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Abstract. We derive a new entropic quantum uncertainty relation involving min-entropy. The
relation is tight and can be applied in various quantum-cryptographic settings.

Protocols for quantum 1-out-of-2 Oblivious Transfer and quantum Bit Commitment are presented
and the uncertainty relation is used to prove the security of these protocols in the bounded-
quantum-storage model according to new strong security definitions.

As another application, we consider the realistic setting of Quantum Key Distribution (QKD)
against quantum-memory-bounded eavesdroppers. The uncertainty relation allows to prove the
security of QKD protocols in this setting while tolerating considerably higher error rates compared
to the standard model with unbounded adversaries. For instance, for the six-state protocol with
one-way communication, a bit-flip error rate of up to 17% can be tolerated (compared to 13% in
the standard model).

Our uncertainty relation also yields a lower bound on the min-entropy key uncertainty against
known-plaintext attacks when quantum ciphers are composed. Previously, the key uncertainty of
these ciphers was only known with respect to Shannon entropy.

1 Introduction

A problem often encountered in quantum cryptography is the following: through some inter-
action between the players, a quantum state ρ is generated and then measured by one of the
players (call her Alice in the following). Assuming Alice is honest, we want to know how unpre-
dictable her measurement outcome is to the adversary. Once a lower bound on the adversary’s
uncertainty about Alice’s measurement outcome is established, it is usually easy to prove the
desired security property of the protocol. Many existing constructions in quantum cryptography
have been proved secure following this paradigm.

Typically, Alice does not make her measurement in a fixed basis, but chooses at random
among a set of different bases. These bases are usually chosen to be pairwise mutually unbiased,
meaning that if ρ is such that the measurement outcome in one basis is fixed then this implies
that the uncertainty about the outcome of the measurement in the other basis is maximal. In
this way, one hopes to keep the adversary’s uncertainty high, even if ρ is (partially) under the
adversary’s control.

An inequality that lower bounds the adversary’s uncertainty in such a scenario is called an
uncertainty relation. There exist uncertainty relations for different measures of uncertainty, but
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cryptographic applications typically require the adversary’s min-entropy to be bounded from
below.

In this paper, we introduce a new general and tight entropic uncertainty relation. Since
the relation is expressed in terms of high-order entropy (i.e. min-entropy), it is applicable to
a large class of natural protocols in quantum cryptography. In particular, the new relation
can be applied in situations where an n-qubit state ρ has each of its qubits measured in a
random and independent basis sampled uniformly from a fixed set B of bases. B does not
necessarily have to be mutually unbiased, but we assume a lower bound h (i.e. an average
entropic uncertainty bound) on the average Shannon entropy of the distribution Pϑ, obtained
by measuring an arbitrary 1-qubit state in basis ϑ ∈ B, meaning that 1

|B|
∑

ϑ H(Pϑ) ≥ h.

Uncertainty Relation (informal): Let B be a set of bases with an average entropic uncer-
tainty bound h as above. Let Pθ denote the probability distribution defined by measuring an
arbitrary n-qubit state ρ in basis θ ∈ Bn. For a θ ∈R Bn chosen uniformly at random, it holds
except with negligible probability that

H∞(Pθ) & nh . (1)

Observe that (1) cannot be improved significantly since the min-entropy of a distribution
is at most equal to the Shannon entropy. Our uncertainty relation is therefore asymptotically
tight when the bound h is tight.

Any lower bound on the Shannon entropy associated to a set of measurements B can be
used in (1). In the special case where the set of bases is B = {+,×} (i.e. the two BB84 bases),
h is known precisely using Maassen and Uffink’s entropic relation, see inequality (2) below. We
get h = 1

2 and (1) results in H∞(Pθ) & n
2 . Uncertainty relations for the BB84 coding scheme [3]

are useful since this coding is widely used in quantum cryptography. Its resilience to imperfect
quantum channels, sources, and detectors is an important advantage in practice.

We now discuss applications of our high-order uncertainty relation to important scenarios
in cryptography: two-party cryptography, quantum key distribution and quantum encryption.

Application I: Two-Party Cryptography in the Bounded-Quantum-Storage Model. Entropic un-
certainty relations are powerful tools for the security analysis of cryptographic protocols in the
bounded-quantum-storage model. In this model, the adversary is unbounded in every respect,
except that at a certain time, his quantum memory is reduced to a certain size (by perform-
ing some measurement). In [13], an uncertainty relation involving min-entropy was shown and
used in the analysis of protocols for Rabin oblivious transfer (ROT) and bit commitment. This
uncertainty relation only applies in the case when n qubits are all measured in one out of two
mutually unbiased bases.

A major difference between our result (1) and the one from [13] is that while both relations
bound the min-entropy conditioned on an event, this event happens in our case with proba-
bility essentially 1 (on average) whereas the corresponding event from [13] only happens with
probability about 1/2. In Sect. 4, we prove the following:

1-2 OT in the Bounded-Quantum-Storage Model: There exists a non-interactive protocol
for 1-out-of-2 oblivious transfer (1-2 OT) of `-bit messages, secure against adversaries with
quantum memory size at most n/4− 2`. Here, n is the number of qubits transmitted in the
protocol and ` can be a constant fraction of n. Honest players need no quantum memory.

Since all flavors of OT are known to be equivalent under classical information-theoretic
reductions, and a ROT protocol is already known from [13], the above result may seem in-
significant. This is not the case, however, for several reasons: First, although it may in principle
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be possible to obtain a protocol for 1-2 OT from the ROT protocol of [13] using the standard
black-box reduction, the fact that we need to call the ROT primitive many times would force
the bound on the adversary’s memory to be sublinear (in the number of transmitted qubits).
Second, the techniques used in [13] do not seem applicable to 1-2 OT, unless via the inefficient
generic reduction to ROT. And, third, we prove security according to a stronger definition than
the one used in [13], namely a quantum version of a recent classical definition for information
theoretic 1-2 OT [10]. The definition ensures that all (dishonest) players’ inputs are well defined
(and can be extracted when formalized appropriately). In particular, this implies security under
sequential composition whereas composability of the protocol from [13] was not proven.

Furthermore, our techniques for 1-2 OT imply almost directly a non-interactive bit com-
mitment scheme (in the bounded-quantum-storage model) satisfying a composable security
definition. As an immediate consequence, we obtain secure string commitment schemes. This
improves over the bit commitment construction of [13], respectively its analysis, which does
not guarantee composability and thus does not necessarily allow for string commitments. This
application can be found in Sect. 5.

Application II: Quantum Key Distribution. We also apply our uncertainty relation to quantum
key distribution (QKD) settings. QKD is the art of distributing a secret key between two
distant parties, Alice and Bob, using only a completely insecure quantum channel and authentic
classical communication. QKD protocols typically provide information-theoretic security, i.e.,
even an adversary with unlimited resources cannot get any information about the key. A major
difficulty when implementing QKD schemes is that they require a low-noise quantum channel.
The tolerated noise level depends on the actual protocol and on the desired security of the key.
Because the quality of the channel typically decreases with its length, the maximum tolerated
noise level is an important parameter limiting the maximum distance between Alice and Bob.

We consider a model in which the adversary has a limited amount of quantum memory to
store the information she intercepts during the protocol execution. In this model, we show that
the maximum tolerated noise level is larger than in the standard scenario where the adversary
has unlimited resources. For one-way QKD protocols which are protocols where error-correction
is performed non-interactively (i.e., a single classical message is sent from one party to the
other), we show the following result:

QKD Against Quantum-Memory-Bounded Eavesdroppers: Let B be a set of orthonor-
mal bases of H2 with average entropic uncertainty bound h. Then, a one-way QKD-protocol
produces a secure key against eavesdroppers whose quantum-memory size is sublinear in the
length of the raw key at a positive rate as long as the bit-flip probability p of the quantum
channel fulfills Hbin(p) < h where Hbin(·) denotes the binary Shannon-entropy function.

Although this result does not allow us to improve (i.e. compared to unbounded adversaries)
the maximum error-rate for the BB84 protocol (the four-state protocol), the six-state protocol
can be shown secure against adversaries with memory bound sublinear in the secret-key length
as long as the bit-flip error-rate is less than 17%. This improves over the maximal error-rate of
13% for the same protocol against unbounded adversaries. We also show that the generalization
of the six-state protocols to more bases (not necessarily mutually unbiased) can be shown secure
(against memory-bounded adversaries) for a maximal error-rate up to 20% provided the number
of bases is large enough. Note that the best known one-way protocol based on qubits is proven
secure against general attacks for an error-rate of only up to roughly 14.1%, and the theoretical
maximum is 16.3% [29].

