje
ts are 
olle
ted in a listsubblossom p.h
lass blossom: data membersi+�list<node> shrink_path;list<blossom<NT>*> subblossom_p;We adopt the following order for the entries of these lists. Let C = (e1; e2; : : : ; e2k+1)denote the de�ning surfa
e 
y
le of a blossom B. Ea
h edge ei = (ui; vi), 1 �i � 2k + 1, of C is regarded as being dire
ted su
h that vi�1 and ui, with v0 =v2k+1, are 
ontained in the same immediate subblossom Bi. Assume further thatB1 refers to the subblossom 
ontaining the base. Then, shrink path stores the listof verti
es <u1; v1; u2; v2; : : : u2k+1; v2k+1> and subblossom p 
onsists of the pointers<&B2;&B3; : : : ;&B2k+1;&B1>, where &Bi denotes the pointer to the blossom obje
tthat represents Bi. Refer to Figure 3.1 for an example.At the time of shrinking, the split item entry of ea
h (immediate) subblossom is set tothe last item of that blossom. This will enable restoration of the 
on
atenable priorityqueues in an expand step later on.h
lass blossom: data membersi+�
_pq_item split_item;There are some additional data members that will be introdu
ed in the 
ontext theyare �rst needed.
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tions: We outline only some of the member fun
tions; the remainingfun
tions will be �lled in as needed. A fun
tion that returns the (stored) redu
ed 
ostof the best edge (of all best edges in
ident to verti
es) of a blossom is implemented asfollows.h
lass blossom: member fun
tionsi�
onst NT min_prio() 
onst{ return (find_min() ? prio(find_min()) : INFINITY(NT)); }Here, INFINITY (NT ) simply returns the maximum value of type NT . The followingthree fun
tions return the appropriate entries stored in the information part of an itemit (type 
 pq item).h
lass blossom: member fun
tionsi+�
onst NT pot_of (
_pq_item it) 
onst { return inf(it)->pot; }
onst node node_of (
_pq_item it) 
onst { return inf(it)->my_node; }
onst node best_adj(
_pq_item it) 
onst { return inf(it)->best_adj; }We must also provide a fun
tion to test whether or not a blossom is trivial: ea
h blossom
ontaining just one item is said to be trivial.h
lass blossom: member fun
tionsi+�bool trivial() 
onst { return size() == 1; }Friend Fun
tions: Given the item it of a vertex, the following fun
tion will returna pointer to the blossom obje
t 
ontaining that vertex.h
lass blossom: friend fun
tions | de
larationi�friend blossom<NT>* blossom_of<NT>(
_pq_item it);The fun
tion will also be used for testing whether or not two verti
es are 
ontained inthe same blossom.When a new blossom obje
t is 
reated, we 
all set owner (pt), where pt is the generi
pointer of the new blossom obje
t. Consequently, we 
an later 
ast the pointer returnedby get owner (it) to a pointer of type blossom<NT>�.h
lass blossom: friend fun
tions | de�nitioni�template<
lass NT> blossom<NT>* blossom_of(
_pq_item it) {return (it ? (blossom<NT>*)(get_owner(it)) : nil);}Constru
tor: We are now in a position to de�ne the 
onstru
tor of the 
lass blossom .As an optional argument, the base vertex b of the blossom to be 
reated 
an be given.h
lass blossom: member fun
tionsi+�blossom(node b = nil) : 
on
at_pq<NT, vertex<NT>*>() {set_owner(leda_
ast(this));label = even;
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h 67pot = offset = 0;base = b; mate = nil;dis
 = pred = nil;marker1 = marker2 = 0;item_in_T = item_in_O = nil;item_in_pq = nil;split_item = nil;}leda 
ast(this) simply 
asts the blossom pointer this to a generi
 pointer. The meaningof the missing data members marker1 , marker2 , item in T , item in O and item in pqwill be
ome 
lear shortly.We also de�ne a friend fun
tion that provides a more 
onvenient way of 
onstru
tingand initializing a trivial blossom obje
t. The fun
tionh
lass blossom: friend fun
tions | de
larationi+�friend 
_pq_item new_blossom<>(NT d, node b, blossom<NT>* &B);
reates a new blossom obje
t that 
onsists only of the vertex b having potential d. After-wards, B points to this new blossom obje
t and the 
 pq item of the item 
orrespondingto b is returned.h
lass blossom: friend fun
tions | de�nitioni+�template<
lass NT> 
_pq_item new_blossom(NT d, node b, blossom<NT>* &B) {B = new blossom<NT>(b);vertex<NT> *v = new vertex<NT>(d, b);return B->init(INFINITY(NT), v);}Note that we do not use the data member pot of the blossom 
lass to store the potentialof b | in fa
t, that data member is only used to maintain the potential of a non{trivial blossom. The priority of the item 
orresponding to b is set to INFINITY (NT )indi
ating that 
urrently no best edge is available.3.3.2 AlgorithmLet us turn to the implementation of Algorithm 1.6.3 that realizes the ideas outlined inChapter 2. The algorithm maintains the lower bounds Æ1; : : : ; Æ4 by the following datastru
tures.hlo
al variablesi�NT delta1;NT delta2a;p_queue<NT, blossom<NT>*> delta2b;p_queue<NT, edge> delta3;p_queue<NT, blossom<NT>*> delta4;node resp_d1;edge resp_d2a;
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k of the minimum (stored) potential of an even tree vertex that hasbeen en
ountered. delta1 is only used in the non{perfe
t mat
hing 
ase. The (a
tual)value of delta2a represents the (a
tual) redu
ed 
ost of the best edge of all best edgesfrom an even non{tree vertex to an even tree vertex. The responsible vertex or edgeof delta1 and delta2a is stored in resp d1 and resp d2a , respe
tively.6 An item hp; ptiin delta2b represents the best edge of an unlabeled blossom pointed to by pt . The(a
tual) priority of p equals the (a
tual) redu
ed 
ost of this edge. Ea
h edge e thatis a 
andidate for a shrink step has an item hp; ei in delta3 . The (a
tual) priority of pequals one half of the (a
tual) redu
ed 
ost of edge e. delta4 
ontains one item hp; ptifor ea
h non{trivial tree blossom. pt is a pointer to the blossom obje
t and the (a
tual)priority of p equals one half of the (a
tual) potential of that blossom.In Chapter 2 (Se
tion 2.3 and Se
tion 2.4) we have dis
ussed the semanti
s of ea
h itemin any of those priority queues in more detail; we will not repeat that dis
ussion here.A 
ounter Delta is used to a

umulate the total sum of dual adjustments that havebeen performed up to the 
urrent stage of the algorithm.hlo
al variablesi+�NT Delta = 0;We need a me
hanism to identify the pq item in delta2b or delta4 
orresponding to ablossom obje
t. Therefore, we add the following data member to the blossom 
lass.h
lass blossom: data membersi+�pq_item item_in_pq;Whenever a blossom sends an item to delta2b or delta4 , the 
orresponding pq item isstored in item in pq of that blossom.When a vertex be
omes an even tree vertex, its in
ident edges will be s
anned; it mayhappen that several verti
es be
ome even tree verti
es at on
e. Therefore, all new eventree verti
es are 
olle
ted in a queue Q whi
h is realized by a singly linked list of verti
es(type node slist).hlo
al variablesi+�node_slist Q(G);At the end of a phase the 
urrent alternating tree is destroyed and all priorities in ea
h
on
atenable priority queue need to be reset to in�nity . We therefore a

umulate in Tall pointers to surfa
e blossoms that are part of the 
urrent alternating tree; and in Othe pointers of all unlabeled surfa
e blossoms (outside of T ) that are adja
ent to anyeven tree blossom.hlo
al variablesi+�list<blossom<NT>*> T;list<blossom<NT>*> O;6In Chapter 2, we assumed that ea
h even tree vertex has an item in a priority queue delta1 ; andthat ea
h even non{tree surfa
e blossom has an item in a priority queue delta2 . However, it is suÆ
ientin fa
t to keep tra
k of the data as des
ribed above: initiating the 
orresponding step for resp d1 orresp d2a will terminate the 
urrent phase.
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h 69Sin
e we must be able to identify a blossom's item (type list item) in T or O, ea
hblossom obje
t stores this list item in the data member item in T or item in O , respe
-tively.h
lass blossom: data membersi+�list_item item_in_T;list_item item_in_O;An array item of (type node array<
 pq item>) is used to identify the 
orrespondingitem (type 
 pq item) for ea
h vertex of G.hlo
al variablesi+�node_array<
_pq_item> item_of(G);Finally, we introdu
e some variables that are used frequently. M is a list of edges andwill be used to represent the resulting mat
hing. The maximum value of number typeNT is stored in INFTY .hlo
al variablesi+�edge e;node resp, opst, 
ur, adj, u, v, r;blossom<NT> *RESP, *OPST, *CUR, *ADJ, *R;list<edge> M;
onst NT INFTY = INFINITY(NT);The overall stru
ture of the algorithm 
omputing either a maximum{weight mat
hingor a maximum{weight perfe
t mat
hing is as follows.hSST.t: algorithmi�template<
lass NT>list<edge> MWM_SST(
onst ugraph &G, 
onst edge_array<NT> &w,node_array<NT> &pot, array<two_tuple<NT, int> > &BT,node_array<int> &b, int heur = 1, bool perfe
t = false) {hlo
al variablesihinitializationiforall_nodes(r, G) {R = _BLOSSOM_OF(r);if (R->mate) 
ontinue;h
lear priority queues and QiR->status_
hange(even, Delta, T, Q);bool terminate = false;while (!terminate) {hs
an all edges of verti
es in Qihdetermine lower bounds 
and2b, : : : , 
and4 iif (delta2a == Delta) {haugment step using best edge of delta2aiterminate = true;}else if (delta1 == Delta) {



70 Chapter 3. Implementation and Testshalternate step using best node of delta1 iterminate = true;}else if (
and2b == Delta) {hgrow step using best edge of delta2bi}else if (
and3 == Delta) {hshrink step using best edge of delta3 i}else if (
and4 == Delta) {hexpand step using best blossom of delta4 i}else {hdual adjustmenti}}}hextra
t mat
hing and 
he
ker informationireturn M;}In a main loop, we iterate over all verti
es r of G. When the blossom R of r isunmat
hed, i.e. the mate of R equals nil , a phase is initiated. We de�ne the followingma
ro in order to more elegantly retrieve the pointer to the blossom obje
t 
ontaininga given vertex.hSST.t: data stru
turesi+�#define _BLOSSOM_OF(this_node) \(this_node ? blossom_of<NT>(item_of[this_node℄) : nil)At the beginning of ea
h phase, delta1 ; : : : ; delta4 are reset and the queue Q is madeempty.h
lear priority queues and Qi�delta1 = delta2a = INFTY;delta2b.
lear(); delta3.
lear(); delta4.
lear();Q.
lear();R is made an even tree blossom 
alling the member fun
tionvoid status 
hange(LABEL l, NT Delta, list<blossom<NT>*> &T, node slist &Q)the implementation of whi
h will be given shortly. In the inner while loop, we �rsts
an all edges in
ident to verti
es of Q in order to maintain delta1 ; : : : ; delta4 
orre
tly.Then, the minimum priorities of delta2b, delta3 and delta4 are determined and storedin 
and2b, 
and3 and 
and4 , respe
tively.hdetermine lower bounds 
and2b, : : : , 
and4 i�NT 
and2b = (delta2b.empty() ? INFTY : delta2b.prio(delta2b.find_min()));NT 
and3 = (delta3.empty() ? INFTY : delta3.prio(delta3.find_min()));NT 
and4 = (delta4.empty() ? INFTY : delta4.prio(delta4.find_min()));
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he
ked if any of those lower bounds equals zero.7 If so, the appropriatestep is initiated. Note that between two 
onse
utive dual adjustments, di�erent stepsmay have to be exe
uted. We adopt the 
onvention that all grow steps pre
ede asingle shrink step, and, further, all shrink steps pre
ede any expand step. This seemsreasonable to us, sin
e extending the tree in grow steps is rather 
heap 
ompared to ashrink step. Moreover, an expand step turned out to be more 
ostly than a shrink step.Finally, when we 
an 
hoose between either an augment step or an alternate step, weprefer the augment step. An augment step will de
rease the number of free verti
es bytwo, whereas an alternate step produ
es only a de
rease by one. When neither of thesesteps 
an be exe
uted, a dual adjustment is performed in order to progress.hdual adjustmenti�NT delta = leda_min(delta1,leda_min(delta2a,leda_min(
and2b,leda_min(
and3, 
and4))));if ((delta == INFTY) && perfe
t) return M; // return empty mat
hingDelta = delta; // 
orresponds to Delta += (delta - Delta)A phase terminates, when either the 
ase delta1 == Delta (this never happens in theperfe
t mat
hing 
ase) or delta2a == Delta has o

urred; or delta 
an be 
hosen asINFTY and thus no perfe
t mat
hing exists (in the perfe
t mat
hing 
ase only). Inthe latter 
ase, we return the empty mat
hing.Initialization: Depending on the value assigned to the argument heur , the algorithmuses a di�erent method to 
ompute an initial mat
hing and the vertex potentials.hinitializationi�int free = G.number_of_nodes();node_array<node> mate(G, nil);swit
h(heur) {
ase 0: { hempty mat
hingi break; }
ase 1: { hgreedy mat
hingi break; }default: { hjump start mat
hingi break; }}All three methods use the node array pot to store the initial potential of ea
h vertexand a node array mate to represent the mat
hing. free denotes the number of freeverti
es.When the initial mat
hing leaves no vertex unmat
hed it will be optimal and we 
animmediately return it.7Remember that the a
tual priorities are 
omputed by subtra
ting Delta from the stored priorities.Therefore, an a
tual priority equals zero i� the stored priority equals Delta.



72 Chapter 3. Implementation and Testshinitializationi+�if (free == 0) {hprepare solutionireturn M;}Otherwise, for ea
h vertex u of G a trivial blossom CUR with potential pot [u℄ is 
on-stru
ted; the 
orresponding 
 pq item is stored in item of [u℄. When mate[u℄ is di�erentfrom nil , the data member mate of CUR is set to the vertex mate[u℄ and CUR getsunlabeled.hinitializationi+�forall_nodes(u, G) {item_of[u℄ = new_blossom<NT>(pot[u℄, u, CUR);if (mate[u℄) {CUR->mate = mate[u℄;CUR->label = unlabeled;}}Starting with an empty mat
hing, the potentials are set as outlined in Se
tion 1.6.3.hempty mat
hingi�forall_nodes(u, G) {if (outdeg(u) == 0) { pot[u℄ = 0; 
ontinue; }NT max = -INFTY;forall_adj_edges(e, u) max = leda_max(w[e℄, max);pot[u℄ = max/2;}For ea
h vertex u we determine the value max whi
h is maximum along all edge weightsof in
ident edges. The potential of u is set to max=2; pot [u℄ is set to zero, when noin
ident edge exists.The 
onstru
tion of a greedy mat
hing or a jump start mat
hing will be the subje
t ofSe
tion 3.5. For now, it shall be suÆ
ient to regardhgreedy mat
hingi�free = greedy_mat
hing(G, w, pot, mate, perfe
t);andhjump start mat
hingi�free = jump_start(G, w, pot, mate, perfe
t);as bla
k{boxes that return the appropriate data in pot , mate and free.In 
ase all verti
es are mat
hed after the initial mat
hing has been 
omputed, M 
anbe 
onstru
ted as shown below.
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h 73hprepare solutioni�forall_edges(e, G) {u = sour
e(e);v = target(e);if (mate[u℄ && (mate[u℄ == v) &&mate[v℄ && (mate[v℄ == u))M.push(e);}For ea
h edge e, it is 
he
ked whether the endpoints are the mates of ea
h other, ornot; if so, e is a mat
hing edge and added to M . Observe that the information neededto 
he
k optimality is set 
orre
tly: pot 
ontains the potential of ea
h vertex; BT isempty and all entries in the node array b are set to �1, indi
ating that ea
h vertex isa surfa
e blossom.Performing a Status Change: We next outline the member fun
tion of 
lassblossom that realizes a status 
hange.h
lass blossom: member fun
tionsi+�void status_
hange(LABEL l, NT Delta, list<blossom<NT>*> &T, node_slist &Q) {if (l == unlabeled) {hmake unlabeled non{tree blossomi}else if (l == odd) {hmake odd tree blossomi}else if (l == even) {hmake even tree blossomi}label = l;}The new status of the blossom obje
t is determined by the given label l. The fun
tionneeds to adjust the o�set of the blossom by some Delta as developed in Se
tion 2.1.Moreover, T and Q must be maintained 
orre
tly.When a blossom gets unlabeled, its o�set is adjusted depending on its 
urrent labellabel and the list item item in T of that blossom is deleted from T . Note that only treeblossoms 
an get unlabeled.hmake unlabeled non{tree blossomi�assert((label != l) && item_in_T);offset += (label == odd ? Delta : -Delta);T.del(item_in_T);item_in_T = nil;We only allow non{tree blossoms to be
ome odd tree blossoms.8 The o�set is de
reasedby Delta and its pointer is added to T .8Why a blossom 
an 
hange its status from being an even labeled non{tree blossom to an odd labeledtree blossom will be
ome apparent when the realization of an augment step is inspe
ted more 
losely.



74 Chapter 3. Implementation and Testshmake odd tree blossomi�assert((label != l) && !item_in_T);offset -= Delta;item_in_T = T.append(this);Consider the 
ase where a blossom be
omes an even tree blossom. When its label isodd , we only need to update the o�set . Otherwise, the blossom is a non{tree blossom.The o�set gets adjusted and its pointer is added to T .hmake even tree blossomi�assert((label != l) || !item_in_T);if (label == odd) offset += 2*Delta;else { // non-tree blossomoffset += Delta;item_in_T = T.append(this);}happend all verti
es to QiThere is something more to do here: all verti
es 
ontained in the blossom obje
t mustbe appended to Q. Therefore, we iterate over all items it of the blossom and appendthe vertex of this item (i.e. node of (it)) to Q. Some preparatory work is done as well.happend all verti
es to Qi�
_pq_item it;forall_items(it, *this) {inf(it)->pot += offset;Q.append(node_of(it));}if (!trivial()) pot -= 2*offset;offset = 0;The potential of ea
h vertex 
ontained in the blossom and the potential of the blossomitself (if non{trivial) is adjusted su
h that these a
tual potentials are 
omputed 
orre
tlywith respe
t to the new o�set o�set = 0. Sin
e every vertex of the blossom has to beinspe
ted anyway, it is reasonable to use the provident strategy (see Se
tion 2.1.3) atthis point.S
anning New Even Verti
es: For all verti
es that have been added to Q, i.e. theverti
es that have re
ently be
ome even tree verti
es, the in
ident edges have to bes
anned in order to keep the data in the global priority queues delta1 to delta4 as wellas the redu
ed 
ost of edges asso
iated with verti
es 
orre
tly.hs
an all edges of verti
es in Qi�NT 
ur_pot, adj_pot, a
tual_p, stored_p;while (!Q.empty()) {
ur = Q.pop();CUR = _BLOSSOM_OF(
ur);
ur_pot = 
ompute_potential(CUR, Delta, item_of[
ur℄);if (!perfe
t) {htry to improve delta1 i
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h 75}forall_adj_edges(e, 
ur) {adj = opposite(
ur, e);ADJ = _BLOSSOM_OF(adj);hdis
ard dead and tree edgesiadj_pot = 
ompute_potential(ADJ, Delta, item_of[adj℄);a
tual_p = 
ur_pot + adj_pot - w[e℄;hprune edgesiif ((ADJ->label == even) && !ADJ->item_in_T) {hnew delta2a edge en
ounteredi}else if (ADJ->label == unlabeled) {hnew delta2b edge en
ounteredi}else if (ADJ->label == even) // ADJ is even tree blossomdelta3.insert(a
tual_p/2 + Delta, e);else if (ADJ->label == odd) {stored_p = a
tual_p - ADJ->offset;ADJ->improve_
onne
tion(item_of[adj℄, stored_p, 
ur);}}}For ea
h vertex 
ur of Q we 
ompute its a
tual potential 
ur pot 
alling the templatefun
tion 
ompute potential , whi
h is essentially a realization of the Formulae (2.1) and(2.2) of Se
tion 2.1. The fun
tion 
an also be asked to 
ompute the a
tual potential ofa blossom CUR by setting it to nil .hSST.t: helpersi�template<
lass NT>NT 
ompute_potential(blossom<NT> *CUR, NT Delta, 
_pq_item it = nil) {int a = (it == nil ? -2 : 1);int sigma = 0;if (CUR->item_in_T) sigma = (CUR->label == even ? -1 : 1);NT stored = (it == nil ? CUR->pot : CUR->pot_of(it));return stored + a * CUR->offset + a * sigma * Delta;}When 
ur pot is the new minimum potential of all even tree verti
es, delta1 and resp d1are set a

