
Bringing Domain-Specific Languages to Digital Forensics

Jeroen van den Bos
Netherlands Forensic Institute

Laan van Ypenburg 6
2497 GB, Den Haag

The Netherlands
jeroen@infuse.org

Tijs van der Storm
Centrum Wiskunde & Informatica

Science Park 123
1098 XG, Amsterdam

The Netherlands
storm@cwi.nl

ABSTRACT
Digital forensics investigations often consist of analyzing large
quantities of data. The software tools used for analyzing
such data are constantly evolving to cope with a multiplicity
of versions and variants of data formats. This process of cus-
tomization is time consuming and error prone.

To improve this situation we present Derric, a domain-
specific language (DSL) for declaratively specifying data struc-
tures. This way, the specification of structure is separated
from data processing. The resulting architecture encourages
customization and facilitates reuse. It enables faster devel-
opment through a division of labour between investigators
and software engineers.

We have performed an initial evaluation of Derric by
constructing a data recovery tool. This so-called carver has
been automatically derived from a declarative description
of the structure of JPEG files. We compare it to existing
carvers, and show it to be in the same league both with
respect to recovered evidence, and runtime performance.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures; H.2.3 [Information Systems]:
Languages—Data description languages (DDL)

General Terms
Design, Experimentation, Languages

Keywords
Digital forensics, domain-specific languages, data descrip-
tion languages, model-driven engineering

1. INTRODUCTION
Digital forensics is the branch of forensic science where in-
formation stored on digital devices is recovered and analysed
in order to answer legal questions. The continuous growth of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

storage size and network bandwidth and the increased pop-
ularity of digital hand-held devices, makes digital forensics
investigations increasingly dependent on highly customized
data analysis tools. Only the use of extensive automation
offers a means to deal with the scale of current and future
investigations. Apart from raw scale, the diversity in types
of devices, storage and memory layouts, protocols and file
formats requires an equally impressive flexibility in these
tools: in order to deal with emerging and changing data for-
mats they must be continuously evolved, customized, and
redeployed.

Data formats are often poorly documented and hence must
be reverse engineered. Even if data formats are documented,
there are often many variants that require changes to the
implementation of the data format processor. Additionally,
off-the-shelf data format processors such as spreadsheets or
image viewers are often inadequate, since in digital forensics,
one often has to deal with incomplete or otherwise corrupted
data: such fragments may contain crucial evidence.

The challenge for software engineering in digital forensics
is therefore:

How to construct high-quality data analy-
sis tools that are easy to modify and cus-
tomize, and yet at the same time are able
to handle data in the terabyte range?

To achieve both the required scalability and flexibility we
propose an architecture that separates the development of
the data analysis tools from the data format processors.
This allows the data analysis tool to be optimized for maxi-
mum scalability and define how data format processors must
be implemented to be usable in the tool. Additionally, data
format processors are developed using a data description
language that allows declarative specification of data for-
mats. These specifications are then transformed using a
code generator into the form the data analysis tool requires.
This approach simplifies development (by separating data
formats from processing algorithms) and allows for optimiza-
tions (by the code generator, either based on data analysis
tool requirements or opportunities in the data formats).

For data description, we propose a domain-specific lan-
guage called Derric that is designed to accomodate the
workflow of a digital forensics investigator, implementing
constructs that match typical activities such as reverse en-
gineering, iterative development and using data format doc-
umentation. To evaluate our language, we describe its use
in a typical forensics scenario. Additionally, to evaluate our
entire architecture, we develop an instance of our system
implementing a typical digital forensics data analysis tool

doing file carving, the process of recovering deleted, hidden
or obfuscated files from a data storage device. We compare
our tool to existing relevant file carvers and show that our
system performs as good as industrial-strength carvers while
being much more flexible.

This paper makes the following contributions:

• An analysis of the software engineering challenges in
digital forensics, mapped to practical issues.

• The digital forensics-specific data description language
Derric.

• An evaluation of a Derric-based data analysis appli-
cation in comparison to industrial-strength tools on
standard benchmarks.

Organization of this paper
The rest of this paper is organized as follows. Section 2 dis-
cusses the software engineering challenges in digital foren-
sics and maps them to practical problems in data analysis
tools. Section 3 presents the data description language Der-
ric, demonstrating its use in a typical scenario. Section 4
presents an instance of our complete architecture in the form
of a file carving tool utilizing Derric. The evaluation com-
paring our system to existing file carvers is also presented.
Section 5 discusses issues around suitability and applicabil-
ity of our work. Section 6 discusses related work both in
the area of domain-specific and data description languages
as well as in digital forensics. Section 7 concludes.

2. DIGITAL FORENSICS CHALLENGES
The most important challenges in digital forensics include
domain-specific data abstraction, modularization and im-
proving scalability [10]. Data abstraction deals with the
need for one or several standard formats to describe, store
and use data in different formats. Modularization refers to
the need to increase and deepen integration between digital
forensics tools to reduce manual preparations and allow ex-
tensive reuse between types of tools (e.g., using the same tool
to recover images from both a storage device and a network
stream). Scalability is important to keep digital forensics in-
vestigations feasible in the face of current and future storage
capacities, bandwidth and device use. Below we discuss the
domain-specific aspects of these challenges in more detail.

2.1 Data Abstraction
Digital forensics investigations typically require the support
of a large amount of data formats, ranging from file sys-
tems and formats to protocols and memory layouts, where
each class can have several different instances depending on
type, version and implementation. An example of this is the
FAT file system, which has multiple types: FAT12, FAT16
and FAT32, where FAT16 has two versions. All types and
versions are implemented by multiple operating systems.

Reverse Engineering
Whenever data is encountered in an unknown (or known,
but proprietary) format, a process of reverse engineering
starts to recover enough of the format’s structure to be able
to recover files of this type or extract information from re-
covered files.

