
Object Grammars
Compositional & Bidirectional Mapping Between Text and Graphs

Tijs van der Storm, William R. Cook, Alex Loh

Monday, October 1, 12

http://www.enso-lang.org/

Monday, October 1, 12

http://enso-lang.org/
http://enso-lang.org/

Models

Monday, October 1, 12

Text to objects and back

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Object Grammar

Monday, October 1, 12

Object Grammars

• Interleave grammar with data binding

• object construction

• field assignment

• predicates

• Bind to paths in to create cross references

• Formatting hints to guide pretty printing

Monday, October 1, 12

Points

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

Monday, October 1, 12

Points

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

Constructor

Monday, October 1, 12

Points

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

Constructor Field binding

Monday, October 1, 12

Points

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

Constructor Field binding Built-in primitives

Monday, October 1, 12

Points

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

Constructor Field binding Built-in primitives

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

The schema

Monday, October 1, 12

Points

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

Constructor Field binding Built-in primitives

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

The schema

Monday, October 1, 12

Points

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

Constructor Field binding Built-in primitives

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

The schema

Monday, October 1, 12

Points

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

Constructor Field binding Built-in primitives

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

The schema

Monday, October 1, 12

Expressions

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")" class Exp

class Binary < Exp

op: str

lhs: Exp

rhs: Exp

class Const < Exp

value: int

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

This grammar is not very useful, because it is ambiguous. To resolve this ambiguity, we
use the standard technique for encoding precedence and associativity using additional
non-terminals.

Term ::= [Binary] lhs:Term op:"+" rhs:Fact | Fact

Fact ::= [Binary] lhs:Fact op:"*" rhs:Prim | Prim

Prim ::= [Const] value:int | "(" Term ")"

This grammar refactoring is independent of the schema for expressions; the additional
non-terminals (Term, Fact, Prim) do not have corresponding classes. Object grammars
allow ambiguous grammars: as long as individual input strings are not ambiguous there
will be no error. Thus the original version can only parse fully parenthesized expressions,
while the second version handles standard expression notation.

During formatting, the alternatives are searched in order until a matching case is
found. For example, to format Binary(Binary(3,"+",5),"*",7) as a Term, the top-level
structure is a binary object with a * operator. The Term case does not apply, because the
operator does not match, so it formats the second alternative, Fact. The first alternative
of Fact matches, and the left hand side Binary(3,"+",5) must be formatted as a Fact.
The first case for Fact does not match, so it is formatted as a Prim. The first case for Prim
also does not match, so parentheses are added and the expression is formatted as a Term.
The net effect is that the necessary parentheses are added automatically, to format as
(3+5)*7.

2.3 Collections

Object Grammars support regular symbols to automatically map collections of values.
For example, consider this grammar for function calls:

C ::= [Call] fun:id "(" args:Exp* @"," ")"

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

Monday, October 1, 12

Expressions

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

Both + and * become
Binary objects

class Exp

class Binary < Exp

op: str

lhs: Exp

rhs: Exp

class Const < Exp

value: int

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

This grammar is not very useful, because it is ambiguous. To resolve this ambiguity, we
use the standard technique for encoding precedence and associativity using additional
non-terminals.

Term ::= [Binary] lhs:Term op:"+" rhs:Fact | Fact

Fact ::= [Binary] lhs:Fact op:"*" rhs:Prim | Prim

Prim ::= [Const] value:int | "(" Term ")"

This grammar refactoring is independent of the schema for expressions; the additional
non-terminals (Term, Fact, Prim) do not have corresponding classes. Object grammars
allow ambiguous grammars: as long as individual input strings are not ambiguous there
will be no error. Thus the original version can only parse fully parenthesized expressions,
while the second version handles standard expression notation.

During formatting, the alternatives are searched in order until a matching case is
found. For example, to format Binary(Binary(3,"+",5),"*",7) as a Term, the top-level
structure is a binary object with a * operator. The Term case does not apply, because the
operator does not match, so it formats the second alternative, Fact. The first alternative
of Fact matches, and the left hand side Binary(3,"+",5) must be formatted as a Fact.
The first case for Fact does not match, so it is formatted as a Prim. The first case for Prim
also does not match, so parentheses are added and the expression is formatted as a Term.
The net effect is that the necessary parentheses are added automatically, to format as
(3+5)*7.

2.3 Collections

Object Grammars support regular symbols to automatically map collections of values.
For example, consider this grammar for function calls:

C ::= [Call] fun:id "(" args:Exp* @"," ")"

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

Monday, October 1, 12

Expressions

syntax and object graphs. The syntactic structure is specified using a form of Extended
Backus-Naur Form (EBNF) [41], which integrated regular iteration and optional symbols
into BNF. Object Grammar extend BNF with constructs to declaratively construct objects,
bind values to fields, create cross links and evaluate predicates.

2.1 Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct
objects and assign their fields with values taken from the input stream. The following
example defines a production rule named P that parses the standard notation (x, y) for
cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

The production rule begins with a constructor [Point] which indicates that the rule
creates a Point object. The literals "(", "," and ")" match the literal text in the input.
The field binding expressions x:int and y:int assign the fields x and y of the new point
to integers extracted from the input steam. The classes and fields used in a grammar
must be defined in a schema [26]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without
any effect on the result of parsing For example, the above grammar can be rewritten
equivalently as

P ::= [Point] "(" XY ")"

XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just
points.

The Object Grammars given above can also be used to format points into textual
form. The constructor acts as a guard that specifies that points should be rendered. The
literal symbols are copied directly to the output. The field assignments are treated as
selections that format the x and y fields of the point as integers.

2.2 Alternatives and Object-Valued Fields

Each alternative in a production can construct an appropriate object. The following
example constructs either a constant, or one of two different kinds of Binary objects.
The last alternative does not construct an object, but instead returns the value created by
the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

Both + and * become
Binary objects

Parentheses don’t
introduce objects

class Exp

class Binary < Exp

op: str

lhs: Exp

rhs: Exp

class Const < Exp

value: int

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

This grammar is not very useful, because it is ambiguous. To resolve this ambiguity, we
use the standard technique for encoding precedence and associativity using additional
non-terminals.

Term ::= [Binary] lhs:Term op:"+" rhs:Fact | Fact

Fact ::= [Binary] lhs:Fact op:"*" rhs:Prim | Prim

Prim ::= [Const] value:int | "(" Term ")"

This grammar refactoring is independent of the schema for expressions; the additional
non-terminals (Term, Fact, Prim) do not have corresponding classes. Object grammars
allow ambiguous grammars: as long as individual input strings are not ambiguous there
will be no error. Thus the original version can only parse fully parenthesized expressions,
while the second version handles standard expression notation.

During formatting, the alternatives are searched in order until a matching case is
found. For example, to format Binary(Binary(3,"+",5),"*",7) as a Term, the top-level
structure is a binary object with a * operator. The Term case does not apply, because the
operator does not match, so it formats the second alternative, Fact. The first alternative
of Fact matches, and the left hand side Binary(3,"+",5) must be formatted as a Fact.
The first case for Fact does not match, so it is formatted as a Prim. The first case for Prim
also does not match, so parentheses are added and the expression is formatted as a Term.
The net effect is that the necessary parentheses are added automatically, to format as
(3+5)*7.

2.3 Collections

Object Grammars support regular symbols to automatically map collections of values.
For example, consider this grammar for function calls:

C ::= [Call] fun:id "(" args:Exp* @"," ")"

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

Monday, October 1, 12

class Exp

class Binary < Exp

op: str

lhs: Exp

rhs: Exp

class Const < Exp

value: int

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

This grammar is not very useful, because it is ambiguous. To resolve this ambiguity, we
use the standard technique for encoding precedence and associativity using additional
non-terminals.

Term ::= [Binary] lhs:Term op:"+" rhs:Fact | Fact

Fact ::= [Binary] lhs:Fact op:"*" rhs:Prim | Prim

Prim ::= [Const] value:int | "(" Term ")"

This grammar refactoring is independent of the schema for expressions; the additional
non-terminals (Term, Fact, Prim) do not have corresponding classes. Object grammars
allow ambiguous grammars: as long as individual input strings are not ambiguous there
will be no error. Thus the original version can only parse fully parenthesized expressions,
while the second version handles standard expression notation.

