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Key Distribution Center (KDC)

• users have to store only one key	



• update only one key	



• single point of failure / single point of attack
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Whitfield Diffie Martin Edward Hellman

• IBM Watson	


• MIT, Stanford	


!

• NuclearRisk.org

*1945*1944

• BSc from MIT	


• honorary PhD from 

ETH Zurich	


• working at Sun

http://NuclearRisk.org/


Group Isomorphism
Def: For two groups (H,●) and (G, x), f:H→G is a 
group isomorphism from H to G if	



1. f is bijective	



2. for all h1,h2 in H:  f(h1 x h2) = f(h1) ● f(h2)	



!

F-1 might not be efficiently computable!	



                         holds for all cyclic groups G=<g> of 
order q, but computing the inverse is the discrete-
logarithm problem.

H ⇠= G

(Zq,+) ⇠= (G,⇥)



Quadratic Residues

Def:  y in      is a quadratic residue (QR) if there exists 
x in      such that x2 = y (mod p)
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Def:  The Jacobi / Legendre symbol is defined as 

Prop 11.2 in [KL]: For p>2 prime, 
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