A common problem is the distance between the encoding
of identifiers discovered in the data under investigation and

the format in which they must be expressed. If the notation
doesn’t support the same encoding, the data must first be
transformed. Besides being error prone, it also obfuscates
the description. Examples of different encodings are string
encodings such as ASCII and unicode and numerical values
of any bit size.

Fragmented or missing data is also common. If a data de-
scription method does not support the expression of parts of
the data that are currently unknown, the rest of the format
can either not be expressed or the unknown data must be
described using some approximation. This prevents the tool
using the description from using the knowledge of missing
data to its advantage by choosing a method appropriate to
its requirements and capabilities. Additionally, expressing
what parts of a format are currently unknown instead of
some arbitrary placeholder increases its value as documen-
tation.

Using Documentation
In another situation, the format of the data that is encoun-
tered in an investigation is well-known and documented. In
this case the documentation is used to create an implemen-
tation of the format in order to recover files of this type or
extract information from recovered files.

A similar problem occurs here regarding the distance be-
tween the encoding of identifiers in the documentation and
the format in which they must be expressed. Although data
format documentation tends to map relatively cleanly to
implementations in data description or programming lan-
guages, some important exceptions exist. The most common
is in the formatting of strings, where data formats typically
still use ASCII strings, the default format for strings in pro-
gramming languages has typically evolved to a type of uni-
code, or is dependent on external factors such as compiler
options, linked libraries or runtime platform. This function-
ality typically exists so applications can easily be adapted
but may have unwanted consequences in a data format pro-
cessor.

Another problem related to the encoding issues is that
documentation may present data in a different format on
purpose. An example is the Microsoft Office file formats
documentation [23], that displays all bit diagrams in big-
endian byte order for readability even though it requires
implementations to store the actual files in little-endian byte
order.

Iterative Development
Regardless of the approach used to develop the data for-
mat description, the process is typically highly iterative for
several reasons. The smallest possible description that will
reliably lead to recovering evidence is always sought since
strict deadlines are common. To find this description, it is
developed iteratively, checking at every increment whether
it succeeds. This effectively requires the process to go from
describing to executing to be simple and fast. In an ideal
situation, this means that data analysis tools can be recon-
figured or extended at runtime, or have capabilties to easily
and quickly shutdown and restart.

2.2 Modularization
The diversity in types of digital forensics investigations is
high, ranging from the analysis of a regular confiscated data
storage device, such as a hard drive, to a highly specialized

embedded device such as a detonator. At the same time,
as reuse of techniques and formats between devices is high,
the reusability of the tools analyzing them should be as well.
An example is a file system such as FAT, which is typically
used on (older) desktop computers and servers, but also on
thumb drives, memory cards and on internal memory of all
kinds of embedded devices such as mobile phones and MP3
players. Interfacing with these devices often requires differ-
ent hardware and accompanying software, but at some level
the analyses converge and boil down to support for the FAT
file system layout. Modularization can facilitate that each
data format must be developed only once and then used in
multiple scenarios on multiple devices.

Adding and Modifying Formats
All these independent implementations of standard data for-
mats are rarely identical, prompting digital forensics inves-
tigators to regularly implement small changes or create de-
rived versions of popular formats. Any implementation that
is far removed from the specification of data formats will be
difficult to use for regular adaptation.

For example, if a hand-written parser is used, making a
small change such as changing the sign of all numbers in a
data format can have significant impact on the entire imple-
mentation, such as having to change all the number variable
declarations and changing all calls to parsing methods re-
lated to numbers. Apart from being time consuming it is
also error prone and difficult to verify.

Modifying and Reconfiguring Tools
The combination of diversity and similarity in the domain
of digital forensics leads to additional complexity. An ex-
tremely rare combination of data formats in some areas may
be very common in another. To analyze data efficiently, dif-
ferent investigations benefit from different combinations of
algorithms and formats, each optimized for both a specific
type and amount of data encountered.

An example is the analysis of the contents of a confiscated
hard drive. In one investigation all files of certain types may
be identified and recovered. In another however, time may
be extremely limited and the investigators may be looking
for a possibly hidden spreadsheet created using Microsoft
Excel 2007. To accomplish this, they may want to look
for all ZIP files containing XML files (since Excel 2007 files
are basically a set of XML files compressed with ZIP). The
more difficult it is to modify or reconfigure an application
to perform this analysis, the less time the investigators will
have to do other analyses.

2.3 Scalability
For the past thirty years, the cost of hard drive storage has
shrunk exponentially as every fourteen months the price of
a single gigabyte has halved [18]. Coping with the amount
of extra data would already be challenging in just this di-
mension, but there are more dimensions that show similar
growth. The amount of households with broadband connec-
tions is steadily growing and in The Netherlands, there have
been more active mobile phone subscriptions than citizens
since 2006 [5]. Additionally, the digital world is becoming
more and more diverse, with desktops running Mac OS and
Linux operating systems slowly becoming more widespread
and users choosing alternative browsers on any of these plat-
forms are already common.

As a result, data analysis tools must scale to support these
exponential increases in size as well as be able to identify and
recover an increasing amount of different data formats.

Scaling To Terabytes
From a hardware perspective alone it is already challenging
to have to analyse the largest hard drives available or net-
work streams that do not fit on a single disk of the largest
available size. The demands this places on the data analysis
tools are even greater. Exponential growth in the encoun-
tered data means that analysis techniques and algorithms
have to be extremely refined in order to be usable for any
length of time before they become too slow. When they do,
it is typically a lot of work for developers to modify a data
analysis tool to work with new techniques that have been
optimized for the current generation of data sizes.

If the base functionality of these data analysis tools, such
as reading and caching data as well as implementing identi-
fication and recovery algorithms is tangled with other con-
cerns, especially related to identifying and recovering data
formats, then every scalability enhancement will have to be
applied to each data format implementation. This means
that as data grows and more data formats come into use,
not only will changes have to be made more frequently, they
will also be more complicated every time. Eventually the
data analysis tool will become unmaintainable.

