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Abstract. File carvers are forensic software tools used to recover data
from storage devices in order to find evidence. Every legal case requires
different trade-offs between precision and runtime performance. The re-
sulting required changes to the software tools are performed manually
and under the strictest deadlines.

In this paper we present a model-driven approach to file carver devel-
opment that enables these trade-offs to be automated. By transforming
high-level file format specifications into approximations that are more
permissive, forensic investigators can trade precision for performance,
without having to change source.

Our study shows that performance gains up to a factor of three can
be achieved, at the expense of up to 8% in precision and 5% in recall.

1 Introduction

Digital forensics is a branch of forensic science that attempts to answer legal
questions based on the analysis of information recovered from digital devices.
These digital devices are typically computers or mobile phones confiscated from
a suspect, found near a crime scene or otherwise expected to have information
stored that is relevant to an investigation. In the context of this paper we are
interested in file carvers : tools that recover data from storage devices without
the help of (file system) storage metadata [16].

The current growth in size of storage devices requires that file carvers scale
to analyze data in the terabyte range. Moreover, forensic investigations are of-
ten performed under very strict deadlines, making the runtime performance of
such tools critical. Additionally, the large diversity in (variants of) file formats
encountered on devices requires these tools to be easy to modify and extend.

Because each case may require different trade-offs with respect to precision
and runtime performance, file carvers often need to be modified on a case-by-case
basis. Currently, this kind of just-in-time “carver hacking” is performed by hand,
which is error prone and time consuming; it is also inherently incompatible with
very strict deadlines.

In previous work we have developed a model-driven approach to digital foren-
sics tool construction [5]. In this work the file formats of interest, e.g., JPEG,
GIF etc., are declaratively modeled using a domain-specific language (DSL) called
Derric. These descriptions are then input to a code generator that produces
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highly efficient and accurate format validators that form an essential part of our
file carver Excavator.

Excavator competes with file carvers widely used in practice, and is much
easier to maintain due to the high-level Derric language. Nevertheless, the gen-
erated components encode a particular trade-off between precision and runtime
performance. In this work we apply model transformations on Derric descrip-
tions in order to make this trade-off configurable. We present three model trans-
formations that successively obtain format validators that are more permissive
(i.e., produce more false positives) but exhibit better runtime performance. As
a result forensic investigators can choose between precision and runtime perfor-
mance without having to change any code.

We have evaluated Excavator using the different format validators at each
permissiveness configuration for the file formats JPEG, GIF and PNG on a rep-
resentative test image of 1TB. Our results show that performance gains up to a
factor of three can be achieved, at the expense of up to 8% in precision and 5%
in recall.

This paper makes the following contributions:

– We present three model transformations to automatically derive format val-
idators that trade precision for better runtime performance.

– We evaluate our approach on a representative test image in the terabyte
range showing that substantial performance gains can be achieved.

Organization of this Paper. The rest of this paper is organized as follows.
Section 2 discusses file carving and analyzes the development, performance and
scalability challenges in the engineering of digital forensics software. We in-
troduce our model-driven approach to building file carvers and discuss how it
addresses the challenges. This includes an overview of Derric, our domain-
specific language (DSL) for file format description. Section 3 defines three model
transformations on Derric descriptions. Section 4 evaluates the effect of the
model transformations on the runtime performance and precision of the gener-
ated carvers. In Section 5 we discuss our results. Related work is discussed in
Section 6. We summarize our research and results in Section 7.

2 Background

2.1 File Carving

When recovering data from a storage device, all available metadata such as file
system records and application logs are used to identify locations where data is
stored. After this initial step, there is usually a significant amount of unallocated
space left on the storage device. This space may contain only zeros (or some other
factory default value), but may also contain deleted files, operating system caches
or data that has been hidden on purpose. To recover this data, a content-based
technique called file carving can be used.
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Fig. 1. An example set of contiguous clusters on a storage device

A typical modern file carver consists of a set of format validators used by
one or more file reconstruction algorithms. In its most basic form the format
validators consist of checking for format-specific constants at the start and end
of a stream (called header/footer matching) and the file reconstruction algorithm
simply moves through the input stream in a single pass, invoking all format
validators at each offset to determine whether a file is located there. On each
hit, the identified file is saved for further analysis.

Apart from generating a large amount of false positives, this approach has
another drawback: it is unable to recover files that are split into multiple parts
and stored in non-contiguous locations. This so-called file fragmentation is com-
mon, usually as a result of performance optimization by the operating system
and implementation details of the file system.