ordingly (only in non{perfe
t mat
hing 
ase).htry to improve delta1 i�if (
ur_pot < delta1 - Delta) {delta1 = 
ur_pot + Delta;resp_d1 = 
ur;// if (delta1 == Delta) break;}When the new (a
tual) value of delta1 equals zero, i.e. delta1 ==Delta , we 
ould alsoimmediately break the s
an step. The alternate step for resp d1 would de
rease thenumber of free verti
es by one and terminate the phase. However, we defer this step
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omplete the s
anning pro
edure instead. The reason for doing so is that delta2amight also get de
reased to zero and the 
orresponding augment step will then de
reasethe number of free verti
es by two.All edges e in
ident to 
ur are 
onsidered. The potential of ea
h adja
ent vertex adjis 
omputed so as to enable the 
omputation of the a
tual redu
ed 
ost a
tual p of e.However, dead edges or tree edges are dis
arded:hdis
ard dead and tree edgesi�// do not 
onsider edges within a blossomif (CUR == ADJ) 
ontinue;// do not 
onsider tree edgesif ((ADJ->label == odd) &&((ADJ->base == adj && ADJ->mate == 
ur) ||(ADJ->dis
 == adj && ADJ->pred == 
ur))) 
ontinue;Moreover, we use a pruning strategy. Sin
e a phase terminates when the stored priorityof delta1 (in non{perfe
t 
ase only) or delta2a equals Delta, we 
an dis
ard all edges ewhose stored priority ex
eeds the minimum value of delta1 and delta2a . We will say eis hopeless. Note, in the 
ase where e is a 
andidate edge for a shrink step, its storedpriority in delta3 will equal a
tual p=2 +Delta.9hprune edgesi�#if !defined(_NO_PRUNING)if ((ADJ->label == even) && ADJ->item_in_T) {if (a
tual_p/2 + Delta > leda_min(delta1, delta2a)) 
ontinue;}else if (a
tual_p + Delta > leda_min(delta1, delta2a)) 
ontinue;#endifDepending on the status of ADJ , four 
ases are distinguished. First, when ADJ is aneven non{tree blossom, a new delta2a edge has been en
ountered.hnew delta2a edge en
ounteredi�if (a
tual_p < delta2a - Delta) {delta2a = a
tual_p + Delta;resp_d2a = e;if (delta2a == Delta) break;}We 
he
k whether e is the new best edge of delta2a ; if ne
essary, we update the value ofdelta2a and set resp d2a , a

ordingly. In 
ase where the new (a
tual) value of delta2aequals zero, we break the s
an step immediately.Se
ond, when ADJ is an unlabeled non{tree blossom, a new delta2b edge has beenen
ountered.9The user 
an swit
h o� the pruning strategy by de�ning the token NO PRUNING (#defineNO PRUNING) before the �le MWM.t is in
luded.
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h 77hnew delta2b edge en
ounteredi�stored_p = a
tual_p - ADJ->offset + Delta;if (ADJ->improve_
onne
tion(item_of[adj℄, stored_p, 
ur))if (ADJ->item_in_pq)delta2b.de
rease_p(ADJ->item_in_pq, a
tual_p + Delta);else {ADJ->item_in_pq = delta2b.insert(a
tual_p + Delta, ADJ);ADJ->item_in_O = O.append(ADJ);}The stored redu
ed 
ost stored p of e is 
omputed a

ording to (2.5) (as des
ribed inSe
tion 2.1.2). We 
he
k whether e is the new best edge of adj to an even labeled treevertex and, if so, update the data of the 
orresponding item by the following memberfun
tion:h
lass blossom: member fun
tionsi+�bool improve_
onne
tion(
_pq_item it, NT x, node u) {if (!it) return false;NT old_min = min_prio();if (de
rease_p(it, x)) inf(it)->best_adj = u;return old_min != min_prio();}When the new priority x is less than the one 
urrently stored with it , i.e. fun
tionde
rease p returns true, the best adj entry is set to u. The fun
tion returns true i� theminimum priority of the blossom obje
t has 
hanged.In 
ase e is the new best edge of ADJ , we either de
rease the 
orresponding item indelta2b (if there exists any), or insert an appropriate one. In the latter 
ase, ADJ isadditionally inserted into O.The last two 
ases are easy. For an even tree blossom ADJ , an appropriate item issimply inserted into delta3 ; and for an odd tree blossom ADJ , we 
all the memberfun
tion improve 
onne
tion as des
ribed above.Alternate Step: We 
ome to the alternate step whi
h is initiated when the a
tualvalue of the minimum item in delta1 equals zero. Remember that this will never happenin the perfe
t mat
hing 
ase.halternate step using best node of delta1 i�RESP = _BLOSSOM_OF(resp_d1);RESP->base = resp_d1;alternate_path(RESP, item_of);hdestroy alternating tree T iRESP->label = even;First, the surfa
e blossom RESP of resp d1 is retrieved. The alive edges along theeven length path from RESP to the root blossom of the tree are alternately unmat
hedand mat
hed. RESP will be
ome free. The base of RESP is set to resp d1 , sin
e thatvertex has (a
tual) potential zero and thus is allowed to stay unmat
hed. The 
urrentalternating tree gets destroyed (as will be des
ribed below). Thereafter, RESP will



78 Chapter 3. Implementation and Testsbe an unlabeled non{tree blossom. Remember, however, that free non{tree blossomsare supposed to be even. Therefore, RESP 's label is 
orre
ted to even (we do not 
allstatus 
hange).Next, we des
ribe the fun
tion alternate path whi
h alternates the alive edges along thetree path from RESP to the root blossom of the tree. More pre
isely, ea
h mat
hingedge along this path will be
ome non{mat
hing and ea
h non{mat
hing edge be
omesmat
hing. Re
all that mat
hing edges are represented by means of the data membersbase and mate of 
lass blossom. The fun
tion will be reused in the augment step below.hSST.t: helpersi+�template<
lass NT>void alternate_path(blossom<NT>* RESP, node_array<
_pq_item> &item_of) {if (!RESP) return;blossom<NT> *CUR = RESP;node pred = RESP->base, dis
 = nil, mate;while (CUR) {if (CUR->label == even) {mate = CUR->mate;CUR->mate = dis
;CUR->base = pred;CUR = _BLOSSOM_OF(mate);}else { // CUR->label == oddpred = CUR->pred;dis
 = CUR->dis
;CUR->mate = pred;CUR->base = dis
;CUR = _BLOSSOM_OF(pred);}}}Starting at CUR = RESP , we follow the tree path towards the root. We keep thefollowing invariants: pred and dis
 denote the prede
essor and dis
overy vertex, re-spe
tively, of the odd blossom whi
h has been 
onsidered most re
ently; initially, predis set to the base of RESP and dis
 is set to nil . For an even labeled tree blossom CUR,we store the former mate in mate and set its data members mate and base to dis
 andpred , respe
tively. After this, the blossom to be inspe
ted next is retrieved by using theformer mate information stored in mate. When CUR is an odd tree blossom, pred anddis
 are set, and the mate and base data members of CUR are set a

ordingly. Thenext blossom to 
onsider is the blossom of pred .Augment Step: When the a
tual redu
ed 
ost of resp d2a equals zero, the 
urrent(surfa
e) mat
hing is augmented. We need to determine the two surfa
e blossoms RESPand OPST of the endpoints of edge e = resp d2a .
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h 79hdetermine RESP and OPST of ei�resp = sour
e(e);opst = target(e);RESP = _BLOSSOM_OF(resp);OPST = _BLOSSOM_OF(opst);if (!OPST->item_in_T) {leda_swap(resp, opst);leda_swap(RESP, OPST);}// invariant: OPST is tree blossomOPST denotes the blossom that is 
ontained in the alternating tree T . First, the evennon{tree blossom RESP is made an odd tree blossom (here we need to allow an evennon{tree blossom to be
ome an odd tree blossom); its pred and dis
 entries are setappropriately.haugment step using best edge of delta2ai�e = resp_d2a;hdetermine RESP and OPST of eiRESP->status_
hange(odd, Delta, T, Q);RESP->pred = opst;RESP->dis
 = resp;alternate_path(RESP, item_of);hdestroy alternating tree T iThen, the edges along the tree path from RESP (traversing OPST ) towards the rootblossom of T are alternated 
alling alternate path . Finally, the alternating tree T getsdestroyed, as des
ribed next.Destroy Tree: T stores all pointers to the surfa
e blossoms 
ontained in the alter-nating tree. For ea
h su
h blossom CUR, we reset the priorities of all items to in�nityby 
alling the member fun
tion reset (see Se
tion 3.2), and perform a status 
hange:CUR gets unlabeled.hdestroy alternating tree T i�forall(CUR, T) {if (CUR->label == odd) {CUR->dis
 = CUR->pred = nil;CUR->item_in_pq = nil;}CUR->reset();CUR->status_
hange(unlabeled, Delta, T, Q);}T.
lear();For an odd tree blossom CUR, the data members dis
 and pred as well as item in pqhave to be set to nil . Finally, T is made empty.Every unlabeled non{tree blossom that is adja
ent to any even tree blossom 
ontainsat least one item whose priority di�ers from in�nity . All those items need to be reset(to in�nity).



80 Chapter 3. Implementation and Testshdestroy alternating tree T i+�forall(CUR, O) {CUR->reset();CUR->item_in_pq = nil;CUR->item_in_O = nil;}O.
lear();The pointers of all unlabeled surfa
e blossoms adja
ent to any even tree blossom havebeen 
olle
ted in O. Therefore, we 
all the member fun
tion reset for ea
h surfa
eblossom pointed to by an entry CUR of O; nil gets assigned to CUR's data membersitem in pq and item in O . Alternatively, one 
ould also delete ea
h 
onne
tion from avertex 
ontained in CUR to an even tree vertex separately. However, it turned out that
alling reset on
e for ea
h su
h surfa
e blossom is more eÆ
ient. O is afterwards madeempty.Grow Step: The implementation of a grow step is as follows. First, we retrieve theunlabeled non{tree blossom RESP having a
tual priority zero in delta2b.hgrow step using best edge of delta2bi�RESP = delta2b.inf(delta2b.find_min());delta2b.del_item(RESP->item_in_pq);RESP->item_in_pq = nil;The item of RESP in delta2b is deleted and item in pq is set to nil . The best edge ofRESP is stored with the minimum item. Using the member fun
tions of 
lass blossom ,it is not diÆ
ult to obtain resp and opst , the two endpoints of that edge.hgrow step using best edge of delta2bi+�
_pq_item best = RESP->find_min();resp = RESP->node_of(best);opst = RESP->best_adj(best);The vertex resp is 
ontained in RESP , and opst denotes the even labeled vertex in thealternating tree. RESP be
omes an odd tree vertex having opst and resp as prede
essorand dis
overy vertex, respe
tively.hgrow step using best edge of delta2bi+�RESP->status_
hange(odd, Delta, T, Q);RESP->pred = opst;RESP->dis
 = resp;RESP is deleted from O and its data member item in O is set to nil , sin
e it is nolonger an unlabeled non{tree blossom; noti
e that RESP must have an item in O.hgrow step using best edge of delta2bi+�O.del_item(RESP->item_in_O);RESP->item_in_O = nil;We do not need to delete the 
onne
tion stored with resp from RESP . This will bedone when the tree gets destroyed later on.
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h 81Finally, when RESP is a non{trivial blossom, an item representing RESP and one halfof the value of its potential is inserted into delta4 .hgrow step using best edge of delta2bi+�if (!RESP->trivial())RESP->item_in_pq =delta4.insert(
ompute_potential(RESP, Delta)/2 + Delta, RESP);The mate blossom MATE of RESP is also added to T . MATE be
omes an even treeblossom.hgrow step using best edge of delta2bi+�node mate = RESP->mate;blossom<NT> *MATE = _BLOSSOM_OF(mate);MATE->status_
hange(even, Delta, T, Q);if (MATE->item_in_pq) {delta2b.del_item(MATE->item_in_pq);MATE->item_in_pq = nil;O.del_item(MATE->item_in_O);RESP->item_in_O = nil;}When MATE has an item in delta2b it must be removed; we also delete its item fromO.Shrink Step: A shrink step is more 
omplex. The minimum item in delta3 
ontainingthe new tight edge e is deleted and the blossoms RESP and OPST 
ontaining theendpoints resp and opst of e are determined (as des
ribed above).hshrink step using best edge of delta3 i�e = delta3.inf(delta3.find_min());delta3.del_min();hdetermine RESP and OPST of eiif (RESP == OPST) 
ontinue; // dead edge en
ountered;In 
ase e is dead, i.e. RESP and OPST refer to the same blossom, we simply dis
arde and 
ontinue with the main algorithm. Otherwise, we have to determine the lowest
ommon an
estor blossom LCA of RESP and OPST as well as the shrink path, i.e. thede�ning odd length surfa
e 
y
le, of the new blossom.hshrink step using best edge of delta3 i+�blossom<NT> *LCA;list<node> P1, P2;list<blossom<NT>*> sub1, sub2;hdetermine LCA and shrink path of RESP and OPST iThe 
ode 
hunk whi
h implements this will be presented shortly. For the time being,assume sub1 and P1 
orrespond to the lists subblossom p and shrink path of the newblossom as des
ribed in Se
tion 3.3.1. We 
onstru
t a new surfa
e blossom SUPERwhose base and mate equal those of LCA. Note that the priority queue of SUPER
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tual potential is set to zero (the stored potential must hen
e equal�2Delta); and P1 is assigned to its data member shrink path .hshrink step using best edge of delta3 i+�blossom<NT> *SUPER = new blossom<NT>(LCA->base);SUPER->pot = -2*Delta;SUPER->mate = LCA->mate;SUPER->shrink_path = P1;Subsequently, the priority queues of all subblossoms CUR of SUPER are 
on
atenatedone after another, 
alling the member fun
tion append subblossom dis
ussed below.When CUR is an odd tree blossom and has sent an item to delta4 , this item is deleted.Finally, SUPER is added to the list of T .hshrink step using best edge of delta3 i+�forall(CUR, sub1) {if (CUR->item_in_pq) {delta4.del_item(CUR->item_in_pq);CUR->item_in_pq = nil;}SUPER->append_subblossom(CUR, Delta, T, Q);}SUPER->item_in_T = T.append(SUPER);We next need to �ll in details of the member fun
tion append subblossom whi
h helpsto 
on
atenate the subblossoms.h
lass blossom: member fun
tionsi+�void append_subblossom(blossom<NT> *CUR, NT Delta,list<blossom<NT>*> &T, node_slist &Q) {if (CUR->label == odd)CUR->status_
hange(even, Delta, T, Q);if (!CUR->trivial())CUR->pot += -2*CUR->offset + 2*Delta;T.del(CUR->item_in_T);CUR->item_in_T = nil;
on
at(*CUR);CUR->split_item = last_item();subblossom_p.append(CUR);}Ea
h odd subblossom is made even by 
alling the member fun
tion status 
hange . In
ase CUR is non{trivial, its potential gets frozen as explained (in Se
tion 2.1.3). CURis deleted from T , sin
e it is no longer a surfa
e blossom. The priority queue of CURgets 
on
atenated to that of the blossom obje
t by 
alling the inherited fun
tion 
on
at .split item of CUR is set to the last item of the resulting priority queue (whi
h is the lastitem of CUR), and CUR is appended to the subblossom p list of the 
urrent blossomobje
t.
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h 83Determination of the Lowest Common An
estor: We will determine the lowest
ommon an
estor blossom of RESP and OPST by traversing the two tree paths towardsthe root in a lo
k{step fashion.10We introdu
e an additional 
ounter lo
k , whi
h is initially set to zero and will bein
remented ea
h time a lowest 
ommon an
estor has to be determined; sin
e lo
kmight get in
remented up to n2 times, type double has been 
hosen (in order to preventan over
ow as might o

ur for type int).hlo
al variablesi+�double lo
k = 0;Moreover, ea
h blossom o

upies two markers 
alled marker1 and marker2 .h
lass blossom: data membersi+�double marker1, marker2;The way we determine the lowest 
ommon an
estor is as follows. We traverse the treepaths from RESP and OPST towards the root. For ea
h even blossom CUR1 on the�rst path (starting with RESP), we set marker1 to lo
k ; and for ea
h even tree blossomCUR2 on the se
ond path (starting with OPST ), we set marker2 to lo
k . The lowest
ommon an
estor blossom is en
ountered when either marker2 of CUR1 or marker1of CUR2 equals lo
k .hdetermine LCA and shrink path of RESP and OPST i�blossom<NT> *CUR1 = RESP, *CUR2 = OPST;CUR1->marker1 = CUR2->marker2 = ++lo
k;P1.push(resp); P2.push(opst);while (CUR1->marker2 != lo
k && CUR2->marker1 != lo
k &&(CUR1->mate != nil || CUR2->mate != nil)) {if (CUR1->mate) {sub1.push(CUR1);P1.push(CUR1->base); P1.push(CUR1->mate);CUR1 = _BLOSSOM_OF(CUR1->mate);sub1.push(CUR1);P1.push(CUR1->dis
); P1.push(CUR1->pred);CUR1 = _BLOSSOM_OF(CUR1->pred);CUR1->marker1 = lo
k;}if (CUR2->mate) {sub2.push(CUR2);P2.push(CUR2->base); P2.push(CUR2->mate);CUR2 = _BLOSSOM_OF(CUR2->mate);sub2.push(CUR2);P2.push(CUR2->dis
); P2.push(CUR2->pred);CUR2 = _BLOSSOM_OF(CUR2->pred);10A trivial method to determine the lowest 
ommon an
estor of RESP and OPST is as follows.Starting at RESP we tra
e the tree path up to the root, marking ea
h traversed blossom. After this,following the tree path from OPST , the �rst marked blossom we meet will be the lowest 
ommonan
estor. However, that method uses time O(n) per determination and thus would not 
omply withour worst{
ase bound of O(m log n) per phase.
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k;}}sub1.push(CUR1); sub2.push(CUR2);While we are tra
ing the paths towards the lowest 
ommon an
estor, we keep tra
kof the subblossoms and edges traversed on either path. The lists sub1 and sub2 (typelist<blossom<NT>�>) 
ontain the pointers of all traversed surfa
e blossoms from RESPand OPST to CUR1 and CUR2 in reversed order, respe
tively. P1 and P2 (typelist<node>) 
onsist of all vertex pairs representing the (dire
ted) alive path from RESPand OPST to CUR1 and CUR2 in reversed order, respe
tively.Assume the while loop above is left, sin
e marker1 of CUR2 equals lo
k . CUR2 thendenotes the lowest 
ommon an
estor blossom LCA. We 
orre
t sub1 and P1 su
h thatthe head of sub1 equals LCA and the �rst vertex pair of P1 
orresponds to the �rst(dire
ted) edge on the reversed tree path from RESP to LCA. The 
ase where CUR1equals the lowest 
ommon an
estor blossom LCA is treated analogously.hdetermine LCA and shrink path of RESP and OPST i+�if (CUR2->marker1 == lo
k) { // CUR2 is LCAwhile (sub1.head() != CUR2) {sub1.pop(); sub1.pop();P1.pop(); P1.pop();P1.pop(); P1.pop();}}else if (CUR1->marker2 == lo
k) { // CUR1 is LCAwhile (sub2.head() != CUR1) {sub2.pop(); sub2.pop();P2.pop(); P2.pop();P2.pop(); P2.pop();}}// sub1.head() == sub2.head() == LCALCA = sub1.pop();sub2.reverse(); sub1.
on
(sub2);P2.reverse(); P1.
on
(P2);Finally, the 
on
atenation of sub1 and sub2 (the �rst element of sub1 is popped andsub2 is reversed beforehand) yields the desired list sub1 
orresponding to the listsubblossom p of the new blossom obje
t as spe
i�ed previously. Analogously, the 
on-
atenation of P1 with the reversed path P2 
orresponds to the shrink path of the newblossom.Expand Step: The responsible blossom RESP whi
h is going to be expanded 
aneasily be obtained from delta4 .hexpand step using best blossom of delta4 i�RESP = delta4.inf(delta4.find_min());delta4.del_item(RESP->item_in_pq);
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h 85Next, we need to re
over the data for ea
h (immediate) subblossom of RESP . Therefore,we de�ne a new member fun
tion expand whi
h restores the priority queue for ea
hsubblossom of RESP and unfreezes the potential if ne
essary. RESP is deleted from Tand the pointers of all subblossoms are added to T .hexpand step using best blossom of delta4 i+�RESP->expand(Delta);forall(CUR, RESP->subblossom_p)CUR->item_in_T = T.append(CUR);T.del(RESP->item_in_T);The details of the member fun
tion expand are dis
ussed next. Later on, we will alsouse that member fun
tion to expand an even or unlabeled non{tree blossom. We iterateover all (immediate) subblossoms of the blossom obje
t stored in the subblossom p list.For ea
h subblossom CUR we split the 
urrent priority queue of the blossom obje
t atCUR's split item into two. The �rst of whi
h gets assigned to CUR and the remainingbe
omes the new 
urrent priority queue of the blossom obje
t (whi
h will be split inthe next iteration). At the end, all subblossom priority queues are restored and thepriority queue of the blossom obje
t is empty.h
lass blossom: member fun
tionsi+�void expand(NT Delta) {blossom<NT> *CUR;forall(CUR, subblossom_p) {split_at_item(CUR->split_item, *CUR, *this);CUR->offset = offset;CUR->label = label;if (!CUR->trivial() && label == odd)CUR->pot += 2*offset + 2*Delta;else if (!CUR->trivial()) {assert(!CUR->item_in_T);assert(CUR->label == even || CUR->label == unlabeled);CUR->pot += 2*offset;}}}Moreover, the o�set of ea
h subblossom CUR is set to the o�set value of the blossomobje
t. Re
all that at the time of shrinking, we arranged that ea
h subblossom is labeledeven. However, the a
tual potential of ea
h vertex, and the redu
ed 
ost asso
iated withit, is 
omputed 
orre
tly with respe
t to the status of the blossom obje
t 
ontaining thatvertex. Therefore, ea
h subblossom is labeled a

ording to the blossom obje
t (
allingstatus 
hange would be wrong). Finally, the potential of ea
h non{trivial subblossomCUR gets unfrozen (by the formula given in Se
tion 2.1.3).We 
an now determine the base blossom BASE and the dis
overy blossom DISC ofRESP as follows.



