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Abstract
Modular interpreters have the potential to achieve component-based
language development: instead of writing language interpreters from
scratch, they can be assembled from reusable, semantic building
blocks. Unfortunately, traditional language interpreters are hard to
extend because different language constructs may require different
interpreter signatures. For instance, arithmetic interpreters produce
a value without any context information, whereas binding constructs
require an additional environment.

In this paper, we present a practical solution to this problem based
on implicit context propagation. By structuring denotational-style
interpreters as Object Algebras [25], base interpreters can be retro-
actively lifted into new interpreters that have an extended signature.
The additional parameters are implicitly propagated behind the
scenes, through the evaluation of the base interpreter.

Interpreter lifting enables a flexible style of component-based
language development. The technique works in mainstream object-
oriented languages, does not sacrifice type safety or separate compi-
lation, and can be easily automated. We illustrate implicit context
propagation using a modular definition of Featherweight Java and
its extension to support side-effects.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors, Code Generation, Interpreters

General Terms Languages

Keywords Modular interpreters, object algebras, implicit propaga-
tion

1. Introduction
Component-based language development promises a style of lan-
guage engineering by assembling reusable building block instead of
writing them from scratch. This style is particularly attractive in the
context of language-oriented programming (LOP) [29], where the
primary software development artifacts are multiple domain-specific
languages (DSLs). Having a library of components capturing com-
mon language constructs, such as literals, data definitions, state-
ments, expressions, declarations etc. would make the construction
of these DSLs much easier and as a result has the potential to make
LOP much more effective.

Object Algebras [25] are a design pattern to support type-safe ex-
tensibility of both syntax and interpretations in mainstream, object-
oriented (OO) languages. Using Object Algebras, the abstract syntax
of a language fragment is defined using a generic factory interface.
Operations are then defined by implementing such interfaces over
concrete types representing the semantics. Adding new syntax cor-
responds to modularly extending the generic interface, and any of
pre-existing operations. New operations can be added by implement-
ing the generic interface with a new concrete type.

Object Algebras can be seen as extensible denotational defini-
tions: factory methods essentially map abstract syntax to semantic
denotations (objects). Unfortunately, the extensibility provided by
Object Algebras breaks down if the types of denotations are in-
compatible. For instance, an evaluation component for arithmetic
expressions might use a function type ()→ Val as semantic domain,
whereas evaluation of binding expressions requires an environment
and, hence, might be expressed in terms of the type Env→ Val. In
this case, the components cannot be composed, even though they
are considered to represent the very same interpretation, namely
evaluation.

In this paper we resolve such incompatibilities for Object Alge-
bras defined over function types using implicit context propagation.
An algebra defined over a function type T0 × ... × Tn →U is lifted
to a new algebra over type T0 × ... × Ti × S × Ti+1 × ... × Tn →U .
The new interpreter implicitly propagates the additional context
information of type S through the base interpreter, which remains
blissfully unaware. As a result, language components do not need to
standardize on a single type of denotation, anticipating all possible
kinds of context information. Instead, each semantic component can
be defined with minimal assumptions about its semantic context
requirements.

We show that the technique is quite versatile in combination with
host language features such as method overriding, side effects and
exception handling, and can be naturally applied to interpretations
other than dynamic semantics. Since the technique is so simple, it
is also easy to automatically generate liftings using a simple code
generator. Finally, our illustrative case study using Featherweight
Java shows that a large number of variants of the language can be
derived using only a small number of given components.
The contributions of this paper can be summarized as follows:

• We present implicit context propagation as a solution to the
problem of modularly adding semantic context parameters to
existing interpreter functions (Section 3).

• We show the versatility of the technique by elaborating on how
implicit context propagation is used with overriding, mutable
context information, exception handling, languages with mul-
tiple syntactic categories, generic desugaring of language con-
structs and interpretations other than dynamic semantics (Sec-
tion 4).



Anticipate Duplicate

Base Language trait Exp { def eval(env: Env): Val }

class Lit(n: Int) extends Exp {
def eval(env: Env) = n

}

class Add(l: Exp, r: Exp) extends Exp{
def eval(env: Env) = l.eval(env) + r.eval(env)

}

trait Exp { def eval: Int }

class Lit(n: Int) extends Exp {
def eval = n

}

class Add(l: Exp, r: Exp) extends Exp {
def eval = l.eval + r.eval

}

Extended Language class Var(x: String) extends Exp {
def eval(env: Env) = env(x)

}

trait Exp2 {
def eval(env: Env): Val

}

class Lit2(n: Int) extends Exp2 {
def eval(env: Env) = n

}

class Add2(l: Exp2, r: Exp2) extends Exp2 {
def eval(env: Env) = l.eval(env) + r.eval(env)

}

class Var(x: String) extends Exp2 {
def eval(env: Env) = env(x)

}

Table 1. Two attempts to adding variable expressions to a language of addition and literal expressions. On the left, the Lit and Add classes
anticipate the use of an environment, without actually using it. On the right, the semantics of Lit and Add need to be duplicated.

• We present a simple, annotation-based code generator to gener-
ate boilerplate lifting code (Section 5).

• The techniques are illustrated using an extensible implementa-
tion of Featherweight Java with state. This allows us to derive
127 hypothetical variants of the language, out of 7 given lan-
guage fragments (Section 6).

Implicit context propagation using Object Algebras has a number
of desirable properties. First, it preserves the extensibility charac-
teristics provided by Object Algebras, without compromising type
safety or separate compilation. Second, semantic components can
be written in direct style, as opposed to continuation-passing style
or monadic style, which makes the technique a good fit for main-
stream OO languages. Finally, the lifting technique does not require
advanced type system features and can be directly supported in
mainstream OO languages with generics, like Java or C#.