Trading Precision for Speed
As mentioned in section 2.2, different types of investigations
may be more efficient in a custom configuration using only a
specific set of data formats and a single (type of) algorithm.
However, there are also cases that this approach cannot be
used to save time, for instance when there is not enough
information about what to look for or how to look for it.
When time is limited, a typical approach can be to simply
reduce the precision of all parts of the system and end up
with a best effort result given the time available.

If this requires a large amount of manual modifications
across a large set of components, several problems arise. The
first are typical for modifying software, such as making a
lot of changes under time pressure being error prone and
difficult to trace. Additionally however, a set of components
developed by multiple developers across a large period of
time will most likely consist of very different looking and
functioning code, making it extremely difficult to modify all
components in such a way that they all lose a comparable
amount of precision and gain the same in performance. The
result will be an unevenly optimized data analysis tool with
difficult to predict performance characteristics.

3. A DSL FOR DIGITAL FORENSICS
Specifying data formats is one of the main challenges iden-
tified in Section 2, so a data description language (DDL) [8]
forms our starting point. We have developed Derric, a
DDL designed to address the problems related to data de-
scription in digital forensics. In the following subsection we
will present the language using an example, the description
of JPEG [14]. The JPEG format is one of the most impor-
tant data formats in digital forensics investigations, given
that nearly all digital cameras and mobile phones produce
files of this type and it is also the most prominent format
for pictures on the world wide web.

1format JPG
2

3unit byte
4size 1
5sign false
6type integer
7endian big
8strings ascii
9

10sequence SOI APP0JFIF APP0JFXX? not(SOI,
11 APP0JFIF, APP0JFXX, EOI)* EOI
12

13structures
14SOI { marker: 0xFF, 0xD8; }
15

16APP0JFIF {
17 marker: 0xFF, 0xE0;
18 length: lengthOf(rgb) + (offset(rgb) -
19 offset(identifier)) size 2;
20 identifier: "JFIF", 0;
21 version: expected 1, 2;
22 units: 0 | 1 | 2;
23 xdensity: size 2;
24 ydensity: size 2;
25 xthumbnail: size 1;
26 ythumbnail: size 1;
27 rgb: size xthumbnail * ythumbnail * 3;
28}
29

30DHT {
31 marker: 0xFF, 0xC4;
32 length: size 2;
33 data: size length - lengthOf(marker);
34}
35

36SOS = DHT {
37 marker: 0xFF, 0xDA;
38 compressedData: unknown
39 terminatedBefore 0xFF, !0x00;
40}

Figure 1: Excerpt of the JPEG format in Derric

3.1 An Example: JPEG
A Derric description is fully textual and consists of three
parts: a header, a sequence and a set of structures. As an
example, an excerpt of the JPEG image file format descrip-
tion is shown in figure 1.

Following is a discussion of how Derric addresses the
domain-specific aspects of data description in digital foren-
sics using the JPEG format description as an illustration.

Specification and Implementation Encoding
Derric allows literal values to be expressed in a large amount
of different formats, tailored to different ways the data may
be encountered in an investigation. In the case of reverse
engineering, this will typically be in hexadecimal format.
When documentation is used, other literals may be appro-
priate. The JPEG format description in Figure 1 demon-
strates several formats: line 14 shows hexadecimal and line
20 shows a string literal in combination with a regular dec-
imal number. Additional formats are supported, including
octal and binary.

In addition to the multiple formats for expressing values,

modifiers exist to direct the interpretation of values. Modi-
fiers exist to transform values based on byte ordering (little,
big and middle endian), sign, numerical type (integer, float),
string encoding (ASCII, UTF-8/16/32, etc.) and size (with
different units, such as bits and bytes). Default values for
modifiers can be expressed at the top of a Derric descrip-
tion. An example of this is shown in lines 3–8. In this case,
"JFIF" and 0 in line 20 will be interpreted as an ASCII
string and a single byte, unsigned integer respectively.

Not requiring data format developers to transform data
before use reduces the distance between actual data and
data descriptions, thus improving usability and readability.

Expectations and Unknowns
Whether reverse engineering or working from documenta-
tion, some fields in a data format may have a lot of different
values, but typically do not in practice. An example of this
is the version field on line 21. Even though different versions
of the JPEG format do exist, the 1.2 version is encountered
nearly exclusively. Therefore, the value of the version field
should formally be defined as any value. When attempt-
ing to reassemble a heavily fragmented JPEG file that has
been cut off just before the version field however, it may im-
prove performance dramatically to first try parts that start
with the most common value for that field. The expected
keyword in Derric allows the investigator to express this
information as a hint to the analysis tool.

The opposite of having additional information about a
field may also occur: not understanding the contents of a
field completely and specifying whatever part is known or
guessing. To facilitate this, Derric has the unknown key-
word, as shown in the compressedData field on lines 38–
39. The application using a description using the unknown
keyword may decide to take the field’s specification with a
grain of salt (e.g., when the specification doesn’t completely
match, continue anyway to determine whether the rest of
the data does match).

Allowing investigators to express additional or missing in-
formation about a data format as part of the specification
enables an iterative style of development.

Modification and Variation
Decoupling the ordering into a separate sequence makes it
easier to extend a description. Instead of specifying ordering
at data structure level (e.g., as a linked list, which is com-
mon practice in many programming languages) a distinct
sequence allows specifications such as on lines 10–11, where
the not keyword used in not(SOI, APP0JFIF, APP0JFXX,
EOI)* automatically includes all data structures except the
ones specified. Adding a data structure automatically adds
it to the sequence, which maps well to the process of reverse
engineering where discovering previously unknown data struc-
tures is common. Additionally, if the sequence keyword is
not specified, a sequence is inferred where any combination
or ordering of specified data structures is accepted.