During formatting, the alternatives are searched in order until a matching case is
found. For example, to format Binary(Binary(3,"+",5),"*",7) as a Term, the top-level
structure is a binary object with a * operator. The Term case does not apply, because the
operator does not match, so it formats the second alternative, Fact. The first alternative
of Fact matches, and the left hand side Binary(3,"+",5) must be formatted as a Fact.
The first case for Fact does not match, so it is formatted as a Prim. The first case for Prim
also does not match, so parentheses are added and the expression is formatted as a Term.
The net effect is that the necessary parentheses are added automatically, to format as
(3+5)*7.

2.3 Collections

Object Grammars support regular symbols to automatically map collections of values.
For example, consider this grammar for function calls:

C ::= [Call] fun:id "(" args:Exp* @"," ")"

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

class Exp

class Binary < Exp

op: str

lhs: Exp

rhs: Exp

class Const < Exp

value: int

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

| [Binary] lhs:Exp op:"*" rhs:Exp

| [Const] value:int

| "(" Exp ")"

This grammar is not very useful, because it is ambiguous. To resolve this ambiguity, we
use the standard technique for encoding precedence and associativity using additional
non-terminals.

Term ::= [Binary] lhs:Term op:"+" rhs:Fact

| Fact

Fact ::= [Binary] lhs:Fact op:"*" rhs:Prim

| Prim

Prim ::= [Const] value:int

| "(" Term ")"

This grammar refactoring is independent of the schema for expressions; the additional
non-terminals (Term, Fact, Prim) do not have corresponding classes. Object grammars
allow ambiguous grammars: as long as individual input strings are not ambiguous there
will be no error. Thus the original version can only parse fully parenthesized expressions,
while the second version handles standard expression notation.

During formatting, the alternatives are searched in order until a matching case is
found. For example, to format Binary(Binary(3,"+",5),"*",7) as a Term, the top-level
structure is a binary object with a * operator. The Term case does not apply, because the
operator does not match, so it formats the second alternative, Fact. The first alternative
of Fact matches, and the left hand side Binary(3,"+",5) must be formatted as a Fact.
The first case for Fact does not match, so it is formatted as a Prim. The first case for Prim
also does not match, so parentheses are added and the expression is formatted as a Term.
The net effect is that the necessary parentheses are added automatically, to format as
(3+5)*7.

2.3 Collections

Object Grammars support regular symbols to automatically map collections of values.
For example, consider this grammar for function calls:

C ::= [Call] fun:id "(" args:Exp* @"," ")"

Refactored grammar
for disambiguation

Expressions

Monday, October 1, 12

State machines
Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Monday, October 1, 12

The object grammar

start M

M ::= [Machine] "start" \start:</states[it]> states:S*

S ::= [State] "state" name:sym out:T*

T ::= [Transition] "on" event:sym "go" to:</states[it]>

Fig. 3. Object Grammar to parse state machines

When humans read the textual presentation in Fig. 1(b), they immediately resolve the
names in each transition to create a mental picture similar Fig. 1(a).

Figure 3 shows an Object Grammar for state machines5. It uses the reference
</states[it]> to look up the start state of a machine and to find the the target state of
a transition. The path /states[it] starts at the root of the resulting object model, as
indicated by the forward slash /. In this case the root is a Machine object, since M is
the start symbol of the grammar, and the M production creates a Machine. The path then
navigates into the field states of the machine (see Fig. 2), and uses the identifier from
the input stream to index into the keyed collection of all states. The same path is used to
resolve the to field of a transition to the target state.

Path ::= [Anchor] type:"."

| [Anchor] type:".."

|

[Sub] parent:Path? "/" name:sym Subscript?

Subscript

::= "[" key:Key "]"

Key ::= Path | [It] "it"

Fig. 4. Syntax of paths.

References and Paths In gen-
eral, a reference <p> represents
a lookup of an object using the
path p. Parsing a reference al-
ways consumes a single identi-
fier, which can be used as a key
for indexing into keyed collec-
tions. Binding a field to a refer-
ence thus results in a cross-link
from the current object to the ref-
erenced object.

The syntax of paths is given in Fig. 4. A path is anchored at the current object (.), at
its parent (..), or at the root. In the context of an object a path can descend into a field by
post-fixing a path with / and the name of the field. If the field is a collection, a specific
element can be referenced by indexing in square brackets. The keyword it represents
the string-typed value of the identifier in the input stream that represents the reference
name.

The grammar of schemas, given in Fig. 5, illustrates a more complex use of references.
To lookup inverse fields, it is necessary to look for the field within the class that is the
type of the field. For example, in the state machine schema in Fig. 1(b), the field from in
Transition has type State and its inverse is the out field of State. The path for the type
is type:</types[it]>, while the path for the inverse is inverse:<./type/fields[it]>,

5 The field label start is escaped using \ because start is a keyword in the grammar of grammars;
cf. Section 2.7.

Monday, October 1, 12

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Creating the spineOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Monday, October 1, 12

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Creating the spineOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Monday, October 1, 12

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Creating the spineOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Monday, October 1, 12

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Creating the spineOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Monday, October 1, 12

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Creating the spineOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Monday, October 1, 12

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Creating the spineOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Monday, October 1, 12

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Creating the spineOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Monday, October 1, 12

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Creating the spineOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Monday, October 1, 12

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Creating the spineOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Monday, October 1, 12

Cross links
Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

O
pe
ne
d

Cl
os
ed

Lo
ck
ed

clo
se

op
en

un
lo
ck

lo
ck

(a
)

st
ar
t
Op
en
ed

st
at
e
Op
en
ed

on
cl
os
e
go

Cl
os
ed

st
at
e
Cl
os
ed

on
op
en

go
Op
en
ed

on
lo
ck

go
Lo
ck
ed

st
at
e
Lo
ck
ed

on
un
lo
ck

go
Cl
os
ed

(b
)

:M
ac

hi
ne

na
m

e:
 "O

pe
ne

d"

:S
ta

te

na
m

e:
 "C

lo
se

d"

:S
ta

te

na
m

e:
 "L

oc
ke

d"

:S
ta

te

ev
en

t:
"c

lo
se

"

: T
ra

ns
iti

on

ev
en

t:
"o

pe
n"

:T
ra

ns
iti

on

ev
en

t:
"lo

ck
"

: T
ra

ns
iti

on

ev
en

t:
"u

nl
oc

k"

:T
ra

ns
iti

on

fro
m

ou
t

in

to in

to

in

fro
m

ou
t

fro
m

st
at

es
st

at
es

ou
t

fro
m

to

st
at

es

m
ac

hi
ne

ou
t

in

to

st
ar

t

(c
)

Fi
g.

1.
(a

) E
xa

m
pl

e
st

at
e

m
ac

hi
ne

in
gr

ap
hi

ca
l n

ot
at

io
n,

(b
) t

he
st

at
e

m
ac

hi
ne

in
te

xt
ua

l n
ot

at
io

n,
an

d
(c

) t
he

in
te

rn
al

re
pr

es
en

ta
tio

n
of

th
e

st
at

e
m

ac
hi

ne
in

ob
je

ct
di

ag
ra

m
no

ta
tio

n

Th
e

re
gu

la
r r

ep
et

iti
on

gr
am

m
ar

op
er

at
or

*
m

ay
be

op
tio

na
lly

fo
llo

w
ed

by
a

se
pa

ra
to

r
us

in
g
@,

w
hi

ch
in

th
is

ca
se

is
a

co
m

m
a.

Th
e
ar
gs

fie
ld

of
th

e
Ca
ll

cl
as

s i
s a

ss
ig

ne
d

ob
je

ct
s

cr
ea

te
d

by
ze

ro
-o

r-
m

or
e

oc
cu

rr
en

ce
s

of
Ex
p.

A
co

lle
ct

io
n

fie
ld

ca
n

al
so

be
ex

pl
ic

itl
y

bo
un

d
m

ul
tip

le
tim

es
, r

at
he

r t
ha

n
us

in
g

th
e
*

op
er

at
or

. F
or

ex
am

pl
e,

ar
gs
:E
xp
*

co
ul

d
be

re
pl

ac
ed

by
Ar
gs
?

w
he

re
Ar
gs

::
=
ar
gs
:E
xp

("
,"
Ar
gs
)?

.
Fo

r f
or

m
at

tin
g,

th
e

re
gu

la
r o

pe
ra

to
rs

*
an

d
+

pr
ov

id
e

ad
di

tio
na

l s
em

an
tic

s,
al

lo
w

in
g

th
e

fo
rm

at
te

r t
o

pe
rf

or
m

in
te

lli
ge

nt
gr

ou
pi

ng
an

d
in

de
nt

at
io

n.
A

re
pe

at
ed

gr
ou

p
is

ei
th

er
fo

rm
at

te
d

on
on

e
lin

e,
or

el
se

it
is

in
de

nt
ed

an
d

br
ok

en
in

to
m

ul
tip

le
lin

es
if

it
is

to
o

lo
ng

.