86 Chapter 3. Implementation and Testshexpand step using best blossom of delta4 i+�blossom<NT> *BASE = _BLOSSOM_OF(RESP->base);blossom<NT> *DISC = _BLOSSOM_OF(RESP->dis
);int dist = RESP->restore_mat
hing(BASE, DISC);hextend alternating treeidelete RESP;The mat
hing needs to be restored for the subblossoms. We do so by 
alling themember fun
tion restore mat
hing whi
h will be the subje
t of the next paragraph. Inthe 
ode 
hunk to extend the alternating tree, we will set up some additional data forthe subblossoms along the even length (alive) path from BASE to DISC , and, moreover,remove the remaining subblossoms from T . Finally, we 
an destroy the blossom obje
tpointed to by RESP .Restoring the Mat
hing: The member fun
tion restore mat
hing restores themat
hing data for all subblossoms of the blossom obje
t.h
lass blossom: member fun
tionsi+�int restore_mat
hing(blossom<NT> *BASE, blossom<NT> *DISC) {h
y
li
ally rotate subblossom p and shrink path listihalternately mat
h/unmat
h subblossoms along subblossom pireturn dist;}The idea is simple. We start at the base blossom BASE and alternately unmat
h andmat
h the edges along the odd length (alive) 
y
le (represented by shrink path). Firstof all, we need to 
y
li
ally rotate the lists subblossom p and shrink path until the baseblossom BASE o

urs at the end of subblossom p:h
y
li
ally rotate subblossom p and shrink path listi�while (subblossom_p.tail() != BASE) {subblossom_p.append(subblossom_p.pop());shrink_path.append(shrink_path.pop());shrink_path.append(shrink_path.pop());}Note that the i{th vertex pair of shrink path 
orresponds to the in
oming edge of thei{th subblossom on subblossom p. The mate and base entries of the BASE blossom areset to mate and base of the blossom obje
t, respe
tively.halternately mat
h/unmat
h subblossoms along subblossom pi�BASE->mate = mate;BASE->base = base;Then, the subblossoms along the subblossom p list are mat
hed pairwise. In the pro
ess,we keep tra
k of the position dist of DISC in subblossom p; we start 
ounting with 1.
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h 87halternately mat
h/unmat
h subblossoms along subblossom pi+�node b, m;int dist, pos = 1;list_item p_it = shrink_path.first();list_item sub_it = subblossom_p.first();blossom<NT> *CUR = subblossom_p.inf(sub_it), *ADJ;while (CUR != BASE) {if (CUR == DISC) dist = pos;sub_it = subblossom_p.su

(sub_it); pos++;ADJ = subblossom_p.inf(sub_it);if (ADJ == DISC) dist = pos;p_it = shrink_path.su

(p_it);p_it = shrink_path.su

(p_it); b = shrink_path.inf(p_it);p_it = shrink_path.su

(p_it); m = shrink_path.inf(p_it);CUR->base = b; CUR->mate = m;ADJ->base = m; ADJ->mate = b;sub_it = subblossom_p.su

(sub_it); pos++;CUR = subblossom_p.inf(sub_it);p_it = shrink_path.su

(p_it);}if (CUR == DISC) dist = pos;Extending the Alternating Tree: We need to set up some additional data, su
h asthe pred and dis
 pointers et
., for the subblossoms of RESP lying on the even length(alive) path from BASE to DISC . Furthermore, all remaining subblossoms must leaveT . The way we a
hieve the desired result is by another traversal of the blossom 
y
le.We start at the base blossom BASE and follow the even length path to DISC , settingup the ne
essary data for ea
h tree blossom on this path. After this, all remainingsubblossoms on the blossom 
y
le be
ome unlabeled and leave T .Remember that dist stores the position of DISC in subblossom p and that BASE is thelast element in this list. Moreover, we know that the number of elements in subblossom pis odd. When dist is odd, the reversal of subblossom p 
ontains all subblossoms ofthe even length path from BASE to DISC followed by all subblossoms that leave T .Otherwise, when dist is even, we move BASE to the head of subblossom p. Again,subblossom p then 
onsists of the subblossoms of the even length path from BASE toDISC followed by the subblossoms leaving T .hextend alternating treei�if (dist % 2) {RESP->subblossom_p.reverse();RESP->shrink_path.reverse();}else RESP->subblossom_p.push(RESP->subblossom_p.Pop());We establish the following invariant for the vertex pairs along shrink path . The i{thvertex pair of shrink path 
orresponds to the outgoing edge of the i-th subblossom insubblossom p.



88 Chapter 3. Implementation and TestsNext, we turn to the set up of the data for the subblossoms staying in T . First, thedis
overy and prede
essor verti
es of DISC are set a

ordingly.hextend alternating treei+�DISC->dis
 = RESP->dis
;DISC->pred = RESP->pred;Next, the �rst two elements CUR and ADJ are popped from the subblossom p list;CUR 
orresponds to an odd blossom and ADJ to an even blossom. We set the predand dis
 entries for CUR; and in 
ase CUR is non{trivial, insert an item in delta4 .ADJ is made even. This pro
ess is repeated until the 
urrent blossom CUR equalsDISC .hextend alternating treei+�CUR = RESP->subblossom_p.pop();while (CUR != DISC) {ADJ = RESP->subblossom_p.pop();
ur = RESP->shrink_path.pop();adj = RESP->shrink_path.pop();CUR->pred = adj; CUR->dis
 = 
ur;if (!CUR->trivial())CUR->item_in_pq =delta4.insert(
ompute_potential(CUR, Delta)/2 + Delta, CUR);ADJ->status_
hange(even, Delta, T, Q);RESP->shrink_path.pop();RESP->shrink_path.pop();CUR = RESP->subblossom_p.pop();}// send item for DISC alsoif (!CUR->trivial())CUR->item_in_pq =delta4.insert(
ompute_potential(CUR, Delta)/2 + Delta, CUR);Finally, ea
h remaining blossom CUR in subblossom p gets unlabeled (and is therebyremoved from T ). When the priority queue of CUR is not empty, its best edge is sentto delta2b and CUR is inserted into O. Moreover, the pred and dis
 entries of CURneed to be set to nil .hextend alternating treei+�while (!RESP->subblossom_p.empty()) {CUR = RESP->subblossom_p.pop();CUR->status_
hange(unlabeled, Delta, T, Q);if (!CUR->empty()) {CUR->item_in_pq = delta2b.insert(CUR->min_prio() + CUR->offset, CUR);CUR->item_in_O = O.append(CUR);}CUR->pred = CUR->dis
 = nil;}This 
on
ludes the dis
ussion of all details 
on
erned with an expand step.
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h 89Extra
ting Mat
hing and Che
ker Information: The algorithm terminates witha surfa
e mat
hing. We have to extra
t the original mat
hing M (type list<edge>) byexpanding all non{trivial blossoms (whi
h are either labeled even or unlabeled).hextra
t mat
hing and 
he
ker informationi�int k = 0;forall_nodes(v, G)unpa
k_blossom(_BLOSSOM_OF(v), item_of, pot, b, BT, k, -1, Delta);if (k != 0) BT.resize(k);forall_edges(e, G)if (_BLOSSOM_OF(sour
e(e))->mate == target(e)) M.push(e);We use a fun
tion unpa
k blossom whi
h re
ursively expands all subblossoms to a givenblossom; simultaneously, the information needed by the 
he
ker will be 
onstru
ted.A surfa
e blossom is expanded 
ompletely, the �rst time when one of its verti
es is
onsidered. When all blossoms are expanded, we have to reset the index range ofBT to [0; : : : ; k � 1℄, where k will refer to the number of non{trivial surfa
e blossoms.Finally, ea
h mat
hing edge is added to M .We turn to the des
ription of the fun
tion unpa
k blossom :hSST.t: helpersi+�template<
lass NT>void unpa
k_blossom(blossom<NT> *RESP, 
onst node_array<
_pq_item> &item_of,node_array<NT> &pot, node_array<int> &b,array<two_tuple<NT, int> > &BT,int &k, int parent, NT Delta) {if (RESP->trivial()) {hset up 
he
ker data for trivial blossomi}else {hset up 
he
ker data for non{trivial blossomiRESP->expand(Delta);blossom<NT> *BASE = _BLOSSOM_OF(RESP->base);blossom<NT> *DISC = nil;RESP->restore_mat
hing(BASE, DISC);blossom<NT>* CUR;forall(CUR, RESP->subblossom_p)unpa
k_blossom(CUR, item_of, pot, b, BT, k, idx, Delta);delete RESP;}}The fun
tion 
reates the data pot , b and BT needed for the 
he
ker. We dis
ussedthe semanti
s of these arrays in Se
tion 3.1 and will not repeat the dis
ussion here. kdenotes the index that is used to store the next non{trivial blossom data in BT . Weuse parent to pass the parent index of a non{trivial surfa
e blossom to its (immediate)subblossoms.First, assume RESP is a trivial blossom 
ontaining only the vertex 
ur . When RESPhas already been expanded, i.e. b[
ur ℄ != �1, we immediately leave unpa
k blossom .
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he
ker data:hset up 
he
ker data for trivial blossomi�node 
ur = RESP->node_of(RESP->first_item());if (b[
ur℄ != -1) return;pot[
ur℄ = 
ompute_potential(RESP, Delta, item_of[
ur℄);b[
ur℄ = parent;The a
tual potential of the vertex 
ur is 
omputed and entered in pot [
ur ℄. b[
ur ℄ isset to the parent index parent (of the smallest non{trivial blossom 
ontaining 
ur ; or�1).When RESP is non{trivial, its 
he
ker data is set up as follows.hset up 
he
ker data for non{trivial blossomi�if (k > BT.high()) BT.resize(2*k+1);BT[k℄.first() = 
ompute_potential(RESP, Delta);BT[k℄.se
ond() = parent;int idx = k++;We double the size of BT whenever k ex
eeds the highest index of BT . The a
tualpotential of RESP is 
omputed and stored in the �rst 
omponent of BT [k℄. RESP 'sparent index is stored in the se
ond 
omponent. We keep the 
urrent value of k in idx(whi
h will be used as the parent index for the re
ursive 
alls) and in
rement k.Subsequently, the subblossoms are expanded and the mat
hing is restored for the (im-mediate) subblossoms of RESP . The fun
tions needed to a
hieve this were dis
ussedfor the expand step (see above). Ea
h immediate subblossom gets expanded re
ursively,by 
alling unpa
k blossom for it. The parent index for the re
ursive 
alls is set to theindex value idx of RESP in BT .3.4 Multiple Sear
h Tree Approa
hThe eÆ
ien
y of a priority queue based implementation of Edmonds' blossom{shrinkingapproa
h is substantially improved when several trees are grown simultaneously. Wenext sket
h the basi
 ideas underlying our multiple sear
h tree approa
h. The imple-mentation details will be presented in the subsequent se
tions.An alternating tree Ti is rooted at ea
h free vertex ri. Ea
h tree Ti is extended as in thesingle sear
h tree approa
h. That is, we perform alternate, grow, shrink and expandsteps as before. However, an augment step is performed di�erently: when a tight edgeuv, u+ 2 Ti and v+ 2 Tj with Ti 6= Tj exists, the 
urrent mat
hing is augmented alongthe two tree paths (from u and v to their roots), and u and v get mat
hed. A dualadjustment by Æ 
hanges the potentials of all verti
es and surfa
e blossoms as explainedin Se
tion 1.6.3. As before, the value of Æ is determined by the lower bounds Æ1; : : : ; Æ4;Æ1 is only taken into a

ount in the non{perfe
t mat
hing 
ase. But note that thede�nition of Æ3 needs to be re�ned now. The redu
ed 
ost of an edge uv, with u+ 2 Ti,v+ 2 Tj and Ti 6= Tj , de
reases by 2Æ for a dual adjustment. Therefore, the redu
ed
osts of those edges have to be taken into 
onsideration as well. More pre
isely, we
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h 91rede�ne Æ3 as follows:Æ3 = minuv2E f�uv=2 : u+ 2 Ti; v+ 2 Tjg;where Ti and Tj refer to any of the alternating trees (di�erent or equal).In the multiple sear
h tree approa
h, ea
h vertex u keeps its best 
onne
tion to analternating tree Ti. An edge uvi in
ident to u is 
alled a best 
onne
tion from u to Ti,when(1) vi is an even tree vertex in Ti, and(2) the (stored) redu
ed 
ost �uvi is minimal along all other (stored) redu
ed 
osts�uvj , with v+j 2 Ti, i.e. �uvi = minuvj2Ef�uvj : v+j 2 Tig:When several best 
onne
tions from u to a �xed tree Ti exist, the best 
onne
tion fromu to Ti will refer to any of those.For ea
h vertex u we have a priority queue Pu whi
h stores the best 
onne
tions from uto all existing alternating trees. However, even tree verti
es form an ex
eption: whenu+ 2 Ti is an even tree vertex 
ontained in an alternating tree Ti, we do not keep thebest 
onne
tion from u to its own tree Ti in Pu. When uvi is the best 
onne
tion fromu to Ti, the 
orresponding item in Pu equals h�uvi ; vii, where �uvi denotes the (stored)redu
ed 
ost of that edge.As before, ea
h surfa
e blossom B (trivial or non{trivial) is asso
iated with a 
on-
atenable priority queue PB. Ea
h vertex u 2 B has a representative item in PB. Therepresentative item of a vertex u in PB 
orresponds to the minimum of all best 
onne
-tions of u (with regard to the redu
ed 
osts). Thus, the minimum item in PB representsthe best 
onne
tion of B.In Se
tion 2.1 we presented a strategy to handle the varying priorities for ea
h of thesepriority queues.An alternating tree Ti 
olle
ts all edges uv that are 
andidates for a shrink step,i.e. u+; v+ 2 Ti, in a priority queue PTi . The priority stored with ea
h su
h edgeuv 
orresponds to the (stored) redu
ed 
ost of that edge. In the non{perfe
t mat
hing
ase, Ti knows its even vertex u+i 2 Ti whose (stored) potential is minimum along alleven tree verti
es in Ti.The way we will use the data asso
iated with ea
h surfa
e blossom or alternating tree isas follows. Again, the lower bounds Æ1; : : : ; Æ4 that determine the value of Æ are realizedby means of the priority queues delta1 to delta4 .In the non{perfe
t mat
hing 
ase, ea
h alternating tree Ti has a 
orresponding itemhyui ; uii in delta1 . u+i 2 Ti denotes the even vertex stored with Ti as introdu
ed before;and yui equals the (stored) potential of ui.Ea
h non{tree blossomBf?j+g sends its best 
onne
tion to delta2 . An even labeled non{tree blossom will only o

ur in the non{perfe
t mat
hing 
ase. The (a
tual) priority ofea
h item in delta2 equals the (a
tual) redu
ed 
ost of the represented edge.Æ3 is realized by two priority queues delta3a and delta3b . Generally speaking, delta3akeeps best 
onne
tions that 
an be used for an augment step, and delta3b 
olle
ts
andidate edges for a shrink step. More pre
isely, for ea
h best 
onne
tion of an even



92 Chapter 3. Implementation and Teststree blossom B+ 2 Ti, we have an appropriate item in delta3a .11 An alternating tree Tisends its best 
andidate edge uv from PTi to delta3b. In both priority queues, the a
tualpriorities will 
orrespond to one half of the a
tual redu
ed 
ost of the 
orrespondingedges.Finally, in delta4 we 
olle
t all odd tree blossoms. The a
tual priority of ea
h itemequals one half of the a
tual potential of the 
orresponding blossom.The ideas outlined should suÆ
e for the moment. All remaining details will be
ome
lear in the rest of this se
tion, where we dis
uss our implementation of a multiplesear
h tree approa
h. Many parti
ulars have been presented for the single sear
h treeapproa
h in the pre
eding se
tion. We will therefore fo
us on the ensuing modi�
ationsand extensions.3.4.1 Data Stru
turesWe 
ome to the data stru
tures of our implementation.hMST.t: data stru
turesi�template<
lass NT> 
lass blossom;template<
lass NT> 
lass vertex;template<
lass NT> 
lass tree;h
lass blossomih
lass vertex ih
lass treeiAs before, blossoms are represented by an obje
t of 
lass blossom . All data membersand most of the member fun
tions that have been introdu
ed for that 
lass in thepre
eding se
tion will be reused.De�nition of the Additional Class vertex :We de�ne a 
lass vertex whi
h keeps all data asso
iated with a vertex. Its overallstru
ture is given below.h
lass vertex i�template<
lass NT>
lass vertex : publi
 virtual p_queue<NT, node> {publi
:NT pot;node my_node;h_array<node, pq_item> ITEM_OF;h
lass vertex: member fun
tionsiLEDA_MEMORY(vertex<NT>);};11Here, we need to have ea
h even tree vertex keep tra
k of its best 
onne
tions to other, i.e. di�erent,alternating trees.
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h best 
on-ne
tion uvi of a vertex u to an alternating tree Ti is represented by an item h�uvi ; viiin the priority queue. As before, pot is set to the (stored) potential u and my nodedenotes the vertex u itself. We will need to identify the item 
orresponding to u'sbest 
onne
tion to a given tree Ti. Therefore, we use a hashing array ITEM OF (typeh array<node ; pq item>) whi
h maps the root vertex ri of a tree Ti to the appropriateitem (type pq item). h array is a dynami
 data type provided by LEDA. It is imple-mented by hashing with 
haining. All a

ess operations take expe
ted time O(1). Theoperations of this data type that are used will be explained brie
y at the time they are�rst needed.Constru
tor: The 
onstru
tor of 
lass vertex is trivial. It simply 
reates a new vertexobje
t for a vertex u having potential d.h
lass vertex: member fun
tionsi�vertex(NT d, node u) : p_queue<NT, node>() { pot = d; my_node = u; }The obje
t is initialized with the empty priority queue, and ITEM OF is unde�ned forall verti
es.Member Fun
tions: We 
ome to some standard a

ess fun
tions. min prio returnsthe priority of the minimum item; and min inf the information part.h
lass vertex: member fun
tionsi+�NT min_prio() 
onst{ return (find_min() ? prio(find_min()) : INFINITY(NT)); }node min_inf() 
onst{ return (find_min() ? inf(find_min()) : nil); }As before, INFINITY (NT ) or nil is returned, respe
tively, when the priority queue isempty.We also need to rede�ne the member fun
tion best adj of 
lass blossom:h
lass blossom: member fun
tionsi+�
onst node best_adj(
_pq_item it) 
onst { return inf(it)->min_inf(); }This fun
tion returns the vertex stored with the minimum item in the priority queueof a vertex obje
t (inf (it)).The following member fun
tion tries to improve the best 
onne
tion of a vertex obje
tto a tree, say T , rooted at r.h
lass vertex: member fun
tionsi+�bool de
rease_p(node u, NT x, node r) {NT old_min = min_prio();if (!ITEM_OF.defined(r))