The full source code of our code generator and case study can
be found online here:

https://github.com/cwi-swat/implicit-propagation/

2. Background
2.1 Problem Overview
Table 1 shows two attempts at extending a language consisting of
literal expressions with variables in a traditional OO style1. The first
row contains the base language implementation and the second row
shows the extension. The columns represent two styles characterized

1 All code examples are in Scala (http://www.scala-lang.org). We
extensively use Scala traits, which are like interfaces that may also contain
method implementations and fields. We also assume an abstract base type
for values Val and a sub-type for integer values IntVal; throughout our code
examples we occasionally elide some implicit conversions for readability.

by “anticipation” and “duplication” respectively. In each column,
the top cell shows the “base” language, containing only literal
expressions (Lit). The bottom cell shows the attempt to add variable
expressions to the implementation.

The first style (left column) captures the traditional OO extension
where a new AST class for variables (Var) is added. The extension
is successful, since the base language anticipates the use of the envi-
ronment. Unfortunately, the anticipated context parameter (env) is
not used at all in the base language. Furthermore, anticipating addi-
tional context parameters, such as stores, leads to more unnecessary
pollution of the evaluation interface in the base language. The main
drawback of this style is that it breaks open extensibility. At the
moment of writing the base language implementation the number of
context parameters is fixed, and no further extensions are possible
without a full rewrite.

The second style (right column) does not anticipate the use of an
environment, and the implementation of Lit is exactly as one would
desire. No environment is used, and so it is not referenced either.
To allow the recursive evaluation of expressions in the extension,
however, the abstract interface Exp needs to be replaced to require
an environment-consuming eval. Consequently, the full logic of Lit
evaluation needs to be reimplemented in the extension as Lit2. If
more context parameters are needed later, the extended classes need
to be reimplemented yet again. In fact, in this style, there is no reuse
whatsoever.

To summarize, the traditional OO style of writing an interpreter
supports extension of syntax (data variants), but only if the evalu-
ation signatures are the same. As a result, any context parameters
that might be needed in future extensions have to be anticipated in
advance to realize modular extension. In the next section we reframe
the example language fragments in the Object Algebras [25] style,
which provides the essential ingredient to solve the problem using
implicit context propagation.

https://github.com/cwi-swat/implicit-propagation/
http://www.scala-lang.org


2.2 Object Algebras
Using Object Algebras the abstract syntax of a language is defined as
a generic factory interface. For instance, the base language abstract
syntax of Table 1 is defined as the following trait:

trait Arith[E] {
def add(l: E, r: E): E
def lit(n: Int): E

}

Because the trait Arith is generic, implementations of the inter-
face must choose a concrete semantic type of Arith expressions. In
abstract algebra parlance, the factory interface corresponds to an
algebraic signature, the generic type E is a syntactic sort, and im-
plementations of the interface are algebras binding the generic sort
to a concrete carrier type. Carrier types can be any type supported
by the host language (i.e. Scala), but in this paper we only consider
function types, and function objects (closures).

An evaluation algebra for the Arith language could be imple-
mented as follows:

type Ev = () => Val

trait EvArith extends Arith[Ev] {
def add(l: Ev, r: Ev) = () => IntVal(l() + r())

def lit(n: Int) = () => IntVal(n)
}

The type alias Ev defines a carrier type consisting of nillary
functions returning a value of type Val. Terms over the algebra are
constructed by invoking the methods of the algebra:

def onePlusTwo[E](alg: Arith[E]): E
= alg.add(alg.lit(1), alg.lit(2))

val eval = onePlusTwo(new EvArith {})
println(eval()) // => 3

The generic function onePlusTwo accepts an algebra of type Arith
and constructs a term over it. Invoking this function with the
evaluation algebra EvArith gives an object of type Ev which can
be used to evaluate the expression add(lit(1), lit(2)).

Now let us extend Arith with variable expressions, as was
attempted in Table 1. First the abstract syntax is defined using a
generic trait:

trait Var[E] { def vari(x: String): E }

The syntax for both fragments can be combined using trait
inheritance:

trait ArithWithVar[E] extends Arith[E] with Var[E]

For evaluating variables, we can implement the interface over a
carrier type EvE which accepts an environment:

type EvE = Env => Val
trait EvVar extends Var[EvE] {
def vari(x: String) = env => env(x)

}

Unfortunately, the two traits cannot be composed anymore
because the carrier types are different: Ev and EvE. In order to
compose the two syntactic interfaces, both carrier types have to
be the same. In this case, however, the evaluation semantics of the
language fragments require different context information, which
prevents the components from being combined. We actually observe
the same problem as shown in Table 1!

Fortunately, Object Algebras allow modular extension of opera-
tions. This means that it is possible to modularly define a trait for a
different interpretation of the same syntax:

trait Binding[E] {
def lambda(x:Str, b:E): E
def vari(x:Str): E
def apply(e1:E, e2:E): E
def let(x:Str, e:E, b:E): E

}

type EvE = Env => Val
type Env
= immutable.Map[Str,Val]

class Clos(x:Str,b:EvE,e:Env)
extends Val {
def apply(v: Val): Val
= b(e + (x -> v))

}

trait EvEBinding
extends Binding[EvE] {
def lambda(x: Str, b: EvE)
= env => new Clos(x, b, env)

def vari(x: Str): EvE
= env => env(x)

def apply(e1: EvE, e2: EvE)
= env =>

e1(env).apply(e2(env))

def let(x:Str, e:EvE, b:EvE)
= env =>

b(env + (x -> e(env)))
}

Figure 1. A language fragment with binding constructs

trait EvEArith extends Arith[EvE] {
...

}

This trait defines arithmetic expressions over the carrier type EvE
instead of Ev. Internally this trait will delegate to the original EvArith
which was defined over the type Ev. In the next section we describe
this pattern in more detail.

3. Implicit Context Propagation
We have seen how the incompatibility between Object Algebras
defined over different function types preclude extensibility. In this
section we introduce implicit context propagation as a technique
to overcome this problem, by first extending the Arith language
to support variable binding, and then generalizing the pattern to
support the propagation of other kinds of the context information.

