Robust Combiners

Krzysztof Pietrzak (CWI Amsterdam)

Chennai, December 13th, 2007



>y O

CuffLocks PythonLocks The Bike Club



Twist a Pen, Open a Lock

Leander Kalmey [7) 00.17.04 | 200 AM

Kryptonite's vaunted New York series.

A 50-vear-old lock design was rendered useless last week
when a brief post to an nternet forumrevealed the lock can
be popped open with a cheap plastic pen.

On Sunday, bike enthusiast and network security
consultant Chris Brennan described opening an expensive
Kryptonite bike lock using a ballpoint pen.

"Your brand new U-Lock is not safe," warned Brennan in a
note posted to Bike Forums,

Wired News tested Brennan's claims. A brand new
Toryptonite Evolution 2000 was opened in seconds using a
Bic pen. After cutting four small slits in the end ofthe pen's
barrel to ease it in, the lock opened with a single twist,

Brennan, 25, of San Francisco, said he successfully opened
two Kryptonite locks, an Evolution 2000 and an older
Kryptonite Mini lock.

Subsequent posts to Bike Forums and other websites
report the vulnerability applies to many of the company's
cylindrical-lock products, including some from



.
Use two different locks, with separate locking
mechanisms. Thieves carry tools that will either snip
cables, or pry-apart U-locks but rarely both. A cable-lock
and a U-lock together are very secure.




Robust Combiner: Informal Definition

Definition (Robust (1, 2)-Combiner for XXX)

A combiner for XXX is a construction, which given two
candidate implementations of XXX, is a secure realization
of XXX if at least one of the two candidates is secure.




Robust Combiner: Informal Definition

Definition (Robust (1, 2)-Combiner for XXX)

A combiner for XXX is a construction, which given two
candidate implementations of XXX, is a secure realization
of XXX if at least one of the two candidates is secure.

Definition (Robust (k, ¢)-Combiner for XXX)

A combiner for XXX is a construction, which given ¢
candidate implementations of XXX, is a secure realization
of XXX if at least k one of the two candidates is secure.



Related Concept is Amplification: Combine many
instantiations of the same candidate, if a single
instantiation is insecure with probability €, then k
instantiations will be insecure with probability < e, ideally
O(").




Part 1: Robust Combiners for Cryptographic
Primitives: Definitions and Constructions

Part 2: (1, n)-Combiners from (1,2)-Combiners and
Universal Schemes

Part 3: Combiners for Collision Resistance



Robust Combiners for Cryptographic
Primitives: Definitions and
Constructions

A. Herzberg, On cryptographic tolerance, CT-RSA 2005

D. Harnik, J.Kilian, M.Naor, O.Reingold, A.Rosen, On
Robust Combiners for Oblivious Transfer and other
Primitives, EUROCRYPT 2005



A Combiner For One-Way Functions

|
F: X, — Y, is a One Way Function if for all efficient A

Prx.x,[A(F(X)) — X where F(X') = F(X)] = negl(n)



A Combiner For One-Way Functions

CHP(Xi, Xe) = Fi(X1)|| Fa(Xz)

Xi Xo




A Combiner For One-Way Functions

Claim
CHFe(Xi, Xo) = Fi(X1)||F2(X2) is a robust combiner.

Proof: Let A be an adversary who breaks C™ "2 i.e. for
some non-negligeable 4(.)

Pry, e, [AF1(X1) || Fa(X2)) — FyH(X0)|IFy (X2)] = o(n)

We can invert F; and F, with one call to A with prob. 4(.).
Oninput Y = F(X):

» sample X' « X, set Y’ := F»(X').

» Invoke A(Y||Y') — Z||Z

» Output Z
Note that Pr[F(Z) = Y] = §(n). O



Formal Definition

Definition (Cryptographic Primitive)

A primitive P is a triplet (Fp, Ap, Rp), Where Fp is a set
of functions f : {0, 1}x — {0, 1}* defining the functionality
of P, Ap is the class of adversary machines and Ry is a
relation over pairs (f, A), including machines A € A5 that
break functions f € Fp. We say that f implements P if

f € Fp and is computable by a PPTM. A secure
implementation is an f that no A € Ap breaks. The
primitive P exists if there exists an implementation of P
that is secure.



