Introduction to Modern Cryptography

8th lecture:

Private-Key Management and the Public-Key Revolution last time:practical block ciphers: AES & DES 8th lecture (today):Private-Key Management

Public-Key Revolution

 reduction proofs pseudorandomness block ciphers: DES, AES 		secret key	public key
		private-key	public-key
	confidentiality	encryption	encryption
	authentication	message authentication codes (MAC)	digital signatures
collision-resistant hash functions			

last time:practical block ciphers: AES & DES

8th lecture (today):

- Private-Key Management
- Public-Key Revolution

 reduction proofs pseudorandomness block ciphers: DES, AES 		 algorithmic number theory key distribution, Diffie-Hellmann RSA 	
		secret key	public key
	confidentiality	private-key encryption	public-key encryption
	authentication	message authentication codes (MAC)	digital signatures
 collision-resistant hash functions 			

Key Management: Pairwise Keys

- each of the N users needs to store N-I keys
- updating is annoying
- open systems are impossible

Key Management: Pairwise Keys

- each of the N users needs to store N-I keys
- updating is annoying
- open systems are impossible

Key Distribution Center (KDC)

- Mac_{kA}("I want to talk to Bob")
- session key k←KDC, sends EncMac_{kA}(k) to Alice and EncMac_{kB}(k) to Bob
- or sends EncMac_{kA}(k, EncMac_{kB}(k)) to Alice

Key Distribution Center (KDC)

- Mac_{kA}("I want to talk to Bob")
- session key k←KDC, sends EncMac_{kA}(k) to Alice and EncMac_{kB}(k) to Bob
- or sends EncMac_{kA}(k, EncMac_{kB}(k)) to Alice

Key Distribution Center (KDC)

- users have to store only one key
- update only one key
- single point of failure / single point of attack

Whitfield Diffie *1944

Martin Edward Hellman *1945

- BSc from MIT
- honorary PhD from ETH Zurich
- working at Sun

- IBM Watson
- MIT, Stanford
- NuclearRisk.org

Group Isomorphism

Def: For two groups (H,•) and (G, x), f:H→G is a group isomorphism from H to G if $H \cong G$

- I. f is bijective
- 2. for all h_1, h_2 in H: $f(h_1 \times h_2) = f(h_1) \bullet f(h_2)$

F⁻¹ might not be efficiently computable!

 $(\mathbb{Z}_q, +) \cong (G, \times)$ holds for all cyclic groups G=<g> of order q, but computing the inverse is the discrete-logarithm problem.

Quadratic Residues

Def: y in \mathbb{Z}_p^* is a quadratic residue (QR) if there exists x in \mathbb{Z}_p^* such that $x^2 = y \pmod{p}$

Def: The Jacobi / Legendre symbol is defined as $\left(\frac{y}{p}\right) := \begin{cases} +1 & \text{if } y \text{ is a } QR \\ -1 & \text{if } y \text{ is a } QNR \end{cases}$

Prop 11.2 in [KL]: For p>2 prime,

$$\left(\frac{y}{p}\right) = y^{\frac{p-1}{2}} \mod p$$