3.1 Adding Environments to Arithmetic Expressions
The language fragment of expressions that require environments is
shown in Figure 1. The Binding language defines four constructs:
lambda (functions), vari (variables), apply (function application) and
let (binding). The carrier type is EvE, a function from environments
to values. To support lambdas, the Val domain is extended with
closures (Clos). The interpreter on the right evaluates lambdas to
closures. Variables are looked up in the environment. Function
application expects that the first argument evaluates to a closure
and applies it to the value of the second argument. Finally, let
evaluates its third argument in the environment extended with a
variable binding.

We now discuss the implementation of the environment-passing
interpreter for the Arith language using implicit context propagation.
As described in Section 2, two Object Algebra interpreters can be
combined if they are defined over the same carrier type. In this case,
this means that EvArith needs to be lifted to an EvEArith which is
defined over the carrier type EvE, i.e., Env => Val:

trait EvEArith extends Arith[EvE] {
private val base = new EvArith {}

def add(l: EvE, r: EvE): EvE
= env => base.add(() => l(env), () => r(env))()

def lit(n: Int): EvE
= env => base.lit(n)()

}

Instead of reimplementing the semantics for the arithmetic
operations, the code for each variant delegates to the base field



add(• , •) () => •()+•()

lit(1) lit(2) () => 1 () => 2

env => base.add(() => •(env), () => •(env))()

env => base.lit(1)() env => base.lit(2)()

() => •() + •() 

() => 1 () => 2

Figure 2. The left column shows how the expression add(lit(1), lit(2)) is mapped to its denotation by EvArith; the nodes in the tree are of type
Ev (() => Val). On the right, the result of lifting the denotation produced by EvArith to the type EvE (Env => Val) to propagate environments.
The dotted arrows indicate evaluation of Scala expressions; the solid arrows represent references.

initialized with EvArith. The interpreter EvEArith shows the actual
propagation of the environment in the method for add. Invoking
add on the base algebra requires passing in arguments of type Ev.
This is achieved with the inline anonymous functions. Each of these
closures calls the actual arguments of type EvE (l and r). Since both
these arguments expect an environment, we pass in the original env
that was received in the result of add.

In order to visualize lifting, Figure 2 shows the evaluation of
add(lit(1), lit(2)) over EvArith (left) and over the lifted algebra
EvEArith. On the left the result is a tree of closures of type Ev.
The right shows how each closure is lifted to a closure of type EvE.
Note that each of the closures in the denotation on the left is also
present in the denotation on the right, but that they are connected
via intermediate closures on the right.

The two languages can now be combined as follows:

trait EvEArithBinding extends EvEArith with EvEBinding

The following client code shows how to create terms over this
language:

def makeLambda[E](alg: Arith[E] with Binding[E]): E = {
import alg._
lambda("x", add(lit(1), vari("x")))

}

val term: EvE = makeLambda(new EvEArithBinding {})

The method makeLambda provides a generic way of creating the
example term lambda("x", add(lit(1), vari("x"))) over any algebra
defining arithmetic and binding expressions. Invoking the method
with an instance of the combined interpreter EvEArithBinding creates
an object of type EvE.

3.2 Generating Implicit Context Propagation Code
The general pattern for generating context propagating code is
shown in Figure 3. The template is written in pseudo-Scala and
defines a trait Alg(T,U∗)⇒V , implementing the language interface
Alg over the function type (T, U*) => V. The asterisks indicate
splicing of formal parameters. For instance, U* capture zero or
more type parameters in the function signature (T, U*) => V. The
same notation is used on ordinary formal parameters, as shown in
the closure returned by constructor method Ci .

As shown in Figure 3, the base algebra is instantiated with an
algebra over function type U* => V, which accepts one fewer pa-
rameter than the carrier type of Alg(T,U∗)⇒V . For each constructor,
Ci , the lifting code follows the pattern as shown. For presentation
purposes, primitive arguments to Ci are omitted, and only arguments
of the function types are shown as f j , for j ∈ 1, ..., n.

trait Alg(T,U∗)⇒V extends Alg[(T, U*) => V] {

val base = new AlgU∗⇒V {}

def Ci (f1: (T, U*) => V, ... , fn: (T, U*) => V):
(T, U*)=> V =
(t, u*) => base.Ci ((u1*) => f1(t, u1*),

...,
(un*) => fn(t, un*))(u*)

· · ·

}

Figure 3. Template for generating lifted interpreters that propagate
environment-like context parameters.

The presented template concisely expresses the core mechanism
of lifting. Notice, however, that it assumes that the added parameter
is prepended at the front of the base signature. A realistic generation
scheme would consider permutations of parameters. The code
generator discussed in Section 5 supports inserting the parameter
anywhere in the list.

4. Working with Lifted Interpretations
The example languages we have discussed so far only considered ex-
pressions in a purely functional framework. In the following we dis-
cuss how implicit context propagation can be used with overriding of
semantics, mutable parameters to model side-effects, exception han-
dling for non-local control, many-sorted languages, implementation
by desugaring, and interpretations other than dynamic semantics.

4.1 Overriding Interpretations: Dynamic Scoping
The propagation of environments presented in Section 3 obeys
lexical scoping rules for all parameters that are implicitly propagated.
Some context information, however, should not be lexically scoped,
but dynamically scoped. Typical examples include the binding of
self or this in OO languages, dynamic contexts in context-oriented
programming [17], or simply dynamically scoped variables [14].

Consider the following language fragment for introducing dy-
namically scoped variables, similar to fluid-let in Scheme [13]:

trait DynLet[E] { def dynlet(x: Str, v: E, b: E): E }

The construct dynlet binds a variable x to value in both the
lexical and dynamic environment. A dynamic variable can then
be referenced in the scope of dynlet using the ordinary vari of the



Binding fragment (cf. Figure 1). The implementation of dynlet is
straightforward by using an extra parameter of type Env representing
the dynamic environment.

type EvEE = (Env, Env) => Val

trait EvEEDynLet extends DynLet[EvEE] {
def dynlet(x: Str, v: EvEE, b: EvEE)
= (env, denv) => {
val y = v(env, denv)
b(env + (x -> y), denv + (x -> y))

}
}

To combine the lexically scoped Binding fragment with the dy-
namically scoped DynLet fragment, EvEBinding (cf. Figure 1) needs
to be lifted so that it propagates the dynamic environment. Implicit
propagation can be used to obtain EvEEBinding. Unfortunately, the
dynamic environment is now inadvertently captured when lambda
creates the Clos object.