Example: OWF

The primitive “one-way-function” (Fowe, Aowr, Rowe)-
» Fowr are all functions {0, 1}* — {0, 1}".

» Aowr are all functions {0, 1}* — {0, 1}* computable
by a PPTM.

» f € Fowr implements a OWF if it is computable by a
PPTM.

» If f implements a OWF and A € Aowr then
(f,A) € Rowr (i.e. A breaks f) if

Pre(oayr[A(f(x)) = £ (x)] # negl(n)

Thus f € Fowr is a secure implementation of a OWF if for
all A e AOWF

Prre(o.y7[A(f(x)) = £ (x)] = negl(n)



On Implementability

e
In general, it is undecidable if a candidate scheme f
implements P (i.e. whether it is computable by a PPTM).



On Implementability

e
In general, it is undecidable if a candidate scheme f
implements P (i.e. whether it is computable by a PPTM).

|
This is not the problem in practice: checking whether any
‘reasonable” candidate scheme f implements some
primitive P can usually be done unconditionally.

The concern is solely if f securely implements P.



Formal Definitions: Robust Combiners

Definition ((k, n)-Robust Combiner)

Fix representation for cryptographic primitive P. A
(k, n)-robust combiner for P is a PPTM that gets n
candidate schemes as inputs and implements P s.t.
» If at least k of the candidates securely implement P,
so does the combiner.
» The running time of the combiner is polynomial in a
security parameter in n.

Robust (k, n) combiner for P exists if P exists, as
combiner may ignore the inputs and simply implement P
securely.



Formal Definitions: Robust Combiners

Definition (Black-Box (k, n)-Robust Combiner)

C is a black-box (k, n)-Robust Combiner for P if it is a
(k, n)-Robust Combiner where

» The implementations is black-box: C get access to
the candidates via oracle calls.

» The proof is black-box: for all candidates there exists
an oracle PPTM R s.t. if A breaks the combiner RA
breaks the candidate.

All known costruction of combinres are black-box.
Non-black box constructions are very rare in crypto in
general, the few known examples are extremly inefficient.

In some cases one can rule out the existence of black-box
combiners.



.
Combiner for OWFs gives a Combiner for all Primitives
equivalent to OWFs.

Pseudorandom Generators/Functions/Permutations
Bit Commitments

Message Authentication Codes

Digital Signatures

v

v

v

v



Combiner for any Primitive Equivalent to OWFs

Let P € {PRG, PRF, PRP,BC, MAC} or any other
primitive equivalent to OWFs.



Combiner for any Primitive Equivalent to OWFs

Let P € {PRG, PRF, PRP,BC, MAC} or any other
primitive equivalent to OWFs.

» Given to candidates Py, P- for P, construct F;, F»
such that F; is a secure OWF is P; is a secure P.



Combiner for any Primitive Equivalent to OWFs

Let P € {PRG, PRF, PRP,BC, MAC} or any other
primitive equivalent to OWFs.

» Given to candidates Py, P- for P, construct F;, F»
such that F; is a secure OWF is P; is a secure P.

» Let F(.) be the combined OWF F;(.)||Fz(.).



Combiner for any Primitive Equivalent to OWFs

Let P € {PRG, PRF, PRP,BC, MAC} or any other
primitive equivalent to OWFs.

» Given to candidates Py, P- for P, construct F;, F»
such that F; is a secure OWF is P; is a secure P.

» Let F(.) be the combined OWF F;(.)||Fz(.).
» Construct P from F.



Combiner for any Primitive Equivalent to OWFs

Let P € {PRG, PRF, PRP,BC, MAC} or any other
primitive equivalent to OWFs.

» Given to candidates Py, P- for P, construct F;, F»
such that F; is a secure OWF is P; is a secure P.

» Let F(.) be the combined OWF F;(.)||Fz(.).
» Construct P from F.

Just of theoretical interest, as reduction from OWF to
other primitives are extremely inefficient.



Combiner for any Primitive Equivalent to OWFs

Let P € {PRG, PRF, PRP,BC, MAC} or any other
primitive equivalent to OWFs.

