CPA-security for Padded RSA

Tingxiang Zou

Recap: Padded RSA

Padded RSA

Let I be a function with $I(n) \leq 2 n-2$:
-Gen: on input 1^{n}, output public key (N, e) and secret key (N, d).
-Enc: on message $m \in\{0,1\}^{\prime(n)}$, $\operatorname{Enc}_{(N, e)}=\left[(r \| m)^{e} \bmod N\right]$, where $r \leftarrow\{0,1\}^{\|N\|-l(n)-1}$.
-Dec: on ciphertext $c \in \mathbb{Z}_{N}^{*}, \operatorname{Dec}_{(N, d)}=$ the $I(n)$ low-order bits of $\left[c^{d} \bmod N\right]$

- For $I(n)=2 n-O(\log n)$, not CPA-secure;
- For $I(n)=O(\log n)$, CPA-secure under the RSA assumption.
- RSA assumption: there is no efficient algorithm, which given N, e and a random y, can find x with non-negligible probability, such that $y=\left[x^{e} \bmod N\right]$.

CPA-security for Padded RSA with $I(n)=1$

We say that the RSA least significant-bit is unpredictable if there is no efficient algorithm, which given N, e and a randomly chosen y, can find the least significant bit of x with non-negligible probability over $\frac{1}{2}$, such that $y=\left[x^{e} \bmod N\right]$.
Theorem: The RSA least significant-bit is unpredictable under the RSA assumption.

Corollary: Padded RSA with $I(n)=1$ is CPA-secure under the RSA assumption.

This result can be generalised to the j-least significant bits, for $j=O(\log n)$.

A Reduction Proof

Lemma

If there is a PPT \mathcal{A}, that given N, e and a random y can find the least significant bit of x with non-negligible probability over $\frac{1}{2}$, such that $y=\left[x^{e} \bmod N\right]$, then there is a PPT \mathcal{A}^{\prime}, which can find x with non-negligible probability.

Two important techniques:

- Improve the performance of \mathcal{A} on the RSA Isb by executing independent measurements and taking the majority vote.
- Invert the RSA encoding function by a gcd algorithm (Brent-Kung gcd procedure) in the presence of a reliable adversary for RSA Isb.

Independent measurements and the majority vote

- Suppose you want to answer a yes-or-no question Q by asking some consultant O.
- Suppose each time you ask, the probability you get the right answer is $\frac{2}{3}$.
- Ask it independently for 3 times, and give the majority answer.

Now the probability that your answer is wrong is:
$\operatorname{Pr}[3$ wrong answers] $+\operatorname{Pr}[2$ wrong answers]
$=\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}+\left(\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3}+\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}+\frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}\right)=\frac{7}{27}<\frac{1}{3}$.

- If you ask it 5 times independently, then you can do even better.
- For PPT \mathcal{A} which can guess the RSA Isb with $\operatorname{Pr}[\operatorname{Succ}(n)]=\frac{1}{2}+\frac{1}{n^{c}}$, polynomial many independent runs will give $\operatorname{Pr}[\operatorname{Succ}(n)] \approx 1-\frac{1}{n}$.

Brent-Kung gcd Procedure

Compute gcd(10,15):
$(10,15) \longrightarrow$ Only one of them is even, 2 cannot be a common divisor.
It won't hurt to replace 10 with 5 .
$(5,15) \longrightarrow$ They are all odd.
They have the same common divisors as $\left(\frac{15+5}{2}, \frac{15-5}{2}\right)$.
$(10,5) \longrightarrow$ Only 10 is even, replace it with $\frac{10}{2}$.
$(5,5) \longrightarrow 5$ must be the greatest common divisor.

- We only need to know the parity of r, s (which is the Isb), and be able to do the linear combination.

Inverting RSA encryption function

- Convention: Let $[x]_{N}$ denote $[x \bmod N]$.
- If \mathcal{A} can guess the RSA Isb with probability almost 1 , then given N, e, y with $y=\left[x^{e}\right]_{N}$, he knows almost for sure the parity of any $[a x]_{N}$ and $[b x]_{N}$. He also can calculate $\left[\left(2^{-1}(a x \pm b x)\right)^{e}\right]_{N}$, hence knows the parity of $\left[2^{-1}(a \pm b) x\right]_{N}$.
- If $[a x]_{N}$ and $[b x]_{N}$ are coprime, then applying the Brent-Kung gcd procedure for $\left([a x]_{N},[b x]_{N}\right), \mathcal{A}$ can efficiently get a c, such that $[c x]_{N}=1$. Then $x=\left[c^{-1} \bmod N\right]$, which is efficiently computable.
- Theorem (Dirichlet 1849): The probability that two random integers in $[1, N]$ are coprime converges to $\frac{6}{\pi^{2}} \approx 0.608$ as N tends to $+\infty$.
Hence, take two randomly chosen $a, b \in \mathbb{Z}_{N},[a x]_{N}$ and $[b x]_{N}$ are coprime with high probability.

Conclusion

- Main result: in RSA, determining the least-significant bit of the plaintext is as hard as inverting the RSA encryption function (i.e., knowing the whole plaintext.)
- We see two useful techniques:
(1) Independent measurements + the majority vote;
(2) Brent-Kung gcd procedure.

Thank You!