The quantum-memory-bounded eavesdropper model studied here is not comparable to other
restrictions on adversaries considered in the literature (e.g. individual attacks, where the eaves-
dropper is assumed to apply independent measurements to each qubit sent over the quantum
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channel [18, 26]). In fact, these assumptions are generally artificial and their purpose is to sim-
plify security proofs rather than to relax the conditions on the quality of the communication
channel from which secure key can be generated. We believe that the quantum-memory-bounded
eavesdropper model is more realistic.

Application III: Key-Uncertainty of Quantum Ciphers. In [15], symmetric quantum ciphers
encrypting classical messages with classical secret-keys are considered. It is shown that under
known-plaintext attacks, the Shannon uncertainty of the secret-key can be much higher for some
quantum ciphers than for any classical one. The Shannon secret-key uncertainty H(K|C,M) of
classical ciphers C encrypting messages M of size m with keys K of size k ≥ m is always such
that H(K|C,M) ≤ k −m. In the quantum case, the Shannon secret-key uncertainty is defined
as the minimum residual uncertainty about key K given the best measurement (POVM) PM (C)
applied to quantum cipher C given plaintext M . Examples of quantum ciphers are provided with
k = m+1 such that H(K|PM (C)) = m/2+1 and with k = 2m such that H(K|PM (C)) ≥ 2m−1.
All ciphers in [15] have their keys consisting of two parts. The first part chooses one basis
out a set B of bases while the other part is used as a classical one-time-pad. The message is
first encrypted with the one-time-pad before being rotated in the basis indicated by the first
part of the key. For one particular cipher encrypting m-bit messages using m + 1 bits of key,
Theorem 4 in [15] states that the Shannon secret-key uncertainty adds up under repetitions with
independent and random keys1: if H(K|PM (C)) ≥ h then n repetitions with independent keys
satisfy H(K1, . . . ,Kn|PM1,...,Mn(C1, . . . , Cn)) ≥ nh. Our uncertainty relation allows to obtain a
stronger result. The analysis in [15] shows that these quantum ciphers with Shannon secret-key
uncertainty h satisfy the condition of our uncertainty relation. As result we obtain a lower
bound on the min-entropy key uncertainty given the outcome of any quantum measurement
applied to all ciphers and given all plaintexts. When H(K|PM (C)) ≥ h our uncertainty relation
tells us that H∞(K1, . . . ,Kn|PM1,...,Mn(C1, . . . , Cn)) & nh. Notice that unlike the two previous
applications, this time the result holds without any restriction on the adversary.

History and Related Work. The history of uncertainty relations starts with Heisenberg who
showed that the outcomes of two non-commuting observables A and B applied to any state ρ
are not easy to predict simultaneously. However, Heisenberg only speaks about the variance of
the measurement results. Because his result had several shortcomings (as pointed out in [20, 16]),
more general forms of uncertainty relations were proposed by Bialynicki-Birula and Mycielski [7]
and by Deutsch [16]. The new relations were called entropic uncertainty relations, because they
are expressed using Shannon entropy instead of the statistical variance and, hence, are purely
information theoretic statements. For instance, Deutsch’s uncertainty relation [16] states that
H(P ) + H(Q) ≥ −2 log 1+c

2 , where P,Q are random variables representing the measurement
results and c is the maximum inner product norm between any eigenvectors of A and B. First
conjectured by Kraus [24], Maassen and Uffink [27] improved Deutsch’s relation to the optimal

H(P ) + H(Q) ≥ −2 log c . (2)

Although a bound on Shannon entropy can be helpful in some cases, it is usually not
good enough in cryptographic applications. The main tool to reduce the adversary’s infor-
mation—privacy amplification [5, 21, 4, 30, 28]—only works if a bound on the adversary’s min-
entropy (in fact collision entropy) is known. Unfortunately, knowing the Shannon entropy of a
distribution does in general not allow to bound its higher order Rényi entropies.

An entropic uncertainty relation involving Rényi entropy of order 2 (i.e. collision entropy)
was introduced by Larsen [25, 33]. Larsen’s relation quantifies precisely the collision entropy for
1 The proof of Theorem 4 in [15] is incorrect but can easily be fixed without changing the statement.
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the set {Ai}d+1
i=1 of all maximally non-commuting observables, where d is the dimension of the

Hilbert space. Its use is therefore restricted to quantum coding schemes that take advantage of
all d + 1 observables, i.e. to schemes that are difficult to implement in practice. Uncertainty
relations in terms of Rényi entropy have also been studied in a different context by Bialynicki-
Birula [6].

2 Preliminaries

2.1 Notation and Terminology

For any positive integer d,Hd stands for the complex Hilbert space of dimension d and P(Hd) for
the set of density operators, i.e., positive semi-definite trace-1 matrices, acting on Hd. The pair
{|0〉, |1〉} denotes the computational or rectilinear or “+” basis for the 2-dimensional Hilbert
space H2. The diagonal or “×” basis is defined as {|0〉×, |1〉×} where |0〉× = (|0〉+ |1〉)/

√
2

and |1〉× = (|0〉 − |1〉)/
√

2. The circular or “�” basis consists of vectors (|0〉+ i|1〉)/
√

2 and
(|0〉 − i|1〉)/

√
2. Measuring a qubit in the + -basis (resp. ×-basis) means applying the measure-

ment described by projectors |0〉〈0| and |1〉〈1| (resp. projectors |0〉×〈0|× and |1〉×〈1|×). When
the context requires it, we write |0〉+ and |1〉+ instead of |0〉 and |1〉, respectively. If we want to
choose the + or ×-basis according to the bit b ∈ {0, 1}, we write [+,×]b.

The behavior of a (mixed) quantum state in a register E is fully described by its density
matrix ρE. We often consider cases where a quantum state may depend on some classical random
variable X, in that the state is described by the density matrix ρx

E if and only if X = x. For
an observer who has access to the state but not X, the behavior of the state is determined by
the density matrix ρE :=

∑
x PX(x)ρx

E, whereas the joint state, consisting of the classical X and
the quantum register E is described by the density matrix ρXE :=

∑
x PX(x)|x〉〈x| ⊗ ρx

E, where
we understand {|x〉}x∈X to be the standard (orthonormal) basis of H|X |. Joint states with such
classical and quantum parts are called cq-states. We also write ρX :=

∑
x PX(x)|x〉〈x| for the

quantum representation of the classical random variable X. This notation extends naturally to
quantum states that depend on several classical random variables (i.e. to ccq-states, cccq-states
etc.). Given a cq-state ρXE as above, by saying that there exists a random variable Y such that
ρXY E satisfies some condition, we mean that ρXE can be understood as ρXE = trY (ρXY E) for
some ccq-state ρXY E and that ρXY E satisfies the required condition.2

We would like to point out that ρXE = ρX ⊗ ρE holds if and only if the quantum part is
independent of X (in that ρx

E = ρE for any x), where the latter in particular implies that no
information on X can be learned by observing only ρE. Similarly, X is uniformly random and
independent of the quantum state in register E if and only if ρXE = 1

|X |1⊗ ρE, where 1
|X |1 is

the density matrix of the fully mixed state of suitable dimension. Finally, if two states like ρXE

and ρX ⊗ρE are ε-close in terms of their trace distance δ(ρ, σ) = 1
2 tr(|ρ−σ|), which we write as

ρXE ≈ε ρX ⊗ ρE, then the real system ρXE “behaves” as the ideal system ρX ⊗ ρE except with
probability ε in that for any evolution of the system no observer can distinguish the real from
the ideal one with advantage greater than ε [30].

