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Abstract. We investigate the impact &tackelberg routingp reduce the price of
anarchy in network routing games. In this settinggafraction of the entire de-
mand is first routed centrally according to a predefiSéatckelberg strateggnd
the remaining demand is then routed selfishly by (nonatopiay)ers. Although
several advances have been made recently in proving thekettarg routing can
in fact significantly reduce the price of anarchy for certagtwork topologies,
the central question of whether this holds true in generstilisopen. We answer
this question negatively. We prove that the price of anaedhievable via Stack-
elberg routing can be unbounded even for single-commoditwarks. In light
of this negative result, we consider bicriteria bounds. \&eetbp an efficiently
computable Stackelberg strategy that induces a flow whoseis@t most the
cost of an optimal flow with respect to demands scaled by arfaftl+/1—a.
Finally, we analyze the effectiveness of an easy-to-implen$tackelberg strat-
egy, called SCALE. We prove bounds for a general class afitgtéunctions that
includes polynomial latency functions as a special case.aalysis is based on
an approach which is simple, yet powerful enough to obtdindat) tight bounds
for SCALE in general networks.

1 Introduction

Over the past years, the impact of the behavior of selfishgamiinated users in con-
gested networks has been investigated intensively in therétical computer science
literature. In this contextnetwork routing gametave proved to be an appropriate
means of modeling selfish behavior in networks. The basia ide¢o model the in-
teraction between the selfish network users asrEcooperative gamé\Ve are given a
directed graph with latency functions on the arcs and a setigin-destination pairs,
calledcommaoditiesEvery commodity has demandassociated with it, which specifies
the amount of flow that needs to be sent from the respectigénaid the destination.
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We assume that every demand represents a large populatmayefrs, each control-
ling an infinitesimal small amount of flow of the entire demdgadch players are also
callednonatomig. The latency that a player experiences to traverse an gives by
a (non-decreasing) function of the total flow on that arc. \&&suane that every player
acts selfishly and routes his flow along a minimum-latench jratm its origin to the
destination; this corresponds to a common solution corfoeponcooperative games,
that of aNash equilibriumhereNashor Wardrop flow. In a Nash flow no player can
improve his own latency by unilaterally switching to anatpath.

It is well known that Nash equilibria can beefficientin the sense that they need
not achieve socially desirable objectives [2, 7]. In theteghof network routing games,
a Nash flow in general does not minimize the total cost; or défdrently, selfish be-
havior may cause a performance degradation in the networksiiupias and Papadim-
itriou [13] initiated the investigation of the efficiencyds caused by selfish behavior.
They introduced a measure to quantify the inefficiency offiNeguilibria which they
termed theprice of anarchy The price of anarchy is defined as the worst-case ratio
of the cost of a Nash equilibrium over the cost of a systemnati. In recent years,
considerable progress has been made in quantifying thedagon in network perfor-
mance caused by the selfish behavior of noncooperative netgers. In a seminal
work, Roughgarden and Tardos [21] showed that the price axfchy for network rout-
ing games with nonatomic players and linear latency funstie 4/3; in particular, this
bound holds independently of the underlying network toggld@ he case of more gen-
eral families of latency functions has been studied by Rgagten [16] and Correa,
Schulz, and Stier-Moses [3]. (For an overview of these tesule refer to the book by
Roughgarden [19].) Despite these bounds for specific dasttatency functions, it
is known that the price of anarchy for general latency fuomiis unbounded even on
simple parallel-arc networks [21].

Due to this large efficiency loss, researchers have propdiffedent approaches to
reduce the price of anarchy in network routing games. Onbeftost prominent ap-
proaches is the use &tackelberg routing12, 18]. In this setting, it is assumed that
a fractiona € [0,1] of the entire demand is controlled by a central authorityntl
Stackelberg leademwhile the remaining demand is controlled by the selfish tamé&
players, also called thiollowers In a Stackelberg gamehe Stackelberg leader first
routes the centrally controlled flow according to a predeieed policy, called the
Stackelberg strategyand then the remaining demand is routed by the selfish fellow
ers. The aim is to devise Stackelberg strategies so as tonmimihe price of anarchy
of the resulting combined flow.