» Given to candidates Py, P- for P, construct F;, F»
such that F; is a secure OWF is P; is a secure P.
» Let F(.) be the combined OWF F;(.)|| Fz(.).
» Construct P from F.
Just of theoretical interest, as reduction from OWF to
other primitives are extremely inefficient.

Fortunately, for all the above primitives, there are efficient
(1,2) combiners...



Combiner for any Primitive Equivalent to OWFs

Let P € {PRG, PRF, PRP,BC, MAC} or any other
primitive equivalent to OWFs.

» Given to candidates Py, P- for P, construct F;, F»
such that F; is a secure OWF is P; is a secure P.
» Let F(.) be the combined OWF F;(.)|| Fz(.).
» Construct P from F.
Just of theoretical interest, as reduction from OWF to
other primitives are extremely inefficient.

Fortunately, for all the above primitives, there are efficient
(1,2) combiners... except for Bit-Commitment.



Combiner for Pseudorandom Generators

CP,‘?G1,P:‘?62(S17 SZ) = PRG1(S1) ©® PRGZ(S2)
I
PRG; PRG,




Combiner for Pseudorandom Generators

CP,‘?G1,P:‘?62(S17 82) = PRG1(S1) ©® PRGZ(S2)
I
PRG; PRG,

I

This combiner plays a crucial role in the classical construction

of a PRG from OWF.

J.Hastad, R.Impagliazzo, L.A.Levin, M.Luby: A Pseudorandom
Generator from any One-way Function. SIAM J. Comput. 1999




Combiner for Pseudorandom Functions

CPAFPRR: (K, Ke], M) = PRF (K1, M) & PR (K. M)




Combiners for Pseudorandom Permutations

CPRP17PRP2([’<1> K2]7 M) - PRPQ(Kg, PRP1(’<17 M))

w—{PRP}——{PRP:



Combiner for Message Authentication Codes

I
F:K,x X,— Y,is asecure MAC if for all efficient A

Prieic,[A"") = (¢, M) A ¢ = F(K, M)] = negl(n)

Here A is not allowed to query F(K,.) on its output M.



Combiner for Message Authentication Codes

CHMAMAC (6, K], M) = MAC (Kq, M) | MACy (K, M)

Ki— MAC; MAC, —Kz




Combiner for Encryption

CENCHLENC: (1K, Kp], M) = R||[ENC1(K1, R)||ENCx(Ka, M & R)

Where a fresh random R is picked for every
encryption.

R R M
Ki—] ENC; | | ENC> —K>
) |

ASMUTH, C. A., AND BLAKLEY, G.R. An efficient
algorithm for constructing a cryptosystem
which is harder to break than two other
cryptosystems. Comput. Math. Appl. 7 1981.



Collision Resistant Hash Functions

e
H: K, x X, — Y, is a CRHF if for all efficient A

Prc«[A(K) = M, M’ where Hx(M) = Hx(M')] = negl(n)
CRHFs are not known to be equivalent to OWFs, in the

sense that there exists no black-box construction of
CRHFs from OWFs (Simon EC’98).



Combiner For CRHFs

CH¥4([Kr, Kal, M) = Hh (Ko, M)|| (e, M)

Ki K

Note that any collision M, M’ for CHe([K;, K], .) is also a
collision for H;(Ki,.) and Ha(Kz, .).



Bit-Commitment

A Bit-Commitment Scheme is a function
BC:{0,1} xR, — Cp
Binding: Itis hard to find r, r’ where
BC(0,r) = BC(1,r)

Hiding: For uniformly random r, BC(0, r) and BC(1,r)
are indistinguishable.



Bit-Commitment

A Bit-Commitment Scheme is a function
BC:{0,1} xR, — Cp
Binding: Itis hard to find r, r’ where
BC(0,r) = BC(1,r)

Hiding: For uniformly random r, BC(0, r) and BC(1,r)
are indistinguishable.
Perfectly Binding: —3r,r' : BC(0,r) = BC(1,r")
Perfectly Hiding: A(BC(0,r),BC(1,r)) =0
A BC scheme can be either perfectly binding or perfectly
hiding, but not both.