Data formats often have some fixed characteristics that
are shared by most internal structures. In the case of JPEG,
as shown by the DHT structure on lines 30–34 in Figure 1,
this is a 16 bit marker, followed by an unsigned 16 bit integer
length specifying the size of the data structure (in this case,
apparently excluding marker) and finally the payload named
data. Support in Derric for inheritance makes it easy to
add another structure. As shown in the specification of the

File Carving

Format Algorithm

Match Reassemble

Figure 2: Variability in the file carving domain

SOS structure on lines 36–40, the SOS structure overwrites
the marker field, reuses the length and data fields and then
adds the compressedData field.

Decoupling the sequence from data structure specifica-
tions and inheritance make data descriptions shorter and
help group related information, improving readability and
expressiveness of the language.

4. APPLICATION: CARVING
We have evaluated Derric in the domain of file carving [24],
which is the process of recovering deleted, fragmented or
otherwise lost files from storage devices. The complete de-
scription of Figure 1 has been input to a code generator to
obtain a JPEG validator. Such a validator can be used by
dedicated carving algorithms [9] to recover evidence from
disk images. The complete system including file format de-
scriptions in Derric, code generator and runtime library is
named Excavator.

4.1 Concerns in the Carving Domain
Analysis of the carving domain uncovers three concerns that
are variable across typical carver implementations: (1) For-
mat, (2) Matching and (3) Reassembly. A schematic overview
of this variability is shown in Figure 2. The first type of vari-
ability entails that for each type of file that must be recov-
ered, the file format must be defined. Carvers must know
the structure of, for instance, JPEG in order to recognize
that a certain sequence of bytes might be part of a valid
JPEG file. Additionally, some file formats exist in different
versions and variants. For instance, the Portable Network
Graphics (PNG) format has three official versions [32]. Fi-
nally, manufacturers of digital devices such as mobile phones
or digital cameras may implement a file format standard in
idiosyncratic ways, which could be valuable for recovery. We
consider all kinds of variation to be covered by the “Format”
concern.

The second dimension captures (1) the ways in which files
are matched in the input image, and (2) the method of re-
assembly if fragmentation is detected on the basis of file
format structure. In Figure 2 these variation points are in-
dicated as“Match”and“Reassemble” respectively, below the
abstract “Algorithm” concern.

There are at least three matching algorithms that are used
in carvers. The most basic matching algorithm is header/-
footer matching that returns blocks between signatures of
file headers and footers. Next, file structure-based match-
ing uses complete structural knowledge of a file format in
order to deal with, for instance, corrupted files. Finally,
characteristics-based matching takes (statistical) character-

Generated from

Derric description

JPEGValidator

IValidator

<<interface>>
Carver uses

MapDiscriminateBiFragmentGap

runtime

library

Figure 3: Overview of the Excavator architecture

istics about a file’s contents into account, for instance high
entropy in compressed files.

Finally, the third concern consists of algorithms for re-
assembling fragmented files. For instance, bifragment gap
carving [9] assumes that files consist of only two fragments
and that they are located on the data storage device in the
correct order. The algorithm tries all possible gaps between
the matched beginning and end of the file. Map/generate [6]
is more elaborate in that it supports reassembling files that
are arbitrarily fragmented. It exercises any combination of
sectors and then prunes the search space if mismatches are
found.

Currently, file carvers implement a limited combination
of file formats and/or matching and/or reassembly algo-
rithms. Off-the-shelf carvers typically do not support ex-
plicit variation points to efficiently make trade-offs between
precision and performance. The implementation of data for-
mat, matching and reassembly is completely tangled. As a
consequence, modification or reconfiguration of carvers is
time consuming and error prone.

Additionally, the top-level dimensions of Figure 2, “For-
mat” and “Algorithm”, correspond to two different roles in
the practice of using carvers in forensic investigations. On
the one hand there are the digital forensics investigators that
have intricate knowledge of many file formats. On the other
hand, there are the software engineers that know how to im-
plement, evolve, and optimize carving tools. With the cur-
rent tools, no division of labour is possible: domain-specific
knowledge about file formats has to be communicated to
software engineers in order for them to make the necessary
changes to the system.

4.2 Implementation
Each concern of Figure 2 corresponds to a variation point
in the implementation. In Excavator, each variation point
corresponds to a logical component. These components are:

1. The declarative surface syntax of Derric for describ-
ing the structure of file formats (Format).

2. A code generator that takes file format descriptions
and generates matching code (Matching)

3. A runtime library implementing reassembly algorithms
as well as defining the base types and interfaces for the
generated matching code. (Reassemble)

Both the file format model and the code generator are imple-
mented in Rascal [17]. File format descriptions are input

to the code generator. The generator produces Java classes
implementing the “Matching” concern. These classes are
used by the Java runtime library which contains algorithms
for fragment reassembly. Currently, the runtime library con-
tains two algorithms, a brute force algorithm and bifragment
gap carving discussed in Section 4.1.

The final component is the code generator. It takes a
description such as that of Figure 1, and produces a Java
class implementing the matching code that is used by the
runtime library. This code generator uses a model-to-text
approach [7]. It is implemented using Rascal’s string tem-
plates, which are ordinary strings, interpolated with arbi-
trary expressions and control flow statements.

An overview of the Excavator architecture is shown in
Figure 3. The abstract Carver class captures the reassem-
bly concern; implementations exist in two variations as in-
dicated by the concrete subclasses. A carver uses imple-
mentations of the IValidator interface (matching concern).
Implementations of this interface are generated from Der-
ric file format descriptions.

4.3 Evaluation
In order to evaluate the resulting JPEG carver, we have
compared its performance to that of three popular carvers.
First, we assert that Excavator is in the same league with
respect to the number of recovered files and runtime per-
formance. For this, the carvers are run on five established
benchmarks for carvers. Secondly, we argue that the flexi-
bility induced by the domain-specific language approach of
Excavator is unmatched by the other carvers.