2.
4

R
ef

er
en

ce
R

es
ol

ut
io

n

In
or

de
r t

o
ex

pl
ai

n
pa

th
-b

as
ed

re
fe

re
nc

e
re

so
lu

tio
n

in
O

bj
ec

t G
ra

m
m

ar
s,

it
is

in
st

ru
ct

iv
e

to
in

tro
du

ce
a

sl
ig

ht
ly

m
or

e
el

ab
or

at
e

ex
am

pl
e.

C
on

si
de

r a
sm

al
l D

SL
fo

r m
od

el
in

g
st

at
e

m
ac

hi
ne

s.
Fi

gu
re

1
di

sp
la

ys
th

re
e

re
pr

es
en

ta
tio

ns
of

a
si

m
pl

e
st

at
e

m
ac

hi
ne

re
pr

es
en

tin
g

a
do

or
th

at
ca

n
be

op
en

ed
, c

lo
se

d,
an

d
lo

ck
ed

. F
ig

ur
e

1(
a)

sh
ow

s
th

e
st

at
e

m
ac

hi
ne

in
gr

ap
hi

ca
l n

ot
at

io
n.

Th
e

sa
m

e
st

at
e

m
ac

hi
ne

is
re

nd
er

ed
te

xt
ua

lly
in

Fi
g.

1(
b)

. I
nt

er
na

lly
,

th
e

m
ac

hi
ne

its
el

f,
its

st
at

es
an

d
th

e
tra

ns
iti

on
s

ar
e

al
l r

ep
re

se
nt

ed
ex

pl
ic

itl
y

as
ob

je
ct

s.
Th

is
is

ill
us

tra
te

d
in

th
e

ob
je

ct
di

ag
ra

m
gi

ve
n

in
Fi

g.
1(

c)
.

Th
e

ob
je

ct
di

ag
ra

m
co

nf
or

m
s

to
th

e
St

at
e

M
ac

hi
ne

sc
he

m
a

gi
ve

n
in

Fi
g.

2.
Th

e
sc

he
m

a
co

ns
is

ts
of

a
lis

t o
f n

am
ed

cl
as

se
s,

ea
ch

ha
vi

ng
a

lis
t o

f fi
el

ds
de

fin
ed

by
a

na
m

e,
a

ty
pe

, a
nd

so
m

e
op

tio
na

l m
od

ifi
er

s.
Fo

r e
xa

m
pl

e,
th

e
Ma
ch
in
e

cl
as

s
ha

s
a

fie
ld

na
m

ed
st
at
es

w
hi

ch
is

a
se

t o
f S

ta
te

ob
je

ct
s.

Th
e
*

af
te

r t
he

ty
pe

na
m

e
is

a
m

od
ifi

er
th

at
m

ar
ks

th
e

fie
ld

as
m

an
y-

va
lu

ed
. T

he
#

an
no

ta
tio

n
m

ar
ks

a
fie

ld
as

a
pr

im
ar

y
ke

y,
as

is
th

e
ca

se
fo

r t
he

na
me

fie
ld

of
th

e
St

at
e

cl
as

s.
A

s
a

re
su

lt,
st

at
e

na
m

es
m

us
t b

e
un

iq
ue

an
d

th
e
st
at
es

fie
ld

of
Ma
ch
in
e

ca
n

be
in

de
xe

d
by

na
m

e.
Th

e
/

an
no

ta
tio

n
af

te
r t

he
ma
ch
in
e

fie
ld

in
di

ca
te

s t
ha

t t
he

ma
ch
in
e

an
d
st
at
es

ar
e

in
ve

rs
es

, a
s a

re
fr
om

/o
ut

an
d
to

/i
n.

Th
e
!

Monday, October 1, 12

Cross links
Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

O
pe
ne
d

Cl
os
ed

Lo
ck
ed

clo
se

op
en

un
lo
ck

lo
ck

(a
)

st
ar
t
Op
en
ed

st
at
e
Op
en
ed

on
cl
os
e
go

Cl
os
ed

st
at
e
Cl
os
ed

on
op
en

go
Op
en
ed

on
lo
ck

go
Lo
ck
ed

st
at
e
Lo
ck
ed

on
un
lo
ck

go
Cl
os
ed

(b
)

:M
ac

hi
ne

na
m

e:
 "O

pe
ne

d"

:S
ta

te

na
m

e:
 "C

lo
se

d"

:S
ta

te

na
m

e:
 "L

oc
ke

d"

:S
ta

te

ev
en

t:
"c

lo
se

"

: T
ra

ns
iti

on

ev
en

t:
"o

pe
n"

:T
ra

ns
iti

on

ev
en

t:
"lo

ck
"

: T
ra

ns
iti

on

ev
en

t:
"u

nl
oc

k"

:T
ra

ns
iti

on

fro
m

ou
t

in

to in

to

in

fro
m

ou
t

fro
m

st
at

es
st

at
es

ou
t

fro
m

to

st
at

es

m
ac

hi
ne

ou
t

in

to

st
ar

t

(c
)

Fi
g.

1.
(a

) E
xa

m
pl

e
st

at
e

m
ac

hi
ne

in
gr

ap
hi

ca
l n

ot
at

io
n,

(b
) t

he
st

at
e

m
ac

hi
ne

in
te

xt
ua

l n
ot

at
io

n,
an

d
(c

) t
he

in
te

rn
al

re
pr

es
en

ta
tio

n
of

th
e

st
at

e
m

ac
hi

ne
in

ob
je

ct
di

ag
ra

m
no

ta
tio

n

Th
e

re
gu

la
r r

ep
et

iti
on

gr
am

m
ar

op
er

at
or

*
m

ay
be

op
tio

na
lly

fo
llo

w
ed

by
a

se
pa

ra
to

r
us

in
g
@,

w
hi

ch
in

th
is

ca
se

is
a

co
m

m
a.

Th
e
ar
gs

fie
ld

of
th

e
Ca
ll

cl
as

s i
s a

ss
ig

ne
d

ob
je

ct
s

cr
ea

te
d

by
ze

ro
-o

r-
m

or
e

oc
cu

rr
en

ce
s

of
Ex
p.

A
co

lle
ct

io
n

fie
ld

ca
n

al
so

be
ex

pl
ic

itl
y

bo
un

d
m

ul
tip

le
tim

es
, r

at
he

r t
ha

n
us

in
g

th
e
*

op
er

at
or

. F
or

ex
am

pl
e,

ar
gs
:E
xp
*

co
ul

d
be

re
pl

ac
ed

by
Ar
gs
?

w
he

re
Ar
gs

::
=
ar
gs
:E
xp

("
,"
Ar
gs
)?

.
Fo

r f
or

m
at

tin
g,

th
e

re
gu

la
r o

pe
ra

to
rs

*
an

d
+

pr
ov

id
e

ad
di

tio
na

l s
em

an
tic

s,
al

lo
w

in
g

th
e

fo
rm

at
te

r t
o

pe
rf

or
m

in
te

lli
ge

nt
gr

ou
pi

ng
an

d
in

de
nt

at
io

n.
A

re
pe

at
ed

gr
ou

p
is

ei
th

er
fo

rm
at

te
d

on
on

e
lin

e,
or

el
se

it
is

in
de

nt
ed

an
d

br
ok

en
in

to
m

ul
tip

le
lin

es
if

it
is

to
o

lo
ng

.

2.
4

R
ef

er
en

ce
R

es
ol

ut
io

n

In
or

de
r t

o
ex

pl
ai

n
pa

th
-b

as
ed

re
fe

re
nc

e
re

so
lu

tio
n

in
O

bj
ec

t G
ra

m
m

ar
s,

it
is

in
st

ru
ct

iv
e

to
in

tro
du

ce
a

sl
ig

ht
ly

m
or

e
el

ab
or

at
e

ex
am

pl
e.

C
on

si
de

r a
sm

al
l D

SL
fo

r m
od

el
in

g
st

at
e

m
ac

hi
ne

s.
Fi

gu
re

1
di

sp
la

ys
th

re
e

re
pr

es
en

ta
tio

ns
of

a
si

m
pl

e
st

at
e

m
ac

hi
ne

re
pr

es
en

tin
g

a
do

or
th

at
ca

n
be

op
en

ed
, c

lo
se

d,
an

d
lo

ck
ed

. F
ig

ur
e

1(
a)

sh
ow

s
th

e
st

at
e

m
ac

hi
ne

in
gr

ap
hi

ca
l n

ot
at

io
n.