Although Roughgarden [18] showed that computinglikstStackelberg strategy,
i.e., one that minimizes the price of anarchy of the induced,fls NP-hard even for
parallel-arc networks and linear latency functions, salvadvances have been made
recently in proving that Stackelberg routing can indeedificantly reduce the price
of anarchy in network routing games. As an example, Rouglayaf18] showed that
for parallel-arc networks Stackelberg strategies exattbduce the price of anarchy to
1/a, independentlpf the latency functions. That s, even if the Stackelbeagléx con-
trols only a small constant fraction of the overall demahd,trice of anarchy reduces
to a constant (while it is unbounded in the absence of any&iérdd control). More



recently, Swamy [23] obtained a similar result for singtevanodity, series-parallel

networks and Fotakis [8] for parallel-arc networks and littgple flows. Despite these

positive results, a central question regarding the effengss of Stackelberg routing is
still open: Does there always exist a Stackelberg stratagh that the price of anar-

chy is bounded? This question has been posed explicitly hgRgarden [17, Open

Problem 4].

Besides these efforts, researchers have also tried toatbera the effectiveness of
easy-to-implement Stackelberg strategies for specifgselaof latency functions. One
of the simplest Stackelberg strategies is SCALE (see aB, fhich simply computes
an optimal flow for the entire demand and then scales this flpwr bThe currently
best known bound for the price of anarchy induced by SCALE aftimommodity
networks and linear latency functions is due to Karakostds<lliopoulos [11]. More
recently, Swamy [23] derived the first general bounds foypoimial latency functions.

Our Results.We investigate the impact of Stackelberg routing to redbegtice of an-
archy in network routing games with nonatomic players. Quntdbution is threefold:

1. We show that there are single-commodity networks for twigigery Stackelberg
strategy induces a price of anarchy of at le@éh), wheren is the number of nodes
of the network. The result holds independently of the factr € (0,1) of the
centrally controlled demand. This settles the open questged by Roughgar-
den [17].

2. In light of this negative result, we investigate the effemess of Stackelberg rout-
ing strategies compared to an optimum flow for a larger demiaagdwe consider
bicriteria bounds. We develop an efficiently computablecisttberg strategy in-
ducing a flow whose cost is at most the cost of an optimal flovh wéspect to
demands increased by a factor of 1/1—a.

3. We give upper bounds on the efficiency of SCALE for a geneless of latency
functions which, among others, contains polynomial layefumctions with non-
negative coefficients. We also derive the first tight loweunrts for SCALE. Our
bound is tight for concave latency functions; for higher regpolynomials our
bounds are almost tight (though there remains a small gagniall values ofx).

Significance and Technique®ur first result settles an important open question regard-
ing the applicability of Stackelberg routing in generalvaatks. While most existing
results show that the performance degradation due to thenaé=f central control
is independenbf the underlying network topology, our result shows that tletwork
topology matters in the context of Stackelberg routing. @egative result also carries
over to the unsplittable flow setting. However, due to lackdice, we omit the details
from this extended abstract.

One important application of Stackelberg routing is thetirguof Internet traffic
within the domain of an Internet service provider, see atsar®a and Williamson [22].
Here, the Internet service provider centrally controlsaxtion of the overall traffic
traversing its domain. In this setting, our second resulvigles the Internet service
provider with an efficient algorithm to route the centrallyntrolled traffic. The per-
formance of this routing algorithm is characterized by a sthdrade-off curve that



scales between the absence of centralized control (dgutiiendemands is sufficient)
and completely centralized control (no scaling is necg3sadditionally, our result
has a nice interpretation for the class of (practical rei€vil/M/1-latency functions
that model arc-capacities: In order to beat the cost of amaptlow, it is sufficient
to scale all arc capacities by#v/1— a. Our bound is a natural generalization of the
bicriteria bound by Roughgarden and Tardos [21] (see Cetrah [4] for other related
results).