The file carvers that we compare Excavator to were cho-
sen based on two criteria. First, they are actively used in
digital forensics investigations, both in government and in-
dustry. This ensures our comparison is relevant. Second,
we required the tools to be open source in order to make a
source-based assessment of the effort of customizing a carver.
These criteria have lead to the selection of Scalpel [26], Pho-
toRec [11] and ReviveIt [22]. The precise versions and com-
mand line options that were used in the evaluation are shown
in Table 1. Below, we briefly describe each carver.

Scalpel A high performance, file system-independent and
cross-platform file carver written in C. It employs a
header/footer based algorithm to recognize files; the
structure of headers and footers is described using reg-
ular expressions. It tends to generate a relatively large
amount of false positives but is extremely fast.

PhotoRec Originally designed to recover digital photographs
from memory cards but has since been extended to
support a plethora of file formats. This carver is com-
pletely implemented in plain C and all logic, file for-
mat, matching and reassembly, is hard-wired.

ReviveIt The most advanced of the three carvers. It em-
ploys Garfinkel’s bifragment gap algorithm [9] and is
configured using an external specification of file for-
mats. This specification is then interpreted at runtime.

4.4 Forensic Benchmarks
The set of benchmarks used in the evaluation of Excava-
tor consists of five files containing either a byte-for-byte
copy of a data storage device or a synthetic data structure
with similar properties. The files were selected since they all

contain recoverable JPEG files and are widely recognized as
benchmarks for carvers.

The size of each benchmark, together with the number
of JPEG files contained in it, is shown in Table 2. JPEG
1, Basic 1 and Basic 2 originate from the Digital Forensics
Tool Testing Images [4] collection, a project set up to share
benchmarks that are useful for testing digital forensics tools.
They are regularly used to evaluate new algorithms and tools
in digital forensics research. DFRWS 2006 and DFRWS 2007
are taken from the Digital Forensics Research Workshop’s
(DFRWS) Forensic Challenge in 2006 and 2007, when the
challenge focused on file carving. Together, the benchmarks
exercise file carvers in nearly all relevant areas, such as re-
covering deleted files, reassembling fragmented files, ignoring
placed false positives and dealing with file system-specific is-
sues. Below we briefly describe each benchmark.

JPEG Search Test #1 An NTFS file system containing
JPEG files in various disguises. Additionally, some
traces of JPEG headers and footers have been placed
in strategic locations, to confuse carvers.

Basic Data Carving Test #1 A byte-for-byte copy of a
64MB FAT32 formatted thumb drive including deleted
files and some corrupted data structures, including a
JPEG header.

Basic Data Carving Test #2 A byte-for-byte copy of a
128MB EXT2 formatted thumb drive including deleted
and fragmented files.

DFRWS Forensic Challenge 2006 A 50MB file gener-
ated using random data and seeded with, amongst oth-
ers, fragmented JPEG files which may be interleaved
with other JPEG files or hand-crafted headers to con-
fuse carvers.

DFRWS Forensic Challenge 2007 Similar to the 2006
DFRWS benchmark, only larger (331MB) and heavily
fragmented.

4.5 Evaluation Details
To compare the existing carvers to Excavator, we have run
all four carvers on all five benchmarks. To ensure the best
results, if a tool has multiple modes of operation we have
run each benchmark in each mode and recorded the best
result—see Table 1 for details on how each carver was run.

File Carving Performance
Table 3 lists the results of our evaluation. The table shows
the number of correctly recovered files for each carver, in-
cluding the recall between parentheses.

Of all carvers, Scalpel recovers the smallest amount of
files. The reason is that its simple header/footer match-
ing algorithm prevents it from recovering any fragmented
files. PhotoRec performs better, but does not find files that
are prefixed with random data (JPEG 1) and has trouble
dealing with fragmentation in the EXT2 benchmark (Ba-
sic 2). ReviveIt also misses the files that are prefixed with
random data (JPEG 1), but does succeed in reassembling
more fragmented files than any other tested carver (DFRWS
2006) through its combination of file structure matching,
characteristics-based matching and bifragment gap reassem-
bly. Finally, Excavator recovers several fragmented files as
well but misses a few more than ReviveIt because it does not

Tool Version Command line

ReviveIt 20070804 -e -F -t OUTDIR -c ../etc/file_types.conf INPUT
Scalpel 1.6 -b -c scalpel.conf -o OUTDIR INPUT
Photorec 6.11 /d OUTDIR INPUT

Table 1: Carvers participating in the evaluation

Short name Name File name Size (MB) #JPEGs

1 JPEG 1 JPEG Search Test #1 8-jpeg-search.dd 10 7
2 Basic 1 Basic Data Carving Test #1 11-carve-fat.dd 62 3
3 Basic 2 Basic Data Carving Test #2 12-carve-ext2.dd 123 3
4 DFRWS’06 Forensic Challenge 2006 dfrws-2006-challenge.raw 48 14
5 DFRWS’07 Forensic Challenge 2007 dfrws-2007-challenge.img 331 18

Table 2: File carving tests participating in the evaluation

implement characteristics-based matching. However, it does
recover the random data prefixed files (JPEG 1).

Table 3 shows the number of files that (1) are completely
recovered and (2) are actually present in the test image.
The first condition is checked by feeding the recovered file
to an image viewer. The second condition is verified using
the MD5 checksums provided with each benchmark. Any
file that is recovered, but is not viewable or does not match
an MD5 checksum, is a false positive.

We chose not to include the number of false positives (and
hence, the precision) in the results for two reasons. First,
when a file matches none of the MD5 checksums, it is not au-
tomatically useless in forensic investigations. For instance,
it may be a partial file containing crucial evidence. Thus,
a false positive is not necessarily a bad thing. Second, the
degree as to which a false positive is useless, is hard to quan-
tify. During our experiments, we have observed that some
files were partially recovered by multiple tools, but that some
tools recovered a larger part than others. Which part of a file
is important depends on the case at hand. We have there-
fore chosen to only measure the number of true positives
and recall1.