To recover fragmented files but avoid a combinatorial explosion, file carvers
implement file reconstruction algorithms, such as bifragment gap carving [10].
However, to improve precision and reduce the amount of required iterations to
reconstruct a single file, they also use more advanced format validators that
validate (part of) the format’s structure and content.

Common optimizations include running multiple format validators on the
same block of data concurrently and applying data classification techniques to
reduce the search space (e.g., removing blocks of zeros). These techniques are
not discussed further in this paper.

File Carving Example. An example set of contiguous clusters commonly found on
storage devices is shown in Figure 1. Clusters 1, 15, 16 and 20 contain only zeros.
The remaining clusters contain three files: F1 (clusters 2–6), F2 (fragmented,
clusters 7–10 and 17–19) and F3 (clusters 11–14).

A traditional file carver that performs a single pass over the data checking
for headers and footers only will probably recover F1, since it will find a header
in cluster 2 and a correct following footer in cluster 6. Fragmented file F2 is
problematic, as the first footer following the header in cluster 7 is F3’s footer in
cluster 14. As a result, both F2 and F3 are not recovered.

A more sophisticated format validator may detect a problem around cluster 11
or 12 and report this to the file carver. The file carver can then decide to look for
suitable footers within a certain range, possibly finding both F3’s footer in cluster
14 as well as F2’s footer in cluster 19. Some shuffling of the clusters between
the original error location in cluster 11 and the potential footers may lead the
file carver to consider clusters 7–10 and 17–19, which the format validator will
accept. From the remaining clusters, F3 will then be easy to recover as well.
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2.2 Software Engineering Challenges

From a software engineering perspective, the challenges in file carver construction
can be classified into three areas, described in the following subsections.

Modifiability. Digital forensics tools must be continually adapted to new ver-
sions and variants of storage formats encountered during investigations. For in-
stance, even when using a standardized format such as the JPEG image file
format, different vendors of, for instance, digital cameras may store the actual
files in different ways, often deviating from the standard. When forensic inves-
tigators encounter traces on some device that they want to recover or analyze,
they often need to adapt their tools to these new, modified or different storage
formats in order to maximize recoverable evidence.

Runtime Performance. Strict time constraints means that analyses must be
completed as quickly as possible, even when the amount of data to analyse grows
very fast. Brute force algorithms are intractable when it comes to reconstructing
a file by finding its parts in a set of millions of fragments. Hence, the challenge
is to use as much domain-specific knowledge as possible for optimization. This
includes knowledge about hardware, operating systems, file system implementa-
tion, file formats and typical fragmentation patterns [10].

Scalability. Digital forensics tools must be scalable to deal with relatively large
data sizes. Common hard drive sizes in desktop computers are already in the
terabyte range. Support for these data sizes imposes additional constraints on
the design and implementation of tools. Recovering evidence from a set of data
of which 1% barely fits into working memory requires custom approaches. Most
analyses must use a streaming architecture to collect information while reading
through the data from beginning to end in a single pass.

2.3 Model-Driven Digital Forensics

To address the challenges described in the previous section, we have developed
a model-driven approach to file carver construction, called Excavator. The
architecture of Excavator consists of three parts and is shown in Figure 2.

The first part is a domain-specific language called Derric that allows file
formats to be specified in a declarative way. A simplified example of a Derric
specification of the PNG image file format is shown in Figure 3, which will be
discussed in more detail below. A Derric file format description captures the
information to be used by a file carver to recognize (fragments of) files in a
data stream. Derric file format descriptions are tailored to digital forensics
applications; they may leave out details of a file format that would be relevant
for implementing a file viewer, for instance, but are not important for file carving.

The Derric file format descriptions are input to the second component, a
code generator to obtain format validators. A format validator is used to check
that a certain sequence of bytes indeed can be recognized as part of a file format.
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Fig. 2. Overview of the Excavator architecture

The code generator performs domain-specific optimizations to make the resulting
code as efficient as possible, such as skipping over blocks of data that will not be
interpreted and only generating variables for values read from the input data that
will actually be referenced. Both the Derric DSL1 and the Excavator code
generator have been developed using Rascal2, a DSL for source code analysis
and transformation [13]. The code generator produces Java source code.

The third part is the file carver itself, which employs dedicated algorithms and
heuristics for locating candidate files in the data stream. This component uses
the generated format validators to verify if a candidate file is an instance of a file
format. This component can be considered the runtime system of Excavator.
The runtime system is implemented in Java using the latest IO libraries for
maximum throughput.

Excavator can be configured to run with or without file reconstruction ca-
pabilities. The algorithm it implements is bifragment gap carving with a config-
urable maximum gap size, with a default value of 2MB. It supports a variable
cluster size with a default value of 4096 bytes. It does not support parallelism
or filtering through data classification.