We introduce a general approach, which we tarapproachto prove upper bounds
on the price of anarchy of Stackelberg strategies for specidfisses of latency func-
tions. This approach is simple, yet powerful enough to obfalmost) tight bounds
for SCALE in general networks. For polynomial latency fuans, our approach yields
upper bounds that significantly improve the bounds by Swatsl. For linear latency
functions, we derive an upper bound that coincides with gipus bound of Karakostas
and Kolliopoulos in [11]. Their analysis is based on a (ratheolved) machinery pre-
sented in [15]. However, our analysis is much simpler; irtipalar, we do not rely on
the machinery in [15]. Moreover, we show that this bound d&lsluls for concave la-
tency functions. We present a generalized Braess instaatstiows that for the linear
case our bound is tight; a similar instance can be used to #hator higher degree
polynomials our bounds are almost tight, leaving only a $geg for small values oft.
We are confident that our-approach will prove useful to derive upper bounds on the
price of anarchy also in other settings. For instance Attaproach can be applied to
prove upper bounds when flows are unsplittable; detailsbgiljiven in the full version
of the paper. So far, such upper bounds for general netwoeksrdy known for linear
latency functions (see Fotakis [8]).

Related Work The idea of using Stackelberg strategies to improve thepagnce of a
system was first proposed by Korilis, Lazar, and Orda [12¢ &tithors identified nec-
essary and sufficient conditions for the existence of Sthekg strategies that induce
a system optimum; their model differs from the one discused. Roughgarden [18]
first formulated the problem and model considered here. ste@abposed some natural
Stackelberg strategies such as SCALE and Largest-Lateinsi/(LLF). For parallel-
arc networks he showed that the price of anarchy for LLF isnded by 4(3+ a)
and Y/ a for linear and arbitrary latency functions, respectivBgth bounds are tight.
He also showed that for certain types of Stackelberg stiegeghich he termedieak
strategies (see Section 2 for a definition), the price of@mnafor multi-commodity net-
works can be unbounded [18]. However, this did not rule oatakistence of effective
Stackelberg strategies in general. Moreover, he also drthat it is NP-hard to com-
pute the best Stackelberg strategy. Kumar and Maratherjtd$tigated approximation
schemes to compute the best Stackelberg strategy. Theagthve a PTAS for the case
of parallel-arc networks.

Karakostas and Kolliopoulos [11] proved upper bounds onptiee of anarchy
for SCALE and LLF. Their bounds hold for arbitrary multi-camdity networks and
linear latency functions. Their analysis is based on a testhined by Perakis [15]
to bound the price of anarchy for network routing games wiynametric and non-
separable latency functions. Furthermore, Karakostaskafidbpoulos [11] showed
that their analysis for SCALE is almost tight. More recenyvamy [23] obtained



upper bounds on the price of anarchy for SCALE and LLF for polyial latency
functions. Swamy also proved a bound of 1/ a for single-commodity, series-parallel
networks with arbitrary latency functions. Fotakis [8]died LLF and a randomized
version of SCALE for the case of unsplittable flows. He proupder and lower bounds
on the price of anarchy for linear latency functions. Forgliat-arc networks, Fotakis
proved that LLF still achieves an upper bound g&for arbitrary latency functions in
this case.

Correa and Stier-Moses [5] proved, besides some otheitsett the use adpt-
restricted strategied.e., strategies in which the Stackelberg leader sendsare flow
on every edge than the system optimum, does not increasetkepanarchy. Sharma
and Williamson [22] considered the problem of determining smallest value off
such that the price of anarchy can be improved. They obtaieedlts for parallel-
arc networks and linear latency functions. Kaporis andelsr[10] studied a related
question of finding the minimum demand that the Stackelbeagér needs to control
in order to enforce an optimal flow.