Nevertheless, a large number of false positives is not de-
sirable, since they have to be manually inspected. In all of
our tests, Excavator had no more false positives than the
best performing tool of all the tools in the evaluation.

From the results it can be concluded that Excavator,
on average, finds as many files as the other carvers. In fact,
the only benchmark where Excavator performs worse than
any other carver is DFRWS 2006: ReviveIt recovers two
more files because it employs characteristics-based match-
ing. We expect that adding support for characteristics-based
matching to Excavator will make it as good as ReviveIt on
DFRWS 2006 as well.

Runtime Performance
The runtime performance results are shown in Table 4. On
the whole, ReviveIt performs worst on all benchmarks. This
can be explained by its use of characteristics-based match-
ing, which requires it to process much more data than the
other tools. The other tools typically finish within a couple

1This is in accordance with the rules used in the DFRWS
Forensic Challenges.

of seconds with a few exceptions.
The high running times of ReviveIt and Scalpel on DFRWS

2007 can be explained from the fact that the image is much
larger than the others, and both tools recover many partial
files. On the DFRWS 2006 benchmark, ReviveIt and Ex-
cavator use bifragment gap carving to recover some frag-
mented files that both Scalpel and PhotoRec miss; this ex-
plains the additional time required.

Based on the numbers in Table 4, we conclude that the
runtime performance of Excavator is similar to the perfor-
mance of the fastest carvers in these benchmarks. Important
to note however is that in real-life digital forensics investi-
gations, the data sets will typically be much larger, since
hard drives of several terabytes in size are becoming com-
mon. Unfortunately, no publicly available benchmarks exist
of this size. As a result, we have not been able to determine
how Excavator scales compared to the other carvers.

Flexibility
Efficiently implementing new file formats or modifying ex-
isting ones is an important requirement in digital forensics
investigations. The carvers in our evaluation all support this
requirement with varying degrees of flexibility. Below we
provide a qualitative assessment of the domain-specific lan-
guage approach of Excavator in comparison to the other
carvers.

PhotoRec requires a file format definition to be directly
implemented in code, along with a matching algorithm. This
tangling of concerns makes it practically impossible for a
non-programmer to make changes. Furthermore, to lever-
age advances in matching algorithms, existing file format
implementations must be adapted.

Apart from PhotoRec, all other carvers have separate file
format definitions that can be modified without altering the
application code. The definition that Scalpel uses, however,
is very basic: header and footer matching along with some
basic options (such as case sensitivity). This means that the
built-in header/footer matching is hard to replace with a
more advanced matching algorithm. Furthermore, reassem-
bly algorithms typically require the matching to be much
more precise in order to do scalable reassembly.

The remaining two, ReviveIt and Excavator, support
full file format descriptions. The definition that ReviveIt
uses however is tied to concepts of the matching algorithms it

JPEG 1 Basic 1 Basic 2 DFRWS 2006 DFRWS 2007 Total

ReviveIt 4 (57.1%) 3 (100%) 3 (100%) 10 (71.4%) 1 (5.6%) 21 (46.7%)
Scalpel 6 (85.7%) 1 (33.3%) 1 (33.3%) 6 (42.9%) 0 (0%) 14 (31.1%)

Photorec 4 (57.1%) 3 (100%) 1 (33.3%) 8 (57.1%) 1 (5.6%) 17 (37.8%)
Excavator 6 (85.7%) 3 (100%) 3 (100%) 8 (57.1%) 1 (5.6%) 21 (46.7%)

Table 3: Number of true positives and recall per carver, per benchmark

JPEG 1 Basic 1 Basic 2 DFRWS 2006 DFRWS 2007

ReviveIt 11.8s 14.6s 17.8s 37.0s 7m58s
Scalpel 0.4s 1.9s 3.6s 2.8s 21.7s

Photorec 0.2s 0.5s 0.6s 0.2s 3.8s
Excavator 0.2s 0.4s 0.8s 18.6s 3.1s

Table 4: Runtime performance per carver, per benchmark (wall clock time)

implements. For instance, its definitions explicitly mention
characteristics-based matching, which in our view belongs
to the matching concern and not to the definition of a file
format. As a result, these file format definitions are hard to
reuse for alternative matching algorithms and even harder
for different types of data analysis. Excavator’s file format
definitions are strictly declarative; both matching algorithm
and file formats can be varied independently.

Furthermore, Excavator separates matching and reassem-
bly algorithms, allowing variation between these dimensions
in a similar manner. None of the other carvers expose ex-
plicit variation points to independently vary matching and
reassembly2. Excavator can be run using both bifragment
gap and brute force reassembly algorithms without having
to adapt file format descriptions.

The results of Tables 3 and 4 show that the separation of
concerns achieved in Excavator did not incur a penalty in
either carving performance or runtime performance. More-
over, this flexibility did not come at the price of more code
either. Table 5 shows the size statistics of Excavator. The
entire system, currently encompassing the language gram-
mar, JPEG and PNG descriptions, code generator and a
runtime library containing two reassembly algorithms, con-
sists of just above a thousand non-commented lines of source
code.

5. DISCUSSION
Although techniques such as separation of concerns and de-
clarative specification are commonly regarded as improv-
ing quality whenever they are used, it is difficult to assess
whether any given solution applies these principles com-
pletely, correctly and whether an even better solution could
exist. Nonetheless, given the very small amount of code
required to develop Excavator and the results achieved,
we believe the general effectiveness of the approach is clear.
However, some issues surrounding suitability and applicabil-
ity exist and are addressed in the following subsections.