94 Chapter 3. Implementation and TestsITEM_OF[r℄ = insert(x, u);else {pq_item it = ITEM_OF[r℄;if (prio(it) > x) {p_queue<NT, node>::de
rease_p(it, x);p_queue<NT, node>::
hange_inf(it, u);}}return old_min != min_prio();}u denotes the even tree vertex in T , and x will 
orrespond to the (stored) redu
ed 
ostof the edge from my node to u. First, we 
he
k whether the vertex obje
t stores an itemrepresenting a best 
onne
tion to T . We do so by means of a de�ned operation providedby the data type h array . de�ned(r) returns true, i� an item has been set for r. In the
ase where r is not de�ned for ITEM OF , we insert a new item hx; ui representing thebest 
onne
tion to T . ITEM OF [r℄ is set to the 
orresponding pq item (and hen
eforthde�ned for r). Otherwise, we 
an retrieve the item it of the 
urrent best 
onne
tion toT by an a

ess operation ITEM OF [r℄. When x is smaller than the priority 
urrentlystored with it , the priority of it is de
reased to x and the information is 
hanged to u.The fun
tion returns true, i� the minimum priority of the vertex obje
t has 
hanged.We will need a member fun
tion to delete the best 
onne
tion of a vertex obje
t to atree rooted at r.h
lass vertex: member fun
tionsi+�bool del(node r) {if (!ITEM_OF.defined(r)) return false;NT old_min = min_prio();del_item(ITEM_OF[r℄);ITEM_OF.undefine(r);return old_min != min_prio();}Given the root vertex r, we 
an look up its item using the a

ess operation ITEM OF [r℄;when ITEM OF is not de�ned for r nothing has to be done. This item is deleted fromthe priority queue and ITEM OF be
omes unde�ned for r by 
alling unde�ne(r). If theminimum priority has 
hanged due to the deletion, the fun
tion returns true; otherwisefalse.De�nition of the Additional Class tree:We de�ne a new 
lass tree to maintain the ne
essary data for the alternating trees.h
lass treei�h
lass tree: friend fun
tions | de�nitionitemplate<
lass NT> 
lass tree {h
lass tree: friend fun
tions | de
larationipubli
:node root;
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lass tree: member fun
tionsiLEDA_MEMORY(tree<NT>);};An obje
t T of 
lass tree (type tree<NT>) stores its root vertex in root . The pointers ofall surfa
e blossoms 
ontained in T are 
olle
ted in a list my blossoms . d1 node denotesan even vertex of T having minimum potential (along all even verti
es of T ); this entrywill be used in the non{perfe
t mat
hing 
ase only. Additionally, ea
h alternating treeT has its own priority queue d3b edges . An item hp; ei in d3b edges represents an edge ehaving (stored) redu
ed 
ost p; moreover, e is a 
andidate for a shrink step, i.e. e = uvwith u+; v+ 2 T . The minimum item of d3b edges is sent as a representative to a globalpriority queue delta3b. item in d3b enables the identi�
ation of this item in delta3b .p qWe brie
y explain why we de
ided to keep a separate priority queue for ea
h alternating tree.One 
ould, alternatively, simply insert all these edges in the global priority queue delta3b. Butwhen an alternating tree T is destroyed after an augment step, we would need a me
hanism toidentify all 
andidate edges of T in delta3b . Ea
h su
h edge would have to be deleted separatelyfrom delta3b 
onsuming time O(logm); or O(m logm) in total.In our strategy, however, we simply delete the representative of T (a

essible by item in d3b)and make the priority queue d3b edges empty. This will take total time O(logm+m).x yEa
h blossom stores a pointer to its alternating tree. That is, we add the followingdata member to the blossom 
lass:h
lass blossom: data membersi+�tree<NT> *my_tree;When a new blossom obje
t is 
onstru
ted, my tree is set to nil . Furthermore, an a

essoperation tree root is de�ned to return the root vertex of the alternating tree 
ontainingthe blossom.h
lass blossom: member fun
tionsi+�
onst node tree_root() 
onst { return (my_tree ? my_tree->root : nil); }Constru
tor: The 
onstru
tion of a tree obje
t is trivial. d1 node and item in d3bare set to nil . A root vertex r for the tree obje
t to be 
reated 
an be given as anoptional argument.h
lass tree: member fun
tionsi�tree(node r = nil) { root = r; d1_node = nil; item_in_d3b = nil; }Initially, my blossoms is empty and d3b edges 
ontains no items.Member Fun
tions: At this, we present only some basi
 member fun
tions. Theremaining ones will be introdu
ed when required.
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t (pointed to by) B is added to a tree as follows:h
lass tree: member fun
tionsi+�void add(blossom<NT> *B){ B->item_in_T = my_blossoms.append(B); B->my_tree = this; }B is appended to the list my blossom of the alternating tree. The item (type list item)of B in my blossoms is stored in the data member item in T of B; and my tree of B isset to the 
urrent tree obje
t.Conversely, the removal of a blossom B from an alternating tree is realized by remove :h
lass tree: member fun
tionsi+�void remove(blossom<NT> *B){ my_blossoms.del(B->item_in_T); B->item_in_T = nil; B->my_tree = nil; }The operations needed to retrieve the priority or information part of the minimum itemin d3b edges are given below.h
lass tree: member fun
tionsi+�
onst NT min_prio() 
onst {return (d3b_edges.find_min() ? \d3b_edges.prio(d3b_edges.find_min()) : INFINITY(NT)); }
onst edge min_inf() 
onst{ return (d3b_edges.find_min() ? \d3b_edges.inf(d3b_edges.find_min()) : nil); }We de�ne an operation ins : it inserts an item hx; ei for an edge e having (stored)redu
ed 
ost x into the priority queue d3b edges .h
lass tree: member fun
tionsi+�bool ins(NT x, edge e) {pq_item old_min = d3b_edges.find_min();d3b_edges.insert(x, e);return (old_min != d3b_edges.find_min());}The fun
tion returns true, i� the minimum item in d3b edges has 
hanged.Friend Fun
tions: We de
lare a fun
tion new tree that allows us to 
reate a newtree obje
t more 
omfortably.h
lass tree: friend fun
tions | de
larationi�friend tree<NT>* new_tree<>(node r, blossom<NT>* &B);It 
onstru
ts a new tree obje
t that represents an alternating tree rooted at r. B isthe only blossom 
ontained in this tree. The fun
tion returns a pointer to the new treeobje
t.
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lass tree: friend fun
tions | de�nitioni�template<
lass NT> tree<NT>* new_tree(node r, blossom<NT>* &B) {tree<NT>* T = new tree<NT>(r);B->item_in_T = T->my_blossoms.append(B);return T;}3.4.2 AlgorithmThe data stru
tures introdu
ed above will suÆ
e for our multiple sear
h tree algorithm.We now pro
eed to present the implementation details of the algorithm. Altogether,�ve priority queues will be needed:hlo
al variablesi+�node_pq<NT> delta1(G);delta1 is a spe
ialized priority queue of type node pq<NT>. A node pq is realized moreeÆ
iently than a priority queue of type p queue<NT ; node>. However, it 
an only beused with the restri
tion that ea
h vertex o

urs in at most one node pq . The data typesuits our purposes perfe
tly. For ea
h tree we set the priority of its d1 node in delta1to the (stored) potential of the vertex. Note that delta1 will only be used, however, inthe non{perfe
t 
ase.hlo
al variablesi+�p_queue<NT, blossom<NT>*> delta2;delta2 
ontains an item hp; pti for ea
h non{tree blossom. The a
tual priority of pequals the a
tual redu
ed 
ost of the best 
onne
tion of the blossom pointed to by pt .In the perfe
t mat
hing 
ase, ea
h su
h non{tree blossom will be unlabeled; however,in the non{perfe
t mat
hing 
ase also even labeled non{tree blossoms will o

ur.hlo
al variablesi+�p_queue<NT, blossom<NT>*> delta3a;p_queue<NT, tree<NT>*> delta3b;In delta3a , ea
h item hp; pti refers to an even tree blossom (pointed to by pt). Thea
tual priority of p equals one half of the a
tual redu
ed 
ost of the best 
onne
tion ofthis blossom.Ea
h alternating tree T sends an item hp; pti to delta3b . pt is a pointer to T . The a
tualpriority of p 
orresponds to one half of the a
tual redu
ed 
ost of the best 
andidateedge for a shrink step in T (stored in d3b edges).hlo
al variablesi+�p_queue<NT, blossom<NT>*> delta4;An item hp; pti in delta4 represents an odd tree blossom (pointed to by pt) havinga
tual potential equal to one half of the a
tual priority of p.Many lo
al variables, as introdu
ed for the single sear
h tree algorithm, are needed hereas well. For instan
e, the node array item of , the singly linked list of nodes Q (type
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ounter Delta, the list of mat
hing edgesM (type list<edge>), et
.We will not dis
uss their meaning again, but refer to the des
ription in the pre
edingse
tion.The overall stru
ture of the algorithm 
hanges slightly.hMST.t: algorithmi�template<
lass NT>list<edge> MWM_MST(
onst ugraph &G, 
onst edge_array<NT> &w,node_array<NT> &pot, array<two_tuple<NT, int> > &BT,node_array<int> &b, int heur = 1, bool perfe
t = false) {hlo
al variablesiint free = G.number_of_nodes();hinitializationiwhile (free) {hs
an all edges of verti
es in Qihdetermine lower bounds 
and1, : : : , 
and4 iif (
and3a == Delta) {haugment step using best 
onne
tion of blossom in delta3aifree -= 2;}else if (
and1 == Delta) {halternate step using best node of delta1 ifree -= 1;}else if (
and2 == Delta) {hgrow or augment step using best 
onne
tion of blossom in delta2 i}else if (
and3b == Delta) {hshrink step using best edge in delta3bi}else if (
and4 == Delta) {hexpand step using best blossom of delta4 i}else {hdual adjustmenti}}hextra
t mat
hing and 
he
ker informationireturn M;}The 
ounter free has to be interpreted as follows. In the perfe
t mat
hing 
ase, freesimply refers to the number of free verti
es. But in the non{perfe
t mat
hing 
ase,free denotes the number of free verti
es having (a
tual) potential larger than zero,i.e. the number of verti
es that violate (
s)(2) (see Se
tion 1.6.1). An alternate stepwill de
rease free by 1, whereas an augment step de
reases free by 2.We determine the minimum value 
and1 , 
and2 , 
and3a , 
and3b and 
and4 of ea
hpriority queue delta1 , delta2 , delta3a , delta3b and delta4 , respe
tively:
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and1, : : : , 
and4 i�NT 
and1 = (delta1.empty() ? INFTY : delta1.prio(delta1.find_min()));NT 
and2 = (delta2.empty() ? INFTY : delta2.prio(delta2.find_min()));NT 
and3a = (delta3a.empty() ? INFTY : delta3a.prio(delta3a.find_min()));NT 
and3b = (delta3b.empty() ? INFTY : delta3b.prio(delta3b.find_min()));NT 
and4 = (delta4.empty() ? INFTY : delta4.prio(delta4.find_min()));When any of these values equals Delta (and hen
e the a
tual priority equals zero),the appropriate step is initiated. Regarding the spe
i�
 order of these steps, the samearguments apply as were given for the single sear
h tree approa
h. The realization ofea
h step will be dis
ussed below.We perform a dual adjustment as follows. The 
ode is similar to the one dis
ussed forthe single sear
h tree algorithm.hdual adjustmenti�NT delta = leda_min(
and1,leda_min(
and2,leda_min(
and3a,leda_min(
and3b, 
and4))));if ((delta == INFTY) && perfe
t) return M; // return empty mat
hingDelta = delta; // 
orresponds to Delta += (delta - Delta)When the value of free drops to zero, the algorithm terminates. We extra
t the mat
hingand 
he
ker information in exa
tly the same way as has been des
ribed for the singlesear
h tree approa
h; therefore, the 
ode realizing this will not be repeated here.Initialization: The initialization di�ers only slightly. As before, depending on thevalue of heur we 
onstru
t either an empty mat
hing, a greedy mat
hing or a jumpstart mat
hing. Remember that the node array smate and pot represent the 
onstru
tedmat
hing and the vertex potentials. What di�ers is the way we set up the data for ea
hblossom:hinitializationi+�forall_nodes(u, G) {item_of[u℄ = new_blossom<NT>(pot[u℄, u, CUR);if (mate[u℄) {CUR->mate = mate[u℄;CUR->label = unlabeled;}else {CUR->my_tree = new_tree<NT>(u, CUR);Q.append(u);}}For ea
h vertex u of G we 
onstru
t a trivial blossom CUR 
onsisting of u only. Thepotential of u is set to pot [u℄. When u is mat
hed, its mate is stored in the data membermate of CUR, and CUR gets unlabeled. Otherwise, we 
onstru
t a new alternatingtree whi
h is rooted at u. CUR is the only blossom of this tree obje
t; we let my tree
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t. u is added to Q su
h that the priority queue data for ea
hadja
ent vertex of u will be set up 
orre
tly when all edges in
ident to any vertex in Qare s
anned for the �rst time.Performing a Status Change: We next revise the member fun
tion of 
lass blossomthat performs a status 
hange. The overall stru
ture remains the same.h
lass blossom: member fun
tionsi+�void status_
hange(LABEL l, NT Delta, node_slist &Q) {if (l == unlabeled) {assert((label != l) && item_in_T);offset += (label == odd ? Delta : -Delta);my_tree->remove(this);}else if (l == odd) {assert((label != l) && !item_in_T);offset -= Delta;my_tree->add(this);}else if (l == even) {assert((label != l) || !item_in_T);if (label == odd) offset += 2*Delta;else { // non-tree blossomoffset += Delta;my_tree->add(this);}happend all verti
es to Qi}label = l;}We adjust the o�set value of the blossom obje
t as outlined for the single sear
h treeapproa
h. The blossom obje
t is added to or removed from the alternating tree usingthe member fun
tions add and remove of 
lass tree , respe
tively. What di�ers, however,is the a
tion to be taken when a blossom be
omes an even tree blossom.happend all verti
es to Qi�
_pq_item it;forall_items(it, *this) {Q.append(node_of(it));delete_
onne
tion(it, my_tree->root);hadjust vertex potential and priorities (in provident 
ase)i}hadjust blossom potential and o�set (in provident 
ase)iWe add ea
h vertex of the blossom obje
t to the list Q and also delete the best 
on-ne
tion for ea
h su
h vertex to the 
urrent tree; the member fun
tion delete 
onne
tionwill be dis
ussed below. We do so in order to 
omply with the 
onvention that ea
heven tree vertex keeps its best 
onne
tions to every di�erent tree.Another di�eren
e is that we do not use the provident strategy (see Se
tion 2.1.3) as
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h tree approa
h. That is, the potential and prioritiesasso
iated with ea
h vertex of the blossom are not adjusted so as to 
ompute theira
tual value with respe
t to the o�set o�set = 0. Instead, we implement the non{provident strategy. We will 
ome ba
k to this point when the implementation of ashrink step is 
onsidered more 
losely.We have experimented with both strategies for the multiple sear
h tree approa
h. Thenon{provident strategy seems to be slightly more eÆ
ient in pra
ti
e and is thus usedby default.p qHowever, we brie
y state all additional details for the implementation of the provident strat-egy.12hadjust vertex potential and priorities (in provident 
ase)i�#ifdef _PROVIDENTif (offset != 0) {inf(it)->pot += offset;if (inf(it)->empty()) 
ontinue;inf(it)->adjust_priorities(offset);in
rease_p(it, prio(it) + offset);}#endifAs before, we iterate over all items it of the blossom obje
t. When the blossom o�set di�ersfrom zero, the potential of ea
h vertex (inf (it)) 
ontained in the 
urrent blossom obje
t isadjusted as des
ribed in Se
tion 2.1.3. Moreover, we need to in
rease all priorities stored withea
h vertex obje
t by o�set . This is a
hieved by 
alling the member fun
tion adjust prioritiesof 
lass vertex. Its implementation will be dis
ussed for the shrink step, later on. The priorityof item it is also in
reased by o�set , 
alling the inherited fun
tion in
rease p.hadjust blossom potential and o�set (in provident 
ase)i�#ifdef _PROVIDENTif (!trivial()) pot -= 2*offset;offset = 0;#endifFinally, the blossom potential is adjusted (when non{trivial) and o�set is set to zero.x yWhat remains to be presented is the member fun
tion delete 
onne
tion of 
lass blos-som:h
lass blossom: member fun
tionsi+�bool delete_
onne
tion(
_pq_item it, node r) {if (!it) return false;NT old_min = min_prio();if (inf(it)->del(r))if (inf(it)->empty())del_item(it);elsein
rease_p(it, inf(it)->min_prio());return old_min != min_prio();}12De�ning the token PROVIDENT (#define PROVIDENT), before the �le MWM.t is in
luded, for
es thealgorithm to use the provident instead of the non{provident strategy.
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 pq item), the fun
tion deletes the best 
onne
tion fromthe 
orresponding vertex obje
t (pointed to by inf (it)) to the tree rooted at r. Therealization is simple: we use the member fun
tion del of 
lass vertex to delete the
orresponding item in the priority queue of the vertex obje
t. When del returns true,i.e. when the minimum item has been 
hanged due to this operation, we need to updatethe priority of it in the 
on
atenable priority queue. Two 
ases are distinguished: whenthe priority queue of the vertex obje
t is empty, it is deleted (its priority is set toin�nity); otherwise, the priority of it is in
reased to the new minimum priority storedin the priority queue of the vertex obje
t. The fun
tion returns true i� the minimumpriority of the blossom has 
hanged.S
anning New Even Verti
es: We next give some details of the s
anning pro
e-dure. All edges e in
ident to a vertex 
ur in Q are inspe
ted in order to 
orre
tlymaintain the priority queues delta1 to delta4 as well as the priorities asso
iated withea
h vertex, tree or blossom. Most of the details are similar to those dis
ussed for thesingle sear
h tree approa
h.hs
an all edges of verti
es in Qi�NT 
ur_pot, adj_pot, a
tual_p, stored_p;while (!Q.empty()) {
ur = Q.pop();CUR = _BLOSSOM_OF(
ur);
ur_pot = 
ompute_potential(CUR, Delta, item_of[
ur℄);if (!perfe
t) {htry to improve delta1 i}forall_adj_edges(e, 
ur) {adj = opposite(
ur, e);ADJ = _BLOSSOM_OF(adj);hdis
ard dead and tree edgesiadj_pot = 
ompute_potential(ADJ, Delta, item_of[adj℄);a
tual_p = 
ur_pot + adj_pot - w[e℄;if (!ADJ->item_in_T) {hnew delta2 edge en
ounteredi}else if ((ADJ->label == even) && (ADJ->my_tree != CUR->my_tree)) {hnew delta3a edge en
ounteredi}else if ((ADJ->label == even) && (ADJ->my_tree == CUR->my_tree)) {hnew delta3b edge en
ounteredi}else if (ADJ->label == odd) {stored_p = a
tual_p - ADJ->offset;ADJ->improve_
onne
tion(item_of[adj℄, stored_p, 
ur, CUR->tree_root());}}}In the non{perfe
t mat
hing 
ase, we need to keep the even tree vertex d1 node for
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h alternating tree. Re
all that the vertex d1 node is supposed to denote the vertexthat has minimum potential along all even tree verti
es 
ontained in the tree obje
t.htry to improve delta1 i�if (!CUR->my_tree->d1_node) {delta1.insert(
ur, 
ur_pot + Delta);CUR->my_tree->d1_node = 
ur;}else if (
ur_pot < delta1.prio(CUR->my_tree->d1_node) - Delta) {delta1.del(CUR->my_tree->d1_node);delta1.insert(
ur, 
ur_pot + Delta);CUR->my_tree->d1_node = 
ur;}When no vertex is stored in d1 node of the tree obje
t 
ontaining CUR, we simply setthis data member to 
ur and insert an appropriate item into delta1 . Otherwise, welook up the 
urrent stored potential of d1 node (in delta1 ). When the a
tual potentialof d1 node is larger than the a
tual potential 
ur pot of 
ur , we pro
eed as follows.d1 node is deleted from delta1 and the new vertex 
ur is inserted with its storedpotential 
ur pot +Delta . Moreover, the vertex stored in d1 node is repla
ed by 
ur .When ADJ is a non{tree blossom, we have possibly dis
overed a new best 
onne
tionfrom adj to the alternating tree 
ontaining CUR; let T denote the obje
t representingthis alternating tree.hnew delta2 edge en
ounteredi�stored_p = a
tual_p - ADJ->offset + Delta;if (ADJ->improve_
onne
tion(item_of[adj℄, stored_p, 
ur, CUR->tree_root()))if (ADJ->item_in_pq)delta2.de
rease_p(ADJ->item_in_pq, a
tual_p + Delta);elseADJ->item_in_pq = delta2.insert(a
tual_p + Delta, ADJ);We 
ompute the stored redu
ed 
ost stored p of that edge and try to improve the 
on-ne
tion from adj to T by 
alling improve 
onne
tion , whi
h will be dis
ussed shortly.The fun
tion returns true if the minimum priority of ADJ has 
hanged, i.e. the 
ur-rently inspe
ted edge is the new best 
onne
tion of ADJ . If so, we either de
rease the
orresponding priority in delta2 (when ADJ has an item in delta2 ), or insert a newitem into delta2 .We pro
eed in a similar way when ADJ represents an even tree blossom 
ontained ina di�erent tree:hnew delta3a edge en
ounteredi�stored_p = a
tual_p - ADJ->offset + 2*Delta;if (ADJ->improve_
onne
tion(item_of[adj℄, stored_p, 
ur, CUR->tree_root())) {if (ADJ->item_in_pq)delta3a.de
rease_p(ADJ->item_in_pq, a
tual_p/2 + Delta);elseADJ->item_in_pq = delta3a.insert(a
tual_p/2 + Delta, ADJ);}
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tion improve 
onne
tion of 
lass blossom is implemented as follows.h
lass blossom: member fun
tionsi+�bool improve_
onne
tion(
_pq_item it, NT x, node u, node r) {if (!it) return false;NT old_min = min_prio();if (inf(it)->de
rease_p(u, x, r)) de
rease_p(it, x);return old_min != min_prio();}For a given item it (type 
 pq item), we try to improve the best 
onne
tion from the
orresponding vertex (pointed to by inf (it)) to the tree rooted at r. x denotes the(stored) redu
ed 
ost of the newly dis
overd 
onne
tion, and u refers to an even vertex
ontained in the tree rooted at r. We use the member fun
tion de
rease p of 
lassvertex . Its implementation has been des
ribed before. When this 
onne
tion is thenew minimum item of the priority queue of the vertex, i.e. de
rease p returns true, thepriority of item it is de
reased to x as well. The fun
tion returns true i� the minimumpriority of the blossom obje
t has 
hanged.We next dis
uss the 
ase where ADJ is an even tree blossom 
ontained in the sametree as CUR.hnew delta3b edge en
ounteredi�tree<NT> *T = CUR->my_tree;if (T->ins(a
tual_p/2 + Delta, e))if (T->item_in_d3b)delta3b.de
rease_p(T->item_in_d3b, a
tual_p/2 + Delta);elseT->item_in_d3b = delta3b.insert(a
tual_p/2 + Delta, T);Using the member fun
tion ins of 
lass tree, we insert the new 
andidate edge e intothe priority queue d3b edges of T . When e is the new minimum edge of this tree (insreturns true), we update T 's item in delta3b a