2 Model

In a network routing game we are given a directed netwdek (V,A) andk origin-
destination pair$ss,t1),. .., (S, ) calledcommoditiesFor every commodity € k], a
demand; > 0 is given that specifies the amount of flow with origimnd destinatiot.
Let &7 be the set of all paths frostotj in G and let&? = U; Z;. A flowis a function
f: 2 — R,. The flow f is feasible(with respect tor) if for all i, Ypc 5 fp =ri.
For a given flowf, we define the flow on an ame A as fa = Sp5, fp. Moreover,
each ar@ € A has an associated varialiégencydenoted by (-). For eacha € A the
latency functior?, is assumed to be nonnegative, nondecreasing and diffeldmtif
not indicated otherwise, we also assume thas defined o0, ») and thaixéa(x) is
a convex function ok. Such functions are callestandard[16]. The latency of a path
P with respect to a flowf is defined as the sum of the latencies of the arcs in the path,
denoted byp(f) = Sacpla(fa). The triple(G,r,¥) is called arinstance Thecostof a
flow fisC(f) = Spcwp frlp(f). EquivalentlyC(f) = 3 aca fala(fa). The feasible flow
of minimum cost is calledptimaland denoted byg. A feasible flowf is aNash flowor
selfish flowif for everyi € [K] andP,P’ € & with fp > 0, ¢p(f) < ¢p/(f). In particular,
if f is a Nash flow, alls-tj paths to whichf assigns a positive amount of flow have
equal latency. It is well-known that if; and f, are Nash flows for the same instance,
thenC(f;) = C(f,), see e.g. [21].

In a Stackelberg network game we are given, in additioB,to and/, a parameter
a € (0,1). A (strong) Stackelberg strategg a flow g feasible with respect to’ =
(airy,...,axry), for someay, ..., ax € [0,1] such thatyk ;airi = a X ri. If aj = a
for all i, g is called aweak Stackelberg strateg¥hus, both strong and weak strategies
route a fractiona of the overall traffic, but a strong strategy can choose howtmu
flow of each commaodity is centrally controlled. For singlEyamodity networks the
two definitions coincide. A Stackelberg strategig calledopt-restrictedf ga < 0, for
all a € A. Given a Stackelberg strategy let £5(x) = £a(ga+X) for all a € A and let

f =r—r’. Then a flowh is induced by df it is a Nash flow for the instancéG,f, ¢).
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Fig. 1. The graphGy, used in the proof of Theorem 1. Arcs are labeled with theiety

The Nash flowh can be characterized by the followimgriational inequality{6]: his a
Nash flow induced by if and only if for all flowsx feasible with respect tp, ~

;haéa(ga‘F ha) < ;Xaéa(ga‘F ha). (1)

We will mainly be concerned with the cost of the combined el flowg+ h,
given byC(g-+h) = 3 aca(9a+ha)?a(ga+ha). In particular, we are interested in bound-
ing the ratioC(g+ h)/C(0), called theprice of anarchy

Due to lack of space, we omit some of the proofs from this edéemabstract; details
will be given in the full version of the paper.

3 Limits of Stackelberg Routing

In this section, we prove that there does not exist a Staekglstrategy that induces
a price of anarchy bounded by a functionabnly. More precisely, we show that for
any fixeda € (0,1), the ratio between the cost of the flow induced by any Staekglb
strategy and the optimum can be arbitrarily large, evenriglsicommodity networks.

Theorem 1. Let M > Oanda € (0,1). Then, there exists a single-commodity instance
4 = (G,r,¢,a) such that, if g is any Stackelberg strategy f6rinducing a Nash flow
h, and o is an optimal flow for the instan¢@,r, ¢), then Gg+h) > M -C(0).

To prove the theorem we use the instaie= (Vk,Ax) depicted in Figure 1. For
a positive integek, the graptGy has &+ 4 nodes. There is a single commodigyt ),
with unit demand. Defingp := (1— a)/2 andry := (1+ a)/2k. Note that the total
demand is equal toy + kr1. Every arc is of one of five differenypes{A,B,C,D,E}
as indicated in Figure 1. The latency of an arc is determineitishtype. Type B arcs
have constant latency 1, and type C arcs have constantyaberacs of type A have
the following latency function:

0, if x<rg
lo(X) = -
o) {1—’°+;—11X, if x> ro.

Although/{y(X) is not differentiable irrg, it can be approximated with arbitrarily small
error by standard functions.
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Fig. 2. Theith block of the grapiGy.

For fixedL, 1 > 0, letu_ ;(x) be any standard function satisfyimg ; (L) = 0 and
u_r(L+1)=M/7. Type D arcs have latenay, 5 33(X), and type E arcs have latency
U, 5/33(X). We will fix the constan® later in the proof.