Th
e

sa
m

e
st

at
e

m
ac

hi
ne

is
re

nd
er

ed
te

xt
ua

lly
in

Fi
g.

1(
b)

. I
nt

er
na

lly
,

th
e

m
ac

hi
ne

its
el

f,
its

st
at

es
an

d
th

e
tra

ns
iti

on
s

ar
e

al
l r

ep
re

se
nt

ed
ex

pl
ic

itl
y

as
ob

je
ct

s.
Th

is
is

ill
us

tra
te

d
in

th
e

ob
je

ct
di

ag
ra

m
gi

ve
n

in
Fi

g.
1(

c)
.

Th
e

ob
je

ct
di

ag
ra

m
co

nf
or

m
s

to
th

e
St

at
e

M
ac

hi
ne

sc
he

m
a

gi
ve

n
in

Fi
g.

2.
Th

e
sc

he
m

a
co

ns
is

ts
of

a
lis

t o
f n

am
ed

cl
as

se
s,

ea
ch

ha
vi

ng
a

lis
t o

f fi
el

ds
de

fin
ed

by
a

na
m

e,
a

ty
pe

, a
nd

so
m

e
op

tio
na

l m
od

ifi
er

s.
Fo

r e
xa

m
pl

e,
th

e
Ma
ch
in
e

cl
as

s
ha

s
a

fie
ld

na
m

ed
st
at
es

w
hi

ch
is

a
se

t o
f S

ta
te

ob
je

ct
s.

Th
e
*

af
te

r t
he

ty
pe

na
m

e
is

a
m

od
ifi

er
th

at
m

ar
ks

th
e

fie
ld

as
m

an
y-

va
lu

ed
. T

he
#

an
no

ta
tio

n
m

ar
ks

a
fie

ld
as

a
pr

im
ar

y
ke

y,
as

is
th

e
ca

se
fo

r t
he

na
me

fie
ld

of
th

e
St

at
e

cl
as

s.
A

s
a

re
su

lt,
st

at
e

na
m

es
m

us
t b

e
un

iq
ue

an
d

th
e
st
at
es

fie
ld

of
Ma
ch
in
e

ca
n

be
in

de
xe

d
by

na
m

e.
Th

e
/

an
no

ta
tio

n
af

te
r t

he
ma
ch
in
e

fie
ld

in
di

ca
te

s t
ha

t t
he

ma
ch
in
e

an
d
st
at
es

ar
e

in
ve

rs
es

, a
s a

re
fr
om

/o
ut

an
d
to

/i
n.

Th
e
!

Monday, October 1, 12

Cross links
Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

O
pe
ne
d

Cl
os
ed

Lo
ck
ed

clo
se

op
en

un
lo
ck

lo
ck

(a
)

st
ar
t
Op
en
ed

st
at
e
Op
en
ed

on
cl
os
e
go

Cl
os
ed

st
at
e
Cl
os
ed

on
op
en

go
Op
en
ed

on
lo
ck

go
Lo
ck
ed

st
at
e
Lo
ck
ed

on
un
lo
ck

go
Cl
os
ed

(b
)

:M
ac

hi
ne

na
m

e:
 "O

pe
ne

d"

:S
ta

te

na
m

e:
 "C

lo
se

d"

:S
ta

te

na
m

e:
 "L

oc
ke

d"

:S
ta

te

ev
en

t:
"c

lo
se

"

: T
ra

ns
iti

on

ev
en

t:
"o

pe
n"

:T
ra

ns
iti

on

ev
en

t:
"lo

ck
"

: T
ra

ns
iti

on

ev
en

t:
"u

nl
oc

k"

:T
ra

ns
iti

on

fro
m

ou
t

in

to in

to

in

fro
m

ou
t

fro
m

st
at

es
st

at
es

ou
t

fro
m

to

st
at

es

m
ac

hi
ne

ou
t

in

to

st
ar

t

(c
)

Fi
g.

1.
(a

) E
xa

m
pl

e
st

at
e

m
ac

hi
ne

in
gr

ap
hi

ca
l n

ot
at

io
n,

(b
) t

he
st

at
e

m
ac

hi
ne

in
te

xt
ua

l n
ot

at
io

n,
an

d
(c

) t
he

in
te

rn
al

re
pr

es
en

ta
tio

n
of

th
e

st
at

e
m

ac
hi

ne
in

ob
je

ct
di

ag
ra

m
no

ta
tio

n

Th
e

re
gu

la
r r

ep
et

iti
on

gr
am

m
ar

op
er

at
or

*
m

ay
be

op
tio

na
lly

fo
llo

w
ed

by
a

se
pa

ra
to

r
us

in
g
@,

w
hi

ch
in

th
is

ca
se

is
a

co
m

m
a.

Th
e
ar
gs

fie
ld

of
th

e
Ca
ll

cl
as

s i
s a

ss
ig

ne
d

ob
je

ct
s

cr
ea

te
d

by
ze

ro
-o

r-
m

or
e

oc
cu

rr
en

ce
s

of
Ex
p.

A
co

lle
ct

io
n

fie
ld

ca
n

al
so

be
ex

pl
ic

itl
y

bo
un

d
m

ul
tip

le
tim

es
, r

at
he

r t
ha

n
us

in
g

th
e
*

op
er

at
or

. F
or

ex
am

pl
e,

ar
gs
:E
xp
*

co
ul

d
be

re
pl

ac
ed

by
Ar
gs
?

w
he

re
Ar
gs

::
=
ar
gs
:E
xp

("
,"
Ar
gs
)?

.
Fo

r f
or

m
at

tin
g,

th
e

re
gu

la
r o

pe
ra

to
rs

*
an

d
+

pr
ov

id
e

ad
di

tio
na

l s
em

an
tic

s,
al

lo
w

in
g

th
e

fo
rm

at
te

r t
o

pe
rf

or
m

in
te

lli
ge

nt
gr

ou
pi

ng
an

d
in

de
nt

at
io

n.
A

re
pe

at
ed

gr
ou

p
is

ei
th

er
fo

rm
at

te
d

on
on

e
lin

e,
or

el
se

it
is

in
de

nt
ed

an
d

br
ok

en
in

to
m

ul
tip

le
lin

es
if

it
is

to
o

lo
ng

.

2.
4

R
ef

er
en

ce
R

es
ol

ut
io

n

In
or

de
r t

o
ex

pl
ai

n
pa

th
-b

as
ed

re
fe

re
nc

e
re

so
lu

tio
n

in
O

bj
ec

t G
ra

m
m

ar
s,

it
is

in
st

ru
ct

iv
e

to
in

tro
du

ce
a

sl
ig

ht
ly

m
or

e
el

ab
or

at
e

ex
am

pl
e.

C
on

si
de

r a
sm

al
l D

SL
fo

r m
od

el
in

g
st

at
e

m
ac

hi
ne

s.
Fi

gu
re

1
di

sp
la

ys
th

re
e

re
pr

es
en

ta
tio

ns
of

a
si

m
pl

e
st

at
e

m
ac

hi
ne

re
pr

es
en

tin
g

a
do

or
th

at
ca

n
be

op
en

ed
, c

lo
se

d,
an

d
lo

ck
ed

. F
ig

ur
e

1(
a)

sh
ow

s
th

e
st

at
e

m
ac

hi
ne

in
gr

ap
hi

ca
l n

ot
at

io
n.

Th
e

sa
m

e
st

at
e

m
ac

hi
ne

is
re

nd
er

ed
te

xt
ua

lly
in

Fi
g.

1(
b)

. I
nt

er
na

lly
,

th
e

m
ac

hi
ne

its
el

f,
its

st
at

es
an

d
th

e
tra

ns
iti

on
s

ar
e

al
l r

ep
re

se
nt

ed
ex

pl
ic

itl
y

as
ob

je
ct

s.
Th

is
is

ill
us

tra
te

d
in

th
e

ob
je

ct
di

ag
ra

m
gi

ve
n

in
Fi

g.
1(

c)
.

Th
e

ob
je

ct
di

ag
ra

m
co

nf
or

m
s

to
th

e
St

at
e

M
ac

hi
ne

sc
he

m
a

gi
ve

n
in

Fi
g.