ordingly.Alternate Step: An alternate step will only be initiated in the non{perfe
t mat
hing
ase. The responsible vertex resp whi
h attains the minimum in delta1 is retrieved.RESP denotes the surfa
e blossom of resp.halternate step using best node of delta1 i�resp = delta1.del_min();RESP = _BLOSSOM_OF(resp);RESP->base = resp;alternate_path(RESP, item_of);The edges along the tree path are alternated starting from RESP . RESP will be
omefree, and hen
e we must set the base of RESP to resp; resp's a
tual potential equalszero and is thus allowed to stay free. The fun
tion alternate path has been given in thepre
eding se
tion.
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orre
t;RESP->my_tree->destroy_tree(
orre
t, delta1, delta3a,delta3b, delta4, Delta, Q, item_of);
orre
t_pqs(
orre
t, delta2, delta3a);RESP->label = even;The tree obje
t 
ontaining RESP is destroyed by 
alling the member fun
tiondestroy tree, whi
h will be the subje
t of the next paragraph. Destroying an alter-nating tree obje
t is more 
ompli
ated than in the single sear
h tree approa
h: weneed to remove all best 
onne
tions to this tree. As a 
onsequen
e, the minimum itemof some non{tree blossoms or even labeled tree blossoms may 
hange, and thus their
orresponding items in delta2 and delta3a need to be adjusted. destroy tree will returnthese blossoms (represented by their pointers) in a list 
orre
t . Calling 
orre
t pqs forthis list will a
hieve the desired result. Finally, we have to set the label of RESP toeven (destroy tree makes RESP unlabeled).Destroy Tree: When a tree obje
t T is going to be destroyed, it is not suÆ
ient todelete the 
orresponding items of ea
h even or odd tree blossom from delta3a or delta4 ;we also have to delete all best 
onne
tions to this tree. We tried two di�erent strategiesto a
hieve the latter goal.One of the strategies is as follows: we keep all verti
es that store a best 
onne
tionto T in a list. When T gets destroyed, we traverse this list and simply delete ea
hsu
h 
onne
tion. The time needed to do so is O(n logn), sin
e there 
an be at most nverti
es.Another possibility is to inspe
t ea
h edge uv in
ident to any even vertex u+ 2 T .When v (still) stores a best 
onne
tion to T , it gets deleted.13 The time required bythis method is O(deg(T ) + n logn), where deg(T ) refers to the total number of edgesin
ident to all even verti
es 
ontained in T . Obviously, deg(T ) is bounded by m, thenumber of edges.Although the �rst strategy looks better with respe
t to the theoreti
al running{time,the latter turned out to be more eÆ
ient in pra
ti
e. We therefore de
ided to use thelatter strategy.h
lass tree: member fun
tionsi+�void destroy_tree(slist<blossom<NT>*> &
orre
t,node_pq<NT> &delta1,p_queue<NT, blossom<NT>*> &delta3a,p_queue<NT, tree<NT>*> &delta3b,p_queue<NT, blossom<NT>*> &delta4,NT Delta, node_slist &Q, node_array<
_pq_item> &item_of) {blossom<NT>* CUR;forall(CUR, my_blossoms) {if (CUR->label == even)CUR->delete_all_
onne
tions(item_of, 
orre
t);hdelete item of CUR from delta3a or delta4 i13Note that a vertex v may be 
onsidered several times due to the existen
e of di�erent edgesu1v; u2v; : : : where u+1 ; u+2 ; : : : 2 T .
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hanged) {
orre
t.push(CUR);CUR->min_
hanged = true;}CUR->pred = CUR->dis
 = nil;CUR->status_
hange(unlabeled, Delta, Q);}hdelete item of tree from delta1 and delta3bidelete this;}We iterate over all blossoms CUR 
ontained in the tree. When CUR is even, the best
onne
tion from ea
h adja
ent vertex of CUR to the tree is deleted. The way we a
hievethis is by 
alling the member fun
tion delete all 
onne
tions of 
lass vertex . We will
ome ba
k to the realization of this member fun
tion shortly.When CUR has sent an item to delta3a (in the 
ase where CUR is even) or an item todelta4 (in the 
ase where CUR is odd) we delete that item.hdelete item of CUR from delta3a or delta4 i�if (CUR->item_in_pq) {if (CUR->label == even)delta3a.del_item(CUR->item_in_pq);elsedelta4.del_item(CUR->item_in_pq);CUR->item_in_pq = nil;}In 
orre
t (type slist<blossom<NT>�>), we 
olle
t all non{tree blossoms or even labeledtree blossoms whose 
orresponding item in delta2 or delta3a needs to be adjusted. Ea
htree blossom CUR will be
ome an unlabeled non{tree blossom and thus we add CUR to
orre
t . Sin
e we want ea
h su
h blossom to o

ur only on
e in this list, we introdu
ea new data member for 
lass blossom:h
lass blossom: data membersi+�bool min_
hanged;Initially, min 
hanged is set to false . Whenever a blossom obje
t is stored in 
orre
t ,min 
hanged will be set to true. The pred and dis
 entries of CUR are set to nil andthe status of CUR is 
hanged to unlabeled.Finally, the priority stored for d1 node in delta1 has to be removed. Moreover, whenthe alternating tree has an item in delta3b, we delete this item as well.hdelete item of tree from delta1 and delta3bi�if (d1_node)delta1.del(d1_node);if (item_in_d3b)delta3b.del_item(item_in_d3b);We now dis
uss the member fun
tion delete all 
onne
tions of 
lass blossom.
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lass blossom: member fun
tionsi+�void delete_all_
onne
tions(
onst node_array<
_pq_item> &item_of,slist<blossom<NT>*> &
orre
t) {edge e;
_pq_item it;node 
ur, adj;blossom<NT> *ADJ;forall_items(it, *this) {
ur = node_of(it);forall_adj_edges(e, 
ur) {adj = opposite(
ur, e);ADJ = blossom_of<NT>(item_of[adj℄);bool min_
hanged = ADJ->delete_
onne
tion(item_of[adj℄, tree_root());if (min_
hanged && !ADJ->min_
hanged && ADJ->label != odd) {
orre
t.append(ADJ);ADJ->min_
hanged = true;}}}}For ea
h vertex 
ur 
ontained in the blossom obje
t, we inspe
t ea
h in
ident edgee. adj denotes the vertex whi
h is adja
ent to 
ur with respe
t to e. The blossom
ontaining adj is pointed to by ADJ . We delete the best 
onne
tion from adj to thetree 
ontaining the 
urrent blossom by 
alling delete 
onne
tion . The implementationdetails for this fun
tion have already been given above. When the minimum of ADJ has
hanged and ADJ is either labeled even or unlabeled we add ADJ to 
orre
t . However,this will be done only when ADJ is not already 
ontained in 
orre
t .Corre
ting Global Priority Queues: We 
ome to the 
orre
tions that are ne
es-sary for the blossoms stored in the list 
orre
t . Note that ea
h blossom in 
orre
t iseither a non{tree blossom or an even tree blossom.hMST.t: helpersi+�template<
lass NT>void 
orre
t_pqs(slist<blossom<NT>*> &
orre
t,p_queue<NT, blossom<NT>*> &delta2,p_queue<NT, blossom<NT>*> &delta3a) {blossom<NT> *CUR;forall(CUR, 
orre
t) {if (CUR->item_in_pq) {hdelete item of CUR from delta2 or delta3ai}if (!CUR->empty()) {hinsert item for CUR in delta2 or delta3ai}CUR->min_
hanged = false;}
orre
t.
lear();}
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h blossom CUR, we �rst delete its item (if any) from delta2 or delta3a :hdelete item of CUR from delta2 or delta3ai�if (!CUR->item_in_T)delta2.del_item(CUR->item_in_pq);elsedelta3a.del_item(CUR->item_in_pq);CUR->item_in_pq = nil;and then insert a new item (if ne
essary) into delta2 or delta3a :hinsert item for CUR in delta2 or delta3ai�if (!CUR->item_in_T)CUR->item_in_pq = delta2.insert(CUR->min_prio() + CUR->offset, CUR);elseCUR->item_in_pq = delta3a.insert((CUR->min_prio() + CUR->offset)/2, CUR);The data member min 
hanged of CUR is set to false , and, eventually, 
orre
t is madeempty.Augment Step: When the a
tual priority of the minimum item in delta3a equalszero, an augment step is initiated. Most of the details given previously suÆ
e for thedis
ussion of the implementation details of this step.haugment step using best 
onne
tion of blossom in delta3ai�RESP = delta3a.inf(delta3a.find_min());delta3a.del_item(RESP->item_in_pq);RESP->item_in_pq = nil;We retrieve the even tree blossom RESP stored in the information part of the minimumitem and then delete this item from delta3a .The best 
onne
tion of RESP 
orresponds to the new tight edge that we will use toaugment the mat
hing. We de�ne a member fun
tion best edge for 
lass blossom asfollows:h
lass blossom: member fun
tionsi+�void best_edge(node &resp, node &opst) 
onst {resp = node_of(find_min());opst = best_adj(find_min());}This member fun
tion allows us to determine the endpoints of the best 
onne
tion toa given blossom more elegantly.haugment step using best 
onne
tion of blossom in delta3ai+�RESP->best_edge(resp, opst);OPST = _BLOSSOM_OF(opst);resp 
orresponds to the vertex 
ontained in the blossom RESP and opst denotes theother endpoint 
ontained in OPST . OPST represents an even tree blossom. Note that
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ontaining RESP and OPST are distin
t. The two tree paths from RESPand OPST to their roots are alternated, 
alling the fun
tion alternate path for ea
hblossom.haugment step using best 
onne
tion of blossom in delta3ai+�alternate_path(RESP, item_of);alternate_path(OPST, item_of);RESP->base = OPST->mate = resp;RESP->mate = OPST->base = opst;After this, we mat
h RESP and OPST with ea
h other by setting their base and mateentries appropriately. What remains to be done is to delete the two trees 
ontainingRESP and OPST . The fun
tion used to a
hieve this has been dis
ussed above.haugment step using best 
onne
tion of blossom in delta3ai+�slist<blossom<NT>*> 
orre
t;RESP->my_tree->destroy_tree(
orre
t, delta1, delta3a,delta3b, delta4, Delta, Q, item_of);OPST->my_tree->destroy_tree(
orre
t, delta1, delta3a,delta3b, delta4, Delta, Q, item_of);
orre
t_pqs(
orre
t, delta2, delta3a);Finally, we update the items in delta2 and delta3a for blossoms 
olle
ted in 
orre
t .Grow or Augment Step: The priority queue delta2 keeps all best 
onne
tions ofnon{tree blossoms. In the perfe
t mat
hing 
ase, ea
h su
h blossom will be unlabeledand thus its best 
onne
tion 
an be used for a grow step. However, sin
e alternate stepsmight o

ur in the non{perfe
t mat
hing 
ase, non{tree blossoms 
an also be labeledeven. We will use the best 
onne
tion of an even non{tree blossom to augment themat
hing.hgrow or augment step using best 
onne
tion of blossom in delta2 i�RESP = delta2.inf(delta2.find_min());delta2.del_item(RESP->item_in_pq);RESP->item_in_pq = nil;if (RESP->label == even) {haugment step using best 
onne
tion of RESPi}else {hgrow step using best 
onne
tion of RESPi}The blossom obje
t RESP is retrieved from delta2 and the minimum item is deletedfrom delta2 . If RESP is labeled even, an augment step for the best 
onne
tion of RESPis initiated; otherwise, we use the best 
onne
tion of RESP for a grow step. Let us
onsider the augment step �rst.haugment step using best 
onne
tion of RESPi�RESP->best_edge(resp, opst);OPST = _BLOSSOM_OF(opst);
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t the verti
es resp and opst . resp is part of the blossom RESP and theblossom 
ontaining opst is denoted by OPST . The blossom obje
t OPST representsan even tree blossom.haugment step using best 
onne
tion of RESPi+�alternate_path(OPST, item_of);RESP->base = OPST->mate = resp;RESP->mate = OPST->base = opst;RESP->label = unlabeled;The way we augment the mat
hing is as follows. We 
all alternate path for OPST . Alledges along the tree path from OPST to the root are alternated; OPST be
omes free.We then mat
h RESP and OPST and set the label of RESP to unlabeled .The tree of OPST is destroyed and the priority queues delta2 and delta3a are 
orre
tedas dis
ussed before. free is de
reased by 1 (not by 2), sin
e the number of free verti
eswith potential larger than zero has been de
reased by 1.14haugment step using best 
onne
tion of RESPi+�slist<blossom<NT>*> 
orre
t;OPST->my_tree->destroy_tree(
orre
t, delta1, delta3a,delta3b, delta4, Delta, Q, item_of);
orre
t_pqs(
orre
t, delta2, delta3a);free -= 1;We 
ome to the grow step. The best 
onne
tion stored with the unlabeled blossomRESP is retrieved.hgrow step using best 
onne
tion of RESPi�RESP->best_edge(resp, opst);OPST = _BLOSSOM_OF(opst);OPST denotes an even tree blossom. We make RESP an odd tree blossom of the treethat 
ontains OPST .hgrow step using best 
onne
tion of RESPi+�RESP->my_tree = OPST->my_tree;RESP->status_
hange(odd, Delta, Q);RESP->pred = opst;RESP->dis
 = resp;if (!RESP->trivial())RESP->item_in_pq =delta4.insert(
ompute_potential(RESP, Delta)/2 + Delta, RESP);When RESP is non{trivial, we insert a representative item for RESP into delta4 .The mate blossom MATE of RESP is also added to the alternating tree. MATEbe
omes an even tree blossom.14Note that all verti
es in RESP already satis�ed the 
omplementary sla
kness 
ondition (
s)(2)before the augment step, i.e. we have de
reased free for ea
h of these verti
es in some earlier step.
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onne
tion of RESPi+�node mate = RESP->mate;blossom<NT> *MATE = _BLOSSOM_OF(mate);MATE->my_tree = OPST->my_tree;MATE->status_
hange(even, Delta, Q);if (MATE->item_in_pq) {delta2.del_item(MATE->item_in_pq);if (!MATE->empty())MATE->item_in_pq =delta3a.insert((MATE->min_prio() + MATE->offset)/2, MATE);else MATE->item_in_pq = nil;}When MATE has an item in delta2 , we delete that item. The best 
onne
tion (if any)of MATE to another (distin
t) tree is inserted into delta3a .Shrink Step: We next des
ribe the realization of a shrink step. Ea
h item in delta3brepresents the best 
andidate edge (for a shrink step) of an alternating tree. First ofall, we determine the tree obje
t T whose best 
andidate edge has (a
tual) redu
ed 
ostzero.hshrink step using best edge in delta3bi�tree<NT> *T = delta3b.inf(delta3b.find_min());delta3b.del_item(T->item_in_d3b);T->item_in_d3b = nil;The new tight edge e itself is stored in the information part of the minimum item ofT 's priority queue d3b edges .hshrink step using best edge in delta3bi+�e = T->min_inf();T->d3b_edges.del_min();resp = sour
e(e); RESP = _BLOSSOM_OF(resp);opst = target(e); OPST = _BLOSSOM_OF(opst);resp and opst refer to the endpoints of e. We let RESP and OPST denote the blossoms
ontaining these endpoints. The lowest 
ommon an
estor blossom LCA and the shrinkpath P1 now have to be determined.hshrink step using best edge in delta3bi+�blossom<NT> *LCA;list<node> P1, P2;list<blossom<NT>*> sub1, sub2;hdetermine LCA and shrink path of RESP and OPST iThe 
ode realizing this has been dis
ussed in detail for the single sear
h tree approa
h;it is not repeated here. A new blossom obje
t SUPER is 
reated and some of its datamembers are set appropriately.



112 Chapter 3. Implementation and Testshshrink step using best edge in delta3bi+�blossom<NT> *SUPER = new blossom<NT>(LCA->base);SUPER->mate = LCA->mate;SUPER->my_tree = T;SUPER->shrink_path = P1;Re
all that the immediate subblossom obje
ts are 
olle
ted in the list sub1 . For ea
hsu
h obje
t CUR, we delete its item (if any) from delta4 or delta3a depending on thestatus of CUR.hshrink step using best edge in delta3bi+�forall(CUR, sub1) {if (CUR->item_in_pq) {if (CUR->label == odd)delta4.del_item(CUR->item_in_pq);elsedelta3a.del_item(CUR->item_in_pq);CUR->item_in_pq = nil;}SUPER->append_subblossom(CUR, Delta, Q);}CUR is made a subblossom of the new blossom SUPER by 
alling the member fun
tionappend subblossom . The implementation of append subblossom di�ers from the onepresented for the single sear
h tree approa
h. It realizes the non{provident strategy(see Se
tion 2.1.3) as will be dis
ussed below.hshrink step using best edge in delta3bi+�SUPER->pot = 2*(SUPER->offset - Delta);T->add(SUPER);if (!SUPER->empty())SUPER->item_in_pq =delta3a.insert((SUPER->min_prio() + SUPER->offset)/2, SUPER);Finally, the stored potential of SUPER is set su
h that its a
tual potential equals zero.We need to add SUPER to T and (possibly) insert an item that represents its best
onne
tion into delta3a . Finally, we delete all dead edges 
ontained in the priorityqueue d3b edges of T as shown below and (if ne
essary) insert a new representative intodelta3b.hshrink step using best edge in delta3bi+�T->del_dead_edges(item_of);if (!T->d3b_edges.empty())T->item_in_d3b = delta3b.insert(T->min_prio(), T);Deleting all dead (minimum) edges from d3b edges of a given tree obje
t is simple. Wesimply delete the minimum item from d3b edges until its edge e is alive (CUR != ADJ ),or d3b edges is empty.
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lass tree: member fun
tionsi+�void del_dead_edges(
onst node_array<
_pq_item> &item_of) {blossom<NT> *CUR, *ADJ;while (!d3b_edges.empty()) {edge e = min_inf();CUR = blossom_of<NT>(item_of[sour
e(e)℄);ADJ = blossom_of<NT>(item_of[target(e)℄);if (CUR != ADJ) break;else d3b_edges.del_min();}}The member fun
tion append subblossom is realized as follows. Ea
h 
all makes CURa subblossom of the blossom obje
t.h
lass blossom: member fun
tionsi+�void append_subblossom(blossom<NT>* CUR, NT Delta, node_slist &Q) {if (CUR->label == odd)CUR->status_
hange(even, Delta, Q);if (!CUR->trivial())CUR->pot += -2*CUR->offset + 2*Delta;if (offset != CUR->offset) {hadjust potentials and priorities of smaller groupi}CUR->my_tree->remove(CUR);
on
at(*CUR);CUR->split_item = last_item();subblossom_p.append(CUR);}As in the single sear
h tree approa
h, CUR is made even, when it refers to an oddsubblossom. Moreover, the potential of a non{trivial subblossom is frozen, as explainedbefore. When the o�set 
urrently assigned to the blossom obje
t di�ers from the o�setvalue of CUR we adjust the vertex potentials and asso
iated redu
ed 
osts of the smallergroup. After that, all a
tual values (potentials and redu
ed 
osts) are 
omputed withrespe
t to the same o�set value o�set . We 
an, therefore, 
on
atenate the priorityqueue of CUR to the priority queue of the blossom obje
t and append CUR to thesubblossom p list. CUR is removed from its alternating tree.The ideas underlying the uni�
ation of di�erent o�set values of two blossoms have beengiven in Se
tion 2.1.3. We now pro
eed to present our realization.The a
tual potentials and priorities asso
iated with ea
h vertex 
ontained in the 
ur-rent blossom obje
t are 
omputed with respe
t to the value o�set . Correspondingly,the a
tual potentials and priorities of a vertex 
ontained in the subblossom CUR are
omputed with regard to the o�set value of CUR. First of all, we determine the blossomSMALL B that 
ontains fewer verti
es. The other blossom is referred to as LARGE B .The di�eren
e of their o�set values is stored in adjustment .