Combiner for the Hiding Property

¥ syb
r—{BC | |BC,|—r
} |

|
CLB%(b, [r, 1, s]) = BCy(s,r)||BCs(b & s, ')



Combiner for the Hiding Property

¥ syb
r—{BC | |BC,|—r
} |

|
CLB%(b, [r, 1, s]) = BCy(s,r)||BCs(b & s, ')

Not Binding: BCy or BC, not binding = CEC“BC2 not binding.



Combiner for the Hiding Property

¥ syb
r—{BC | |BC,|—r
} |

|
CLB%(b, [r, 1, s]) = BCy(s,r)||BCs(b & s, ')

Not Binding: BCy or BC, not binding = CEC“BC2 not binding.
Hiding: CE¢5% is hiding if either BCy or BC; is hiding.



Combiner for the Hiding Property

¥ syb
r—{BC | |BC,|—r
} |

|
CLB%(b, [r, 1, s]) = BCy(s,r)||BCs(b & s, ')

Not Binding: BCy or BC, not binding = CE,C“BC? not binding.
Hiding: CE¢5% is hiding if either BCy or BC; is hiding.

» Assume CE,C"BC? is not hiding: 3 efficient A

PrlA(BC:(s,r)|BCa(b® s,r')) = b] =1/2 +§



Combiner for the Hiding Property

¥ syb
r—{BC | |BC,|—r
} |

|
CLB%(b, [r, 1, s]) = BCy(s,r)||BCs(b & s, ')

Not Binding: BCy or BC, not binding = CE,C“BC? not binding.
Hiding: CE¢5% is hiding if either BCy or BC; is hiding.

» Assume CE,C"BC? is not hiding: 3 efficient A

PrlA(BC:(s,r)|BCa(b® s,r')) = b] =1/2 +§

» To break BC;: Given com = BCy(b, r), sample s, r'.



Combiner for the Hiding Property

¥ syb
r—{BC | |BC,|—r
} |

|
CLB%(b, [r, 1, s]) = BCy(s,r)||BCs(b & s, ')

Not Binding: BCy or BC, not binding = CE,C“BC? not binding.
Hiding: CE¢5% is hiding if either BCy or BC; is hiding.

» Assume CE,C"BC? is not hiding: 3 efficient A

PrlA(BC:(s,r)|BCa(b® s,r')) = b] =1/2 +§

» To break BC;: Given com = BCy(b, r), sample s, r'.

» Call A(com||BCx(s,r')) — d and output b’ = d @ s.



Combiner for the Hiding Property

¥ syb
r—{BC | |BC,|—r
} |

|
CLB%(b, [r, 1, s]) = BCy(s,r)||BCs(b & s, ')

Not Binding: BCy or BC, not binding = CE,C“BC? not binding.
Hiding: CE¢5% is hiding if either BCy or BC; is hiding.

» Assume CE,C"BC? is not hiding: 3 efficient A

PriA(BCq(s,r)|BC2(b& s, 1)) = b] = 1/2 + 6
» To break BC;: Given com = BCy(b, r), sample s, r'.
» Call A(com||BCx(s,r')) — d and output b’ = d @ s.
» Pr[b=b]=1/2+ 6. BCy is broken similarly.



Combiner for the Hiding Property

i sgb
r_|BC1| |BCQ|_r/
! |

I
CAoB%(b, [r, 1", s]) = BCy(s, r)|BCa(b @ s, ')

Not Binding: BC; or BC; not binding = CE°'*5% not binding.
Hiding: CP°""8% is hiding if either BCy or BC; is hiding.



Combiner for the Hiding Property

i sgb
r_|BC1| |BCQ|_r/
! |

I
CAoB%(b, [r, 1", s]) = BCy(s, r)|BCa(b @ s, ')

Not Binding: BC; or BC; not binding = CE°'*5% not binding.
Hiding: CP°""8% is hiding if either BCy or BC; is hiding.

Preserving for Binding: If BCy and BC; are binding, so is
(CBC1.BC
o .