Lemmal. C(o) < 1.

Proof. Let By be the paths, s, p1,01, P2, - - - , Pk, Ok, to, t), and fori € K], let B be the
path(s,s,t,t). Consider the feasible flow such thatfp, =ro and fp =ry fori € [k].
The latency induced by is 0 on arcs of type A, C, D, E and 1 on arcs of type B. So
Clo)<C(f)=k-r1=(14a)/2<1. O

The following lemma will allow us to focus on the case where tombined flow
on type D and E arcs does not exceed a certain threshold value.

Lemma 2. For any Stackelberg strategy g inducing a Nash flow h, the¥atig hold:

(i) If ais atype D arc and, + ha > ro+ 6/3k%, thenC(g+h) > M-C(0).
(ii) If ais atype E arc anda +ha > r1 + 8/3k3, thenC(g+h) > M -C(o).

Proof. We prove statement (i); the proof for (ii) is similar. We ha¥g+ h) > (ga+
ha) - £a(da+ha) = (Ga+ha) - Uy, 5/33(Ja+Na) = (ro+ 6/3k3)-M/(6/3k3) > M. The
proof follows from Lemma 1. a

For the remainder of the proof we assume that there is no &isfysiag the condi-
tions of Lemma 2; otherwise the theorem follows immediately

Lemma 3. For any Stackelberg strategy g inducing a Nash flow h, theWaig hold:

(i) Forany arc a= (qi—1,pi), i € [K, @a+ha>ro—9d/k.
(i) Foranyarca=(s,s),i€ [k, 0a+ha>r1—9/k.

We are now ready to conclude the proof of Theorem 1.

Proof (Theorem 1)For anyi € [k], consider théth block in the graph (Figure 2). Let
gi,hi be the Stackelberg and selfish flow on the @&d;), respectively. We have two
cases:

1. hj = 0: in this case, using Lemma 3, the flow on &pg, q;) is at leastro— d/k+
r1 — 8/k—gi. The latency on that same arc is thus at Iég&ty + r1 — 26 /k— gi).



2. hi > 0: in this case, the Nash flow on p&h= (s,s;,t;,t) is strictly positive. Con-
sider the patt®” = (s,s, pi, d,ti,t). By definition of a Nash flow, we gé,‘biu(g+
h) = £p(g+ h). Notice that the two pathB’,P” share all their nonzero-latency
arcs except fofs,t) (only present irP’) and (pi,qi) (only present inP”). Thus
épiu(g+ h) > Cpr (g+h)implies?(, 4)(9+h) > £ ) (g+h) = 1. As a consequence,
Cipg)(@+h) > 1={o(ro+r1) > Lo(ro+r1—25/k—gi) sinceg andd/k are non-
negative.

In both cases(, ¢)(9+h) > lo(ro+r1—20/k—gi) > 1 -
The latencylp, (g + h) on the pathP = (s,%, P1,d1, - - - , Pk, Ok, to, 1) is at least

gpq (g+h) > g.+25/k k_g_gz 1-a-45
i) r r 1+a

The last inequality is a consequence of the fact that thé Stéekelberg flow isx, so

digi<a.
Choosingd < (1— a)/4, we can conclude thdg, (g+ h) = Q(k). Together with
Lemma 1 and Lemma 3, this gives

C(g+h) > (ro—8/K) - lry(g+h) > (- (1—a) — 3)- Q(k) = Q(k) -C(0).
Thus,C(g+ h)/C(0) can be made arbitrarily large by picking a sufficiently lakge O

gi+25/k
ry :

Remark 1.Suppose the Stackelberg leader (e.g., a navigation sygt@wiger) is solely
interested in minimizing the travel time of his players ¢omsers), i.e.Ci(g+h) =
Y acaOala(0a+ ha). Our result also implies that even the rafio(g+ h)/C(0) can be
unbounded, independent of the Stackelberg strajegy

4 A Bicriteria Bound for General Latency Functions

As we have seen in the previous section, no Stackelberggyrabntrolling a constant
fraction of the traffic can reduce the price of anarchy to sstamt, even if we consider
single-commodity networks. In light of this negative rdésule therefore compare the
cost of a Stackelberg strategy on an instagce- (G,r, ¢, a) to the cost of an optimal
flow for the instances? = (G, Br, /) in which the demand vector has been scaled up
by a factor3 > 1.