114 Chapter 3. Implementation and Testshadjust potentials and priorities of smaller groupi�blossom<NT>* SMALL_B = (size() < CUR->size() ? this : CUR);blossom<NT>* LARGE_B = (size() < CUR->size() ? CUR : this);NT adjustment = SMALL_B->offset - LARGE_B->offset;Next, we iterate over all items of the smaller blossom SMALL B .hadjust potentials and priorities of smaller groupi+�
_pq_item it;forall_items(it, *SMALL_B) {SMALL_B->inf(it)->pot += adjustment;if (SMALL_B->inf(it)->empty()) 
ontinue;SMALL_B->inf(it)->adjust_priorities(adjustment);NT 
ur_prio = SMALL_B->prio(it);if (adjustment < 0)SMALL_B->de
rease_p(it, 
ur_prio + adjustment);elseSMALL_B->in
rease_p(it, 
ur_prio + adjustment);}offset = LARGE_B->offset;For ea
h item it , we adjust the potential of the 
orresponding vertex by adjustment .When the priority queue asso
iated with this vertex is not empty, we also need to adjustall priorities 
ontained in this queue. The member fun
tion adjust priorities (whi
h willbe dis
ussed next) of 
lass vertex has been implemented to a
hieve this. Finally, thepriority of it is de
reased or in
reased by adjustment as well.The priorities in a priority queue of a vertex obje
t are adjusted by a value adjustmentas follows.h
lass vertex: member fun
tionsi+�void adjust_priorities(NT adjustment) {if (adjustment == 0) return;node r;pq_item it;NT 
ur_prio;forall_defined(r, ITEM_OF) {it = ITEM_OF[r℄;
ur_prio = prio(it);if (adjustment < 0)p_queue<NT, node>::de
rease_p(it, 
ur_prio + adjustment);else { // simulate in
rease_pnode v = inf(it);del_item(it);ITEM_OF[r℄ = insert(
ur_prio + adjustment, v);}}}We iterate over all root verti
es r for whi
h an item it (type pq item) has been de�ned.When the value of adjustment is smaller than zero, we simply de
rease the 
urrentpriority of it by adjustment , 
alling operation de
rease p. Otherwise, we simulate an
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rease p operation by deleting it and then inserting it with the new priority again.The new item (type pq item) needs to be set for ITEM OF [r℄. Note that we do infa
t need the fun
tionality of the forall de�ned iterator provided by the data type 
lassh array .This 
on
ludes our des
ription of the implementation details for the shrink step. Wenext 
onsider the expand step.Expand Step: Only a few minor 
hanges ensue for the expansion of a blossom. Mostdetails are exa
tly the same as for the single sear
h tree approa
h.hexpand step using best blossom of delta4 i�RESP = delta4.inf(delta4.find_min());delta4.del_item(RESP->item_in_pq);The responsible blossom RESP is retrieved from delta4 and the 
orresponding item isdeleted. After that, RESP is expanded by 
alling the member fun
tion expand . Alldetails of this fun
tion have been dis
ussed for the expand step in the single sear
h treeapproa
h.hexpand step using best blossom of delta4 i+�RESP->expand(Delta);forall(CUR, RESP->subblossom_p)RESP->my_tree->add(CUR);RESP->my_tree->remove(RESP);What di�ers here is the way we add ea
h subblossom CUR to the tree 
ontainingRESP , and the way we subsequently remove RESP from its tree: we do so by usingthe member fun
tions add and remove , respe
tively.We restore the mat
hing for the immediate subblossoms, extend the alternating treeand, �nally, destroy the blossom obje
t RESP . Again, the 
ode realizing this is exa
tlythe same as before.hexpand step using best blossom of delta4 i+�blossom<NT> *BASE = _BLOSSOM_OF(RESP->base);blossom<NT> *DISC = _BLOSSOM_OF(RESP->dis
);int dist = RESP->restore_mat
hing(BASE, DISC);hextend alternating treeidelete RESP;3.5 Constru
ting Better Initial SolutionsThe performan
e of both algorithms is 
onsiderably improved when a heuristi
 is usedto 
onstru
t an initial mat
hing and the vertex potentials. We will dis
uss two heuris-ti
s in this se
tion: a greedy heuristi
 and a fra
tional mat
hing heuristi
.The greedy heuristi
 will set the initial vertex potentials as in the empty mat
hing
ase and then 
hoose a mat
hing within the tight edges in a greedy fashion. The time
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 will be O(n+m).The fra
tional mat
hing heuristi
 �rst solves the fra
tional mat
hing problem; the fra
-tional mat
hing problem only 
omprises of 
onstraints (1) and (3) of (wm) or (wpm)(see Se
tion 1.4), respe
tively. The solution to this problem will be half{integral and,moreover, the edges with value 12 will form vertex disjoint odd length 
y
les. The initialmat
hing will then 
onsist of all edges having value 1 and of bjCj=2
 edges from everyodd length 
y
le C. Constru
ting an initial mat
hing and the vertex potentials in thisway will take time O(n(m+ n logn)).The fun
tionint greedy mat
hing(
onst ugraph &G, 
onst edge array<NT> &w,node array<NT> &pot, node array<node> &mate,bool perfe
t);realizes the greedy heuristi
 andint jump start(
onst ugraph &G, 
onst edge array<NT> &w,node array<NT> &pot, node array<node> &mate,bool perfe
t);implements the fra
tional mat
hing heuristi
. Given an undire
ted graph G and aweight fun
tion w, either fun
tion 
onstru
ts an initial mat
hing of G and, moreover,returns the vertex potentials in a node array pot . The mat
hing is represented by anode array mate : an edge e = uv is a mat
hing edge i� the endpoints u and v are matesof ea
h other, i.e. mate [u℄ == v and mate [v℄ == u. The fun
tion returns the number offree verti
es.The 
omputed mat
hing and the vertex potentials will satisfy the following 
onditions:(
1) the redu
ed 
ost of ea
h edge is non{negative,(
2) ea
h mat
hing edge is tight, and(
3) when perfe
t is set to false : ea
h potential is non{negative.We present the implementation details of ea
h fun
tion in the subsequent se
tions.3.5.1 Greedy Heuristi
The idea underlying the 
onstru
tion of a greedy mat
hing is simple. We 
omputethe initial potential pot [u℄ of ea
h vertex u as for the empty mat
hing, i.e. we setthe potential pot [u℄ to one half of the weight of the heaviest in
ident edge: pot [u℄ =maxfwe=2 : e 2 Æ(u)g. When u is an isolated vertex, we set pot [u℄ = 0, sin
e it willnever be mat
hed. The redu
ed 
osts of all edges will then satisfy (
1) and, moreover,(
3) is also satis�ed.1515(
3) only holds under the assumption that all edge weights are non{negative. We may makethis assumption here, sin
e the weighted mat
hing problem is not a�e
ted when a positive 
onstant
 = maxfjwej : e 2 Eg is added to all edge weights.



3.5 Constru
ting Better Initial Solutions 117hgreedy.t: initialize vertex potentialsi�edge e;node u, v;pot.init(G, -INFINITY(NT));forall_nodes(u, G)if (outdeg(u) == 0) pot[u℄ = 0;forall_edges(e, G) {u = sour
e(e);v = target(e);pot[u℄ = leda_max(pot[u℄, (w[e℄/2));pot[v℄ = leda_max(pot[v℄, (w[e℄/2));}After this, we inspe
t ea
h edge e = uv of G: when e is tight and, moreover, neither unor v is mat
hed, we make e a mat
hing edge (u is made a mate of v and vi
e versa).Note that (
2) is met. The number of free verti
es is kept in free.hgreedy.t: 
onstru
t greedy mat
hingi�int free = G.number_of_nodes();mate.init(G, nil);forall_edges(e, G) {u = sour
e(e);v = target(e);if ((pot[u℄ + pot[v℄ == w[e℄) &&(mate[u℄ == nil) && (mate[v℄ == nil)) {mate[v℄ = u;mate[u℄ = v;free -= 2;}}In the non{perfe
t mat
hing 
ase, the vertex potentials are not restri
ted to being non{negative. We 
an therefore tighten the redu
ed 
osts of edges that are in
ident to freeverti
es.hgreedy.t: adjust vertex potentials in non{perfe
t 
asei�if (perfe
t) {forall_nodes(u, G) {if (!mate[u℄) {NT sla
k = INFINITY(NT);forall_adj_edges(e, u) {v = opposite(u, e);sla
k = leda_min(pot[u℄ + pot[v℄ - w[e℄, sla
k);}pot[u℄ -= sla
k;}}}We inspe
t all edges uv in
ident to a free vertex u and determine the value sla
k , whi
hrefers to the minimum redu
ed 
ost of these edges. The redu
ed 
ost of ea
h su
h edgewill also stay non{negative when we de
rease the value of pot [u℄ by sla
k .



118 Chapter 3. Implementation and TestsThe 
omplete greedy algorithm to 
ompute an initial mat
hing and the vertex potentialssatisfying (
1) to (
3) now redu
es to:hgreedy.t: algorithmi�template<
lass NT>int greedy_mat
hing(
onst ugraph &G, 
onst edge_array<NT> &w,node_array<NT> &pot, node_array<node> &mate,bool perfe
t) {hgreedy.t: initialize vertex potentialsihgreedy.t: 
onstru
t greedy mat
hingihgreedy.t: adjust vertex potentials in non{perfe
t 
aseireturn free;}Obviously, the time required by this fun
tion will be O(n+m).3.5.2 Fra
tional Mat
hing ProblemLet us 
onsider the linear programming formulation (fwpm) of the so{
alled fra
tional(perfe
t) mat
hing problem to a given instan
e G = (V;E;w).16 (fwpm) is the linearprogramming relaxation of (iwpm) presented in Se
tion 1.4.2.(fwpm) maximize wTxsubje
t to x(Æ(u)) = 1 for all u 2 V , (1)xuv � 0 for all uv 2 E. (2)The following theorem states that an optimal solution to (fwpm) meets 
ertain re-quirements.Theorem 3.5.1 (Half{Integrality of Fra
tional Mat
hing Problem) Let x bean optimal solution to (fwpm) and let P(fwpm) denote the 
onvex hull de�ned bythe in
iden
e ve
tors of (fwpm). Then, x is half{integral, i.e. xe 2 f0; 12 ; 1g for alle 2 E. Moreover, the edges e for whi
h xe = 12 form vertex disjoint odd length 
y
lesif x is a vertex of P(fwpm).17p qWe sket
h a 
onstru
tive proof of Theorem 3.5.1.First, we show that every optimal solution x to (fwpm) must be half{integral. As mentionedpreviously (see Se
tion 1.4), Birkho� [Bir46℄ proved that every optimal solution to the fra
tionalmat
hing problem is integral when G is restri
ted to being bipartite. We 
onstru
t a bipartite16There also exists a fra
tional non{perfe
t mat
hing problem: (fwpm)(1) is repla
ed by x(Æ(u)) � 1for all u 2 V . However, we will 
on
entrate on the perfe
t mat
hing 
ase here. All results to 
ome 
aneasily be transferred to the non{perfe
t 
ase using the redu
tion presented in Se
tion 1.5.17At this point we assume that the reader is familiar with 
ertain 
on
epts and results from the �eldof polyhedral 
ombinatori
s. We brie
y summarize the two results needed here (for a more extensivedis
ussion see Cook et al. [CCPS98℄). (1) A ve
tor v of a polyhedron P(lp) is a vertex of P(lp) i� v
annot be written as a 
onvex 
ombination of ve
tors in P(lp) n v. (2) If an optimal solution to a linearprogram (lp) exists, then (lp) has also an optimal solution x, whi
h is a vertex of the 
orrespondingpolyhedron P(lp).



3.5 Constru
ting Better Initial Solutions 119graph G0 = (A _[B) as follows. For ea
h vertex v in G we have a vertex v0 2 A and a vertexv00 2 B. Ea
h edge e = uv in G 
orresponds to two edges e0 = u0v00 and e00 = u00v0 in G0.The weight of ea
h edge e0 and e00 in G0 equals the weight of the 
orresponding edge e in G.An optimal solution x0 to (fwpm) for G0 = (A _[B;E0; w0) will be integral. Thus, 
hoosingxe = 12 (x0e0 + x0e00) gives us a half{integral solution whi
h is optimal for the fra
tional mat
hingproblem for G = (V;E;w), as desired.We now pro
eed to prove that all edges e with xe = 12 form vertex disjoint odd length 
y
lesif x is a vertex of P(fwpm). Clearly, every edge e with xe = 12 must be part of a 
y
le, sin
ex(Æ(u)) = 1 for all u 2 V . Moreover, all 
y
les are vertex disjoint. Let x be an optimal solutionand assume there exists an even length 
y
le C with xe = 12 for ea
h edge e 2 C. We show thatx is not a vertex of the 
onvex hull P(fwpm) de�ned by the in
iden
e ve
tors of (fwpm). Wede�ne a ve
tor d as follows: de = 0 for all e 62 C and de is alternately set to 12 and � 12 for theedges e along C. Then, x+ d as well as x� d are feasible solutions to (fwpm) (and at least oneof those has obje
tive value larger or equal to that of x). Sin
e x 
an be written as a 
onvex
ombination x = 12 (x+ d) + 12 (x� d), x 
annot be a vertex of P(fwpm).x yTheorem 3.5.1 gives rise to the idea that one 
an use an optimal solution of (fwpm)to 
onstru
t an initial mat
hing M . This idea was put forward by Derigs and Metz[DM86℄. We pro
eed as follows. First, we 
ompute an optimal (vertex) solution xto (fwpm) using a primal{dual method whi
h is similar to (but 
onsiderably simplerthan) the one developed in Se
tion 1.6. The 
omputed solutions (primal and dual) willmeet the following 
onditions:(i1) ea
h edge e with xe > 0 is tight,(i2) the redu
ed 
ost of ea
h edge is non{negative,(i3) in the non{perfe
t mat
hing 
ase: all vertex potentials are non{negative.The initial mat
hing M is then 
onstru
ted as follows. Ea
h edge e with xe = 1 isadded to M . Moreover, we add bjCj=2
 edges of every odd length 
y
le C to M . Dueto the feasibility of (i1) to (i3), the invariants (
1) to (
3) will hold for M and the
omputed vertex potentials.A realization of a primal{dual method for the fra
tional mat
hing problem is as follows.We des
ribe a single sear
h tree approa
h. The algorithm starts with an initial mat
hingM (xe 2 f0; 1g) and vertex potentials su
h that (i1) to (i3) are met. Initially, everymat
hed vertex is unlabeled and every free vertex is labeled even. The algorithmpro
eeds in phases. In ea
h phase an alternating tree T is grown from a free vertex r;a vertex r is said to be free in this 
ontext, when x(Æ(r)) = 0. Only tight edges areused by the algorithm. The details for an alternate step (in the non{perfe
t 
ase), agrow step and an augment step are identi
al to those given for the blossom{shrinkingapproa
h. However, when a tight edge uv with u+ 2 T and v+ 2 T exists, we pro
eeddi�erently. xe is set to 12 for all edges along the en
ountered odd length 
y
le C, andthe edges along the tree path from the lowest 
ommon an
estor of u and v to the rootr get alternately unmat
hed and mat
hed (r be
omes mat
hed). After this, all verti
esin T are unlabeled and T is destroyed. When a tight edge uv with u+ 2 T and v? 62 Tis en
ountered and v is moreover part of a half{valued odd length 
y
le, the edges alongthe odd length 
y
le get alternately unmat
hed and mat
hed starting in v (v be
omesfree) and then all edges along the path p = (v; u; : : : ; r) get alternately mat
hed andunmat
hed (v and r be
ome mat
hed). Following this, all verti
es in T get unlabeledand T is destroyed.



120 Chapter 3. Implementation and TestsA dual adjustment is performed as in the blossom{shrinking approa
h: ea
h potentialof an even tree vertex is de
reased by Æ, ea
h potential of an odd tree vertex is in
reasedby Æ and all other vertex potentials stay the same. The value of Æ is only determinedby the lower bounds Æ1; Æ2 and Æ3 (see Se
tion 1.6.3).Implementation: We now 
ome to our implementation. The algorithm 
an be askedto solve either the fra
tional perfe
t mat
hing problem or the fra
tional non{perfe
tmat
hing problem (depending on the argument perfe
t). It guarantees a worst{
aserunning{time of O(n(m + n logn)). As before, priority queues are used to determinethe value of Æ and to identify new tight edges. Most of the ideas presented in thepre
eding se
tions are reused.Besides some standard variables, we have two additional node arrays: label , whi
hstores the label to ea
h vertex, and pred , whi
h stores the prede
essor vertex of ea
hodd vertex u in the alternating tree.hfra
tional.t: lo
al variablesi�edge e;node u, v, r;node_array<int> label(G);node_array<node> pred(G, nil);The value of Æ is determined by means of the following data stru
tures:hfra
tional.t: lo
al variablesi+�NT delta1;NT delta2a;node_pq<NT> delta2b(G);node resp_d1;edge resp_d2a;node_array<edge> resp_d2b(G);NT Delta = 0;delta1 stores the minimum (stored) potential of an even tree vertex resp d1 . By resp d2aand delta2a we keep tra
k of the best edge that will terminate the 
urrent phase. Morepre
isely, resp d2a may denote an edge uv with u+ 2 T and vf?j+g 62 T ; v will lie ona half{valued 
y
le if v? 62 T . The a
tual value of delta2a 
orresponds to the a
tualredu
ed 
ost of uv . Otherwise, resp d2a refers to an edge uv with u+ 2 T and v+ 2 T .Then, the a
tual value of delta2a then equals one half of the a
tual redu
ed 
ost of uv .We use a node array resp d2b and a node pq delta2b to maintain the best edge uv withu+ 2 T of ea
h vertex v? 62 T ; v? is not part of an odd length 
y
le. resp d2b[v℄ storesthe edge uv and the (a
tual) priority of delta2b[v℄ refers to the (a
tual) redu
ed 
ost ofuv. As before, we a

umulate the total amount of dual adjustments in Delta:hfra
tional.t: lo
al variablesi+�slist<edge> tight;slist<node> Q;node_slist T(G);



3.5 Constru
ting Better Initial Solutions 121A list tight is used to 
olle
t all edges that have re
ently be
ome tight and 
an thusbe used by the algorithm. Q and T are essentially used as in the single sear
h treealgorithm of the blossom{shrinking approa
h: Q stores all new even verti
es, and Tkeeps all verti
es that are part of the alternating tree.The overall stru
ture of our algorithm is as follows.hfra
tional.t: algorithmi�template<
lass NT>int jump_start(
onst ugraph &G, 
onst edge_array<NT> &w,node_array<NT> &pot, node_array<node> &mate,bool perfe
t) {hfra
tional.t: lo
al variablesihfra
tional.t: initializationiforall_nodes(r, G) {if (mate[r℄ || pred[r℄) 
ontinue;h
lear priority queues, Q and tightipot[r℄ += Delta;T.append(r); Q.append(r);bool terminate = false;while (!terminate) {hs
an all edges of verti
es in Qiif (delta1 == Delta) {halternate step using best node of delta1 i}else if (!tight.empty()) {huse all tight edgesi}else {hdual adjustmentihextra
t tight edgesi}}}hmat
h all odd length 
y
lesireturn free;}The initialization is simple: we 
ompute a greedy mat
hing and label all verti
es ap-propriately.hfra
tional.t: initializationi�int free = greedy_mat
hing(G, w, pot, mate, perfe
t);if (free == 0) return free;forall_nodes(u, G)label[u℄ = (mate[u℄ ? unlabeled : even);Next, a phase is initiated for ea
h free vertex r. We use the following 
onvention to



122 Chapter 3. Implementation and Testsdetermine the value x(Æ(u)) to a given vertex u:x(Æ(u)) = 8><>:0 when mate [u℄ = nil and pred [u℄ = nil ,12 when mate [u℄ = nil and pred [u℄ 6= nil ,1 when mate [u℄ 6= nil .For a half{valued odd length 
y
le C we will set the pred [u℄ entry of ea
h ver-tex u 2 C su
h that the 
y
le 
an be traversed following these entries, i.e. C =u; pred [u℄; pred [pred [u℄℄; : : : .At the beginning of ea
h phase, delta1 and delta2a are reset and delta2b, Q and T aremade empty.h
lear priority queues, Q and tighti�delta1 = delta2a = INFINITY(NT);delta2b.
lear();Q.
lear(); tight.
lear();The free vertex r is added to T and entered into Q. Due to the status 
hange ofr, we have to adjust its potential by +Delta (see formula (2.3), Se
tion 2.1); we donot maintain an o�set for ea
h vertex, but instead adjust its potential when a status
hange o

urs. In a while loop, all edges in
ident to verti
es in Q are s
anned as willbe explained below. Afterwards, we initiate an alternate step when the a
tual valueof delta1 equals zero (this will only happen in the non{perfe
t 
ase), or use the tightedges 
olle
ted in tight to extend T . When neither 
ase applies, a dual adjustment isperformed.hdual adjustmenti�NT 
and2b = (delta2b.empty() ? \INFINITY(NT) : delta2b.prio(delta2b.find_min()));NT delta = leda_min(delta1, leda_min(delta2a, 
and2b));if (delta == INFINITY(NT) && perfe
t) {mate.init(G, nil);return 0;}Delta = delta; // 
orresponds to Delta += (delta - Delta)When the a
tual value of delta1 equals zero, we immediately resume the while loop.When delta2a has a
tual value zero, the responsible edge resp d2a is appended to tight(resp d2a is the only element). The next step will terminate the phase; note that Q isempty. Otherwise, all new tight edges are retrieved from delta2b and added to tight .hextra
t tight edgesi�if (delta1 == Delta)
ontinue;else if (delta2a == Delta) {tight.append(resp_d2a);resp_d2a = nil;}else {while (!delta2b.empty() &&