Combiner for the Hiding Property

i sgb
r_|BC1| |BCQ|_r/
! |

I
CAoB%(b, [r, 1", s]) = BCy(s, r)|BCa(b @ s, ')

Not Binding: BC; or BC; not binding = CE°'*5% not binding.
Hiding: CP°""8% is hiding if either BCy or BC; is hiding.
Preserving for Binding: If BCy and BC; are binding, so is
CBQ,BCg

i .

.
Combiner Cy for the hiding property, is a robust combiner
for perfectly binding BC (as here binding is unconditional).



Combiner for the Binding Property

r BC1 BCz r

|
CgChBCz(b’ [r’ r’]) = BC1 (b, I’)HBCg(b, r,)



Combiner for the Binding Property

CgChBCz(b’ [r’ r’]) = BC1 (b, I’)HBCg(b, r,)

Not Hiding: BC; or BC; not hiding = C5°""8% not hiding.



Combiner for the Binding Property

CgChBCz(b’ [r’ r’]) = BC1 (b, I’)HBCg(b, r,)

Not Hiding: BC; or BC; not hiding = C5°""8% not hiding.
Binding: C5°""®% is binding if either BC; or BC is binding.



Combiner for the Binding Property

CECB% (b, [r, r']) = BCy(b, r)||BCa(b, ')
Not Hiding: BC; or BC; not hiding = C5°""8% not hiding.
Binding: C5°""®% is binding if either BC; or BC is binding.

) BC2

» Assume ch1 is not binding: 3 efficient A

Pr[A — (r,r',s,s") : BCy(0,r)||BCx(0,r") = BCy(1,s)||BC>(1,s)



Combiner for the Binding Property

CECB% (b, [r, r']) = BCy(b, r)||BCa(b, ')
Not Hiding: BC; or BC; not hiding = C5°""8% not hiding.
Binding: C5°""®% is binding if either BC; or BC is binding.

) BC2

» Assume ch1 is not binding: 3 efficient A

Pr[A — (r,r',s,s") : BCy(0,r)||BCx(0,r") = BCy(1,s)||BC>(1,s)

» This A breaks BCy as BC1(0,r) = BCy(1, s), and it breaks
BC, as BC»(0,r') = BC»(1,§).



Combiner for the Binding Property

CgChBCz(b’ [r’ r’]) = BC1 (b, I’)HBCg(b, r,)

Not Hiding: BC; or BC; not hiding = C5°"-8% not hiding.
Binding: C5°""®% is binding if either BC; or BC; is binding.



Combiner for the Binding Property

CgChBCz(b’ [r’ r/]) = BC1 (b, I’)HBCg(b, r/)

Not Hiding: BC; or BC; not hiding = C5°"-8% not hiding.
Binding: C5°""®% is binding if either BC; or BC; is binding.

Preserving for Hiding: If BCy and BCo are hiding, so is
(CBC1.BC
5 .



Combiner for the Binding Property

Cgc17802(b? [r’ r/]) = BC1 (b, I’)HBCg(b, r/)

Not Hiding: BC; or BC; not hiding = C5°"-8% not hiding.
Binding: C5°""®% is binding if either BC; or BC; is binding.

Preserving for Hiding: If BCy and BCo are hiding, so is
(CBC1.BC
5 .

I
Combiner Cg for the binding property, is a robust combiner for
perfectly hiding BC (as here hiding is unconditional).



Open Problem

Efficient Robust (1,2)-Combiner for general BC (inefficient
exist via OWFs).




Open Problem

Efficient Robust (1,2)-Combiner for general BC (inefficient
exist via OWFs).

For any t € N, Efficient Robust (t+1,2t+1)-Combiner Exist
(Herzberg). We will prove the case t = 1.



Robust (2,3)-Combiner for BC

Given: BCy, BC,, BC; two of which are secure (binding &
hiding).

Let C12 = 0501’302, C13 = 6501’803, 623 = CEICz’BCa, where

CBCBC b, [r, 1", s]) = BC:(s, r)||BC2(b @ s, 1)

is the combiner for the hiding property.

.
The following is a robust (2, 3)-combiner for BC.