2.2 Smooth Rényi Entropy

We briefly recall the notion of (conditional) smooth min-entropy [28, 31]. For more details,
we refer to the aforementioned literature. Let X be a random variable over alphabet X with
distribution PX . The standard notion of min-entropy is given by H∞(X) = − log

(
maxx PX(x)

)
2 The quantum version is similar to the case of distributions of classical random variables where given X, the

existence of a certain Y is understood that there exists a joint distribution PXY with
P

y PXY (·, y) = PX .
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and that of max-entropy by H0(X) = log
∣∣{x ∈ X : PX(x) > 0}

∣∣. More general, for any event E
(defined by PE|X(x) = Pr[E|X =x] for all x ∈ X ) H∞(XE) may be defined similarly simply by
replacing PX by PXE . Note that the “distribution” PXE is not normalized; H∞(XE) is still well
defined, though. For an arbitrary ε ≥ 0, the smooth version Hε

∞(X) is defined as follows. Hε
∞(X)

is the maximum of the standard min-entropy H∞(XE), where the maximum is taken over all
events E with Pr(E) ≥ 1 − ε. Informally, this can be understood that if Hε

∞(X) = r then the
standard min-entropy of X equals r as well, except with probability ε. As ε can be interpreted
as an error probability, we typically require ε to be negligible in the security parameter n.

For random variables X and Y , the conditional smooth min-entropy Hε
∞(X |Y ) is defined

as Hε
∞(X |Y ) = maxE miny H∞(XE |Y =y), where the quantification over E is over all events E

(defined by PE|XY ) with Pr(E) ≥ 1−ε. In Sect. 6, we work with smooth min-entropy conditioned
on a quantum state. We refer the reader to [28] for the definition of this quantum version. We
will make use of the following chain rule for smooth min-entropy [31], which in spirit was already
shown in [8].

Lemma 2.1. Hε+ε′
∞ (X |Y ) > Hε

∞(XY )−H0(Y )− log
(

1
ε′

)
for all ε, ε′ > 0.

2.3 Azuma’s Inequality

In the following and throughout the paper, the expected value of a real-valued random variable
R is denoted by E[R]. Similarly, E[R|E ] and E[R|S] denote the conditional expectation of R
conditioned on an event E respectively random variable S.

Definition 2.2. A list of real-valued random variables R1, . . . , Rn is called a martingale dif-
ference sequence if E[Ri |R1, . . . , Ri−1] = 0 with probability 1 for every 1 ≤ i ≤ n, i.e., if
E[Ri |R1 =r1, . . . , Ri−1 =ri−1] = 0 forevery 1 ≤ i ≤ n and all r1, . . . , ri−1 ∈ R.

The following lemma follows directly from Azuma’s inequality [2, 1].

Lemma 2.3. Let R1, . . . , Rn be a martingale difference sequence such that |Ri| ≤ c for every
1 ≤ i ≤ n. Then, Pr

[∑
i Ri ≥ λn

]
≤ exp

(
−λ2n

2c2

)
for any λ > 0.

3 The Uncertainty Relation

We start with a classical tool which itself might be of independent interest.

Theorem 3.1. Let Z1, . . . , Zn be n (not necessarily independent) random variables over alpha-
bet Z, and let h ≥ 0 be such that

H(Zi |Z1 = z1, . . . , Zi−1 = zi−1) ≥ h (3)

for all 1 ≤ i ≤ n and z1, . . . , zi−1 ∈ Z. Then for any 0 < λ < 1
2

Hε
∞(Z1, . . . , Zn) ≥ (h− 2λ)n ,

where ε = exp
(
− λ2n

32 log(|Z|/λ)2

)
.

If the Zi’s are independent and have Shannon-entropy at least h, it is known (see [31]) that the
smooth min-entropy of Z1, . . . , Zn is, to good approximation, at least nh for large enough n.3

Informally, Theorem 3.1 guarantees that when the independence-condition is relaxed to a lower
bound on the Shannon entropy of Zi given any previous history, then we still have min-entropy
of (almost) nh except with negligible probability ε.
3 An even weaker version is the so-called Flattening Lemma [19], which requires the Zi’s to be independent and

equally distributed, with a given lower bound on the smallest probability. It is in particular this missing lower
bound that makes our proof technically more involved.
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Proof (sketch). The idea is to use Azuma’s inequality in the form of Lemma 2.3 for cleverly
chosen Ri’s. For any i we write Zi := (Z1, . . . , Zi) (with Z0 being the “empty symbol”), and
similarly for other sequences. We want to show that Pr

[
PZn(Zn) ≥ 2−(h−2λ)n

]
≤ ε. By the

definition of smooth min-entropy, this then implies the claim. Note that PZn(Zn) ≥ 2−(h−2λ)n

is equivalent to
n∑

i=1

(
log
(
PZi |Zi−1(Zi |Zi−1)

)
+ h
)
≥ 2λn .

We set Si := log PZi|Zi−1(Zi |Zi−1). For such a sequence of real-valued random variables
S1, . . . , Sn, it is easy to verify that R1, . . . , Rn where Ri := Si − E[Si |Si−1] forms a martingale
difference sequence. If the |Ri| were bounded by c, we could use Lemma 2.3 to conclude that

Pr

[
n∑

i=1

(
Si − E

[
Si |Si−1

])
≥ λn

]
≤ exp

(
−λ2n

2c2

)
.

As by assumption E[Si |Si−1] ≤ −h, this would give us a bound similar to what we want to
show. In order to enforce a bound on |Ri|, Si needs to be truncated whenever PZi |Zi−1(Zi |Zi−1)
is smaller than some δ > 0. It is then a subtle and technically involved matter of choosing δ
and ε appropriately in order to finish the proof, as shown in Appendix A.1. ut

We now state and prove the new entropic uncertainty relation in its most general form.
A special case will then be introduced (Corollary 3.4) and used in the security analysis of all
protocols we consider in the following.

Definition 3.2. Let B be a finite set of orthonormal bases in the d-dimensional Hilbert space Hd.
We call h ≥ 0 an average entropic uncertainty bound for B if every state in Hd satisfies
1
|B|
∑

ϑ∈B H(Pϑ) ≥ h, where Pϑ is the distribution obtained by measuring the state in basis ϑ.

Note that by the convexity of the Shannon entropy H, a lower bound for all pure states in Hd

suffices to imply the bound for all (possibly mixed) states.

Theorem 3.3. Let B be a set of orthonormal bases in Hd with an average entropic uncertainty
bound h, and let ρ ∈ P(H⊗n

d ) be an arbitrary quantum state. Let Θ = (Θ1, . . . , Θn) be uniformly
distributed over Bn and let X = (X1, . . . , Xn) be the outcome when measuring ρ in basis Θ,
taking values from {0, . . . , d− 1}n. Then for any 0 < λ < 1

2 ,

Hε
∞(X |Θ) ≥ (h− 2λ) n

with ε = exp
(
− λ2n

32(log(|B|·d/λ))2

)
.

Proof. For i ∈ {1, . . . , n} define Zi := (Xi, Θi) and Zi := (Z1, . . . , Zi). Let zi−1 be arbitrary in
({0, . . . , d− 1} × B)i−1. Then

H(Zi |Zi−1 =zi−1) = H(Xi |Θi, Z
i−1 =zi−1) + H(Θi |Zi−1 =zi−1) ≥ h + log |B| ,

where the inequality follows from the fact that Θi is chosen uniformly at random and from the
definition of h. Note that h lower bounds the average entropy for any system in Hd, and thus
in particular for the i-th subsystem of ρ, with all previous d-dimensional subsystems measured.
Theorem 3.1 thus implies that Hε

∞(XΘ) ≥ (h + log |B| − 2λ)n for any 0 < λ < 1
2 and for ε as

claimed. We conclude that

Hε
∞(X |Θ) ≥ Hε

∞(XΘ)− n log |B| ≥ (h− 2λ)n ,
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where the first inequality follows from the equality

PXE|Θ(x|θ) = PXΘE(x, θ)/PΘ(θ) = |B|n · PXΘE(x, θ)

for all x and θ and any event E , and from the definition of (conditional) smooth entropy. ut

For the special case where B = {+,×} is the set of BB84 bases, we can use the uncertainty
relation of Maassen and Uffink [27] (see (2) with c = 1/

√
2), which, using our terminology,

states that B has average entropic uncertainty bound h = 1
2 . Theorem 3.3 then immediately

gives the following corollary.

Corollary 3.4. Let ρ ∈ P(H⊗n
2 ) be an arbitrary n-qubit quantum state. Let Θ be uniformly

distributed over {+,×}n, and let X be the outcome when measuring ρ in basis Θ. Then for any
0 < λ < 1

2 ,
Hε
∞(X |Θ) ≥

(
1
2 − 2λ

)
n

where ε = exp
(
− λ2n

32(2−log(λ))2

)
.

