Introduction to Modern Cryptography

8th lecture:

Private-Key Management and the Public-Key Revolution

	secret key	public key
confidentiality	private-key encryption	public-key encryption
authentication	message authentication codes (MAC)	digital signatures

• pse	uction proofs udorandomness ck ciphers: DES, AES	secret key	public key
	confidentiality	private-key encryption	public-key encryption
	authentication	message authentication codes (MAC)	digital signatures

• pse	uction proofs udorandomness ck ciphers: DES, AES	secret key	public key
	confidentiality	private-key encryption	public-key encryption
	authentication	message authentication codes (MAC)	digital signatures

collision-resistant hash

functions

- algorithmic number theory
- key distribution, Diffie-Hellmann
- RSA

- reduction proofs
- pseudorandomness
- block ciphers: DES, AES

secret key

public key

confidentiality

private-key encryption

public-key encryption

authentication

message authentication codes (MAC)

digital signatures

 collision-resistant hash functions

Key Management: Pairwise Keys

- each of the N users needs to store N-1 keys
- updating is annoying
- open systems are impossible

Key Management: Pairwise Keys

- each of the N users needs to store N-1 keys
- updating is annoying
- open systems are impossible

Key Distribution Center (KDC)

- Macka("I want to talk to Bob")
- session key k←KDC,
 sends EncMac_{kA}(k) to Alice and EncMac_{kB}(k) to Bob
- or sends EncMackA(k, EncMackB(k)) to Alice

Key Distribution Center (KDC)

- Macka("I want to talk to Bob")
- session key k←KDC,
 sends EncMac_{kA}(k) to Alice and EncMac_{kB}(k) to Bob
- or sends EncMackA(k, EncMackB(k)) to Alice

Key Distribution Center (KDC)

- users have to store only one key
- update only one key
- single point of failure / single point of attack

Whitfield Diffie *1944

Martin Edward Hellman *1945

- BSc from MIT
- honorary PhD from ETH Zurich
- working at Sun

- IBM Watson
- MIT, Stanford
- NuclearRisk.org