3.5 Constru
ting Better Initial Solutions 123(delta2b.prio(delta2b.find_min()) == Delta)) {u = delta2b.del_min();tight.append(resp_d2b[u℄);resp_d2b[u℄ = nil;}}Finally, the algorithm terminates with an optimal solution to the fra
tional mat
hingproblem. We alternately mat
h and unmat
h (xe 2 f0; 1g) the edges along all existingodd length 
y
les to obtain the �nal mat
hing. Exa
tly one vertex per 
y
le (whi
h isu below) will be
ome free.hmat
h all odd length 
y
lesi�forall_nodes(u, G)if (pred[u℄) {alternate_
y
le(u, mate, pred);free++;}The fun
tion alternate 
y
le is easily de�ned as follows.hfra
tional.t: helpersi�void alternate_
y
le(node u, node_array<node> &mate,node_array<node> &pred) {node 
ur1 = pred[u℄;while (
ur1 != u) {mate[pred[
ur1℄℄ = 
ur1;mate[
ur1℄ = pred[
ur1℄;node h = pred[
ur1℄;pred[
ur1℄ = nil;
ur1 = h;h = pred[
ur1℄;pred[
ur1℄ = nil;
ur1 = h;}pred[u℄ = nil;}Starting with 
ur1 = pred [u℄, we traverse the odd length 
y
le, alternately mat
hingand unmat
hing the edges along this 
y
le by setting the mate and pred entries appro-priately.All remaining details will be �lled in subsequently.S
anning New Even Verti
es: As in the blossom{shrinking approa
h, all edgesin
ident to any vertex that has re
ently be
ome an even tree vertex need to be inspe
ted.This is ne
essary so as to maintain delta1 , delta2a as well as delta2b 
orre
tly.hs
an all edges of verti
es in Qi�while (!Q.empty()) {u = Q.pop();NT pot_u = pot[u℄ - Delta;



124 Chapter 3. Implementation and Testsif (!perfe
t) {htry to improve delta1 i}forall_adj_edges(e, u) {v = opposite(u, e);if (label[v℄ == odd) 
ontinue;NT pot_v = pot[v℄ - (((label[v℄ == even) && T.member(v)) ? Delta : 0);NT pi = pot_u + pot_v - w[e℄;if (pi == 0) {hadd edge e to tighti}else {hprune edgesiif ((label[v℄ == unlabeled) && mate[v℄) {hnew delta2b edge en
ounteredi}else {hnew delta2a edge en
ounteredi}}}}We 
ompute the a
tual potential pot u for ea
h even tree vertex u in Q. The a
tualpotential of a vertex u will be determined as stated in Se
tion 2.1 (formula (2.1)); theonly di�eren
e is that no o�set exists.delta1 is only maintained in the non{perfe
t mat
hing 
ase.htry to improve delta1 i�if (pot_u < leda_min(delta1, delta2a) - Delta) {delta1 = pot_u + Delta;resp_d1 = u;if (delta1 == Delta) break;}All edges e = uv in
ident to u are 
onsidered. When the adja
ent vertex v of u is oddwe simply 
ontinue, sin
e nothing has to be done. Otherwise, we 
ompute the a
tualpotential pot v of v and the a
tual redu
ed 
ost pi of uv. When e is tight, i.e. pi equalszero, we add e to the list tight .hadd edge e to tighti�if ((label[v℄ == unlabeled) && mate[v℄) tight.append(e);else {tight.
lear(); Q.
lear();tight.append(e);break;}If we have en
ountered a tight edge that will terminate the 
urrent phase, we pro
eedas follows. Q and tight are emptied and e be
omes the only element of tight ; we breakthe s
anning pro
edure.Otherwise, the a
tual redu
ed 
ost pi is larger than zero. As for our single sear
h tree



3.5 Constru
ting Better Initial Solutions 125algorithm of the blossom{shrinking approa
h, we prune hopeless edges; i.e. edges whosestored priority in delta2a or delta2b ex
eeds the minimum value of delta1 and delta2a .18hprune edgesi�#if !defined(_NO_PRUNING)if (label[v℄ == even && T.member(v)) {if (pi/2 + Delta >= leda_min(delta1, delta2a)) 
ontinue;}else if (pi + Delta >= leda_min(delta1, delta2a)) 
ontinue;#endifWhen v is an unlabeled vertex and does not lie on a half{valued 
y
le, we 
he
k whetheror not e is the new best edge for v. If it is, we set resp d2b[v℄ to e and store the (stored)redu
ed 
ost of e in delta2b.hnew delta2b edge en
ounteredi�if (delta2b.member(v)) {if (pi < delta2b.prio(v) - Delta) {delta2b.de
rease_p(v, pi + Delta);resp_d2b[v℄ = e;}}else {delta2b.insert(v, pi + Delta);resp_d2b[v℄ = e;}When v is not of the kind above, we have dis
overed a new edge for delta2a . A 
he
k isperformed to determine whether e is the new best edge of delta2a ; if it is, delta2a andresp d2a are set appropriately. Note that pi must be halved in the 
ase where v is aneven labeled tree vertex.hnew delta2a edge en
ounteredi�if ((label[v℄ == even) && T.member(v)) pi /= 2;if (pi < delta2a - Delta) {delta2a = pi + Delta;resp_d2a = e;}Alternate Step: Let us 
onsider the alternate step. The edges along the (evenlength) tree path from resp d1 towards the root r get alternately unmat
hed andmat
hed.halternate step using best node of delta1 i�alternate_path(resp_d1, label, mate, pred);destroy_tree(T, label, pot, mate, pred, Delta);label[resp_d1℄ = even;terminate = true;18De�ne the token NO PRUNING (#define NO PRUNING) to swit
h o� this strategy.



126 Chapter 3. Implementation and TestsAfter this, T is destroyed and the phase terminates. Note that destroy tree will set thelabel of resp d1 to unlabeled . We therefore need to 
orre
t it to even.We give the implementation details of the fun
tion alternate path , whi
h alternates theedge along the tree path starting with the given vertex u.hfra
tional.t: helpersi+�void alternate_path(node u, node_array<int> &label,node_array<node> &mate, node_array<node> &pred) {node 
ur = u;node pre = nil, nxt;while (
ur) {if (label[
ur℄ == even) {nxt = mate[
ur℄;mate[
ur℄ = pre;
ur = nxt;}else {pre = 
ur;mate[
ur℄ = pred[
ur℄;nxt = pred[
ur℄;pred[
ur℄ = nil;
ur = nxt;}}}Following the path from u towards the root, the mate and pred entries are set appro-priately for ea
h vertex on the path.The 
urrent alternating tree T is easily destroyed.hfra
tional.t: helpersi+�template<
lass NT>void destroy_tree(node_slist &T, node_array<int> &label, node_array<NT> &pot,node_array<node> &mate, node_array<node> &pred, NT Delta) {node v;while (!T.empty()) {v = T.pop();if (label[v℄ == even) pot[v℄ -= Delta;else {pot[v℄ += Delta;if (mate[v℄) pred[v℄ = nil; // only for verti
es not on 
y
le}label[v℄ = unlabeled;}}Ea
h vertex v is removed from T . Depending on the status of v, its potential pot [v℄needs to be adjusted as stated in formula (2.3). Moreover, when u is an odd vertex,pred [u℄ is set to nil ; however, it is 
ru
ial that pred [u℄ is not set to nil when u is part



3.5 Constru
ting Better Initial Solutions 127of a half{valued 
y
le.19Using Tight Edges: All edges that 
an be used by the algorithm are 
olle
ted intight . In a while loop, we retrieve ea
h su
h edge e = uv and a
t a

ordingly. Weensure that u always denotes a tree vertex.huse all tight edgesi�while (!tight.empty()) {e = tight.pop();u = (T.member(sour
e(e)) ? sour
e(e) : target(e));v = opposite(u, e);if (label[v℄ == odd || label[u℄ == odd) 
ontinue;if (label[v℄ == unlabeled) {if (mate[v℄) {hgrow step using edge ei}else { // v on half-valued 
y
lehalternate 
y
le and tree path using edge eiterminate = true;break;}}else { // label[v℄ == evenif (T.member(v)) {h
onstru
t half valued 
y
leiterminate = true;break;}else {haugment step using edge eiterminate = true;break;}}}It may happen that tight stores two edges e = uv and e0 = u0v to the same unlabeledvertex v (not lying on a half{valued 
y
le). Assume e0 is used before e. Then, v will belabeled odd, when e is 
onsidered later on; e is of no use. We therefore 
ontinue withthe next tight edge when either of the endpoints v or u is odd.Grow Step: We turn to the des
ription of a grow step using a tight edge e = uv ; uis an even tree vertex. v be
omes an odd tree vertex with prede
essor vertex u.19That we need to take this 
ase into a

ount will be
ome 
lear later on, when the 
onstru
tion of ahalf{valued 
y
le is dis
ussed.



128 Chapter 3. Implementation and Testshgrow step using edge ei�label[v℄ = odd;pred[v℄ = u;pot[v℄ -= Delta;T.append(v);delta2b.del(v);resp_d2b[v℄ = nil;The potential of v is adjusted a

ording to its status 
hange. We delete the best edgedata for v from delta2b and resp d2b.The mate m of v is also added to T . m be
omes an even tree vertex and is added toQ. Its entry in delta2b as well as in resp d2b is deleted.hgrow step using edge ei+�node m = mate[v℄;label[m℄ = even;pot[m℄ += Delta;T.append(m);Q.append(m);delta2b.del(m);resp_d2b[m℄ = nil;Alternate Cy
le and Tree Path: We next 
onsider the 
ase where e = uv is atight edge with u+ 2 T , v? 62 T and v lies on a half{valued 
y
le C. We alternatelyunmat
h and mat
h the edges along C starting at v; the fun
tion alternate 
y
le toa
hieve this has already been presented. v will afterwards be free.halternate 
y
le and tree path using edge ei�alternate_
y
le(v, mate, pred);alternate_path(u, label, mate, pred);mate[u℄ = v;mate[v℄ = u;destroy_tree(T, label, pot, mate, pred, Delta);free--;We alternately unmat
h and mat
h the edges along the tree path from u to r 
allingalternate path and �nally mat
h u and v with ea
h other. T is subsequently destroyed.Constru
ting a Half{Valued Cy
le: When a tight edge e = uv is of the kindu+ 2 T and v+ 2 T , we pro
eed as follows. We determine the lowest 
ommon an
estorvertex l
a of u and v by 
alling the fun
tion seek l
a . Starting in l
a the edges along thetree path are alternately unmat
hed and mat
hed by the fun
tion alternate path (l
abe
omes free). Then, a new half{valued 
y
le C = (l
a ; : : : ; u; v; : : : ; l
a) is 
onstru
ted,
alling 
onstru
t 
y
le. Finally, the tree T is destroyed and free is de
reased by one,sin
e the root r is now mat
hed.
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ting Better Initial Solutions 129h
onstru
t half valued 
y
lei�node l
a;seek_l
a(u, v, l
a, mate, pred, P1, P2, lo
k);alternate_path(l
a, label, mate, pred);
onstru
t_
y
le(u, v, l
a, mate, pred);destroy_tree(T, label, pot, mate, pred, Delta);free--;The lowest 
ommon an
estor vertex is determined in lo
k{step fashion as dis
ussedbefore. We therefore additionally introdu
e the following lo
al data stru
tures.hfra
tional.t: lo
al variablesi+�double lo
k = 0;node_array<double> P1(G, 0);node_array<double> P2(G, 0);The determination of the lowest 
ommon an
estor vertex is a
hieved as follows.hfra
tional.t: helpersi+�void seek_l
a(node u, node v, node &l
a,node_array<node> &mate, node_array<node> &pred,node_array<double> &P1, node_array<double> &P2,double &lo
k) {node 
ur1 = u, 
ur2 = v;P1[
ur1℄ = P2[
ur2℄ = ++lo
k;while ((P1[
ur2℄ != lo
k) && (P2[
ur1℄ != lo
k) &&(mate[
ur1℄ || mate[
ur2℄)) {if (mate[
ur1℄) {
ur1 = pred[mate[
ur1℄℄;P1[
ur1℄ = lo
k;}if (mate[
ur2℄) {
ur2 = pred[mate[
ur2℄℄;P2[
ur2℄ = lo
k;}}if (P1[
ur2℄ == lo
k) // 
ur2 is l
al
a = 
ur2;else if (P1[
ur1℄ == lo
k) // 
ur1 is l
al
a = 
ur1;else l
a = nil;}We follow the two tree paths from u and v towards the root r. All even verti
es onthe path from u to r are marked by lo
k using the node array P1 and all even verti
eson the path from v to r are marked by lo
k using the node array P2 . When eitherP1 [
ur2 ℄ or P2 [
ur1 ℄ equals lo
k , the lowest 
ommon an
estor l
a has been found.We now dis
uss the details of the half{valued 
y
le 
onstru
tion. The idea is simple.Let pu and pv denote the two tree paths from u and v to the l
a vertex, respe
tively.First, the pred entries of all verti
es along pu are set su
h that they represent thereversed path of pu. Then, the pred entries of all verti
es along pv are set su
h that



130 Chapter 3. Implementation and Teststhey represent pv itself. Finally, we set pred [u℄ to v and obtain the representation of Cas desired.hfra
tional.t: helpersi+�void 
onstru
t_
y
le(node u, node v, node l
a,node_array<node> &mate, node_array<node> &pred) {node 
ur1 = u, 
ur2 = v;while (
ur1 != l
a) {// set pred data to reversed tree path; delete mate entriesnode h = mate[
ur1℄;mate[
ur1℄ = nil;
ur1 = pred[h℄;pred[h℄ = mate[h℄;mate[h℄ = nil;pred[
ur1℄ = h;}while (
ur2 != l
a) {// set pred data to tree path; delete mate entriesnode h = mate[
ur2℄;pred[
ur2℄ = mate[
ur2℄;mate[
ur2℄ = nil;mate[h℄ = nil;
ur2 = pred[h℄;}pred[u℄ = v;}Augment Step: The only detail that has not been presented yet is how to performan augment step for a tight edge e = uv with u+ 2 T and v+ 62 T . We �rst alternatelyunmat
h and mat
h the edges along the tree path from u to the root vertex r (u be
omesfree). Thereafter, u and v are mat
hed with ea
h other (v be
omes unlabeled), the treeT is destroyed and free is de
reased by 2.haugment step using edge ei�alternate_path(u, label, mate, pred);mate[u℄ = v;mate[v℄ = u;label[v℄ = unlabeled;destroy_tree(T, label, pot, mate, pred, Delta);free -= 2;This 
on
ludes the dis
ussion of all the details involved in the 
onstru
tion of an initialmat
hing M and the vertex potentials by solving the fra
tional mat
hing problem.3.6 Experimental ResultsWe performed several experiments in order to rate the pra
ti
al eÆ
ien
y of our algo-rithms. The 
omparisons we made are as follows.



3.6 Experimental Results 131(1) Comparison of di�erent strategies: single sear
h tree approa
h with and with-out pruning strategy, multiple sear
h tree approa
h with and without providentstrategy.(2) Comparison of the single sear
h tree approa
h with the multiple sear
h tree ap-proa
h, and the e�e
t of using di�erent heuristi
s.(3) Comparison of our multiple sear
h tree approa
h with other mat
hing algorithmsavailable in LEDA.(4) Comparison of our multiple sear
h tree approa
h with the 
urrently most eÆ
ientalgorithm, Blossom IV, of Cook and Rohe [CR97℄.In this se
tion we will dis
uss the results of these 
omparisons. In summary, they revealthe eÆ
ien
y of our algorithms in pra
ti
e. We wish to state that our multiple sear
htree approa
h is (at least) 
ompetitive to Blossom IV: so far, we have not en
ounteredan instan
e on whi
h our algorithm is inferior (if the 
omparison is fair, as we areabout to explain). However, we would like to leave the de
ision on whether or not ouralgorithm is superior to Blossom IV to the reader. We de
ided so, due to the fa
t thatBlossom IV uses a so{
alled pri
e and repair strategy for 
omplete geometri
 instan
esthat we have not yet implemented for our algorithm. The pri
e and repair strategysigni�
antly improves the running{time of Blossom IV on these instan
es. Due to thela
k of a similar strategy for our algorithm, the 
omparisons on 
omplete geometri
instan
es are regarded to be not quite fair.Experimental Setting: We experimented with three kinds of instan
es: Delaunayinstan
es, (sparse and dense) random instan
es and 
omplete geometri
 instan
es.For the Delaunay instan
es we 
hose n random points in the unit square and 
omputedthe Delaunay triangulation (using the LEDA Delaunay implementation). The edgeweights 
orrespond to the Eu
lidean distan
es s
aled to integers in the range [0; : : : ; 216).Delaunay graphs are known to 
ontain perfe
t mat
hings (see Dillen
ourt [Dil90℄).For the random instan
es we 
reated random graphs with n verti
es. The number ofedges for sparse graphs was 
hosen as m = �n for small values of �, � � 10.The number of edges for dense graphs is about 20%, 40% and 60% of the density of a
omplete graph, i.e. m = dn(n� 1)=2, with d 2 f0:2; 0:4; 0:6g.Complete geometri
 instan
es were indu
ed by n random points in a n� n square andtheir Eu
lidean distan
e.The running{times of all our experiments are stated in se
onds and are the average oft = 5 runs, unless stated otherwise. All experiments were performed on a Sun UltraSpar
, 333 Mhz.Di�erent Strategies We dis
uss the in
uen
e of the usage of di�erent strategies forea
h approa
h. The 
omparisons were made on sparse random graphs with n verti
esand a �xed � = 10. Both algorithms 
omputed a maximum{weight mat
hing; thegreedy heuristi
 was used.



132 Chapter 3. Implementation and TestsThe single sear
h tree approa
h (SST) has been implemented to use a pruning strategyby default. Table 3.1 implies this to be reasonable.n � SST+pru� SST+pru+ t10000 6 37:42 28:17 520000 6 125:95 99:60 540000 6 428:78 364:67 5Table 3.1: E�e
t of pruning strategy for single sear
h tree algorithm (SST).We 
ompared the single sear
h tree algorithm using the pruning strategy (SSTpru+)with the single sear
h tree algorithm not using the pruning strategy (SSTpru�). Therunning{time of the single sear
h tree algorithm is 
onsiderably improved using thepruning strategy. Re
all that the pruning strategy is also implemented for the fra
tionalmat
hing heuristi
.For the multiple sear
h tree approa
h, the user may 
hoose between the providentand the non{provident strategy. As mentioned previously, the non{provident strategy(MSTpro�) seems to us to be slightly superior to the provident strategy (MSTpro+).However, the di�eren
es are negligible, as indi
ated in Table 3.2.n � MST+pro+ MST+pro� t10000 6 13:14 12:89 520000 6 29:20 28:59 540000 6 67:02 66:01 5Table 3.2: E�e
t of non{provident strategy for multiple sear
h tree algorithm (MST).In the subsequent 
omparisons, we will always use the strategies that are 
hosen bydefault. That is, the single sear
h tree approa
h as well as the fra
tional mat
hingheuristi
 use the pruning strategy, and the multiple sear
h tree approa
h implementsthe non{provident strategy.Single Sear
h Tree vs. Multiple Sear
h Tree Approa
h: We 
ompared thesingle sear
h tree approa
h (SST) to the multiple sear
h tree approa
h (MST) usingdi�erent heuristi
s. The results are given in Table 3.3.n SST� MST� SST+ MST+ GY SST� MST� FM t10000 37:01 6:27 24:05 4:91 0:13 5:79 3:20 0:40 520000 142:93 14:81 89:55 11:67 0:24 18:54 8:00 0:83 540000 593:58 31:53 367:37 25:51 0:64 76:73 17:41 1:78 5Table 3.3: SST vs. MST algorithm and e�e
t of greedy and fra
tional mat
hing heuristi
s.Both algorithms 
omputed a maximum{weight perfe
t mat
hing on Delaunay instan
eswith n verti
es. Either no heuristi
 (�), the greedy heuristi
 (+) or the fra
tionalmat
hing heuristi
 (�) was used. The time needed to 
onstru
t a greedy or a fra
tionalmat
hing is given in 
olumns GY and FM , respe
tively.