Maassen and Uffink’s relation being optimal means there exists a quantum state ρ—namely
the product state of eigenstates of the subsystems, e.g. ρ = |0〉〈0|⊗n—for which H(X |Θ) = n

2 .
On the other hand, we have shown that (1

2 − λ)n ≤ Hε
∞(X |Θ) for λ > 0 arbitrarily close

to 0. For the product state ρ, the Xi’s are independent and we know from [31] that in this
case Hε

∞(X |Θ) approaches H(X |Θ) = n
2 . It follows that the relation cannot be significantly

improved even when considering Rényi entropy of lower order than min-entropy (but higher
than Shannon entropy).

Another tight corollary is obtained if we consider the set of measurements B = {+,×,�}.
In [32], Sánchez-Ruiz has shown that for this B the average entropic uncertainty bound h = 2

3
is optimal. It implies that Hε

∞(X |Θ) ≈ H(X |Θ) = 2n
3 for negligible ε. In Appendix B, we

compute the average uncertainty bound for the set of all bases of a d-dimensional Hilbert space.

4 Application: Oblivious Transfer

4.1 Privacy Amplification and a Min-Entropy-Splitting Lemma

Recall, a class F of hash functions from, say, {0, 1}n to {0, 1}` is called two-universal [9, 36] if
Pr[F (x)=F (x′)] ≤ 1/2` for any distinct x, x′ ∈ {0, 1}n and for F uniformly distributed over F .

Theorem 4.1 (Privacy Amplification [30, 28]). Let ε ≥ 0. Let ρXUE be a ccq-state, where
X takes values in {0, 1}n, U in the finite domain U and register E contains q qubits. Let F be
the random and independent choice of a member of a two-universal class of hash functions F
from {0, 1}n into {0, 1}`. Then,

δ
(
ρF (X)FUE, 1

2`1⊗ ρFUE

)
≤ 1

2
2−

1
2

(
Hε
∞(X|U)−q−`

)
+ 2ε . (4)

The theorem stated here is slightly different from the version given in [30, 28] in that the classical
and the quantum parts of the adversary’s knowledge are treated differently. A derivation of the
above theorem starting from the result in [28] is given in Appendix A.2.

A second tool we need is the following Min-Entropy-Splitting Lemma. Note that if the joint
entropy of two random variables X0 and X1 is large, then one is tempted to conclude that at
least one of X0 and X1 must still have large entropy, e.g. half of the original entropy. Whereas
this is indeed true for Shannon entropy, it is in general not true for min-entropy. The following
lemma, though, which appeared in a preliminary version of [38], shows that it is true in a
randomized sense. For completeness, the proof can be found in Appendix A.3.
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Lemma 4.2 (Min-Entropy-Splitting Lemma). Let ε ≥ 0, and let X0, X1 be random vari-
ables (over possibly different alphabets) with Hε

∞(X0X1) ≥ α. Then, there exists a binary random
variable C over {0, 1} such that Hε

∞(X1−CC) ≥ α/2.

The corollary below follows rather straightforwardly by noting that (for normalized as well
as non-normalized distributions) H∞(X0X1 |Z) ≥ α holds exactly if H∞(X0X1 |Z =z) ≥ α for
all z, applying the Min-Entropy-Splitting Lemma, and then using the Chain Rule, Lemma 2.1.

Corollary 4.3. Let ε ≥ 0, and let X0, X1 and Z be random variables (over possibly different
alphabets) such that Hε

∞(X0X1 |Z) ≥ α. Then, there exists a binary random variable C over
{0, 1} such that Hε+ε′

∞ (X1−C |ZC) ≥ α/2− 1− log(1/ε′) for any ε′ > 0.

4.2 The Definition

In 1-2 OT `, the sender Alice sends two `-bit strings S0, S1 to the receiver Bob in such a way
that Bob can choose which string to receive, but does not learn anything about the other. On
the other hand, Alice does not get to know which string Bob has chosen. The common way to
build 1-2 OT ` is by constructing a protocol for (Sender-)Randomized 1-2 OT `, which then can
easily be converted into an ordinary 1-2 OT ` (see, e.g., [14]). Rand 1-2 OT ` essentially coincides
with ordinary 1-2 OT `, except that the two strings S0 and S1 are not input by the sender but
generated uniformly at random during the protocol and output to the sender.

For the formal definition of the security requirements of a quantum protocol for Rand 1-2 OT `,
let us fix the following notation: Let C denote the binary random variable describing receiver
R’s choice bit, let S0, S1 denote the `-bit long random variables describing sender S’s output
strings, and let Y denote the `-bit long random variable describing R’s output string (supposed
to be SC). Furthermore, for a fixed candidate protocol for Rand 1-2 OT `, and for a fixed input
distribution for C, the overall quantum state in case of a dishonest sender S̃ is given by the
ccq-state ρCY S̃. Analogously, in the case of a dishonest receiver R̃, we have the ccq-state ρS0S1R̃.

Definition 4.4 (Rand 1-2 OT `). An ε-secure Rand 1-2 OT ` is a quantum protocol between
S and R, with R having input C ∈ {0, 1} while S has no input, such that for any distribution of
C, if S and R follow the protocol, then S gets output S0, S1 ∈ {0, 1}` and R gets Y = SC , except
with probability ε, and the following two properties hold:

ε-Receiver-security: If R is honest, then for any S̃, there exist random variables S′
0, S

′
1 such

that Pr
[
Y = S′

C

]
≥ 1− ε and δ

(
ρCS′0S′1S̃, ρC ⊗ ρS′0S′1S̃

)
≤ ε.

ε-Sender-security: If S is honest, then for any R̃, there exists a binary random variable C ′

such that δ
(
ρS1−C′SC′C

′R̃, 1
|2`|1⊗ ρSC′C

′R̃

)
≤ ε.

If any of the above holds for ε = 0, then the corresponding property is said to hold perfectly. If
one of the properties only holds with respect to a restricted class S of S̃’s respectively R of R̃’s,
then this property is said to hold and the protocol is said to be secure against S respectively R.

Receiver-security, as defined here, implies that whatever a dishonest sender does is as good
as the following: generate the ccq-state ρS′0S′1S̃ independently of C, let R know S′

C , and output
ρS̃. On the other hand, sender-security implies that whatever a dishonest receiver does is as good
as the following: generate the ccq-state ρSC′C

′R̃, let S know SC′ and an independent uniformly
distributed S1−C′ , and output ρR̃. In other words, a protocol satisfying Definition 4.4 is a secure
implementation of the natural Rand 1-2 OT ` ideal functionality, except that it allows a dishonest
sender to influence the distribution of S0 and S1, and the dishonest receiver to influence the
distribution of the string of his choice. This is in particular good enough for constructing a
standard 1-2 OT ` in the straightforward way.
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We would like to point out the importance of requiring the existence of S′
0 and S′

1 in the
formulation of receiver-security in a quantum setting: requiring only that the sender learns
no information on C, as is sufficient in the classical setting (see e.g. [10]), does not prevent a
dishonest sender from obtaining S0, S1 by a suitable measurement after the execution of the
protocol in such a way that he can choose S0 ⊕ S1 at will, and SC is the string the receiver has
obtained in the protocol.

4.3 The Protocol

We introduce a quantum protocol for Rand 1-2 OT ` that will be shown perfectly receiver-secure
against any sender and ε-sender-secure against any quantum-memory-bounded receiver for a
negligible ε. The first two steps of the protocol are identical to Wiesner’s “conjugate coding”
protocol [37] from circa 1970 for “transmitting two messages either but not both of which may
be received”.

The simple protocol is described in Fig. 1, where for x ∈ {0, 1}n and I ⊆ {1, . . . , n} we
define x|I to be the restriction of x to the bits xi with i ∈ I. The sender S sends random BB84
states to the receiver R, who measures all received qubits according to his choice bit C. S then
picks randomly two functions from a fixed two-universal class of hash functions F from {0, 1}n

to {0, 1}`, where ` is to be determined later, and applies them to the bits encoded in the +
respectively the bits encoded in ×-basis to obtain the output strings S0 and S1. Note that we
may apply a function f ∈ F to a n′-bit string with n′ < n by padding it with zeros (which
does not decrease its entropy). S announces the encoding bases and the hash functions to the
receiver who then can compute SC . Intuitively, a dishonest receiver who cannot store all the
qubits until the right bases are announced, will measure some qubits in the wrong basis and
thus cannot learn both strings simultaneously.