We propose the following simple Stackelberg strategy, tviie termAugmented
SCALE (ASCALE)

1. Compute an optimal flow? for the instances”.
2. Define the Stackelberg flow lyy.= %

We prove that the resulting flow induced by the Stackelberiesyy ASCALE satisfies
C(g+h) < C(0P) if we choosgB = 1+ /1 — a. This result can be seen as a generaliza-
tion of the result by Roughgarden and Tardos that the cosNafsh flow is always less
than or equal to the cost of the optimal flow for an instancehiictvdemands have been
doubled [21]. Our bound gives a smooth transition from absexi centralized control
(where doubling the demands is sufficient) to completelyredimed control (where no
augmentation is necessary).



Theorem 2. If g is the ASCALE strategy,(G+h) < 55 - (1— §) - C(0P). Further-
more, this bound is tight.

Corollary 1. LetB =1++/1—a.Ifgisthe ASCALE strategy, theri@+ h) < C(oP).

For a given instance = (G,r,¢,a), the SCALE strategy is defined as= ao,
whereo is an optimal flow for(G,r,¢). The next theorem shows that our result for
ASCALE has a consequence for the SCALE strategy as well.

Theorem 3. Let g= ao be the SCALE strategy for instange= (G,r,/, a). Define a
modified instance’ = (G,r,7,a) with latency functiong,(x) = £a(x/B)/B for every
arc a, where = 1++/1—a, and Ieté(;) denote the cost of a flow with respéctet
h be the Nash flow induced by= g in .#. ThenC(§+ h) < C(0).

5 Bounds for Specific Classes of Latency Functions

In this section, we first present a general approach, whickalle -approach to an-
alyze the price of anarchy of opt-restricted Stackelbengtegies. We then use the
approach to derive bounds on the price of anarchy of the SCattdfegy for a general
class of latency functions, including polynomial latenapdtions with nonnegative co-
efficients.

A-Approach. We start by proving an upper bound on the cost of the combired fl
induced by an opt-restricted Stackelberg strategy.

Lemma 4. For any opt-restricted strategy 9,(G+h) < S aca0ala(9a+ ha).

Proof. The proof follows immediately by applying the variationaéguality (1) with
X=0-—g. a

For any latency functiof; and nonnegative numbegg, A, we define the following
nonnegative value:

O0a  ‘a(Ga+ha) —Alg(0
W(€3;ga,A) :== sup a a(%a+ha) a(0a) @

0a.ha>0%a+ ha ' la(Qa+ha)

(We assume by conventionf@= 0.) In order to bound the price of anarchy, we use the
variational inequality (Lemma 4) and bound the cost of ttauged flow on every arc
by someA -fraction of the optimal cost plus somae-fraction of the cost of the induced
flow itself:

C(g+ h) < %/\ : Oafa(oa) + w(ly; ga7/\) (ga+ha)la(ga+ ha). (3)

Now, the idea is to determine /& that provides the tightest bound possible. Choos-
ing A = 1, the above approach resembles the one that was previaedyty Correa,
Schulz, and Stier-Moses [3] to bound the price of anarchyedfvark routing games;



however, optimizing over the paramefeiprovides an additional means to obtain bet-
ter bounds. The idea of introducing the scaling paramg&tevras first introduced in
the context of bounding the price of anarchy in atomic syt network games (see
Harks [9]).

For a given opt-restricted strategyve further defineo(g, A ) = maxaea W(la; Ga, A ).
Before we state the main theorem, we need one additionalitit®finGiven an opt-
restricted strategy, thefeasibleA -regionis defined ag\ (g) := {A e R} |w(g,A) < 1}.
Notice that everA € A(g) induces a bound on the price of anarchy.

Theorem 4. LetA € A(g). Then Gg+h) < —57C(0).

