Introduction to Modern Cryptography

5th lecture:

Message Authentication Codes (MACs) and CCA security

last time:pseudorandom functionschosen-plaintext security

5th lecture (today):

 Message Authentication Codes (MACs)

•CCA security

	secret key	public key
confidentiality	private-key encryption	public-key encryption
authentication	message authentication codes (MAC)	digital signatures

Motivation

- company order
- email, SMS, etc.
- banking transaction
- contracts
- software patches
- ...

integrity and authenticity are often more basic needs than secrecy

Mihir Bellare

Phillip Rogaway

2000:

- security definition of MACs
- <u>security</u> of CBC MAC

UC Davis, San Diego

CBC encrypt vs CBC-MAC

Cipher Block Chaining (CBC) mode encryption

tricky details! see exercises

Chosen Ciphertext Attacks (CCA) $\operatorname{PrivK}_{\mathcal{A},\Pi}^{\operatorname{cca}}(n)$

Trouble with AuthThenEncrypt $c \leftarrow Enc_{k1}(m \parallel Mac_{k2}(m))$ Trans(0) = 00 Trans(1) = 01 or 10 $Trans^{-1}(00) = 0$ $Trans^{-1}(01) = 1$ $Trans^{-1}(10) = 1$ $Trans^{-1}(10) = 1$

 $Enc_k(m) = Enc'_k(Trans(m))=(r, F_k(r) \oplus Trans(m))$

Enc is CPA-secure, but AtE can be CCA-attacked!

 $c = Enc'_{kl}(Trans(m||Mac_{k2}(m)))$ = (r, F_k(r) \oplus Trans(m||Mac_{k2}(m)))

Trouble with AuthThenEncrypt $c \leftarrow Enc_{k1}(m \parallel Mac_{k2}(m))$ $Trans^{-1}(00) = 0$ Trans(0) = 00 $Trans^{-1}(01) = 1$ Trans(I) = 0I or I0 $Trans^{-1}(10) = 1$ $Trans^{-1}(||) = \bot$ CTR-mode with PRF F_k $Enc_k(m) = Enc_k(Trans(m)) = (r, F_k(r) \oplus Trans(m))$ Enc is CPA-secure, but AtE can be CCA-attacked! $c = Enc'_{kl}(Trans(m||Mac_{k2}(m)))$ = $(r, F_k(r) \oplus Trans(m||Mac_{k2}(m)))$

Trouble with AuthThenEncrypt $c \leftarrow Enc_{k1}(m \parallel Mac_{k2}(m))$ $Trans^{-1}(00) = 0$ Trans(0) = 00 $Trans^{-1}(01) = 1$ Trans(I) = 0I or I0 $Trans^{-1}(10) = 1$ $Trans^{-1}(||) = \bot$ CTR-mode with PRF F_k $Enc_k(m) = Enc_k(Trans(m)) = (r, F_k(r) \oplus Trans(m))$ Enc is CPA-secure, but AtE can be CCA-attacked! $c = Enc'_{kl}(Trans(m||Mac_{k2}(m)))$ = $(r, F_k(r) \oplus Trans(m||Mac_{k2}(m)))$ flipping the first two bits of this block and trying Dec() reveals the first bit of m

Bruce Schneier

• wrote several <u>books</u> and articles about computer security

- influential blog and <u>newsletter</u>
- designed <u>crypto algorithms</u>
- board member of <u>Electronic</u>
 <u>Frontier Foundation</u> (EFF)
- visit <u>his official site</u>, and the funny <u>Bruce Schneier Facts</u>