2.
Th

e
sc

he
m

a
co

ns
is

ts
of

a
lis

t o
f n

am
ed

cl
as

se
s,

ea
ch

ha
vi

ng
a

lis
t o

f fi
el

ds
de

fin
ed

by
a

na
m

e,
a

ty
pe

, a
nd

so
m

e
op

tio
na

l m
od

ifi
er

s.
Fo

r e
xa

m
pl

e,
th

e
Ma
ch
in
e

cl
as

s
ha

s
a

fie
ld

na
m

ed
st
at
es

w
hi

ch
is

a
se

t o
f S

ta
te

ob
je

ct
s.

Th
e
*

af
te

r t
he

ty
pe

na
m

e
is

a
m

od
ifi

er
th

at
m

ar
ks

th
e

fie
ld

as
m

an
y-

va
lu

ed
. T

he
#

an
no

ta
tio

n
m

ar
ks

a
fie

ld
as

a
pr

im
ar

y
ke

y,
as

is
th

e
ca

se
fo

r t
he

na
me

fie
ld

of
th

e
St

at
e

cl
as

s.
A

s
a

re
su

lt,
st

at
e

na
m

es
m

us
t b

e
un

iq
ue

an
d

th
e
st
at
es

fie
ld

of
Ma
ch
in
e

ca
n

be
in

de
xe

d
by

na
m

e.
Th

e
/

an
no

ta
tio

n
af

te
r t

he
ma
ch
in
e

fie
ld

in
di

ca
te

s t
ha

t t
he

ma
ch
in
e

an
d
st
at
es

ar
e

in
ve

rs
es

, a
s a

re
fr
om

/o
ut

an
d
to

/i
n.

Th
e
!

Monday, October 1, 12

Cross links
Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

O
pe
ne
d

Cl
os
ed

Lo
ck
ed

clo
se

op
en

un
lo
ck

lo
ck

(a
)

st
ar
t
Op
en
ed

st
at
e
Op
en
ed

on
cl
os
e
go

Cl
os
ed

st
at
e
Cl
os
ed

on
op
en

go
Op
en
ed

on
lo
ck

go
Lo
ck
ed

st
at
e
Lo
ck
ed

on
un
lo
ck

go
Cl
os
ed

(b
)

:M
ac

hi
ne

na
m

e:
 "O

pe
ne

d"

:S
ta

te

na
m

e:
 "C

lo
se

d"

:S
ta

te

na
m

e:
 "L

oc
ke

d"

:S
ta

te

ev
en

t:
"c

lo
se

"

: T
ra

ns
iti

on

ev
en

t:
"o

pe
n"

:T
ra

ns
iti

on

ev
en

t:
"lo

ck
"

: T
ra

ns
iti

on

ev
en

t:
"u

nl
oc

k"

:T
ra

ns
iti

on

fro
m

ou
t

in

to in

to

in

fro
m

ou
t

fro
m

st
at

es
st

at
es

ou
t

fro
m

to

st
at

es

m
ac

hi
ne

ou
t

in

to

st
ar

t

(c
)

Fi
g.

1.
(a

) E
xa

m
pl

e
st

at
e

m
ac

hi
ne

in
gr

ap
hi

ca
l n

ot
at

io
n,

(b
) t

he
st

at
e

m
ac

hi
ne

in
te

xt
ua

l n
ot

at
io

n,
an

d
(c

) t
he

in
te

rn
al

re
pr

es
en

ta
tio

n
of

th
e

st
at

e
m

ac
hi

ne
in

ob
je

ct
di

ag
ra

m
no

ta
tio

n

Th
e

re
gu

la
r r

ep
et

iti
on

gr
am

m
ar

op
er

at
or

*
m

ay
be

op
tio

na
lly

fo
llo

w
ed

by
a

se
pa

ra
to

r
us

in
g
@,

w
hi

ch
in

th
is

ca
se

is
a

co
m

m
a.

Th
e
ar
gs

fie
ld

of
th

e
Ca
ll

cl
as

s i
s a

ss
ig

ne
d

ob
je

ct
s

cr
ea

te
d

by
ze

ro
-o

r-
m

or
e

oc
cu

rr
en

ce
s

of
Ex
p.

A
co

lle
ct

io
n

fie
ld

ca
n

al
so

be
ex

pl
ic

itl
y

bo
un

d
m

ul
tip

le
tim

es
, r

at
he

r t
ha

n
us

in
g

th
e
*

op
er

at
or

. F
or

ex
am

pl
e,

ar
gs
:E
xp
*

co
ul

d
be

re
pl

ac
ed

by
Ar
gs
?

w
he

re
Ar
gs

::
=
ar
gs
:E
xp

("
,"
Ar
gs
)?

.
Fo

r f
or

m
at

tin
g,

th
e

re
gu

la
r o

pe
ra

to
rs

*
an

d
+

pr
ov

id
e

ad
di

tio
na

l s
em

an
tic

s,
al

lo
w

in
g

th
e

fo
rm

at
te

r t
o

pe
rf

or
m

in
te

lli
ge

nt
gr

ou
pi

ng
an

d
in

de
nt

at
io

n.
A

re
pe

at
ed

gr
ou

p
is

ei
th

er
fo

rm
at

te
d

on
on

e
lin

e,
or

el
se

it
is

in
de

nt
ed

an
d

br
ok

en
in

to
m

ul
tip

le
lin

es
if

it
is

to
o

lo
ng

.

2.
4

R
ef

er
en

ce
R

es
ol

ut
io

n

In
or

de
r t

o
ex

pl
ai

n
pa

th
-b

as
ed

re
fe

re
nc

e
re

so
lu

tio
n

in
O

bj
ec

t G
ra

m
m

ar
s,

it
is

in
st

ru
ct

iv
e

to
in

tro
du

ce
a

sl
ig

ht
ly

m
or

e
el

ab
or

at
e

ex
am

pl
e.

C
on

si
de

r a
sm

al
l D

SL
fo

r m
od

el
in

g
st

at
e

m
ac

hi
ne

s.
Fi

gu
re

1
di

sp
la

ys
th

re
e

re
pr

es
en

ta
tio

ns
of

a
si

m
pl

e
st

at
e

m
ac

hi
ne

re
pr

es
en

tin
g

a
do

or
th

at
ca

n
be

op
en

ed
, c

lo
se

d,
an

d
lo

ck
ed

. F
ig

ur
e

1(
a)

sh
ow

s
th

e
st

at
e

m
ac

hi
ne

in
gr

ap
hi

ca
l n

ot
at

io
n.

Th
e

sa
m

e
st

at
e

m
ac

hi
ne

is
re

nd
er

ed
te

xt
ua

lly
in

Fi
g.

1(
b)

. I
nt

er
na

lly
,

th
e

m
ac

hi
ne

its
el

f,
its

st
at

es
an

d
th

e
tra

ns
iti

on
s

ar
e

al
l r

ep
re

se
nt

ed
ex

pl
ic

itl
y

as
ob

je
ct

s.
Th

is
is

ill
us

tra
te

d
in

th
e

ob
je

ct
di

ag
ra

m
gi

ve
n

in
Fi

g.
1(

c)
.

Th
e

ob
je

ct
di

ag
ra

m
co

nf
or

m
s

to
th

e
St

at
e

M
ac

hi
ne

sc
he

m
a

gi
ve

n
in

Fi
g.

2.
Th

e
sc

he
m

a
co

ns
is

ts
of

a
lis

t o
f n

am
ed

cl
as

se
s,

ea
ch

ha
vi

ng
a

lis
t o

f fi
el

ds
de

fin
ed

by
a

na
m

e,
a

ty
pe

, a
nd

so
m

e
op

tio
na

l m
od

ifi
er

s.
Fo

r e
xa

m
pl

e,
th

e
Ma
ch
in
e

cl
as

s
ha

s
a

fie
ld

na
m

ed
st
at
es

w
hi

ch
is

a
se

t o
f S

ta
te

ob
je

ct
s.

Th
e
*

af
te

r t
he

ty
pe

na
m

e
is

a
m

od
ifi

er
th

at
m

ar
ks

th
e

fie
ld

as
m

an
y-

va
lu

ed
. T

he
#

an
no

ta
tio

n
m

ar
ks

a
fie

ld
as

a
pr

im
ar

y
ke

y,
as

is
th

e
ca

se
fo

r t
he

na
me

fie
ld

of
th

e
St

at
e

cl
as

s.
A

s
a

re
su

lt,
st

at
e

na
m

es
m

us
t b

e
un

iq
ue

an
d

th
e
st
at
es

fie
ld

of
Ma
ch
in
e

ca
n

be
in

de
xe

d
by

na
m

e.
Th

e
/

an
no

ta
tio

n
af

te
r t

he
ma
ch
in
e

fie
ld

in
di

ca
te

s t
ha

t t
he

ma
ch
in
e

an
d
st
at
es

ar
e

in
ve

rs
es

, a
s a

re
fr
om

/o
ut

an
d
to

/i
n.