1-w

Proof. The proof follows immediately from (3), Lemma 4 and the déiim of w. O

Bounds for SCALEIn the following, we will analyze the SCALE strategy defined b
g=ao. Let %, d > 1, be a class of continuous, nondecreasing, and standaratyat
functions satisfying(c2) > c9¢(z) for all ¢ € [0,1]. %4 contains, among others, poly-
nomials with nonnegative coefficients and degree at do$his characterization has
been used before by Correa et al. [3].

Lemma 5. Assume\ € [0,1] and latency functions it%y. Then, we have

1 d 1
w(ao,A) < maX{E(l_’\)’d+1' ((d+1)/\)1/d}'

Proof. By the definition ofw = w(¢a; d0,,A):

0z La(00a+ha) — A la(0,)

w= Su .
Oa-,hago a0a+ha Ea(a Oa+ ha)

We consider two cases: @05+ hay > 0,. Definep := aoZiha € [0,1]. We have

w0 sup u.£a(aoa+ha)—)\éa(u(aoa+ha))
0a,ha>0,1€[0,1] la(a 0a+ hg)

d 1
< 1-Aud) = : .
< XK =AMY) = 1 (@r )i

where the last inequality follows from the definition.&y. The second case (i@) 05 +
hy < 05 leads to

Oa La(00a+ha) — Ala(a0a+hy)

w< su .
- oa,hago 00a+hy La(a0a+ha)
Oa 1
< sup ———(1-A)< =(1-A7),
_oa,hagoaoa—f—ha( )< a( )
where the first inequality is valid since latencies are nanetgsing. O
Lemma 6. Thereisauniqud € (0,1), callit Ay, such that% (1-2)= ﬁ . _((d+1%/\)1/d'

Then:Aq = Z/(d + 1), where g > 1is the unique solution to the equatioh'2 — (d -+
1)z+ad=0.



Proof. Substitutingh = zg/(d +1) in the starting equation and rewriting yielgds™* —
(d+1)z+ ad = 0. To verify that this equation has indeed exactly one sofutarger
than 1, use for example Descartes’ rule of signs. a

Theorem 5. The price of anarchy of the SCALE strategy for latency fumstiin the
class.%y is at most

(d+1)zg—ad

(d+1)zg—d’

where g > 1is the unique solution of the equatioh2 — (d+ 1)z+ ad = 0.

Proof. We will use Theorem 4 witih = A4. However, in order to apply the theorem,
we first need to upper bound(ao,A4). Using Lemma 5 and Lemma 6, we know that

d 1 d _
< . d__~- 711
w(a0,Ag) < ir1 ((d+1)Ag) i1 z,7 <1
This impliesAq € A(ao) and we can invoke Theorem 4 to obtain a bound on the price
of anarchy given by

A _A/d+D) 't ([d+1z-ad
1-w(ao,Ag) — 1—

szt [d+Dzg—-d  (d+1zg—d’

O

The bound thus obtained gives an improvement with respetitdqreviously best
bounds obtained by Swamy [23].

For the class of#; latency functions, which, in particular, contains contos,
nondecreasing, standard, and concave latencies, the #iemyvem reads as stated in
Corollary 2 below. The same bound has been proven by Karakastd Kolliopou-
los [11] for the special case of affine latencies.

Corollary 2. The price of anarchy of the SCALE strategy for latency flmstin. £
isat most((1+vI—a)?)/(2(1+v1—a)-1).

A lower bound for polynomial latency functions of degr@ean be obtained by
considering generalized Braess graphs [1, 20] (detailsted)i

Theorem 6. Let n> 2 be an integer and let & (1— (n—1)a/n)9. Then, the price
of anarchy of the SCALE strategy for latency functions in ¢less %y is at least
(nc"* Y4+ (n—1)ac)/((n—1)c+n"9).

Note that the theorem does not fix so it is possible to optimiza based om. For
functions in.#] the stated lower bound pointwise matches the upper boundrafi@ry

2 for infinitely many values ofr. More precisely, the upper bound is matched for all
values ofa such that 11/1— a is an integer. To the best of our knowledge, this is the
first tight bound for values aff 0, 1.
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