3.6 Experimental Results 133The fra
tional mat
hing heuristi
 is 
omputationally more intensive than the greedyheuristi
. However, the fra
tional mat
hing heuristi
 improves the overall running{time of both algorithms signi�
antly. We draw attention to the fa
t that the di�eren
ebetween the two heuristi
s is more pronoun
ed for the single sear
h tree approa
h. Themultiple sear
h tree approa
h is superior to the single sear
h tree approa
h.p qWe will attempt to give an interpretation for the better running{time performan
e of the mul-tiple sear
h tree approa
h. We take a 
loser look at the number of dual adjustments that wereperformed during the 
ourse of the algorithms. Our algorithms 
an be asked to output 
ertainstatisti
al information (not do
umented in the pre
eding se
tions). We give a sample outputbelow.MST SST----------------------------------------------------- -----------------------------------------------------INIT: 0.28 se
. INIT: 0.19 se
.MATCHING: 14.40 se
. MATCHING: 40.07 se
.EXTRACT: 0.14 se
. EXTRACT: 0.12 se
.CHECKER: 0.23 se
. CHECKER: 0.22 se
.----------------------------------------------------- -----------------------------------------------------ADJUSTMENTS: 7663 ADJUSTMENTS: 13428SCAN: 29295 5.91 se
. (avg. 0.20 mse
.) SCAN: 81237 4.93 se
. (avg. 0.06 mse
.)GROW: 16593 0.44 se
. (avg. 0.03 mse
.) GROW: 62265 0.86 se
. (avg. 0.01 mse
.)SHRINK: 8 0.00 se
. (avg. 0.00 mse
.) SHRINK: 155 0.11 se
. (avg. 0.71 mse
.)EXPAND: 5 0.00 se
. (avg. 0.00 mse
.) EXPAND: 148 0.16 se
. (avg. 1.08 mse
.)ALTERNATE: 43 0.00 se
. (avg. 0.00 mse
.) ALTERNATE: 258 0.21 se
. (avg. 0.81 mse
.)AUGMENT: 4983 7.40 se
. (avg. 1.49 mse
.) AUGMENT: 4983 0.44 se
. (avg. 0.09 mse
.)DESTROY TREE: 10000 6.54 se
. (avg. 0.65 mse
.) DESTROY TREE: 5241 0.57 se
. (avg. 0.11 mse
.)----------------------------------------------------- -----------------------------------------------------TOTAL TIME (without 
he
king): 14.84 se
. TOTAL TIME (without 
he
king): 40.39 se
.Both algorithms 
omputed a maximum{weight mat
hing on the same random instan
e withn = 10000, m = 60000 and edge weights in the range [0; : : : ; 216). No heuristi
 was used.We �rst of all observe that the multiple sear
h tree approa
h needs to perform fewer dualadjustments than the single sear
h tree approa
h. This is to be expe
ted; we 
onsider the rateof 
hange �f of the dual obje
tive value. For the single sear
h tree approa
h we observedthat �f = �Æ, when a dual adjustment is performed by Æ (
f. dis
ussion on page 30). In themultiple sear
h tree approa
h, however, we have a de
rease by Æ for ea
h existing tree. That is,�f = �tÆ, where t refers to the number of alternating trees that 
urrently exist when a dualadjustment is performed.Further, it seems to us that the single sear
h tree approa
h needs to initiate needless steps, sin
eit is for
ed to sear
h from a �xed free vertex. Note, for example, that the average number ofs
an, alternate, grow, shrink and expand steps per augmentation di�ers drasti
ally. However,this statement is vague.x yIn the 
omparisons that follow, we 
hose the multiple sear
h tree approa
h using thefra
tional mat
hing heuristi
 (MST�) as the 
anoni
al implementation.Comparisons to Mat
hing Algorithms in LEDA: LEDA provides an algorithmfor ea
h of the four variants of the mat
hing problem introdu
ed in Chapter 1: amaximum{
ardinality bipartite mat
hing algorithm (BCM), a maximum{
ardinalitymat
hing algorithm (GCM), a maximum{weight bipartite mat
hing algorithm (BWM)and a maximum{weight mat
hing algorithm (GWM). The theoreti
al running{time ofthe algorithms are as follows: O(pnm) for BCM, O(nm�(n;m)) for GCM (� denotesthe inverse A
kermann fun
tion), O(n(m + n logn)) for BWM and O(n3) for GWM.For a detailed des
ription of the underlying algorithms and their implementations seethe book by Mehlhorn and N�aher [MN99, Chapter 7℄.



134 Chapter 3. Implementation and TestsWe 
ompared our MST algorithm to ea
h of the algorithms. The tests were performedon sparse random graphs with n verti
es and �n edges. In the 
ardinality 
ases, unitweights (we = 1) were used by our algorithm. The results 
an be seen in Table 3.4.Due to the time intensity of GWM, the 
omparisons were made on small instan
es onlywith n = 10000.n � BCM MST� GCM MST� BWM MST� GWM MST� t10000 4 0:73 1:14 0:55 1:94 3:67 1:57 585:43 1:44 510000 6 0:92 0:67 0:50 0:91 7:81 3:95 883:66 3:96 510000 8 1:28 0:74 0:45 1:18 9:82 6:62 897:81 6:25 520000 4 1:81 2:69 1:42 5:19 9:30 3:31 � 3:42 520000 6 2:23 1:61 1:42 5:06 29:64 11:05 � 10:05 520000 8 3:06 1:65 1:29 2:56 35:62 18:05 � 18:53 540000 4 5:52 8:04 4:26 9:19 24:45 8:39 � 8:23 540000 6 5:92 4:54 3:86 14:10 109:35 32:50 � 30:22 540000 8 7:41 4:31 3:66 9:69 128:66 51:13 � 56:46 5Table 3.4: Comparison of our MST algorithm to the mat
hing algorithms available in LEDA.We draw attention to the fa
t that, for bipartite instan
es, our algorithm is 
ompetitivewith the spe
ialized algorithms in LEDA. In the bipartite 
ase, the fra
tional mat
hingheuristi
 will always 
ompute an optimal mat
hing. That is, MST essentially redu
esto the fra
tional mat
hing algorithm dis
ussed in the pre
eding se
tion.Blossom IV: The Blossom IV algorithm of Cook and Rohe [CR97℄ is the most ef-�
ient 
ode 
urrently available for weighted perfe
t mat
hings in general graphs. TheeÆ
ien
y of Blossom IV is revealed in two papers:(1) In [CR97℄ Blossom IV is 
ompared to the implementation of Applegate andCook [App93℄. It is shown that Blossom IV is substantially faster.(2) In [App93℄ the Applegate and Cook implementation is 
ompared to other imple-mentations. The authors show that their 
ode is superior to all other 
odes.Blossom IV 
an be asked to run either a single sear
h tree approa
h, a multiple sear
htree approa
h or a re�nement of the multiple sear
h tree approa
h 
alled the variableÆ approa
h. In the variable Æ approa
h, ea
h alternating tree Tri 
hooses its own dualadjustment value Æri so as to maximize the de
rease in the dual obje
tive value. Aheuristi
 is used to make these 
hoi
es, sin
e the determination of optimum Æri 's wouldbe too 
ostly. The experiments in [CR97℄ show that the variable Æ approa
h is superiorto the other approa
hes in pra
ti
e.We 
ompared our MST algorithm to the multiple sear
h tree approa
h (B4) as well asto the variable Æ approa
h (B4var) of Blossom IV. Blossom IV (B4 and B4var) also usesa fra
tional mat
hing heuristi
 to 
ompute an initial mat
hing (indi
ated by �).Delaunay Instan
es: We give the experiments on Delaunay instan
es with n verti
esin Table 3.5.



3.6 Experimental Results 135n B4� B4�var MST� t10000 73:57 4:11 3:37 520000 282:20 12:34 7:36 540000 1176:58 29:76 15:84 5Table 3.5: MST algorithm vs. Blossom IV (B4 and B4var) on Delaunay instan
es.Observe that the variable Æ approa
h (B4var) is signi�
antly faster than the multi-ple sear
h tree approa
h (B4). Our MST algorithm is 
ompetitive to the variable Æapproa
h B4var.Asymptoti
s: In Table 3.6 we 
ompared Blossom IV to our MST approa
h on ran-dom instan
es; we varied n for a �xed � = 6.n � B4� B4�var MST� t10000 6 20:94 18:03 3:51 520000 6 82:96 53:87 9:97 540000 6 194:48 177:28 29:05 5Table 3.6: MST algorithm vs. Blossom IV (B4 and B4var) on random instan
es.Both algorithms, B4var and MST, seem to grow less than quadrati
ally as a fun
tionin n. B4var takes about six times as long as our multiple sear
h tree approa
h MST. InTable 3.7 we additionally varied �.n � B4� B4�var MST� t10000 6 20:90 20:22 3:49 510000 8 48:50 22:83 5:18 510000 10 37:49 30:78 5:41 520000 6 96:34 54:08 10:04 520000 8 175:55 89:75 12:20 520000 10 264:80 102:53 15:06 540000 6 209:84 202:51 29:27 540000 8 250:51 249:83 36:18 540000 10 710:08 310:76 46:57 5Table 3.7: MST algorithm vs. Blossom IV (B4 and B4var) on random instan
es.A log{log plot indi
ating the asymptoti
s of Blossom IV (B4var) and our MST algorithmon random instan
es (� = 6) is depi
ted in Figure 3.2.In
uen
e of Edge Weights: Table 3.8 shows the in
uen
e of edge weights on therunning{time. We took random instan
es with m = 4n edges and random edge weightsin the range [1; : : : ; b℄ and varied b.
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MST�B4�var

n

se
.

32000016000080000400002000010000

1000100101Figure 3.2: Asymptoti
s of MST algorithm and Blossom IV (B4var) on random instan
es.n � b B4� B4�var MST� t10000 40000 1 3:98 3:99 0:85 110000 40000 10 2:49 3:03 2:31 110000 40000 100 3:09 3:10 2:58 110000 40000 1000 17:41 8:40 2:91 110000 40000 10000 13:69 11:91 2:78 110000 40000 100000 12:06 11:20 2:69 1Table 3.8: MST algorithm vs. Blossom IV (B4 and B4var). In
uen
e of edge weights.Both B4 and B4var are sensitive to di�erent edge weights. Their running{time signif-i
antly depends on the range of 
hosen edge weights. The running{time of our MSTalgorithm is stable (ex
ept for the unweighted 
ase (b = 1), whi
h is simpler).p qWe attempt an explanation. When the range of edge weights is small, a single dual adjustmentis more likely to produ
e more than one tight edge. In addition to or as a 
onsequen
e of this,it seems to us that the number of dual adjustments needed to 
ompute an optimal mat
hing issmaller. Table 3.9 indi
ates that this assumption is in fa
t true. We re
orded the number ofdual adjustments needed by Blossom IV (B4var) and our MST algorithm.n � b B4�var MST� t10000 4 1 0 0 110000 4 10 2094 2076 110000 4 100 5269 5101 110000 4 1000 7487 7091 110000 4 10000 8063 7877 110000 4 100000 8491 8134 1Table 3.9: MST algorithm vs. Blossom IV (B4 and B4var). Number of dual adjustments.



3.6 Experimental Results 137Sin
e Blossom IV needs time O(n) to perform a dual adjustment, whereas our implementationneeds time O(m logn) for all dual adjustments in a phase, our MST algorithm is less harmedwhen the edge weights are 
hosen from a large range.Observe that, although the variable Æ approa
h (B4var) of Blossom IV was used, our algorithmneeds less dual adjustments.x yVarian
e: Table 3.10 gives information about the varian
e in running{time of Blos-som IV (B4var) and our MST algorithm. For ea
h algorithm the best, worst and averagetime of �ve random instan
es, with n verti
es and � = 6, is given. The 
u
tuation seemsto be about the same for the B4var and the MST algorithm.n � B4�var MST� tbest worst average best worst average10000 6 16:88 20:03 18:83 3:34 4:22 3:78 520000 6 49:02 60:74 55:15 9:93 11:09 10:30 540000 6 162:91 198:11 180:88 25:13 32:24 29:09 5Table 3.10: MST algorithm vs. Blossom IV (B4var) on random instan
es. Varian
e.Dense Random Instan
es: The experiments suggest that our MST algorithm issuperior to B4var on sparse instan
es. Table 3.11 shows the running{time on denseinstan
es with n verti
es and about 20%, 40% and 60% density. Our MST algorithmis 
ompetitive to B4var on these instan
es as well.n m B4� B4�var MST� t1000 100000 6:97 5:84 1:76 51000 200000 16:61 11:35 3:88 51000 300000 18:91 18:88 5:79 52000 200000 46:71 38:86 8:69 52000 400000 70:52 70:13 16:37 52000 600000 118:07 115:66 23:46 54000 400000 233:16 229:51 42:32 54000 800000 473:51 410:43 92:55 54000 1200000 523:40 522:52 157:00 5Table 3.11: Comparison of MST algorithm to Blossom IV (B4 and B4var). Dense graphs.Complete Random Instan
es and Pri
e and Repair: Blossom IV provides aso{
alled pri
e and repair heuristi
 for 
omplete geometri
 instan
es. The instan
es areimpli
itly represented by a set of points in an n�n square (the edge weights 
orrespondto the Eu
lidean distan
e). Using the pri
e and repair strategy signi�
antly improvesthe running{time of Blossom IV on these instan
es. We have not yet implementedsu
h a heuristi
 for our algorithm. We 
ompared our MST algorithm to Blossom IVon 
omplete geometri
 instan
es (B4var did not and B4parvar did use the pri
e and repairstrategy). Our algorithm requires an expli
it representation of the underlying graphand we thus were only able to experiment with rather small instan
es. The results arepresented in Table 3.12.



138 Chapter 3. Implementation and Testsn B4�var B4�parvar MST� t1000 37:01 0:43 24:05 52000 225:93 1:10 104:51 54000 1789:44 4:33 548:19 5Table 3.12: MST algorithm vs. Blossom IV (B4var and B4parvar ). E�e
t of pri
e and repair.The idea underlying the pri
e and repair heuristi
 is simple. Instead of running thealgorithm on the 
omplete set of edges, the pri
e and repair heuristi
 starts with asparse subgraph. On
e an optimum weighted mat
hing is 
omputed for the sparsesubgraph a 
he
k is performed to determine whether or not the 
omputed mat
hing isalso optimum for the 
omplete graph. This is what is 
alled pri
ing. Some of the edgeshaving negative redu
ed 
ost are added to the 
urrent graph, with the mat
hing andthe potentials being modi�ed su
h that all pre
onditions of the mat
hing algorithm aresatis�ed. The algorithm is resumed so as to repair the mat
hing for the 
urrent graph.This pro
ess is repeated until the obtained mat
hing is optimum for the 
omplete graph.There are several natural 
hoi
es for the sele
tion of the sparse subgraph. For example,a minimum{weight mat
hing will have a natural tenden
y to avoid heavy edges. Thus,taking the k lightest edges in
ident to any vertex seems to be a reasonable 
hoi
e. Infa
t, this was the way Applegate and Cook [App93℄ 
onstru
ted the initial subgraph(they 
alled it the k{nearest neighbour graph). Another 
hoi
e, proposed by Cookand Rohe [CR97℄, is to use the Delaunay triangulation of the point set as the initialsubgraph. For more extensive sour
es related to the pri
e and repair strategy see Derigsand Metz [DM91℄, Applegate and Cook [App93℄ and Cook and Rohe [CR97℄.`Worse{
ase' Instan
es for Blossom IV: A demanding task would be to imple-ment a generator, whi
h 
onstru
ts instan
es that for
e either algorithm, i.e. our MSTor the Blossom IV algorithm, into its worst 
ase. Random graphs tend to be rathersimple instan
es; during the performan
e of our experiments, for example, many ran-dom instan
es o

urred that had been solved almost optimal by the fra
tional mat
hingheuristi
. So far, we have not been able to generate worst{
ase instan
es for either al-gorithm. However, we wish to 
on
lude this se
tion with two `worse{
ase' instan
esthat demonstrate the superiority of our algorithm to Blossom IV.The �rst `worse{
ase' instan
e for Blossom IV is simply a 
hain. We 
onstru
ted a
hain having 2n verti
es and 2n � 1 edges. The edge weights along the 
hain werealternately set to 0 and 2 (the edge weight of the �rst and last edge equals 0). BlossomIV (B4var) and our MST algorithm were asked to 
ompute a maximum{weight perfe
tmat
hing. Note that the fra
tional mat
hing heuristi
 will always 
ompute an optimalsolution on instan
es of this kind. Table 3.13 shows the results.2n B4�var MST� t10000 94:75 0:25 120000 466:86 0:64 140000 2151:33 2:08 1Table 3.13: Comparison of MST algorithm to Blossom IV (B4var) on 
hains.



3.6 Experimental Results 139The running{time of Blossom IV grows more than quadrati
ally (as a fun
tion of n),whereas the running{time of our MST algorithm grows about linearly with n. Wepresent our argument as to why this is to be expe
ted. First of all, the greedy heuristi
will mat
h all edges having weight 2; the two outer verti
es remain unmat
hed. Ea
halgorithm will then have to perform O(n) dual adjustments so as to obtain the opti-mum mat
hing. A dual adjustment takes time O(n) for Blossom IV (ea
h potentialis expli
itly updated), whereas it takes O(1) for our MST algorithm. Thus, BlossomIV will need time O(n2) for all these adjustments and, on the other hand, the timerequired by our MST algorithm will be O(n). The idea of testing both algorithms onthis kind of 
hains is due to Kurt Mehlhorn (personal 
ommuni
ation).Another `worse{
ase' instan
e for Blossom IV o

urred in VLSI{Design having n =151780 verti
es and m = 881317 edges. Kindly, Andreas Rohe made this instan
eavailable to us. We 
ompared the Blossom IV algorithms (B4 and B4var) to our MSTalgorithm. We ran our algorithm with the greedy heuristi
 (MST+) as well as with thefra
tional mat
hing heuristi
 (MST�). The results are given in Table 3.14.n m B4� B4�var MST+ MST� t151780 881317 200019:74 200810:35 3172:70 5993:61 1(332:01) (350:18) (5:66) (3030:35)Table 3.14: Comparison of MST algorithm to Blossom IV (B4var) on boese.edg instan
e.The se
ond row states the times that were needed by the heuristi
s. Observe that bothBlossom IV algorithms need more than two days to 
ompute an optimum mat
hing,whereas our algorithm solves the same instan
e in less than an hour. For our MSTalgorithm the fra
tional mat
hing heuristi
 did not help at all on this instan
e: to
ompute a fra
tional mat
hing took almost as long as 
omputing an optimum mat
hingfor the original graph (using the greedy heuristi
).





Open Problems
We have des
ribed a priority queue based O(nm log n) algorithm of Edmonds' blossom{shrinking approa
h. Two implementations, a single sear
h tree and a multiple sear
htree algorithm, were presented. The additional programming expenditure for the mul-tiple sear
h tree algorithm turned out to be well worth the e�ort when eÆ
ien
y inpra
ti
e is 
onsidered.Our multiple sear
h tree algorithm is 
ompetitive with the most eÆ
ient known im-plementation, Blossom IV, due to Cook and Rohe [CR97℄. Blossom IV implementsa re�nement of a multiple sear
h tree approa
h, 
alled the variable Æ approa
h, andonly requires simple data stru
tures. We 
an thus provide an aÆrmative answer tothe question whether or not sophisti
ated data stru
tures su
h as 
on
atenable priorityqueues help in pra
ti
e.Our resear
h raises several questions. (1) The variable Æ algorithm is substantially fasterthan the other algorithms of Blossom IV. Would it be possible to integrate the variableÆ approa
h into a priority queue based O(nm logn) algorithm? Moreover, it wouldbe interesting to see if an O(nm logn) variable Æ algorithm will improve the pra
ti
aleÆ
ien
y as dramati
ally as for Blossom IV. (2) A pri
e and repair strategy is worth
onsidering for the O(nm log n) algorithm as well. We expe
t that su
h a strategy willimprove the running{time of our algorithm on dense and 
omplete instan
es tremen-dously. (3) As previously mentioned, a generator of instan
es for
ing either algorithminto its worst 
ase would be of use. (4) Re
ently, Stefan N�aher (personal 
ommu-ni
ation) observed that using a stati
 variant of the graph data stru
ture in LEDA(
urrently, we use a dynami
 graph data stru
ture) improves the overall running{timeof other graph algorithms by a fa
tor of about two. Most likely, a similar e�e
t 
anbe a
hieved for our algorithm too. (5) Our fra
tional mat
hing heuristi
 also uses pri-ority queue data stru
tures. So far, however, it only implements a single sear
h treeapproa
h. We believe that a fra
tional mat
hing heuristi
 based on the multiple sear
htree approa
h would further improve the running{time. Possibly, this would also resultin a more eÆ
ient algorithm for bipartite mat
hing problems. (6) At the end of Chap-ter 1, we (very roughly) sket
hed the ideas underlying an O(n(m+ n log n)) approa
h.Although we doubt that an eÆ
ient implementation of this approa
h is possible, it isworth attempting to falsify our hypothesis.
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