Th
e
!

Monday, October 1, 12

Cross links
Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

O
pe
ne
d

Cl
os
ed

Lo
ck
ed

clo
se

op
en

un
lo
ck

lo
ck

(a
)

st
ar
t
Op
en
ed

st
at
e
Op
en
ed

on
cl
os
e
go

Cl
os
ed

st
at
e
Cl
os
ed

on
op
en

go
Op
en
ed

on
lo
ck

go
Lo
ck
ed

st
at
e
Lo
ck
ed

on
un
lo
ck

go
Cl
os
ed

(b
)

:M
ac

hi
ne

na
m

e:
 "O

pe
ne

d"

:S
ta

te

na
m

e:
 "C

lo
se

d"

:S
ta

te

na
m

e:
 "L

oc
ke

d"

:S
ta

te

ev
en

t:
"c

lo
se

"

: T
ra

ns
iti

on

ev
en

t:
"o

pe
n"

:T
ra

ns
iti

on

ev
en

t:
"lo

ck
"

: T
ra

ns
iti

on

ev
en

t:
"u

nl
oc

k"

:T
ra

ns
iti

on

fro
m

ou
t

in

to in

to

in

fro
m

ou
t

fro
m

st
at

es
st

at
es

ou
t

fro
m

to

st
at

es

m
ac

hi
ne

ou
t

in

to

st
ar

t

(c
)

Fi
g.

1.
(a

) E
xa

m
pl

e
st

at
e

m
ac

hi
ne

in
gr

ap
hi

ca
l n

ot
at

io
n,

(b
) t

he
st

at
e

m
ac

hi
ne

in
te

xt
ua

l n
ot

at
io

n,
an

d
(c

) t
he

in
te

rn
al

re
pr

es
en

ta
tio

n
of

th
e

st
at

e
m

ac
hi

ne
in

ob
je

ct
di

ag
ra

m
no

ta
tio

n

Th
e

re
gu

la
r r

ep
et

iti
on

gr
am

m
ar

op
er

at
or

*
m

ay
be

op
tio

na
lly

fo
llo

w
ed

by
a

se
pa

ra
to

r
us

in
g
@,

w
hi

ch
in

th
is

ca
se

is
a

co
m

m
a.

Th
e
ar
gs

fie
ld

of
th

e
Ca
ll

cl
as

s i
s a

ss
ig

ne
d

ob
je

ct
s

cr
ea

te
d

by
ze

ro
-o

r-
m

or
e

oc
cu

rr
en

ce
s

of
Ex
p.

A
co

lle
ct

io
n

fie
ld

ca
n

al
so

be
ex

pl
ic

itl
y

bo
un

d
m

ul
tip

le
tim

es
, r

at
he

r t
ha

n
us

in
g

th
e
*

op
er

at
or

. F
or

ex
am

pl
e,

ar
gs
:E
xp
*

co
ul

d
be

re
pl

ac
ed

by
Ar
gs
?

w
he

re
Ar
gs

::
=
ar
gs
:E
xp

("
,"
Ar
gs
)?

.
Fo

r f
or

m
at

tin
g,

th
e

re
gu

la
r o

pe
ra

to
rs

*
an

d
+

pr
ov

id
e

ad
di

tio
na

l s
em

an
tic

s,
al

lo
w

in
g

th
e

fo
rm

at
te

r t
o

pe
rf

or
m

in
te

lli
ge

nt
gr

ou
pi

ng
an

d
in

de
nt

at
io

n.
A

re
pe

at
ed

gr
ou

p
is

ei
th

er
fo

rm
at

te
d

on
on

e
lin

e,
or

el
se

it
is

in
de

nt
ed

an
d

br
ok

en
in

to
m

ul
tip

le
lin

es
if

it
is

to
o

lo
ng

.

2.
4

R
ef

er
en

ce
R

es
ol

ut
io

n

In
or

de
r t

o
ex

pl
ai

n
pa

th
-b

as
ed

re
fe

re
nc

e
re

so
lu

tio
n

in
O

bj
ec

t G
ra

m
m

ar
s,

it
is

in
st

ru
ct

iv
e

to
in

tro
du

ce
a

sl
ig

ht
ly

m
or

e
el

ab
or

at
e

ex
am

pl
e.

C
on

si
de

r a
sm

al
l D

SL
fo

r m
od

el
in

g
st

at
e

m
ac

hi
ne

s.
Fi

gu
re

1
di

sp
la

ys
th

re
e

re
pr

es
en

ta
tio

ns
of

a
si

m
pl

e
st

at
e

m
ac

hi
ne

re
pr

es
en

tin
g

a
do

or
th

at
ca

n
be

op
en

ed
, c

lo
se

d,
an

d
lo

ck
ed

. F
ig

ur
e

1(
a)

sh
ow

s
th

e
st

at
e

m
ac

hi
ne

in
gr

ap
hi

ca
l n

ot
at

io
n.

Th
e

sa
m

e
st

at
e

m
ac

hi
ne

is
re

nd
er

ed
te

xt
ua

lly
in

Fi
g.

1(
b)

. I
nt

er
na

lly
,

th
e

m
ac

hi
ne

its
el

f,
its

st
at

es
an

d
th

e
tra

ns
iti

on
s

ar
e

al
l r

ep
re

se
nt

ed
ex

pl
ic

itl
y

as
ob

je
ct

s.
Th

is
is

ill
us

tra
te

d
in

th
e

ob
je

ct
di

ag
ra

m
gi

ve
n

in
Fi

g.
1(

c)
.

Th
e

ob
je

ct
di

ag
ra

m
co

nf
or

m
s

to
th

e
St

at
e

M
ac

hi
ne

sc
he

m
a

gi
ve

n
in

Fi
g.

2.
Th

e
sc

he
m

a
co

ns
is

ts
of

a
lis

t o
f n

am
ed

cl
as

se
s,

ea
ch

ha
vi

ng
a

lis
t o

f fi
el

ds
de

fin
ed

by
a

na
m

e,
a

ty
pe

, a
nd

so
m

e
op

tio
na

l m
od

ifi
er

s.
Fo

r e
xa

m
pl

e,
th

e
Ma
ch
in
e

cl
as

s
ha

s
a

fie
ld

na
m

ed
st
at
es

w
hi

ch
is

a
se

t o
f S

ta
te

ob
je

ct
s.

Th
e
*

af
te

r t
he

ty
pe

na
m

e
is

a
m

od
ifi

er
th

at
m

ar
ks

th
e

fie
ld

as
m

an
y-

va
lu

ed
. T

he
#

an
no

ta
tio

n
m

ar
ks

a
fie

ld
as

a
pr

im
ar

y
ke

y,
as

is
th

e
ca

se
fo

r t
he

na
me

fie
ld

of
th

e
St

at
e

cl
as

s.
A

s
a

re
su

lt,
st

at
e

na
m

es
m

us
t b

e
un

iq
ue

an
d

th
e
st
at
es

fie
ld

of
Ma
ch
in
e

ca
n

be
in

de
xe

d
by

na
m

e.
Th

e
/

an
no

ta
tio

n
af

te
r t

he
ma
ch
in
e

fie
ld

in
di

ca
te

s t
ha

t t
he

ma
ch
in
e

an
d
st
at
es

ar
e

in
ve

rs
es

, a
s a

re
fr
om

/o
ut

an
d
to

/i
n.

Th
e
!

Monday, October 1, 12

Cross links
Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

O
pe
ne
d

Cl
os
ed

Lo
ck
ed

clo
se

op
en

un
lo
ck

lo
ck

(a
)

st
ar
t
Op
en
ed

st
at
e
Op
en
ed

on
cl
os
e
go

Cl
os
ed

st
at
e
Cl
os
ed

on
op
en

go
Op
en
ed

on
lo
ck

go
Lo
ck
ed

st
at
e
Lo
ck
ed

on
un
lo
ck

go
Cl
os
ed

(b
)

:M
ac

hi
ne

na
m

e:
 "O

pe
ne

d"

:S
ta

te

na
m

e:
 "C

lo
se

d"

:S
ta

te

na
m

e:
 "L

oc
ke

d"

:S
ta

te

ev
en

t:
"c

lo
se

"

: T
ra

ns
iti

on

ev
en

t:
"o

pe
n"

:T
ra

ns
iti

on

ev
en

t:
"lo

ck
"

: T
ra

ns
iti

on

ev
en

t:
"u

nl
oc

k"

:T
ra

ns
iti

on

fro
m

ou
t

in

to in

to

in

fro
m

ou
t

fro
m

st
at

es
st

at
es

ou
t

fro
m

to

st
at

es

m
ac

hi
ne

ou
t

in

to

st
ar

t

(c
)

Fi
g.