Rand 1-2 QOT `: Let c be R’s choice bit.
1. S picks x ∈R {0, 1}n and θ ∈R {+,×}n, and sends |x1〉θ1

, |x2〉θ2
, . . . , |xn〉θn

to R.

2. R measures all qubits in basis [+,×]c. Let x′ ∈ {0, 1}n be the result.
3. S picks two hash functions f0, f1 ∈R F , announces θ and f0, f1 to R, and outputs s0 := f0(x|I0) and

s1 := f1(x|I1) where Ib := {i : θi =[+,×]b}.
4. R outputs sc = fc(x

′|Ic).

Fig. 1. Quantum Protocol for Rand 1-2 OT `.

We would like to stress that although protocol description and analysis are designed for
an ideal setting with perfect noiseless quantum communication and with perfect sources and
detectors, all our results can easily be extended to a more realistic noisy setting along the same
lines as in [13].

It is clear by the non-interactivity of Rand 1-2 QOT ` that a dishonest sender cannot learn
anything about the receiver’s choice bit. Below, we show Rand 1-2 QOT ` perfectly receiver-
secure according to Definition 4.4; the idea, though, simply is to have a dishonest S̃ execute the
protocol with a receiver that has unbounded quantum memory and that way can compute S′

0

and S′
1.

Proposition 4.5. Rand 1-2 QOT ` is perfectly receiver-secure.

Proof. Recall, the ccq-state ρCY S̃ is defined by the experiment where S̃ interacts with the honest
memory-bounded R. We now define (in a new Hilbert space) the ccccq-state ρ̂ĈŶ Ŝ′0Ŝ′1S̃ by a
slightly different experiment: We let S̃ interact with a receiver with unbounded quantum memory,
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which waits to receive θ and then measures the i-th qubit in basis θi for i = 1, . . . , n. Let X be
the resulting string, and define Ŝ′

0 = f0(X|I0) and Ŝ′
1 = f1(X|I1). Finally, sample Ĉ according

to PC and set Ŷ = Ŝ′
C . It follows by construction that Pr

[
Ŷ 6= Ŝ′

Ĉ

]
= 0 and ρ̂Ĉ is independent

of ρ̂Ŝ′0Ŝ′1S̃. It remains to argue that ρ̂ĈŶ S̃ = ρCY S̃, so that corresponding S′
0 and S′

1 also exist
in the original experiment. But this is obviously satisfied since the only difference between the
two experiments is when and in what basis the qubits at position i ∈ I1−C are measured, which
does not affect ρCY S̃ respectively ρ̂ĈŶ S̃.

We model dishonest receivers in Rand 1-2 QOT ` under the assumption that the maximum
size of their quantum storage is bounded. Such adversaries are only required to have bounded
quantum storage when Step 3 in Rand 1-2 QOT ` is reached; before and after that, the adversary
can store and carry out arbitrary quantum computations involving any number of qubits. Let
Rq denote the set of all possible quantum dishonest receivers R̃ in Rand 1-2 QOT ` which have
quantum memory of size at most q when step 3 is reached. We stress once more that apart
from the restriction on the size of the quantum memory available to the adversary, no other
assumption is made. In particular, the adversary is not assumed to be computationally bounded
and the size of his classical memory is not restricted.

Theorem 4.6. Rand 1-2 QOT ` is ε-sender-secure against Rq for a negligible (in n) ε if n/4−
2`− q ∈ Ω(n).

For improved readability, we merely give a sketch of the proof; the formal proof that takes care
of all the ε’s is given in Appendix A.4.

Proof (sketch). It remains to show sender-security. Let X be the random variable that describes
the sender’s choice of x, where we understand the distribution of X to be conditioned on the
classical information that R̃ obtained by measuring all but γn qubits. A standard purification
argument, that was also used in [13], shows that the same X can be obtained by measuring a
quantum state in basis θ ∈R {+,×}n, described by the random variable Θ: for each qubit |xi〉θi

the sender S is instructed to send to R, S instead prepares an EPR pair |Φ〉 = 1√
2
(|00〉+ |11〉)

and sends one part to R while keeping the other, and when Step 3 is reached, S measures her
qubits.

The uncertainty relation, Theorem 3.4, implies that the smooth min-entropy of X given Θ
is approximately n/2. Let now X0 and X1 be the two substrings of X consisting of the bits
encoded in the basis + or ×, respectively. Then the Min-Entropy-Splitting Lemma, or, more
precisely, Corollary 4.3 implies the existence of a binary C ′ such that X1−C′ has approximately
n/4 bits of smooth min-entropy given Θ and C ′. From the random and independent choice of
the hash functions F0, F1 and from the Chain Rule, Lemma 2.1, it follows that X1−C′ has still
about n/4− ` bits of smooth min-entropy when conditioning on Θ,C ′, FC′ and FC′(XC′). The
Privacy Amplification Theorem 4.1, then guarantees that S1−C′ = F1−C′(X1−C′) is close to
random, given Θ,C ′, FC′ , SC′ , F1−C′ and R̃’s quantum state of size q, if n/4− 2`− q is positive
and linear in n. ut

We note that by adapting recent and more advanced techniques [38] to the quantum case, the
security of Rand 1-2 QOT ` can be proven against Rq if n/4− `− q ∈ Ω(n).

5 Application: Quantum Bit Commitment

The binding criterion for classical commitments usually requires that after the committing phase
and for any dishonest committer, there exists a unique bit b′ ∈ {0, 1} that can only be opened
with negligible probability. In the quantum world, this approach appears to be problematic
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since if the commitment is unconditionally concealing, the committer can place himself in a
superposition of committing to 0 and 1 and only later make a measurement that fixes the
choice. For this reason, the previous standard approach (see e.g. [17]) was to use a weaker
binding condition only requiring that the probabilities p0 and p1 (to successfully open b = 0
and b = 1 respectively), satisfy p0 + p1 . 1. The bit commitment scheme proposed in [13] was
shown to be binding in this weak sense. However, we argue that this weak notion is not really
satisfactory. A shortcoming of this notion is that committing bit by bit is not guaranteed to yield
a secure string commitment—the argument that one is tempted to use requires independence
of the pb’s between the different executions, which in general does not hold.

We now argue that this notion is unnecessarily weak, at least in some cases, and in particular
in the case of commitments in the bounded-quantum-storage model where the dishonest com-
mitter is forced to do some partial measurement and where we assume honest parties to produce
only classical output (by measuring their entire quantum state). Technically, this means that
for any dishonest committer C̃, the joint state of the honest verifier and of C̃ after the commit
phase is a ccq-state ρV ZC̃ =

∑
v,z PV Z(v, z)|v〉〈v| ⊗ |z〉〈z| ⊗ ρv,z

C̃
, where the first register contains

the verifier’s (classical) output and the remaining two registers contain C̃’s (partially classical)
output. We propose the following definition.

Definition 5.1. A commitment scheme in the bounded-quantum-storage model is called ε-
binding, if for every (dishonest) committer C̃, inducing a joint state ρV ZC̃ after the commit
phase, there exists a classical binary random variable B′, given by its conditional distribution
PB′|V Z , such that for b = 0 and b = 1 the state ρb

V ZC̃
=
∑

v PV Z|B′(v, z|b)|v〉〈v| ⊗ |z〉〈z| ⊗ ρv,z

C̃
satisfies the following condition. When executing the opening phase on the state ρb

V C̃
, for any

strategy of C̃, the honest verifier accepts an opening to 1− b with probability at most ε.

It is easy to see that the binding property as defined here implies the above discussed weak
version, namely pb ≤ PB′(b) + PB′(1− b)ε and thus p0 + p1 ≤ 1 + ε. Furthermore, it is straight-
forward to see that this stronger notion allows for a formal proof of the obvious reduction of a
string to a bit commitment by committing bit-wise: the i-th execution of the bit commitment
scheme guarantees a random variable B′

i, defined by PB′
i|ViZ , such that the committer cannot

open the i-th bit commitment to 1 − B′
i, and thus there exists a random variable S′, namely

S′ = (B′
1, . . . , B

′
m) defined by PB′

1···B′
m|V1···VmZ =

∏
i PB′

i|ViZ , such that for any opening strategy,
the committer cannot open the list of commitments to any other string than S′.

We show in the following that the quantum bit-commitment scheme from [13] fulfills the
stronger notion of binding from Definition 5.1 above. For convenience, the protocol comm is
reproduced in Fig. 2 below. Let Cq denote the set of all possible quantum dishonest committers
C̃ in comm which have quantum memory of size at most q at the start of the opening phase
(step 3). Then the following holds.