To work around this problem, the implementation of lambda and
apply in EvEEBinding should be overridden, to support the dynamic
environment explicitly:

class DClos(x: String, b: EvEE, env: Env) extends Val {
def apply(denv: Env, v: Val)
= b(env ++ denv + (x -> v) , denv) // denv shadows env

}

trait EvEEBindingDyn extends EvEEBinding {
override def lambda(x: Str, b: EvEE): EvEE
= (env, denv) => new DClos(x, b, env)

override def apply(e1: EvEE, e2: EvEE)
= (env, denv) => e1(env, denv).apply(denv, e2(env, denv))

}

The closure class DClos differs from Clos only in the extra denv
parameter to the apply method. The supplied dynamic environment
denv is added to the captured environment, so that a dynamically
scoped variable x (introduced by dynlet) will shadow a lexically
scoped variable x (if any).

Although the existing lambda and apply could not be reused, one
could argue that adding dynamically scoped variables to a language
is not a proper extension which preserves the semantics of all base
constructs. In other words, adding dynamic scoping literally changes
the semantics of lambda and apply.

As an example of the dynamically scoped propagation, consider
the following example term, which is defined over the combination
of Arith, Binding, and DynLet:

dynlet("x", lit(1),
let("f", lambda("_", add(vari("x"), lit(1))),
dynlet("x", lit(2),
let("z", dynlet("x", lit(3),

apply(vari("f"), lit(1))),
add(vari("z"), vari("x"))))))

This program dynamically binds x to 1, in the scope of the let
which defines a lambda dynamically referring to x. The value of x
thus depends on the dynamic scope when the lambda is applied to
some argument. Nested within the let is another dynamic let (dynlet)
which overrides the value of x. The innermost let then defines a
variable z with the value of applying f to 1, which is inside another
dynamic let, yet again redefining x. So the result of the application
will be 4, as the innermost dynamic scope defines x to be 3. In the
body of the innermost normal let, however, the active value of x is
2, so the final addition z + x evaluates to 6.

4.2 Mutable Parameters: Stores
The previous section showed how the lexical scoping of propagated
parameters was circumvented through overriding the semantics
of certain language constructs. Another example of a context
information that should not be lexically scoped is stores for modeling
side effects. In this case however, the parameter should also not obey
stack discipline (which was the case for the dynamic environment).
The way to achieve this is by propagating mutable data structures.
Consequently, all interpreter definitions will share the same store,
even when they are captured when closure objects are created.

Consider a language Storage which defines constructs for cre-
ating cells (create), updating cells (update) and inspecting them
(inspect):

trait Storage[E] {
def create(): E
def update(c: E, v: E): E
def inspect(c: E): E

}

The simplest approach to implement an interpreter for such
expressions is to use a mutable store as a parameter to the interpreter.
For instance, the following type declarations model the store as a
mutable Map and the interpreter as function from stores to values:

type Sto = mutable.Map[Cell, Val]
type EvS = Sto => Val

The interpreter for Storage could then be defined as follows:

trait EvSStorage extends Storage[EvS] {
def create() = st => ...
def update(c: EvS, v: EvS) = st => ...
def inspect(c: EvS) = st => ...

}

To compose, for example, the Arith language defined in Sec-
tion 2.2 with Storage, the EvArith interpreter needs to be lifted in
order to propagate the store. Since Sto is a mutable object, side-
effects will be observable even though the propagation follows the
style of propagating environments.

Unsurprisingly, perhaps, mutable data structures are an effective
way of supporting side-effecting language constructs. It is interesting
to contemplate whether it is possible instead to lift interpreters that
thread an immutable store through the base evaluation process,
without depending on mutation. We have experimented with a
scheme that uses a private mutable variable, local to the traits
containing the lifted methods.

The following example is a failed attempt at lifting EvArith to
thread an immutable store (represented by the type ISto). Since the
store is immutable, the carrier type EvS2S takes an ISto and produces
a tuple containing the return value and the (possibly) updated store.

type ISto = immutable.Map[Cell,Val]
type EvS2S = ISto => (Val, ISto)

trait EvS2SArith extends Arith[EvS2S] {
private val base = new EvArith {}
private var _st: ISto = _

def add(l: EvS2S, r: EvS2S)
= st => { _st = st;

(base.add(() => {val (v1, s1) = l(_st); _st = s1; v1},
() => {val (v2, s2) = r(_st); _st = s2; v2}

)(), _st)
}

...
}

At every evaluation step, the private variable _st is synchronized
with the currently active store returned by sub expressions; since the



class Fail
extends Exception

trait Choice[E] {
def or(l: E, r: E): E
def fail: E

}

trait EvChoice extends Choice[Ev] {
def or(l: Ev, r: Ev)
= () => try { l() }

catch { case _:Fail => r() }

def fail() = () => throw new Fail
}

Figure 4. Implementing local backtracking with exception han-
dling.

current value of _st is also passed to the subsequent evaluation of sub
terms, side effects are effectively threaded through the evaluation.

Unfortunately, this scheme breaks down when two different lifted
traits have their own private _st field. As a result, expressions only
see the side-effects enacted by expressions within the same lifting,
but not the side-effects which originate from other lifted traits. It
would be possible to share this “current store” using an ambient,
global variable, allowing different traits (lifted or not) to synchronize
on the same store. Such a global variable, however, compromises
the modularity of the components and would complicate the code
generation considerably, especially in the presence of multiple store-
like context parameters.