1.
(a

) E
xa

m
pl

e
st

at
e

m
ac

hi
ne

in
gr

ap
hi

ca
l n

ot
at

io
n,

(b
) t

he
st

at
e

m
ac

hi
ne

in
te

xt
ua

l n
ot

at
io

n,
an

d
(c

) t
he

in
te

rn
al

re
pr

es
en

ta
tio

n
of

th
e

st
at

e
m

ac
hi

ne
in

ob
je

ct
di

ag
ra

m
no

ta
tio

n

Th
e

re
gu

la
r r

ep
et

iti
on

gr
am

m
ar

op
er

at
or

*
m

ay
be

op
tio

na
lly

fo
llo

w
ed

by
a

se
pa

ra
to

r
us

in
g
@,

w
hi

ch
in

th
is

ca
se

is
a

co
m

m
a.

Th
e
ar
gs

fie
ld

of
th

e
Ca
ll

cl
as

s i
s a

ss
ig

ne
d

ob
je

ct
s

cr
ea

te
d

by
ze

ro
-o

r-
m

or
e

oc
cu

rr
en

ce
s

of
Ex
p.

A
co

lle
ct

io
n

fie
ld

ca
n

al
so

be
ex

pl
ic

itl
y

bo
un

d
m

ul
tip

le
tim

es
, r

at
he

r t
ha

n
us

in
g

th
e
*

op
er

at
or

. F
or

ex
am

pl
e,

ar
gs
:E
xp
*

co
ul

d
be

re
pl

ac
ed

by
Ar
gs
?

w
he

re
Ar
gs

::
=
ar
gs
:E
xp

("
,"
Ar
gs
)?

.
Fo

r f
or

m
at

tin
g,

th
e

re
gu

la
r o

pe
ra

to
rs

*
an

d
+

pr
ov

id
e

ad
di

tio
na

l s
em

an
tic

s,
al

lo
w

in
g

th
e

fo
rm

at
te

r t
o

pe
rf

or
m

in
te

lli
ge

nt
gr

ou
pi

ng
an

d
in

de
nt

at
io

n.
A

re
pe

at
ed

gr
ou

p
is

ei
th

er
fo

rm
at

te
d

on
on

e
lin

e,
or

el
se

it
is

in
de

nt
ed

an
d

br
ok

en
in

to
m

ul
tip

le
lin

es
if

it
is

to
o

lo
ng

.

2.
4

R
ef

er
en

ce
R

es
ol

ut
io

n

In
or

de
r t

o
ex

pl
ai

n
pa

th
-b

as
ed

re
fe

re
nc

e
re

so
lu

tio
n

in
O

bj
ec

t G
ra

m
m

ar
s,

it
is

in
st

ru
ct

iv
e

to
in

tro
du

ce
a

sl
ig

ht
ly

m
or

e
el

ab
or

at
e

ex
am

pl
e.

C
on

si
de

r a
sm

al
l D

SL
fo

r m
od

el
in

g
st

at
e

m
ac

hi
ne

s.
Fi

gu
re

1
di

sp
la

ys
th

re
e

re
pr

es
en

ta
tio

ns
of

a
si

m
pl

e
st

at
e

m
ac

hi
ne

re
pr

es
en

tin
g

a
do

or
th

at
ca

n
be

op
en

ed
, c

lo
se

d,
an

d
lo

ck
ed

. F
ig

ur
e

1(
a)

sh
ow

s
th

e
st

at
e

m
ac

hi
ne

in
gr

ap
hi

ca
l n

ot
at

io
n.

Th
e

sa
m

e
st

at
e

m
ac

hi
ne

is
re

nd
er

ed
te

xt
ua

lly
in

Fi
g.

1(
b)

. I
nt

er
na

lly
,

th
e

m
ac

hi
ne

its
el

f,
its

st
at

es
an

d
th

e
tra

ns
iti

on
s

ar
e

al
l r

ep
re

se
nt

ed
ex

pl
ic

itl
y

as
ob

je
ct

s.
Th

is
is

ill
us

tra
te

d
in

th
e

ob
je

ct
di

ag
ra

m
gi

ve
n

in
Fi

g.
1(

c)
.

Th
e

ob
je

ct
di

ag
ra

m
co

nf
or

m
s

to
th

e
St

at
e

M
ac

hi
ne

sc
he

m
a

gi
ve

n
in

Fi
g.

2.
Th

e
sc

he
m

a
co

ns
is

ts
of

a
lis

t o
f n

am
ed

cl
as

se
s,

ea
ch

ha
vi

ng
a

lis
t o

f fi
el

ds
de

fin
ed

by
a

na
m

e,
a

ty
pe

, a
nd

so
m

e
op

tio
na

l m
od

ifi
er

s.
Fo

r e
xa

m
pl

e,
th

e
Ma
ch
in
e

cl
as

s
ha

s
a

fie
ld

na
m

ed
st
at
es

w
hi

ch
is

a
se

t o
f S

ta
te

ob
je

ct
s.

Th
e
*

af
te

r t
he

ty
pe

na
m

e
is

a
m

od
ifi

er
th

at
m

ar
ks

th
e

fie
ld

as
m

an
y-

va
lu

ed
. T

he
#

an
no

ta
tio

n
m

ar
ks

a
fie

ld
as

a
pr

im
ar

y
ke

y,
as

is
th

e
ca

se
fo

r t
he

na
me

fie
ld

of
th

e
St

at
e

cl
as

s.
A

s
a

re
su

lt,
st

at
e

na
m

es
m

us
t b

e
un

iq
ue

an
d

th
e
st
at
es

fie
ld

of
Ma
ch
in
e

ca
n

be
in

de
xe

d
by

na
m

e.
Th

e
/

an
no

ta
tio

n
af

te
r t

he
ma
ch
in
e

fie
ld

in
di

ca
te

s t
ha

t t
he

ma
ch
in
e

an
d
st
at
es

ar
e

in
ve

rs
es

, a
s a

re
fr
om

/o
ut

an
d
to

/i
n.

Th
e
!

Monday, October 1, 12

Object path to find
the start state with

name it

start M

M ::= [Machine] "start" \start:</states[it]> states:S*

S ::= [State] "state" name:sym out:T*

T ::= [Transition] "on" event:sym "go" to:</states[it]>

Fig. 3. Object Grammar to parse state machines

When humans read the textual presentation in Fig. 1(b), they immediately resolve the
names in each transition to create a mental picture similar Fig. 1(a).

Figure 3 shows an Object Grammar for state machines5. It uses the reference
</states[it]> to look up the start state of a machine and to find the the target state of
a transition. The path /states[it] starts at the root of the resulting object model, as
indicated by the forward slash /. In this case the root is a Machine object, since M is
the start symbol of the grammar, and the M production creates a Machine. The path then
navigates into the field states of the machine (see Fig. 2), and uses the identifier from
the input stream to index into the keyed collection of all states. The same path is used to
resolve the to field of a transition to the target state.

Path ::= [Anchor] type:"."

| [Anchor] type:".."

|

[Sub] parent:Path? "/" name:sym Subscript?

Subscript

::= "[" key:Key "]"

Key ::= Path | [It] "it"

Fig. 4. Syntax of paths.

References and Paths In gen-
eral, a reference <p> represents
a lookup of an object using the
path p. Parsing a reference al-
ways consumes a single identi-
fier, which can be used as a key
for indexing into keyed collec-
tions. Binding a field to a refer-
ence thus results in a cross-link
from the current object to the ref-
erenced object.

The syntax of paths is given in Fig. 4. A path is anchored at the current object (.), at
its parent (..), or at the root. In the context of an object a path can descend into a field by
post-fixing a path with / and the name of the field. If the field is a collection, a specific
element can be referenced by indexing in square brackets. The keyword it represents
the string-typed value of the identifier in the input stream that represents the reference
name.