5.1 Scalability
One of the challenges discussed in Section 2 is improving
scalability. To measure this, benchmarks or scenarios must
be used that push a data analysis tool to the limit in terms

2Scalpel does not support reassembly at all.

of data size it can handle. However, the largest publicly
available benchmark is the DFRWS Forensic Challenge 2007
image, which is included in our test set. At 331MB, this does
not come near a size that requires an analysis tool to take
special measures in the area of scalability. This challenge
therefore has not been addressed.

5.2 Universal Data Description
Derric can be used to describe any data format, but in the
current evaluation has only been used to describe JPEG.
The language’s usability however depends on its ability to
describe a large range of data formats. In order to develop
our language, we have described a large set of data for-
mats, including other image formats such as PNG and GIF,
along with several document formats such as Microsoft Of-
fice Word and Excel and container formats such as ZIP and
RAR. To test our language and code generator, these de-
scriptions were successfully tested on sets of files of those
types. The benchmarks are all focused on JPEG, so our
measurements use these results.

The application we have developed recovers data but does
not process it further. Additional capabilities that may be
related to the data description language, such as processing
embedded files in a container format or detecting encryp-
tion are therefore not evaluated. However, recognizing a
file’s type without processing it further is useful outside of
data recovery, for example in network filtering and content
detection (in network proxies and web browsers).

5.3 Usability
The eventual users will be the final judge of Derric’s usabil-
ity. Even though we do not have numbers on user satisfac-
tion, we believe that there are several reasons that Derric
can be considered an improvement over other approaches.
First, when data format processing code is developed by a
software engineer, the digital forensics investigator would
need to transfer knowledge of a data format to the engineer.
Derric provides a tailored notation that can be directly
used by digital forensics investigators.

Second, if the investigator develops the data format pro-
cessor directly, then Derric still only requires the same in-
formation that would otherwise need to be expressed in any
programming language, but stripped of all implementation
details such as memory management. Therefore we believe

Component Implementation Size (SLOC)

Grammar SDF 52
JPEG description Derric 92
PNG description Derric 58
Structure-based matching (code generator) Rascal 510
Bifragment gap (runtime) Java 72
Brute force (runtime) Java 44
Utilities (runtime) Java 256

Total: 1084

Table 5: Sizes of the Excavator components

Derric can be considered a step forward from direct imple-
mentation since it requires nothing more, but does remove
a lot of work for the investigator.

6. RELATED WORK
There is extensive work in the area of model-driven engi-
neering (MDE) [27], DSLs [30] [28] [16] and DDLs [8].

The work in [29] investigates the factors that influence in-
dustrial adoption of MDE. One of the conclusions is that
generic, well-established modeling languages are favoured
over more advanced modeling technologies, such as dedi-
cated DSLs. As such, this identifies an open research ques-
tion regarding our work.

A case-study of MDE in an industrial context is described
in [2]. There, the use of MDE has been found to lead to
significant productivity and quality improvements. In one
division that was investigated 65%–85% of the code could
be generated from high-level models. Moreover, the model
driven perspective also lead to improvements in some phases
of the software process: it turned out that the time to cor-
rectly fix a defect was regularly reduced by a factor between
30 and 70. This tremendous gain is attributed to the fact
that many defects could be fixed and tested at the model
level. This can be seen as additional supporting evidence for
the observation that MDE may significantly improve change-
ability of software.

In [21] a survey of the techniques and tools related to
the different stages of DSL development is presented. One
important conclusion is that these nearly all focus on the
implementation phase and ignore earlier phases such as de-
cision, analysis and design.

A study of the success factors of DSLs is described in [13].
There, learnability, usability and expressiveness of the DSL,
reusability of the code and development costs and reliability
of the resulting software are identified as the most important
factors contributing to the success of using a DSL.

Most data description languages are either tied to a spe-
cific type of application, such as PacketTypes [20] and Zebu [3]
to network protocols, or technology, such as XML Schema
to XML.

Some general data description languages that allow spec-
ification of binary formats do exist, such as PADS [19] and
DataScript [1]. Of these, PADS supports extensive error
handling. Derric distinguishes itself by having a syntax
that maps onto common activities in the field of digital
forensics such as reverse engineering.

The technology behind file carving is strongly related to
parsing [12]. However, traditional grammar formalisms, such

as ANTLR [25] and SDF2 [31], are specifically targeted at
describing textual computer languages. They are generally
unsuitable to build parsers for binary file formats, since these
often require complex data dependencies between elements
of a file. Data-dependent grammars extend traditional pars-
ing technology to allow the definition of such dependen-
cies [15] and may be usable in some applications of Der-
ric.

7. CONCLUSION
Data storage size and network bandwidth is growing contin-
uously and popularity of digital hand-held devices is increas-
ing. Additionally, the software market is diversifying and
growing steadily. This brings serious challenges to digital
forensics investigators who must cope with large quantities
of data and an evolving set of data formats to consider.

We present a practical interpretation in the area of soft-
ware engineering of these digital forensics challenges, identi-
fying which activities are directly affected by them, so they
can be addressed systematically.

Next, we present the domain-specific language Derric,
designed to fit into the workflow of a digital forensics inves-
tigator. It allows declarative specification of data formats,
thus separating the task of data description from data anal-
ysis tool development, enabling increased data abstraction
and modularization.

To evaluate Derric we have developed Excavator, a
data analysis tool in the area of file carving making full use of
Derric to describe data formats. Excavator is compared
to popular existing file carvers used in practice on a test set
consisting of standard carving benchmarks and challenges
used in digital forensics research. Our comparison shows
that Excavator is in the same league as the existing file
carvers in terms of carving results and runtime performance,
while requiring minimal effort to develop and allowing reuse
of its data format specifications.

Directions for Future Work
In order to better validate our efforts to address the chal-
lenges in the areas of data abstraction and scalability, we
intend to develop a test set that is large enough to allow eval-
uation of scalability and contain a large amount of files in
different data formats that are representative of the domain,
including image, movie, document and container formats.