4.3 Exception Handling: Backtracking
Many non-local control-flow language features can be simulated
using exception handling. A simple example is shown in Figure 4,
which contains the definition of a language fragment for (local)
backtracking. The or construct first tries to evaluate its left argument
l, and if that fails (i.e., the exception Fail is thrown), it evaluates the
right argument r instead. Note that EvChoice does not require any
context information and is simply defined over the carrier type Ev.

If EvChoice is lifted to EvEChoice to implicitly propagate envi-
ronments, the exception handling still provides a faithful model of
backtracking, because the environments are simply captured in the
closures l and r. In other words, upon backtracking – when the Fail
exception is caught – the original environment is passed to r.

trait EvEChoice extends Choice[EvE] {
private val base = new EvChoice {}
def or(l: EvE, r: EvE)
= env => base.or(() => l(env), () => r(env))()

def fail() = env => base.fail()()
}

For instance, evaluating the following term using this algebra,
results in the correct answer (1):

let("x", lit(1), or(let("x", lit(2), fail()), vari("x")))

4.4 Many-sorted Languages: If-Statements
Up till now, the language components only have had a single
syntactic category, or sort, namely expressions. In this section
we discuss the propagation in the presence of multiple syntactic
categories, such as expressions and statements.

In the context of Object Algebras, syntactic sorts correspond to
type parameters of the factory interfaces. For instance, the following
trait defines a language fragment containing if-then statements:

trait If[E, S] { def ifThen(c: E, b: S): S }

The ifThen construct defines a statement, represented by S, and
it contains an expression E as condition.

The interpreter for ifThen makes minimal assumptions about
the kinds of expressions and statements it will be composed with.

Therefore, E is instantiated to Ev (() => Val; see above), and S is
instantiated to the type Ex:

type Ex = () => Unit

trait EvIf extends If[Ev, Ex] {
def ifThen(c: Ev, b: Ex): Ex = () => if (c()) b()

}

The type Ex takes no parameters, and produces no result (Unit). The
ifThen construct simply evaluates the condition c and if the result is
true, executes the body b.

A first extension could be the combination with statements that
require the store, like assignments. Statements that require the store
are defined over the type ExS = Sto => Unit. As a result, EvIf needs
to be lifted to map type Ex to ExS. Since the only argument of ifThen
that has type Ex is the body b, lifting is only applied there. In the
current language, expressions do not have side-effects, so they do
not require the store, and consequently do not require lifting:

type ExS = Sto => Unit

trait ExSIf extends If[Ev, ExS] {
private val base = new EvIf {};

def ifThen(c: Ev, b: ExS)
= st => base.ifThen(c, () => b(st))()

}

Note that the argument c is passed unmodified to base.ifThen.
An alternative extension to consider is adding expressions which

require an environment. In Section 3.1 such expressions were
defined over the type EvE = Env => Value. In this case, EvIf needs to
be lifted so that ifThen can be constructed with expressions requiring
the environment. In other words, c: Ev needs to be lifted to c: EvE.
However, since an actual environment is needed to invoke a function
of type EvE, the result sort Ex also needs to be lifted to accept an
environment:

type ExE = Env => Unit

trait EvEIf extends If[EvE, ExE] {
private val base = new EvIf {}

def ifThen(c: EvE, b: ExE)
= env => base.ifThen(() => c(env), () => b(env))

}

In this lifting code, the invocation of c requires an environment;
hence, the closure returned by ifThen needs to be of type ExE to
accept the environment and pass it to c.

The context parameters propagate outwards according to the
recursive structure of the language. At the top level, the signature
defining the semantics of a combination of language fragments will
accept the union of all parameters needed by all the constructs that
it could transitively contain.

4.5 Desugaring: Let
Desugaring is a common technique to eliminate syntactic constructs
(“syntactic sugar”) by rewriting them to more basic language
constructs. As a result, the implementation of certain operations
(like compilation, interpretation) becomes simpler, because there
are fewer cases to consider.

Desugaring in Object Algebras is realized by directly calling
another factory method in the algebra. Note that methods in traits
in Scala do not have to be abstract. As a result, desugarings can be
implemented generically, directly in the factory interface. The same,
generic desugaring can be reused in any concrete Object Algebra
implementing the syntactic interface.



As an example, recall the Binding language of Figure 1. It defines
a let constructor which was implemented directly in the right column
of Figure 1. Instead, let can be desugared to a combination of lambda
and apply:

trait Let[E] extends Binding[E] {
def let(x:Str, e:E, b:E) = apply(lambda(x, b), e)

}

This trait generically rewrites let constructs to applications of
lambdas, binding the variable x in the body b of the let. Since the
desugaring is generic, it can be reused for multiple interpreters,
including the ones resulting from lifting. If EvEBinding (Figure 1)
is lifted to propagate the store, for instance, the desugaring would
automatically produce lifted lambda and apply denotations.

type EvES = (Env, Sto) => Val

trait EvESBinding extends Binding[EvES] {
... // store propagation code

}

trait EvESBindingWithLet extends EvESBinding with Let[EvES]

Generic desugarings combined with traits (or mixins) provide
a very flexible way to define language constructs irrespective of
the actual interpretation of the constructs themselves. Keeping such
desugared language constructs in separate traits also makes them
optional, so that they are not expanded if this is undesired, for
example in the case of pretty printing.

4.6 Multiple Interpretations: Pretty Printing
Object Algebras support the modular extension of syntax as well
as operations. There is no reason for implicit propagation not to
be applied to interpretations of a language other than the dynamic
semantics. Examples could include type checking, other forms of
static analysis or pretty printing.

