Theoretical constructions of pseudorandom objects

Leanne Streekstra

MSc Logic ILLC, University of Amsterdam

Okt 20, 2014

One-way functions

Easy to compute, hard to invert.

- There exists a PPT algorithm computing f.

Introduction Hard-core predicates	
From one-way function to PRG From PRG to PRF	
From PRF to PRP	
Concluding remarks	

Hard-core predicates

Infeasible to determine hc given f(x)

- hc(x) can be computed in polynomial time given x.

Constructing hc

- For every one-way function f, there exists a one-way function g with a hard-core predicate hc.
- If f is a permutation, so is g.

►
$$g(x,r) \stackrel{def}{=} (f(x),r)$$
, for $|x| = |r|$.
► $hc(x,r) \stackrel{n}{\underset{i=1}{\longrightarrow}} x_i \cdot r_i$

Constructing a PRG with minimal expansion

- If f is a one-way permutation and hc a hard-core predicate for f then G is a PRG:
 - ► G(x)=(f(x), hc(x))
- ▶ G has expansion factor l(n)=n+1

Increasing the expansion factor

Construct G̃, with expansion factor Ĩ(n)=p(n) for any polynomial p(n), by iteration of G.

Construction

▶ Construct a PRF from a PRG with expansion factor I(n)=2n.

Construction

- ▶ Construct a PRF from a PRG with expansion factor I(n)=2n.
- $F_k(x_1x_2...x_n) = G_{x_n}(...(G_{x_2}(G_{x_1}(k))))$.

Feistel network

Combine a PRF with a 3-round Feistel network to get a PRP.

Feistel network

- Combine a PRF with a 3-round Feistel network to get a PRP.
- Strong PRP: combine a PRF with a 4-round Feistel network.

From PRG to one-way function

► If there exists a PRG, there exists a one-way function.

From PRG to one-way function

- ▶ If there exists a PRG, there exists a one-way function.
- If there exists a private-key encryption scheme with indistinguishable ecryptions in the presence of an eavesdropper, then there exists a one-way function.

Hard-core predicates From one-way function to PRG From PRG to PRF From PRF to PRP Concluding remarks	Introduction	
From PRG to PRF From PRF to PRP	Hard-core predicates	
From PRF to PRP	From one-way function to PRG	
	From PRG to PRF	
Concluding remarks	From PRF to PRP	
	Concluding remarks	

Conclusion

 One-way functions are both sufficient and necessary for all private-key cryptography