Our model-driven approach to digital forensics tool construction addresses
the aforementioned challenges in the following way:

– Modifiability. Using high-level file format descriptions separates the “what”
from the “how”: if a new variant or version of a file format has to be accomo-
dated, only the file format description has to be changed; the code generator
and runtime system remain unchanged.

– Runtime Performance. The code generator can apply sophisticated op-
timizations to obtain fast code. Because this concern is now isolated in the
code generator, it does not affect the description of file formats. Tradition-
ally, optimizations in digital forensics tools are tangled with the matching
logic of file format structure.

– Scalability. The runtime system effectively captures the way data is pro-
cessed, independently from the generated validators. This means that a file
carver can be made to run in streaming fashion by changing the runtime

1 http://www.derric-lang.org/
2 http://www.rascal-mpl.org/

http://www.derric-lang.org/
http://www.rascal-mpl.org/
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system. Additionally, state-of-the-art file carving algorithms (e.g., [8]) can
be plugged into the system without affecting the other components.

Still, there is room for improvement. Digital forensics tools are often adapted
to a certain situation in order to trade quality and completeness of the results
for increased performance. On the one hand, if a recovery tool produces many
false positives, this may be problematic, because they all have to be inspected
manually. On the other hand, this may be preferable to not having any results at
all before the deadline. In order to make this trade-off configurable we can apply
model transformations to Derric file format descriptions to obtain a faster file
carver at the cost of some precision. These transformations are described in
Section 3.

2.4 Example: PNG Image File Format
As an illustration of Derric, we present a description of a simplified version of
the PNG image file format in Figure 3. It omits the details of optional data struc-
tures but is complete enough to be transformed into a validator that properly
recognizes PNG files.

At the beginning of the format description, the name of the format is specified
(line 1) along with a set of storage-related defaults, such as string encoding
(line 2) and default numerical type (lines 3–6), in this case single-byte unsigned
integers.

Next is the definition of the format’s sequence (lines 8–11), which defines the
ordering of data structures in a valid file. In this example only a single operator
appears (asterisk), which specifies that the structure must appear zero or more
times. Additional constructs exist such as selection (parentheses), subsequenc-
ing (square brackets), optionality (question mark) and exclusion (exclamation
mark).

The final part is the structures block (lines 13–54), defining the structures
mentioned in the sequence. Each structure has a name and a list of field descrip-
tions between curly braces. For example, the Chunk structure on lines 18–27
has four fields: length (line 19), chunktype (line 20), chunkdata (line 21) and crc
(lines 22–26).

The Chunk structure’s fields demonstrate some of Derric’s specification con-
structs. The length field has the length of the chunkdata field as value, and its
type is a 32-bit unsigned integer. The chunktype field is four bytes in size and
may contain any value except the ASCII string “IDAT”. The chunkdata field does
not specify its value but constrains that its size must correspond to the value
of the length field. Circular references like this are common in format descrip-
tions and are useful in situations where only part of a data structure has been
recovered; each value can be used to validate the other.

Finally, the crc field has a fixed size of four bytes and defines a value that
must be calculated using the “crc32-ieee” algorithm (line 22) using the values of
the chunktype and chunkdata fields (line 25).

Additionally, Derric supports structure inheritance. This is shown on line
28 where the IHDR structure inherits the fields of the Chunk structure and then
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1format PNG
2 strings ascii
3 sign false

4 unit byte
5 size 1
6 type integer

7

8sequence
9 Signature IHDR

10 Chunk* IDAT IDAT* Chunk*
11 IEND
12

13structures
14Signature {
15 marker: 137,80,78,71,13,10,26,10;

16}
17

18Chunk {

19 length: lengthOf(chunkdata) size 4;
20 chunktype: !"IDAT" size 4;
21 chunkdata: size length;

22 crc: checksum(algorithm="crc32-ieee",
23 init="allone",start="lsb",
24 end="invert",store="msbfirst",

25 fields=chunktype+chunkdata)
26 size 4;
27}

28IHDR = Chunk {
29 chunktype: "IHDR";
30 chunkdata: {

31 width: !0 size 4;
32 height: !0 size 4;
33 bitdepth: 1|2|4|8|16;

34 colourtype: 0|2|3|4|6;
35 compression: 0;
36 filter: 0;

37 interlace: 0|1;
38 }
39}

40

41IDAT = Chunk {
42 chunktype: "IDAT";

43 chunkdata: compressed(
44 algorithm="deflate",
45 layout="zlib",

46 fields=chunkdata)
47 size length;
48}

49

50IEND {
51 length: 0 size 4;

52 chunktype: "IEND";
53 crc: 0xAE, 0x42, 0x60, 0x82;
54}

Fig. 3. Structure of the simplified PNG image file format

overrides the chunktype and chunkdata fields (lines 29–38). Its length and crc
fields remain the same as in Chunk.