CBCrBC2BCs(p [r. 1, r"]) = Cya(b, r)||Cya(b, )| Cas(b, r")



b s@b

|
r1_| C12 | f2_| C13| I3 023 r BC, r
! ! where Cj is

BC;,BC;
CBC“BCZ,BCa(b, f) _ CBC12’C13’C23(b, I’) where Cij _ CH B



b s@b

I
r1_| Cio | f2_| C13| I3 023 r BC; r
! ! where Cj is
BC;,BC;
CF B (b r) = Cg 9% (b,r) where Cj=C, """
If two of the BC; are , all C; are hiding, and one is
also

/ Hiding/ None.



b s@b

|
r1_| C12 | f2_| C13| I3 023 r BC, r
! ! where Cj is

CeEe (b,l’)ICg‘Z’ ’023(b,r) where C,-,-:CE,C”BCf

If two of the BC; are , all C; are hiding, and one is
also
/ Hiding/ None.

» Cg»“ "% (b, r) is hiding, because all C; are.

» C52“ "% (b, r) is binding, because Cs is a (1, 3)
robust combiner for the binding property.



(1, n)-Combiners from (1,2)-Combiners
and Universal Schemes

D. Harnik, J.Kilian, M.Naor, O.Reingold, A.Rosen, On
Robust Combiners for Oblivious Transfer and other
Primitives, EUROCRYPT 2005



(1, n) combiners from (1,2) combiners

Many robust (1,2) extend easily to (1, n) combiners.

E.g. for OWFs




(1, n) combiners from (1,2) combiners

Generic construction of a (1, n) combiner C from a (1,2)
combiner C.



(1, n) combiners from (1,2) combiners

Generic construction of a (1, n) combiner C from a (1,2)
combiner C.

Obvious Idea: use binary tree to combiner Py, ..., Por.

P/j = CPiPi.



(1, n) combiners from (1,2) combiners

Generic construction of a (1, n) combiner C from a (1,2)
combiner C.

Obvious Idea: use binary tree to combiner Py, ..., Por.

P/j = CPiPi.



(1, n) combiners from (1,2) combiners

Generic construction of a (1, n) combiner C from a (1,2)
combiner C.

Obvious Idea: use binary tree to combiner Py, ..., Por.

77,] = CPiPi.

Efficiency: If C””" makes k calls to @

k! calls.



(1, n) combiners from (1,2) combiners

|
A robust (1,2) combiner is very efficient, if it calls its
components at most a constant number of times.

Lemma (HKNRRO5)

If C is a very efficient robust (1,2) combiner, then Cisa
robust (1, n) combiner.

If C calls each of its components k times, then C calls
each of the components k'°9(" = poly(n) times.



(1, n) combiners from (1,2) combiners

|
A robust (1,2) combiner is very efficient, if it calls its
components at most a constant number of times.

Lemma (HKNRRO5)

If C is a very efficient robust (1,2) combiner, then Cisa
robust (1, n) combiner.

If C calls each of its components k times, then C calls
each of the components k'°9(" = poly(n) times.

Thus for all primitives considered so far, robust (1, n)
combiners exist... except for BC.



(1, n) combiners from (1,2) combiners for BC

For bit commitment

» Very inefficient (1,2) combiners exist via the
reduction to OWFs.

» Very efficient (2, 3) combiners exist (the combiner
calls its components 6 times).



(1, n) combiners from (1,2) combiners for BC

For bit commitment

» Very inefficient (1,2) combiners exist via the
reduction to OWFs.

» Very efficient (2, 3) combiners exist (the combiner
calls its components 6 times).

Lemma (HKNRRO5)

If there exists a robust (1,2) combiner for P, and a very
efficient (2,3) combiner, then a robust (1, n) combiner for
P exists.




(1, n) combiners from (1,2) combiners for BC

Construction of a robust (1, k) combiner C from a very
efficient (2, 3) combiner Canda (1,2) combiner C.
» If k =2 use the (1,2) combiner C.
» If k > 2, divide k candidates into 3 groups such that
each candidate is in at least 2 groups of size 2k/3.

Invoke C recursively on each group and use Cto
combine the three groups.