Theorem 5.2. The quantum bit-commitment scheme comm is ε-binding according to Defini-
tion 5.1 against Cq for a negligible (in n) ε if n/4− q ∈ Ω(n).

comm: Let b be the bit C want to commit to.
1. V picks x ∈R {0, 1}n and θ ∈R {+,×}n, and sends |x1〉θ1

, |x2〉θ2
, . . . , |xn〉θn

to C.

2. C measures all qubits in basis [+,×]b to commit to b. Let x′ ∈ {0, 1}n be the result.
3. To open the commitment, C sends b and x′ to V.
4. V accepts if and only if xi = x′i for all those i where θi = [+,×]b.

Fig. 2. Protocol comm for commitment.
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Proof (Sketch). By considering a purified version of the scheme and using the uncertainty re-
lation, one can argue that X has (smooth) min-entropy about n/2 given Θ. The Min-Entropy-
Splitting Lemma implies that there exists B′ such that X1−B′ has smooth min-entropy about
n/4 given Θ and B′. Privacy amplification implies that F (X1−B′) is close to random given
Θ,B′, F and C̃’s quantum register of size q, where F is a two-universal one-bit-output hash
function. This implies that C̃ cannot guess X1−B′ except with small probability. ut

6 Application: Quantum Key Distribution

Let B be a set of orthonormal bases on a Hilbert space Hd, and assume that the basis vectors of
each basis ϑ ∈ B are parametrized by the elements of some fixed set X . We then consider QKD
protocols consisting of the steps described in Fig. 3. Note that the quantum channel is only used
in the preparation step. Afterwards, the communicationbetween Alice and Bob is only classical
(over an authentic channel).

One-Way QKD: let N ∈ N be arbitrary
1. Preparation: For i = 1 . . . N , Alice chooses at random a basis ϑi ∈ B and a random element Xi ∈ X .

She encodes Xi into the state of a quantum system (e.g., a photon) according to the basis ϑi and sends
this system to Bob. Bob measures each of the states he receives according to a randomly chosen basis
ϑ′i and stores the outcome Yi of this measurement.

2. Sifting: Alice and Bob publicly announce their choices of bases and keep their data at position i only if
ϑi = ϑ′i. In the following, we denote by X and Y the concatenation of the remaining data Xi and Yi,
respectively. X and Y are sometimes called the sifted raw key.

3. Error correction: Alice computes some error correction information C depending on X and sends C to
Bob. Bob computes a guess X̂ for Alice’s string X, using C and Y .

4. Privacy amplification: Alice chooses at random a function f from a two-universal family of hash functions
and announces f to Bob. Alice and Bob then compute the final key by applying f to their respective
strings X and X̂.

Fig. 3. General form for one-way QKD protocols.

As shown in [28] (Lemma 6.4.1), the length ` of the secret key that can be generated in the
privacy amplification step of the protocol described above is given by4

` ≈ Hε
∞(X |E)−H0(C) ,

where E denotes the (quantum) system containing all the information Eve might have gained
during the preparation step of the protocol and where H0(C) is the number of error correction
bits sent from Alice to Bob. Note that this formula can be seen as a generalization of the well
known expression by Csiszár and Körner for classical key agreement [11].

Let us now assume that Eve’s system E can be decomposed into a classical part Z and a
purely quantum part E′. Then, using the chain rule (Lemma 3.2.9 in [28]), we find

` ≈ Hε
∞(X |ZE′)−H0(C) & Hε

∞(X |Z)−H0(E′)−H0(C) .

Because, during the preparation step, Eve does not know the encoding bases which are chosen at
random from the set B, we can apply our uncertainty relation (Theorem 3.3) to get a lower bound
for the min-entropy of X conditioned on Eve’s classical information Z, i.e., Hε

∞(X |Z) ≥ Mh,
where M denotes the length of the sifted raw key X and h is the average entropic uncertainty
4 The approximation in this and the following equations holds up to some small additive value which depends

logarithmically on the desired security ε of the final key.

13



bound for B. Let q be the bound on the size of Eve’s quantum memory E′. Moreover, let e be
the average amount of error correction information that Alice has to send to Bob per symbol
of the sifted raw key X. Then ` & M(h − e) − q . Hence, if the memory bound only grows
sublinearly in the length M of the sifted raw key, then the key rate, i.e., the number of key bits
generated per bit of the sifted raw key, is lower bounded by

rate ≥ h− e .

The Binary-Channel Setting. For a binary channel (where H has dimension two), the average
amount of error correction information e is given by the binary Shannon entropy5 Hbin(p) =
−
(
p log(p) + (1− p) log(1− p)

)
, where p is the bit-flip probability of the quantum channel (for

classical bits encoded according to some orthonormal basis as described above). The achievable
key rate of a QKD protocol using a binary quantum channel is thus given by ratebinary ≥
h−Hbin(p). Summing up, we have derived the following theorem.

Theorem 6.1. Let B be a set of orthonormal bases of H2 with average entropic uncertainty
bound h. Then, a one-way QKD-protocol as in Fig. 3 produces a secure key against eavesdroppers
whose quantum-memory size is sublinear in the length of the raw key (i.e., sublinear in the
number of qubits sent from Alice to Bob) at a positive rate as long as the bit-flip probability p
fulfills Hbin(p) < h.

For the BB84 protocol, we have h = 1
2 and Hbin(p) < 1

2 is satisfied as long as p ≤ 11%. This
bound coincides with the known bound for security against an unbounded adversary. So, the
memory-bound does not give an advantage here.6

The situation is different for the six-state protocol where h = 2
3 . In this case, security

against memory-bounded adversaries is guaranteed (i.e. Hbin(p) < 2
3) as long as p ≤ 17%. If

one requires security against an unbounded adversary, the threshold for the same protocol lies
below 13%, and even the best known QKD protocol on binary channels with one-way classical
post-processing can only tolerate noise up to roughly 14.1% [29]. It has also been shown that,
in the unbounded model, no such protocol can tolerate an error rate of more than 16.3%.

The performance of QKD protocols against quantum-memory bounded eavesdroppers can
be improved further by making the choice of the encoding bases more random. For example,
they might be chosen from the set of all possible orthonormal bases on a two-dimensional
Hilbert space. As shown in Appendix B, the average entropic uncertainty bound is then given
by h ≈ 0.72 and Hbin(p) < 0.72 is satisfied if p . 20%. For an unbounded adversary, the
thresholds are the same as for the six-state protocol (i.e., 14.1% for the best known one-way
protocol).

7 Open Problems

It is interesting to investigate whether the uncertainty relation (Theorem 3.3) still holds if
the measurement bases (Θ1, . . . , Θn) are randomly chosen from a relatively small subset of Bn

(rather than from the entire set Bn). Such an extension would reduce the amount of randomness
that is needed in applications. In particular, in the context of QKD with quantum-memory-
bounded eavesdroppers, it would allow for more efficient protocols that use a relatively short
initial secret key in order to select the bases for the preparation and measurement of the states
and, hence, avoid the sifting step.
5 This value of e is only achieved if an optimal error-correction scheme is used. In practical implementations,

the value of e might be slightly larger.
6 Note, however, that the analysis given here might not be optimal.
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Another open problem is to consider protocols using higher-dimensional quantum systems.
The results described in Appendix B show that for d-dimensional systems, the average entropic
uncertainty bound converges to log d for large d. The maximal tolerated channel noise might
thus be higher for such protocols (depending on the noise model for higher-dimensional quantum
channels).
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8. C. Cachin. Smooth entropy and Rényi entropy. In Advances in Cryptology—EUROCRYPT ’97, volume 1233
of Lecture Notes in Computer Science, pages 193–208. Springer, 1997.