Consider the example of pretty printing. Here is an example of a
pretty printer for Arith expressions, PPArith, defined over the carrier
type PP (() => String):

type PP = () => Str // "Pretty Print"

trait PPArith extends Arith[PP] {
def add(l: PP, r: PP) = () => l() + " + " + r()

def lit(n: Int) = () => n.toString
}

Pretty printing of arithmetic expression does not involve the
notion of indentation. However, to pretty print the ifThen construct
of Section 4.4 we would like to indent the body expression. This is
realized with a context parameter i that tracks the current indentation
level:

type PPI = Int => Str

trait PPIIf extends If[PPI,PPI] {
def ifThen(c: PPI, b: PPI)
= i => "if " + c(0) + "\n" +

" " * i + b(i + 2)
}

Both modules can be combined after lifting PPArith to propagate
the parameter representing the current indentation:

trait PPIArith extends Arith[PPI] {
private val base = new PPArith {}
def add(l: PPI, r: PPI) = i => base.add(() => l(i), () => r(i))()
def lit(n: Int) = i => base.lit(n)()

}

5. Automating Lifting
We have introduced implicit context propagation and illustrated
how the liftings work in diverse scenarios. Although the liftings
can be written by hand, they represent a significant amount of error-
prone boilerplate code. We have developed a macro-based code
generator for single-sorted algebras, which generates the lifting
code automatically.

The code generator is invoked by annotating an empty trait, and
the code generator will fill in the required lifting methods in the
compiled code. Here is an example showing how to lift the EvArith
interpreter to propagate the environment and the store:

@lift[Arith[_], ()=> Val, EvArith, (Env, Sto) => Val]
trait EvESArith

The @lift annotation receives four type parameters: the trait that
corresponds to the generic Object Algebra interface representing the
language’s syntax (Arith), the carrier type of the base implementa-
tion (()=>Val), the trait that provides the base level implementation
(EvArith), and finally, the target carrier type ((Env,Sto)=>Val).

The @lift annotation is implemented as a Scala macro [2]. The
annotated trait produces an implementation for the lifted trait that
extends the factory interface instantiating the type parameter to the
extended carrier type. The compiled code will contain the lifted
methods that delegate to the specified base implementation. Note
that the code generation does not break independent compilation
nor type safety, as the generator just inspects the interfaces of the
types that are specified in the annotation, without needing access to
the source code where these types are defined.

Notice too that the code generator does not simply prepend a
new parameter at the front of the parameter list (as in the template of
Figure 3), but performs the necessary permutations to appropriately
lift the base signature to the target. This is important for components
that need to be “mutually lifted”. Consider the example of a
component which is lifted from Sto=>Val to (Env,Sto)=>Val. To
combine this component with a component of type Env=>Val, the
latter should be lifted to (Env,Sto)=>Val as well, but in this case, the
parameter is added at the end.

The current version @lift does not disambiguate parameters with
the same type. However, it is conceivable to implement this by
requiring the user to provide the disambiguation information in the
annotation. This is an opportunity for future work.

6. Case Study: Modularizing Featherweight Java
To examine how implicit context propagation helps in modularizing
a programming language implementation, we have performed a case
study using Featherweight Java (FJ) [18]. The case study consists
of a modular interpreter for FJ, and its extension to a variant that
supports state (SFJ), inspired by [10].

The case study serves to answer two questions:

• What is the flexibility that implicit context propagation provides
to support the definition of languages by assembling language
fragments?

• How much boilerplate code is avoided by implicit context
propagation?

These questions are answered below by analyzing the number of
hypothetical languages that can be defined from the combination of
SFJ fragments, and counting how many liftings are possible.

6.1 Definition of FJ and SFJ
FJ was introduced as a minimal model of a Java-like language, small
enough to admit a complete formal semantics. In FJ, there are no
side-effects and all values are objects; it supports object creation,
variables, method invocation, field accessing and casting. To study



Syntax Signature

FJ Field access e.f CT=>Obj
Object creation new C(e,...) ()=>Obj
Casting (C) e CT=>Obj
Variables x (Obj,Env)=>Obj
Method call e.m(e,...) (Obj,CT,Env)=>Obj

SFJ Sequencing e ; e ()=>Obj
Field assignment e.f = e (CT,Sto)=>Obj
Object creation new C(e,...) (CT, Sto)=>Obj
Variables x (Obj,CT,Env,Sto)=>Obj

Table 2. Signatures per (S)FJ language construct

how to extend a language to a variant that requires more context
information, we introduce SFJ, which also features field updating
and sequencing.

We have modularly implemented FJ and its extension to SFJ
defining one language module per alternative in the abstract gram-
mar. Each language construct is represented as a single Object Alge-
bra interface to allow for maximum flexibility. As a consequence,
the semantics of each construct is defined in its own trait assuming
only the minimal context information necessary for the evaluation
of that particular construct.

A complete definition of SFJ requires four kinds of context
information:

• An Obj that represents the object being currently evaluated (i.e.,
this). In FJ, the Obj simply contains the object’s class name and
the list of arguments that are bound to its fields.

• The class table CT which contains the classes defined in an FJ
program. The classes contain the meta information about objects,
in particular, how the ordering of constructor arguments maps to
the object’s field names.

• The environment Env which maps parameters to Objs.
• The store Sto modeling the heap (just needed in the case of SFJ).

As shown in Table 2, six different signatures are used to imple-
ment nine constructs. For presentation purposes, we solely focus
on the expression constructs. Object creation does not require any
context information. Field access and casting only require the class
table to locate fields in objects by offset. Variables require the cur-
rent object to evaluate the special variable this, and the environment
to lookup other variables. Similarly, method calls require the class
table to find the appropriate method to call; the current object is
needed to (re)bind the special variable this and the environment is
needed to bind formal parameters to actual values. Sequencing does
not depend on any context parameters. Field assignment uses the
class table to locate fields and the store to modify the object. Finally,
notice that the cases for object creation and variable referencing
had to be redefined in SFJ over the signatures(CT,Sto) => Obj and
(Obj,CT,Env,Sto) => Obj in order to allocate storage for the newly
created object and inspecting the referenced object in the store, re-
spectively. In particular, variable referencing needs all the context
parameters as it needs to “reconstruct” the object structure by in-
specting the store and finding the information about the order of
arguments in the class table.

For implementing FJ, four of the base interpreters (for variables,
field access, object creation and casting) are lifted to the function
type (Obj,CT,Env) => Obj. Combining these lifted interpreters re-
sults in an implementation of basic FJ.