(1, n) combiner C from very efficient (2,3) combiner C
and (1,2) combiner C




(1, n) combiner C from very efficient (2,3) combiner C
and (1,2) combiner C




(1, n) combiner C from very efficient (2,3) combiner C
and (1,2) combiner C




(1, n) combiner C from very efficient (2,3) combiner C
and (1,2) combiner C




(1, n) combiner C from very efficient (2,3) combiner C
and (1,2) combiner C




(1, n) combiner C from very efficient (2,3) combiner C
and (1,2) combiner C




Efficiency of C

Let t(k) denote the running time of CCC" P« where
each P; runs in time poly(n).

> #(2) = n9 for some d > 0, as CPPz = CPi P2,
> t(k) = 3c- t(%).
Where ¢ is the number of calls that CP-P-Ps makes to its

components (e.g. ¢ = 6 for the BC combiner).
Solving the recursion gives:

t(k) = (3¢)%%¥ .

This is polynomial in n for k = poly(n).



Universal Schemes

Definition
A universal scheme U for a cryptographic primitive P is an

explicit construction with the property that if the primitive
P exists, then U is a secure implementation of P.




Universal Schemes

Definition
A universal scheme U for a cryptographic primitive P is an

explicit construction with the property that if the primitive
P exists, then U is a secure implementation of P.

Levin [Combinatorica’87] gave a universal scheme U for
OWFs, which on input x € {0, 1} is defined as

Ul - - [1xa) = Mixalll - [[Ma[x]

» M; is the i'th Turing Machine.

» M;[x] is the output of M; on input x, where we stop
after at most |x|2 steps.



Universal Schemes

U - N1Xn) = MiDxalll - ([ Malxa]
M;[x]: output of /'th TM after |x|? steps.



Universal Schemes

U - N1Xn) = MiDxalll - ([ Malxa]
M;[x]: output of /'th TM after |x|? steps.

Efficiency: U(x|| .. .||xn) runs in time n®.



Universal Schemes

U]l (%) = Mixalll - . - [[Ma[Xn]
M;[x]: output of /'th TM after |x|? steps.

Efficiency: U(x|| .. .||xn) runs in time n®.

Hard to Invert (if OWFs exist)
» Assume OWF exist, then there exist OWF’s which
run in quadratic time (use padding).
» If TM M,[.] is a OWF which runs in quadratic time,
then U is at least as hard to invert on inputs of length
n > m? as Mp|[.] on inputs of length n.



Universal Schemes

U]l (%) = Mixalll - . - [[Ma[Xn]
M;[x]: output of /'th TM after |x|? steps.

Efficiency: U(x|| .. .||xn) runs in time n®.

Hard to Invert (if OWFs exist)
» Assume OWF exist, then there exist OWF’s which
run in quadratic time (use padding).
» If TM M,[.] is a OWF which runs in quadratic time,
then U is at least as hard to invert on inputs of length
n > m? as Mp|[.] on inputs of length n.
Because

ChoM(xqy .. 1X2) = BN - - [1Fa(Xn)

is a robust (1, n) combiner for OWFs.



Universal Schemes

Lemma (HKNRRO5)

For any primitive P, if:

1. We know a polynomial p(.) s.t. if P exists, there
exists an implementation which runs in time p(n).

2. We have a (1, n) robust combiner for P.
Then we can provide a Universal scheme for P



Universal Schemes

Lemma (HKNRRO5)

For any primitive P, if:
1. We know a polynomial p(.) s.t. if P exists, there
exists an implementation which runs in time p(n).

2. We have a (1, n) robust combiner for P.
Then we can provide a Universal scheme for P

Universal schemes for all all primitives we saw so far
exist!



OT Combiner???

Lemma (HKNRRO5)

A very efficient (2,3) combiner for oblivious transfer
exists.

The construction is very similar to the (2,3) BC combiner,
but unlike for BC, no (1,2) combiner is known.

Open Problem

Does there exist a (1,2) combiner for OT?

Such a combiner would imply a (1, n) combiner for OT,
and further

Lemma

Any (1,2) combiner for OT can be used to construct a
universal OT-scheme.