The grammar of schemas, given in Fig. 5, illustrates a more complex use of references.
To lookup inverse fields, it is necessary to look for the field within the class that is the
type of the field. For example, in the state machine schema in Fig. 1(b), the field from in
Transition has type State and its inverse is the out field of State. The path for the type
is type:</types[it]>, while the path for the inverse is inverse:<./type/fields[it]>,

5 The field label start is escaped using \ because start is a keyword in the grammar of grammars;
cf. Section 2.7.

Monday, October 1, 12

Paths

• Navigate the resulting model along

• Fields

• Collections (keyed, positional)

• NB: model may not be finished yet

• Paths may traverse cross links too

• Iterative fix point

Monday, October 1, 12

A path

start M

M ::= [Machine] "start" \start:</states[it]> states:S*
S ::= [State] "state" name:sym out:T*
T ::= [Transition] "on" event:sym "go" to:</states[it]>

Fig. 3. Object Grammar to parse state machines

When humans read the textual presentation in Fig. 1(b), they immediately resolve the
names in each transition to create a mental picture similar Fig. 1(a).

Figure 3 shows an Object Grammar for state machines5. It uses the reference
</states[it]> to look up the start state of a machine and to find the the target state of
a transition. The path /states[it] starts at the root of the resulting object model, as
indicated by the forward slash /. In this case the root is a Machine object, since M is
the start symbol of the grammar, and the M production creates a Machine. The path then
navigates into the field states of the machine (see Fig. 2), and uses the identifier from
the input stream to index into the keyed collection of all states. The same path is used to
resolve the to field of a transition to the target state.

Path ::= [Anchor] type:"."

| [Anchor] type:".."

|

[Sub] parent:Path? "/" name:sym Subscript?

Subscript

::= "[" key:Key "]"

Key ::= Path | [It] "it"

Fig. 4. Syntax of paths.

References and Paths In gen-
eral, a reference <p> represents
a lookup of an object using the
path p. Parsing a reference al-
ways consumes a single identi-
fier, which can be used as a key
for indexing into keyed collec-
tions. Binding a field to a refer-
ence thus results in a cross-link
from the current object to the ref-
erenced object.

The syntax of paths is given in Fig. 4. A path is anchored at the current object (.), at
its parent (..), or at the root. In the context of an object a path can descend into a field by
post-fixing a path with / and the name of the field. If the field is a collection, a specific
element can be referenced by indexing in square brackets. The keyword it represents
the string-typed value of the identifier in the input stream that represents the reference
name.

The grammar of schemas, given in Fig. 5, illustrates a more complex use of references.
To lookup inverse fields, it is necessary to look for the field within the class that is the
type of the field. For example, in the state machine schema in Fig. 1(b), the field from in
Transition has type State and its inverse is the out field of State. The path for the type
is type:</types[it]>, while the path for the inverse is inverse:<./type/fields[it]>,
which refers to the type object. To resolve these paths, the parser must iteratively evaluate
paths until all paths have been resolved.

5 The field label start is escaped using \ because start is a keyword in the grammar of grammars;
cf. Section 2.7.

start at
the root

navigate
into states

use the parsed
identifier as key

Paths can also start at current object (.) or parent (..)

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

to:</states[“Locked”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

to:</states[“Locked”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

to:</states[“Locked”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

to:</states[“Locked”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

to:</states[“Locked”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

to:</states[“Locked”]>

to:</states[“Closed”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

to:</states[“Locked”]>

to:</states[“Closed”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

to:</states[“Locked”]>

to:</states[“Closed”]>

Monday, October 1, 12

Creating cross linksOpened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

Opened Closed Locked
close

open unlock

lock

(a)

start Opened

state Opened

on close go Closed

state Closed

on open go Opened

on lock go Locked

state Locked

on unlock go Closed

(b)

:Machine

name: "Opened"

:State

name: "Closed"

:State

name: "Locked"

:State

event: "close"

: Transition

event: "open"

:Transition

event: "lock"

: Transition

event: "unlock"

:Transition

from

out

in

to

in

to

in
from

out

from

states states

out

from
to

states

machine

outin

to

start

(c)

Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation,
and (c) the internal representation of the state machine in object diagram notation

The regular repetition grammar operator * may be optionally followed by a separator
using @, which in this case is a comma. The args field of the Call class is assigned objects
created by zero-or-more occurrences of Exp. A collection field can also be explicitly
bound multiple times, rather than using the * operator. For example, args:Exp* could be
replaced by Args? where Args ::= args:Exp (","Args)?.

For formatting, the regular operators * and + provide additional semantics, allowing
the formatter to perform intelligent grouping and indentation. A repeated group is either
formatted on one line, or else it is indented and broken into multiple lines if it is too
long.

2.4 Reference Resolution

In order to explain path-based reference resolution in Object Grammars, it is instructive
to introduce a slightly more elaborate example. Consider a small DSL for modeling state
machines. Figure 1 displays three representations of a simple state machine representing
a door that can be opened, closed, and locked. Figure 1(a) shows the state machine in
graphical notation. The same state machine is rendered textually in Fig. 1(b). Internally,
the machine itself, its states and the transitions are all represented explicitly as objects.
This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The
schema consists of a list of named classes, each having a list of fields defined by a name,
a type, and some optional modifiers. For example, the Machine class has a field named
states which is a set of State objects. The * after the type name is a modifier that marks
the field as many-valued. The # annotation marks a field as a primary key, as is the
case for the name field of the State class. As a result, state names must be unique and
the states field of Machine can be indexed by name. The / annotation after the machine

field indicates that the machine and states are inverses, as are from/out and to/in. The !

start:</states[“Opened”]>

to:</states[“Closed”]>

to:</states[“Opened”]>

to:</states[“Locked”]>

to:</states[“Closed”]>

Monday, October 1, 12

Assessment

• Bi-directional & compositional

• Flexible:

• interleaved data binding

• path-based references & predicates

• formatting hints

• Self-described

Monday, October 1, 12

Composition in Ensō

Grammar Schema StencilAuth

CommandExpr

Web

XMLPath

Controller

Fig. 11. Language composition in Ensō. Each arrow A ! B indicates an invocation of B�A.

arrow points in the direction of the result. For instance, the Stencil and Web languages
are, independently, merged into the Command language. As a result both Stencil and
Web include, and possibly override and/or extend the Command language. If a language
reuses or extends multiple other languages, the merge operator is applied in sequence.
For instance, Grammar is first merged into Path, and then merged into Expr.

The core languages in Ensō include both the Schema and Grammar languages, as
well as Stencil, a language to define graphical model editors. Additionally, Ensō features
a small set of library languages that are not deployed independently but reused in other
languages. An example of a library language is Expr, an expression language with
operators, variables and primitive values. It is, for instance, reused in Grammar for
predicates and in Schema for computed fields. Command is a control-flow language that
captures loops, conditional statements and functions. The Command language reuses the
Expr language for the guards in loops and conditional statements. Another example is
the language of paths (Path), shown in Fig. 4, which provides a model to address nodes
in object graphs.

The reuse of Expr and Path are examples of a simple embedding. The languages are
reused as black boxes, without modification. The composition of Command with Stencil
and Web, however is different. Stencil is created by adding language constructs for
user-interface widgets, lines, and shapes to the Command language as valid primitives.
The Command language can now be used to create diagrams. A similar extension is
realized in the Web language: here a language for XML element structure is mixed with
the statement language of Web. The extension works in both directions: XML elements
are valid statements, statements are valid XML content. The Piping and Controller
languages are from a domain-specific modeling case-study in the domain of piping and
instrumentation for the Language Workbench Challenge 2012 [25]. Fig. 11 only shows
the Controller part which reuses Expr.

An overview of the number source lines of code (SLOC) is shown in Table 1(a).
We show the number for the full languages in Ensō as well as the reused language
modules (Path, Command, Expr and XML). A language consists of a schema, a grammar
and an interpreter. The interpreters are all implemented in Ruby. Table 1(b) shows
the reuse percentage for each language [17]. This percentage is computed as 100⇥
#SLOCreused/#SLOCtotal. Which languages are reused in each case can be seen from
Fig. 11. As can be seen from this table, the amount of reuse in schemas and grammars is
consistently high, with the exception of the Piping language, which does not reuse any

Monday, October 1, 12

Conclusion

• Object grammars: mapping text to objects
and vice versa

• Declarative paths for resolving cross-
references

• Flexible, bi-directional and compositional

• Foundation of Ensō

Monday, October 1, 12

http://www.enso-lang.org/

Monday, October 1, 12

http://enso-lang.org/
http://enso-lang.org/