In order to obtain a full implementation of SFJ, the FJ interpreters
need to be lifted to also propagate the store and the stateful fragments
need to be lifted to propagate the environment, class table and

Signature Base Liftings Derived Total

CT=>Obj 2 O/E/S 14 16
(Obj,Env)=>Obj 1 C/S 3 4
(Obj,CT,Env)=>Obj 1 S 1 2
()=>Obj 2 C/O/E/S 30 32
(CT,Sto)=>Obj 2 O/E 6 8
(Obj,CT,Env,Sto)=>Obj 1 0 1

63

Table 3. Number of Base interpreters per signature, possible Lift-
ings (C = CT, O = Obj, E = Env, S = Sto), number of possible
Derived interpreters and Total number of possible interpreters.

current object, where needed. The result is a set of interpreters
defined over the “largest” signature (Obj,CT,Env,Sto) => Obj.

6.2 Analyzing Hypothetical Subsets of SFJ
The previous subsection detailed how the implementation of FJ
and SFJ can be constructed by modularly assembling the language
fragments of Table 2. Here we discuss hypothetical subsets of the
language. Note that these subsets might not (and probably will not)
be meaningful in any practical sense. However, they illustrate the
flexibility obtained using implicit context propagation.

Table 3 shows per interpreter signature how many interpreters
can be derived using implicit context propagation. The second col-
umn lists the number of given base interpreters over a specific signa-
ture. The third column indicates the number of lifting opportunities.
Finally, the last column shows the total number of possible inter-
preters, including the base interpreters. Note that the next-to-last
row shows two base interpreters because the interpreter for object
construction needed to be rewritten to allocate storage.

Lifting opportunities are described using a shorthand indicating
which types of parameters could be added to the signatures using
implicit context propagation (C = CT, O = Obj, E = Env, S = Sto). For
instance, the string “O/E/S” in the first row means that an interpreter
over CT=>Obj can be lifted to any of the following 7 signatures:

(Obj,CT)=>Obj, (Env,CT)=>Obj, (Sto,CT)=>Obj,
(Obj,CT, Env)=>Obj, (Obj,CT, Sto)=>Obj,
(Env,CT,Sto)=>Obj, (Obj,Env,CT,Sto)=>Obj

The number of possible lifted interpreters given n base interpreters
can be computed using the following formula n × (2k − 1), where k
represents the number of possibly added context parameters. Since
there are n = 2 base interpreters in the first row for which k = 3, 7
opportunities apply to each of them, and thus the total number of
derivable interpreters is 14.

Summing the last column in Table 3 gives an overall total
of 63 possible interpreters, of which only 9 are written by hand.
The other 54 can be derived automatically using implicit context
propagation. It is thus possible to observe that our technique
eliminates considerable amount of boilerplate when deriving new
variants of languages from base language components.

The 63 interpreters include 7 over the “largest” signature
(Obj,CT,Env,Sto) => Obj for each of the 7 language constructs.
These 7 fragments allow 27 − 1 = 127 combinations representing
hypothetical subsets of SFJ (excluding the empty language). The
interpreter for full SFJ is just one of these 127 variants. This gives
an idea of the flexibility that implicit context propagation provides
in defining multiple language variants from assembling the different
language modules.



7. Discussion and Related Work
In this section we provide a qualitative assessment of implicit context
propagation as a technique and discuss related work.

7.1 Discussion
Although all the code in this paper, as well as the case study, is writ-
ten in Scala, it is easy to port implicit context propagation to other
languages as well. For instance, Java 8 introduce default methods
in interfaces, which can be used for trait-like multiple inheritance.
Without a trait-like composition mechanism, the technique can still
be of use, except that extensibility would be strictly linear. This
loses some of the appeal for constructing a library of reusable se-
mantic building blocks, but still enjoys the benefits of type safety
and modular extension.

Unlike in other work on modular interpreters (see below for a
discussion of related work), implicit context propagation is simpler
than, for instance, extensible effects in the sense of [20]. For context
information other than read-only, environment-like parameters, we
depend on the available mechanisms of the host language. For
instance, read-write effects (stores) are modeled using mutable data
structures (cf. Section 4.2). Other effects, such as error propagation,
local backtracking (Section 4.3), non-local control flow (break,
continue, return etc.), and gotos and co-routines [1] can be simulated
using the host language’s exception handling mechanism. Support
for concurrency or message passing can be directly implemented
using the host language’s support for threads or actors (cf. [12]).

A drawback of implicit context propagation is that, even though
the boilerplate code can be automatically generated, the user still
has to explicitly specify which liftings are needed, and compose
the fragments herself. Instead of using the annotations, it would be
convenient if one could simply extend a trait over the right signature,
and that the actual implementation would be inferred completely.
For instance, instead of writing the @lift annotation described in
Section 5, one would like to simply write:

trait Combined extends EvEBinding with Arith[EvE]

The system would then find implementations of Arith[_] to automat-
ically define the required lifting methods right into the Combined
trait. If multiple candidates would exist, it would be an error. This is
similar to how Scala implicit parameters are resolved2. We consider
this as a possible direction for future work.

7.2 Related Work
Component-Based Language Development The vision of build-
ing up libraries of reusable language components to construct lan-
guages by assembling components is not new. An important part
of the Language Development Laboratory (LDL) [15] consisted of
a library of language constructs defined using recursive function
definitions. Heering and Klint considered a library of reusable se-
mantic components as a crucial element of Language Design Assis-
tance [16]. Our work can be seen as a practical step in this direction.
Instead of using custom specification formalisms, our semantic com-
ponents are defined using ordinary programming languages, and
hence, are also directly executable.

More recently, Cleenewerck investigated reflective approaches to
component-based development [5, 6]. In particular he investigated
the different kinds of interfaces of various language aspects and
how they interact. Implicit context propagation can be seen as a
mechanism to address one such kind of feature interaction, namely
the different context requirements of interpreters.