Combiners for Collision Resistance

D.Boneh, X.Boyen: On the Impossibility of Efficiently
Combining Collision Resistant Hash Functions. CRYPTO
2006

K.Pietrzak: Non-trivial Black-Box Combiners for
Collision-Resistant Hash-Functions Don’t Exist.
EUROCRYPT 2007

R.Canetti, R.Rivest, M.Sudan, L.Trevisan, S.Vadhan,
H.Wee: Amplifying Collision Resistance: A
Complexity-Theoretic Treatment. CRYPTO 2007



MAC Combiner Revisited
K1—WJC_1‘—/LWJ\C_2'7K2

CMAC1,MACQ([K1 ’ K2]7 M) = MAC1 ("(1, M)”MACZ(KQ, M)

Unfortunately output length is doubled...



MAC Combiner Revisited
K1—WJC_1‘—/LWJ\C_2'7K2

CMAC1,MACQ([K1 ’ K2]7 M) = MAC1 ("(1, M)”MACZ(KQ, M)

Unfortunately output length is doubled...

K—wc]  [MAGH—x

CMACMAC: ([ K, , K], M) = MAC: (K1, M) ® MACo(Ka, M)

One can XOR the outputs, and the combiner stays robust!



MAC Combiner Revisited

K—wac] (WG,

CMACIMAC: (1K, Kp], M) = MAC; (K1, M) & MAC,(Kz, M)
is a robust combiner:



MAC Combiner Revisited

K—wac] (WG,

CYMACMAC Ky, K3, M) = MAC: (K1, M) & MAC,(Kz, M)

is a robust combiner:
» Assume AC"M%(KikKal) outputs forgery with
non-negligible probability.



MAC Combiner Revisited

K—wac] (WG,

CYMACMAC Ky, K3, M) = MAC: (K1, M) & MAC,(Kz, M)

is a robust combiner:
» Assume AC"M%(KikKal) outputs forgery with
non-negligible probability.
» To break MAC;(K,.): Sample key K’ for MAC..



MAC Combiner Revisited

K—wac] (WG,

CYMACMAC Ky, K3, M) = MAC: (K1, M) & MAC,(Kz, M)

is a robust combiner:
» Assume AC"M%(KikKal) outputs forgery with
non-negligible probability.
» To break MAC;(K,.): Sample key K’ for MAC..
» Let A attack MAC;(K,.) & MACy(K',.).



MAC Combiner Revisited

K—wac] (WG,

CYMACMAC Ky, K3, M) = MAC: (K1, M) & MAC,(Kz, M)

is a robust combiner:
» Assume AC"M%(KikKal) outputs forgery with
non-negligible probability.
» To break MAC;(K,.): Sample key K’ for MAC..
» Let A attack MAC;(K,.) & MACy(K',.).
» A outputs forgery (M, ¢) for CMACHMACz([K K'], )



MAC Combiner Revisited

K—wac] (WG,

CMACMAC: (K, , Kz], M) = MAC: (Ky, M) & MAC(Kz, M)

is a robust combiner:

» Assume AC"M%(KikKal) outputs forgery with
non-negligible probability.
To break MAC; (K, .): Sample key K’ for MAC..
Let A attack MAC+ (K, .) & MAC,(K',.).
A outputs forgery (M, ¢) for CMACHMACz([K K'], )
Output forgery (M, ¢') for MAC: (K, .), where

¢ = ¢ d MACs(K, M))

vV v VY



CRHF Combiner Revisited

CHe(M) = Hi (M) Ho(M)



CRHF Combiner Revisited

CHre(M) = Hy(M)||Ha(M)
Output length doubled, unfortunately (unlike for MACs)

is not robust.



CRHF Combiner Revisited

CH17H2([K1,K2], M) = Hi(Ky, M) & Hao(Ko, M)

Is not robust. Let Hy, H> : {0,1}™ — {0,1}"\ {A, B} be CRHFs.
For all keys K and any X, Y € {0,1}" redefine

H1(K7X):A H1(K7Y):B
Ho(K,X)=B  Hao(K,Y)=A
Then the inputs X and Y collide in CHi:Fe:

CHfe([Ky, Ko, X) = AGA=0"
Cte (K, Ko],Y) = BeB=0"