Second, to evaluate whether our language is usable in mul-
tiple areas of digital forensics, we intend to develop different
data analysis tools based on Derric, for instance to analyze
network streams and memory layouts.

Finally, a user evaluation of Derric must be performed
among actual users of the language, once a system using it
is actually deployed and used in real-world digital forensics
investigations.

8. REFERENCES
[1] G. Back. DataScript - A Specification and Scripting

Language for Binary Data. In Proceedings of the 1st
ACM SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering
(GPCE’02), volume 2487 of LNCS, pages 66–77.
Springer, 2002.

[2] P. Baker, S. Loh, and F. Weil. Model-Driven
Engineering in a Large Industrial Context—Motorola
Case Study. In Proceedings of the 8th International
Conference on Model Driven Engineering Languages
and Systems (MODELS’05), volume 3713 of LNCS,
pages 476–491. Springer, 2005.

[3] L. Burgy, L. Reveillere, J. L. Lawall, and G. Muller. A
Language-Based Approach for Improving the
Robustness of Network Application Protocol
Implementations. In Proceedings of the 26th IEEE
International Symposium on Reliable Distributed
Systems (SRDS’07), pages 149–160, 2007.

[4] B. Carrier. Digital Forensics Tool Testing Images.
http://dftt.sourceforge.net/.

[5] Centraal Bureau voor de Statistiek. De digitale
economie. 2009. In Dutch.

[6] M. I. Cohen. Advanced Carving Techniques. Digital
Investigation, 4(3-4):119–128, 2007.

[7] K. Czarnecki and S. Helsen. Feature-Based Survey of
Model Transformation Approaches. IBM Systems
Journal, 45(3):621–646, 2006.

[8] K. Fisher, Y. Mandelbaum, and D. Walker. The Next
700 Data Description Languages. Journal of the ACM,
57(2):1–51, 2010.

[9] S. L. Garfinkel. Carving Contiguous and Fragmented
Files with Fast Object Validation. Digital
Investigation, 4(S1):2–12, 2007. Proceedings of the
Seventh Annual DFRWS Conference.

[10] S. L. Garfinkel. Digital Forensics Research: The Next
10 Years. Digital Investigation, 7(S1):S64 – S73, 2010.
Proceedings of the Tenth Annual DFRWS Conference.

[11] C. Grenier. PhotoRec, 2009.
http://www.cgsecurity.org/wiki/PhotoRec.

[12] D. Grune and C. Jacobs. Parsing Techniques—A
Practical Guide. Springer, 2008.

[13] F. Hermans, M. Pinzger, and A. van Deursen.
Domain-Specific Languages in Practice: A User Study
on the Success Factors. In Proceedings of the 12th
International Conference on Model Driven
Engineering Languages and Systems (MODELS’09),
volume 5795 of LNCS, pages 423–437. Springer, 2009.

[14] ITU/CCITT. Recommendation T.81 (JPEG
Compression Specification), 1992.

[15] T. Jim, Y. Mandelbaum, and D. Walker. Semantics
and Algorithms for Data-Dependent Grammars. In
Proceedings of the 37th annual ACM
SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL’10), pages 417–430.
ACM, 2010.

[16] S. Kelly and J.-P. Tolvanen. Domain-Specific
Modeling: Enabling Full Code Generation.
Wiley-IEEE Computer Society Press, March 2008.

[17] P. Klint, T. van der Storm, and J. Vinju. Rascal: A
Domain Specific Language for Source Code Analysis
and Manipulation. In Proceedings of the Ninth IEEE
International Working Conference on Source Code
Analysis and Manipulation (SCAM’09), pages
168–177. IEEE Computer Society, 2009.

[18] M. Komorowski. A History of Storage Cost, 2009.
http://www.mkomo.com/cost-per-gigabyte.

[19] Y. Mandelbaum, K. Fisher, D. Walker, M. Fernandez,
and A. Gleyzer. PADS/ML: A Functional Data
Description Language. In Proceedings of the 34th
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’07),
pages 77–83. ACM, 2007.

[20] P. J. McCann and S. Chandra. Packet Types:
Abstract Specification of Network Protocol Messages.
In Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM’00), pages
321–333. ACM, 2000.

[21] M. Mernik, J. Heering, and A. M. Sloane. When and
How to Develop Domain-Specific Languages. ACM
Computing Surveys, 37(4):316–344, 2005.

[22] J. Metz. ReviveIt 2007.
http://sourceforge.net/projects/revit/.

[23] Microsoft. Microsoft Office File Formats, 2008.
http://msdn.microsoft.com/en-us/library/
cc313118.aspx.

[24] A. Pal and N. Memon. The Evolution of File Carving.
Signal Processing Magazine, IEEE, 26(2):59–71, 2009.

[25] T. Parr. The Definitive ANTLR Reference: Building
Domain-Specific Languages. Pragmatic Bookshelf,
2007.

[26] G. G. Richard, III and V. Roussev. Scalpel: A Frugal,
High Performance File Carver. In Proceedings of the
Fifth Annual DFRWS Conference, 2005.

[27] D. C. Schmidt. Model-Driven Engineering. Computer,
39:25–31, 2006.

[28] D. Spinellis. Notable Design Patterns for
Domain-Specific Languages. Journal of Systems and
Software, 56(1):91–99, 2001.

[29] M. Staron. Adopting Model Driven Software
Development in Industry—A Case Study at Two
Companies. In Proceedings of the 9th International
Conference on Model Driven Engineering Languages
and Systems (MODELS’06), volume 4199 of LNCS,
pages 57–72. Springer, 2006.

[30] A. van Deursen, P. Klint, and J. Visser.
Domain-specific languages: An annotated
bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[31] E. Visser. Syntax Definition for Language Prototyping.
PhD thesis, University of Amsterdam, 1997.

[32] W3C. Portable Network Graphics (PNG)
Specification, 2003. http://www.w3.org/TR/PNG/.