9. J. L. Carter and M. N. Wegman. Universal classes of hash functions. In 9th Annual ACM Symposium on
Theory of Computing (STOC), pages 106–112, 1977.
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A Proofs

A.1 Proof of Theorem 3.1 (Uncertainty Relation)

Define Zi := (Z1, . . . , Zi) for any i ∈ {1, . . . , n}, and similarly for other sequences. We want
to show that Pr

[
PZn(Zn) ≥ 2−(h−2λ)n

]
≤ ε for ε as claimed in Theorem 3.1. This means that

PZn(zn) is smaller than 2−(h−2λ)n except with probability at most ε (over the choice of zn), and
therefore implies the claim Hε

∞(Zn) ≥ (h− 2λ)n by the definition of smooth min-entropy. Note
that PZn(Zn) ≥ 2−(h−2λ)n is equivalent to

n∑
i=1

(
log
(
PZi |Zi−1(Zi |Zi−1)

)
+ h
)
≥ 2λn (5)

which is of suitable form to apply Azuma’s inequality (Lemma 2.3).
Consider first an arbitrary sequence S1, . . . , Sn of real-valued random variables. We assume

the Si’s to be either all positive or all negative. Define a new sequence R1, . . . , Rn of random
variables by putting Ri := Si−E[Si |Si−1]. It is straightforward to verify that E[Ri |Ri−1] = 0,
i.e., R1, . . . , Rn forms a martingale difference sequence. Thus, if |Si| ≤ c for some c (and any i),
and thus |Ri| ≤ c, Azuma’s inequality guarantees that

Pr

[
n∑

i=1

(
Si − E

[
Si |Si−1

])
≥ λn

]
≤ exp

(
−λ2n

2c2

)
. (6)
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We now put Si := log PZi |Zi−1(Zi |Zi−1) for i = 1, . . . , n. Note that S1, . . . , Sn ≤ 0. It is
easy to see that the bound on the conditional entropy of Zi from Theorem 3.1 implies that
E[Si |Si−1] ≤ −h. Indeed, for any zi−1 ∈ Z i−1, we have E

[
log PZi |Zi−1(Zi |Zi−1) |Zi−1 =

zi−1
]

= −H(Zi |Zi−1 = zi−1) ≤ −h, and thus for any subset E of Zi−1, and in particular for
the set of zi−1’s which map to a given si−1, it holds that

E
[
Si |Zi−1∈E

]
=

∑
zi−1∈E

PZi−1 |Zi−1∈E(z
i−1) · E

[
log PZi |Zi−1(Zi |Zi−1) |Zi−1 =zi−1

]
≤ −h . (7)

As a consequence, the bound on the probability of (6) in particular bounds the probability of
the event (5), even with λn instead of 2λn. A problem though is that we have no upper bound
c on the |Si|’s. Because of that we now consider a modified sequence S̃1, . . . , S̃n defined by
S̃i := log PZi |Zi−1(Zi |Zi−1) if PZi |Zi−1(Zi |Zi−1) ≥ δ and S̃i := 0 otherwise, where δ > 0 will
be determined later. This gives us a bound like (6) but with an explicit c, namely c = log(1/δ).
Below, we will argue that E

[
S̃i | S̃i−1

]
−E

[
Si | S̃i−1

]
≤ λ by the right choice of δ; the claim then

follows from observing that

S̃i − E
[
S̃i | S̃i−1

]
≥ Si − E

[
S̃i | S̃i−1

]
≥ Si − E

[
Si | S̃i−1

]
− λ

≥ Si + h− λ,

where the last inequality follows from (7). Regarding the claim E
[
S̃i | S̃i−1

]
− E

[
Si | S̃i−1

]
≤ λ,

using a similar argument as for (7), it suffices to show that E
[
S̃i | Z̃i−1 = zi−1

]
− E

[
Si | Z̃i−1 =

zi−1
]
≤ λ for any zi−1:

E
[
S̃i | Z̃i−1 =zi−1

]
− E

[
Si | Z̃i−1 =zi−1

]
= −

∑
zi

PZi|Zi−1(zi | zi−1) log(PZi|Zi−1(zi | zi−1))

≤ |Z|δ log(1/δ)

where the summation is over all zi ∈ Z with PZi|Zi−1(zi | zi−1) < δ, and where the inequality
holds as long as δ ≤ 1/e, as can easily be verified. Thus, we let 0 < δ < 1/e be such that
|Z|δ log(1/δ) = λ. Using Lemma A.1 below, we have that δ > λ/|Z|

4 log (|Z|/λ) and derive that
c2 = log(1/δ)2 = λ2/(δ|Z|)2 < 16 log(|Z|/λ)2, which gives us the claimed bound ε on the
probability. ut

Lemma A.1. For any 0 < x < 1/e such that y := x log(1/x) < 1/4, it holds that x > y
4 log(1/y) .

Proof. Define the function x 7→ f(x) = x log(1/x). It holds that f ′(x) = d
dxf(x) = log(1/x) −

log e, which shows that f is bijective in the interval (0, 1/e), and thus the inverse function
f−1(y) is well defined for y ∈ (0, log(e)/e), which contains the interval (0, 1/4). We are going
to show that f−1(y) > g(y) for all y ∈ (0, 1/4), where g(y) = y

4 log(1/y) . Since both f−1(y) and

g(y) converge to 0 for y → 0, it suffices to show that d
dyf−1(y) > d

dyg(y); respectively, we will
compare their reciprocals. For any x ∈ (0, 1/e) such that y = f(x) = x log(1/x) < 1/4

1
d
dyf−1(y)

= f ′(f−1(y)) = log(1/x)− log(e)

and
d

dy
g(y) =

1
4

(
1

log(1/y)
+

1
ln(2) log(1/y)2

)
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such that

1
d
dyg(y)

= 4
ln(2) log(1/y)2

ln(2) log(1/y) + 1
= 4

log(1/y)
1 + 1

ln(2) log(1/y)

> 2 log
(1

y

)
= 2 log

( 1
x log(1/x)

)
= 2
(
log(1/x)− log log(1/x)

)
where for the inequality we are using that y < 1/4 so that ln(2) log(1/y) > 2 ln(2) = ln(4) > 1.
Defining the function

h(z) := z − 2 log(z) + log(e)

and showing that h(z) > 0 for all z > 0 finishes the proof, as then

0 < h
(
log(1/x)

)
≤ 1

d
dyg(y)

− 1
d
dyf−1(y)

which was to be shown. For this last claim, note that h(z) → ∞ for z → 0 and for z → ∞,
and thus the global minimum is at z0 with h′(z0) = 0. h′(z) = 1 − 2/(ln(2)z) and thus z0 =
2/ ln(2) = 2 log(e), and hence the minimum of h(z) equals h(z0) = 3 log(e) − 2 log

(
2 log(e)

)
,

which turns out to be positive.

A.2 Proof of Theorem 4.1 (Privacy Amplification With Classical Conditioning)

In this section, we adopt the slightly more advanced notation from [28] in order to derive The-
orem 4.1 from Corollary 5.6.1 in [28]. In our case, the quantum register B from Corollary 5.6.1
consists of a classical part U and a quantum part E. Denoting by σQ the fully mixed state on
the image of ρQ, we only need to consider the term in the exponent to derive Theorem 4.1 as
follows

Hε
min(ρXUQ |UQ) ≥ Hε

min(ρXUQ | ρU ⊗ σQ)
≥ Hε

min(ρXUQ | ρU )−Hmax(ρQ) (8)
≥ Hε

min(ρXU | ρU )−Hmax(ρQ) (9)
= Hε

∞(X |U)− q.

The first inequality follows by Definition 3.1.2 in [28] of Hε
min as supremum over all σUQ. Inequal-

ity (8) is the chain rule for smooth min-entropy (Lemma 3.2.9 in [28]). Inequality (9) uses that
the smooth min-entropy cannot decrease when dropping the quantum register which is proven
in Lemma A.3 below. The last step follows by observing that the quantum quantities defined
in [28] correspond to the notions used in this paper accordingly (see Remark 3.1.4 in [28]). ut

Lemma A.2. Let ρXUQ ∈ P(HX ⊗HU ⊗HQ) be classical on HX ⊗HU . Then

Hmin(ρXUQ | ρU ) ≥ Hmin(ρXU | ρU ).

Proof. For λ := 2−Hmin(ρXU | ρU ), we have by Definition 3.1.1 in [28] that λ · IX ⊗ ρU − ρXU ≥ 0.
Using that both X and U are classical, we derive that for all x, u, it holds λ · pu − pxu ≥ 0,
where pu and pxu are shortcuts for the probabilities PU (u) and PXU (x, u). Let the normalized
conditional operator ρx,u

Q be defined as in Sect. 2.1.3 of [28]. Then,∑
x,u

λ · puρx,u
Q ⊗ |xu〉〈xu| − pxuρx,u

Q ⊗ |xu〉〈xu| ≥ 0.
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Because of ρx,u
Q ≤ IQ, we get∑

x,u

λ · puIQ ⊗ |xu〉〈xu| − pxuρx,u
Q ⊗ |xu〉〈xu| ≥ 0.