Directly related to our work is Mosses’ work on component-
based semantics [4]. Languages are defined by mapping abstract

2 http://docs.scala-lang.org/tutorials/tour/
implicit-parameters.html

syntax to fundamental constructs (funcons), which in turn are de-
fined using I-MSOS [24], an improved, modular variant of Structural
Operational Semantics (SOS) which also employs implicit context
propagation. The modular interpreters of this paper can be seen as
the denotational, executable analog of I-MSOS modules. In fact, our
implicit context propagation technique was directly inspired by the
propagation strategies of I-MSOS.

Finally, first steps to apply Object Algebras to the implementa-
tion of extensible languages have been reported in [11]. In particular,
this introduced Naked Object Algebras (NOA), a practical tech-
nique to deal with the concrete syntax of a language using Java
annotations. We consider the integration of NOA to the modular
interpreter framework of this paper as future work. In particular, we
want to investigate designs to support multiple concrete syntaxes for
an abstract semantic component.

Modular Interpreters The use of monads to structure interpreters
is a well-known design pattern in functional programming. Mon-
ads, as a general interface for sequencing, allow idioms such as
environments, stores, errors, and continuations to be automatically
propagated. However, monads themselves do not allow these differ-
ent effects to be combined.

Liang et al. [23] consolidated much of the earlier work (e.g., [9,
26]) on how monad transformers can be used to solve this problem.
Monad transformers lift one type of monad into another, richer one.
This allows one to define extensible interpreters. Unfortunately, the
order of transforming one monad into the richer monad influences
the semantics of the result. This means that a monadic interpreter
supporting the store first, and then non-determinism, leads to a
different semantics than when the monads are transformed the other
way round.

Duponcheel [8] extended the work of [23] by representing
the abstract syntax of a language as algebras, and interpreters as
catamorphisms over such algebras to cater for extensible syntax.
This is similar to the Object Algebra style employed in this paper.

A different approach to extensible interpreters was pioneered
by Cartwright and Felleisen [3]. They present extended direct
semantics, allowing orthogonal extensions to base denotational
definitions. In this framework, the interpreters execute in the context
of a global authority which takes care of executing effects. A
continuation is passed to the authority to continue evaluation after
the effect has been handled. In extended direct semantics, the
semantic functionM has a fixed signature Exp→ Env→ C where
C is an extensible domain of computations. The fixed signature of
M allows definitions of language fragments to be combined.

Kiselyov et al. [20] generalized the approach of [3], allowed the
administration functions to be modularized as well, and embedded
the framework in Haskell using open unions for extensible syntax.
In particular, the extensible effects approach does not suffer from
the ordering problem of monad transformers.

Implicit Propagation Implicit propagation has been researched
in many forms and manifestations. The most related treatment of
implicit propagation is given by Lewis et al. [22], who describe
implicit parameters in statically typed, functional languages. A
difference to our approach is that implicit parameters cannot be
retro-actively added to a function: a top-level evaluation function
would still need to declare the extra context information, even though
its value is propagated implicitly.

Another way of achieving implicit propagation in functional
languages is using extensible records [21]. Functions consuming
records may declare only the fields of interest. However, if such a
function is called with records containing additional fields, they will
be propagated implicitly.

Implicit propagation bears similarity to dynamic scoping, as for
instance, found in CommonLisp or Emacs Lisp. Dynamic scoping is

http://docs.scala-lang.org/tutorials/tour/implicit-parameters.html
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a powerful mechanism to extend or modify the behavior of existing
code [14]. For instance, it can be used to implement aspects [7] or
context-oriented programming [17].

Another area where implicit propagation has found application is
in language engineering tools. For instance, [28] introduced scoped
dynamic rewrite rules to propagate down dynamically scoped con-
text information during a program transformation process. Similarly,
the automatic generation of copy rules in attribute grammars is used
to propagate attributes without explicitly referring to them [19].

Finally, the implicit propagation conventions applied in the
context of I-MSOS [24], have been implemented in DynSem, a
DSL for specifying dynamic semantics [27]. In both I-MSOS and
DynSem, propagation is made explicit by transforming semantic
specifications.

8. Conclusion
Component-based language engineering would bring the benefits of
reuse to the construction of software languages. Instead of building
languages from scratch, they can be composed from reusable
building blocks. In this work we have presented a design for modular
interpreters that support a high level of reuse and extensibility.
Modular interpreters are structured as Object Algebras, which
support modular, type safe addition of new syntax as well as new
interpretations. Different language constructs, however, may have
different context information requirements (such as environments,
stores, etc.), for the same semantic interpretation (evaluation, type
checking, pretty printing, etc.).

We have presented implicit context propagation as a technique
to eliminate this incompatibility by automatically lifting interpre-
tations requiring n context parameters to interpretations accepting
n + 1 context parameters. The additional parameter is implicitly
propagated, through the interpretation that is unaware of it. As a
result, future context information does not need to be anticipated in
language components, and opportunities for reuse are increased.

Implicit context propagation is simple to implement, does not
require advanced type system features, fully respects separate com-
pilation, and works in mainstream OO languages like Java. We have
shown how the pattern operates in the context of overriding, mutable
context information, exception handling, languages with multiple
syntactic categories, generic desugaring and interpretations other
than dynamic semantics. Furthermore, the code required for lifting
can be automatically generated using a simple annotation-based
code generator. Our modular implementation of Featherweight Java
with state shows that the pattern enables an extreme form of modular-
ity, bringing the vision of a library of reusable language components
one step closer.

One aspect that requires future work is to evaluate the perfor-
mance impact of lifting. Since lifting is based on creating interme-
diate closures, lifted interpreters could be significantly slower than
directly implemented base interpreters. Other directions for further
research include the integration of concrete syntax (cf. [11]), and
the application of implicit context propagation in the area of DSL
engineering. We expect that DSL interpreters require a much richer
and diverse set of context parameters, apart from the standard envi-
ronment and store idioms. Finally, we will investigate the design of a
library of reusable interpreter components as a practical, mainstream
analog of the library of fundamental constructs of [4].
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