Therefore, it holds λ·IQX⊗ρU−ρQXU ≥ 0, from which follows by definition that Hmin(ρXUQ | ρU ) ≥
− log(λ).

Lemma A.3. Let ρXUQ ∈ P(HX ⊗HU ⊗HQ) be classical on HX ⊗HU and let ε ≥ 0. Then

Hε
min(ρXUQ | ρU ) ≥ Hε

min(ρXU | ρU ).

Proof. After Remark 3.2.4 in [28], there exists σXU ∈ Bε(ρXU ) classical on HX ⊗HU such that
Hε

min(ρXU | ρU ) = Hmin(σXU |σU ). Because both X and U are classical, we can write σXU =∑
x,u pxu|xu〉〈xu| and extend it to obtain σXUQ :=

∑
x,u pxu|xu〉〈xu| ⊗ ρx,u

Q . Lemma A.2 above
yields Hmin(σXU |σU ) ≤ Hmin(σXUQ |σU ). We have by construction that δ(σXUQ, ρXUQ) =
δ(σXU , ρXU ) ≤ ε. Therefore, σXUQ ∈ Bε(ρXUQ) and Hmin(σXUQ |σU ) ≤ Hε

min(ρXUQ | ρU ).

A.3 Proof of Lemma 4.2 (Min-Entropy-Splitting Lemma)

In the following, we give the proof for ε = 0, i.e., for ordinary (non-smooth) min-entropy. The
general claim for smooth min-entropy follows immediately by observing that the same argument
also works for non-normalized distributions with a total probability smaller than 1.

We extend the probability distribution PX0X1 as follows to PX0X1C . Let C = 1 if PX1(X1) ≥
2−α/2 and C = 0 otherwise. We have that for all x1, PX1C(x1, 0) either vanishes or is equal to
PX1(x1). In any case, PX1C(x1, 0) < 2−α/2.

On the other hand, for all x1 with PX1C(x1, 1) > 0, we have that PX1C(x1, 1) = PX1(x1) ≥
2−α/2 and therefore, for all x0,

PX0X1C(x0, x1, 1) ≤ 2−α = 2−α/2 · 2−α/2 ≤ 2−α/2PX1(x1).

Summing over all x1 with PX0X1C(x0, x1, 1) > 0, and thus with PX1C(x1, 1) > 0, results in

PX0C(x0, 1) ≤
∑
x1

2−α/2PX1(x1) ≤ 2−α/2.

This shows that PX1−CC(x, c) ≤ 2−α/2 for all x, c.

A.4 Proof of Theorem 4.6 (Sender-Security of the OT Scheme)

First, we consider a purified version of Rand 1-2 QOT `, EPR Rand 1-2 QOT ` in Fig. 4, where for
each qubit |xi〉θi

the sender S is instructed to send to the receiver, S instead prepares an EPR
pair |Φ〉 = 1√

2
(|00〉+ |11〉), and sends one part to the receiver while keeping the other. Only

when Step 3 is reached and R̃’s quantum memory is bound to γn qubits, S measures her qubits
in basis θ ∈R {+,×}n. It is easy to see that for any R̃, EPR Rand 1-2 QOT ` is equivalent to
the original Rand 1-2 QOT `, and it suffices to prove sender-security for the former. Indeed, S’s
choices of θ and f0, f1, together with the measurements all commute with R’s actions. Therefore,
they can be performed right after Step 1 with no change for R’s view. Modifying EPR Rand 1-2

QOT ` that way results in Rand 1-2 QOT `. A similar approach was used in [13], or in [34] in the
context of the BB84 quantum key distribution scheme.

Consider the common quantum state in EPR Rand 1-2 QOT ` after R̃ has measured all but γn
of his qubits. Let X be the random variable that describes the outcome of the sender measuring
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EPR Rand 1-2 QOT `:
1. S prepares n EPR pairs each in state |Ω〉 = 1√

2
(|00〉 + |11〉), and sends one half of each pair to R and

keeps the other halves.
2. R measures all qubits in basis [+,×]c. Let x′ ∈ {0, 1}n be the result.
3. S picks random θ ∈R {+,×}n, and she measures the ith qubit in basis θi. Let x ∈ {0, 1}n be the outcome.

S picks two hash functions f0, f1 ∈R F , announces θ and f0, f1 to R, and outputs s0 := f0(x|I0) and
s1 := f1(x|I1) where Ib := {i : θi =[+,×]b}.

4. R outputs sc = fc(x
′|Ic).

Fig. 4. Protocol for EPR-based Rand 1-2 OT `.

her part of the state in random basis Θ, and let E be the random state that describes R̃’s
part of the state. Also, let F0 and F1 be the random variables that describe the random and
independent choices of f0, f1 ∈ F . Finally, let Xb be Xb = X|{i:Θi=[+,×]b} (padded with zeros so
it makes sense to apply Fb).

Choose λ, λ′, κ all positive, but small enough such that γn ≤ (1/4− λ− 2λ′ − κ)n− 2`− 1.
From the uncertainty relation (Corollary 3.4), we know that Hε

∞(X0X1 |Θ) ≥ (1/2 − 2λ)n for
ε exponentially small in n. Therefore, by Corollary 4.3, there exists a binary random variable
C ′ such that for ε′ = 2−λ′n, it holds that

Hε+ε′
∞ (X1−C′ |Θ,C ′) ≥ (1/4− λ− λ′)n− 1 .

We denote by the random variables F0, F1 the sender’s choices of hash functions. It is clear that
we can condition on the independent FC′ and use the chain rule (Lemma 2.1) to obtain

Hε+2ε′
∞ (X1−C′ |ΘFC′(XC′)FC′ , C ′)

≥ Hε+2ε′
∞ (X1−C′FC′(XC′) |ΘFC′C ′)−H0(FC′(XC′) |FC′C ′)− λ′n

≥ (1/4− λ− 2λ′)n− `− 1
≥ γn + ` + κn,

by the choice of λ, λ′, κ. We can now apply privacy amplification in form of Theorem 4.1 to
obtain

d(F1−C′(X1−C′) |F1−C′ , ΘFC′(XC′)FC′C ′,E)

≤ 1
2
2−

1
2

�
Hε+2ε′
∞ (X1−C′ |ΘFC′ (XC′ )FC′C

′)−γn−`
�

+ 2(ε + 2ε′)

≤ 1
2
2−

1
2
κn + 2ε + 4ε′,

which is negligible. ut

B Computing the Overall Average Entropic Uncertainty Bound

Let U(d) be the set of unitaries on Hd. Moreover, let dU be the normalized Haar measure on
U(d), i.e., ∫

U(d)
f(V U)dU =

∫
U(d)

f(UV )dU =
∫
U(d)

f(U)dU ,

for any V ∈ U(d) and any integrable function f , and
∫
U(d) dU = 1. (Note that the normalized

Haar measure dU exists and is unique.)
Let {ω1, . . . , ωd} be a fixed orthonormal basis of Hd, and let Ball = {ϑU}U∈U(d) be the family

of bases ϑU = {Uω1, . . . , Uωd} with U ∈ U(d). The set Ball consist of all orthonormal basis of
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Hd. We generalize Definition 3.2, the average entropic uncertainty bound for a finite set of bases,
to the infinite set Ball.

Definition B.1. We call hd an overall average entropic uncertainty bound in Hd if every state
in Hd satisfies ∫

U(d)
H(PϑU

)dU ≥ hd ,

where PϑU
is the distribution obtained by measuring the state in basis ϑU ∈ Ball.

Proposition B.2. For any positive integer d,

hd =

(
d∑

i=2

1
i

)
/ ln(2)

is the overall average entropic uncertainty bound in Hd. It is attained for any pure state in Hd.

The proposition follows immediately from Formula (14) in [23] for a pure state, i.e. (λ1, . . . , λn) =
(1, 0, . . . , 0). The result was originally shown in [35, 22], another proof can be found in the
appendix of [23].

The following table gives some numerical values of hd for small values of d.

d 2 4 8 16
hd 0.72 1.56 2.48 3.43
hd

log2(d) 0.72 0.78 0.83 0.86

It is well-known that the harmonic series in Proposition B.2 diverges in the same way as
log2(d) and therefore, hd

log2(d) goes to 1 for large dimensions d.
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