3 Transforming Derric Models

In order to make the trade-off between precision and runtime performance con-
figurable we have implemented three model-transformations on Derric descrip-
tions, based on an analysis of validation techniques in file carving [3]. Each
transformation removes constraints so that more permissive specifications are
obtained. The transformations consist of replacing computationally expensive
operations with cheaper versions that resemble the original technique, or skip
over data entirely instead of processing it. They can be applied successively so
that in the end four format validators can be derived from a Derric specifica-
tion. The transformations are source-to-source transformations; as a result, the
generic code generator of Excavator can be reused to obtain a working format
validator from each transformed description.
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Using the transformations, we can distinguish four configurations of format
validator precision:

– Base: base validator (the most precise validator, based on the complete file
format description).

– NoCA: removal of all content analysis (e.g., removal of CRC checks, data
decompression, etc.).

– NoDD: removal of all data dependencies (e.g., a field’s value becomes un-
defined if it used to be equal to the contents of some other field’s value).

– Header: removal of all matching except header and footer patterns.

Although each transformation could be applied independently, for the purpose of
this paper we only consider the consecutive application of each transformation.
The effect of other combinations of transformations is left as future work. The
transformations are described in more detail below.

Remove Content Analysis. The most computationally expensive technique is
content analysis, which is the interpretation and validation of a file’s content, as
opposed to matching structural metadata. For instance on lines 22–26 of Figure 3
a CRC32 over each Chunk of PNG data is defined using the checksum keyword.
Additionally, lines 43–46 describe the compression scheme used by the IDAT
structure using the compressed keyword. Removing these expensive analyses will
reduce running time significantly at the cost of missing some fragmented files
due to lower precision.

Removing content analysis consists of one of two rewrites, based on the field
the content analysis is defined on:

– If the field has an externally defined size, i.e., if it has a fixed value (such as
the CRC32’s four bytes) or references an outside value (such as the IDAT ’s
reference to its length field), the field’s value specification is removed. As a
result, the data will be skipped over instead of processed.

– When the end of a field is specified by an end marker as part of the content
analysis itself, the end marker is lifted out of the content analysis specifica-
tion to be used to specify the end of the field.

More precisely, the transformation is defined by the following two rules:

f: CA(x) size n; ⇒ f: size n;
f: CA(x, terminator=c); ⇒ f: terminatedBy c;

The first rule replaces a fixed-length field f which requires content-analysis CA
with a field of unknown data but of the same length. If the field f has no
fixed length, but a terminator constant c is specified in the content-analysis, the
content-analysis is removed, and field f is now terminatedBy c.

Remove Data Dependencies. The second transformation removes data de-
pendencies. All references to values or sizes defined elsewhere in the description
are removed. An example of this is the chunkdata field as shown on line 21 in
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Figure 3 where size depends on the value of length on line 19. There are two
types of data dependencies that are dealt with differently. First, if the contents
of a field are defined by reference to another field, the reference is removed by
clearing the content specification. The field’s value becomes “undefined”. The
transformation rule implementing this transformation is as follows:

f: E[f ′] size n ⇒ f: size n;

If the value of a fixed-length field f is defined by some expression E referencing
field f ′, the value specification is simply removed.

Second, if the size specification of a field depends on another field, the trans-
formation is more involved. It is not possible to clear the size specification of
a field just like with value dependencies, since then the position of a following
field or structure becomes undefined. Instead, we remove the entire field from its
containing structure. To ensure that the generated validator still works, we lo-
cate the first field f ′ that defines a constant value c that is required to follow the
removed field f ; if s does not define such a field itself, we find the first following
structure that does, using the format’s sequence. We replace the definition of f ′

with f ′: terminatedBy c;. To prevent backtracking in the generated validator, we
remove any non-mandatory structures (indicated by *, ?, and ()) inbetween f
and f ′. To find the first mandatory field that defines a constant, we use a simple
algorithm, similar to the computation of first-sets of context-free grammars [1].

Figure 4 shows the effect of a single transformation step to remove the size
dependency of the chunktype field of PNG’s IDAT structure3. In this example
the content-analysis and value dependencies have already been removed. In this
step, the chunkdata field has been removed from IDAT. Additionally, the length
field of IEND has been changed to include the terminatedBy modifier, because it
is the first mandatory constant field following the removed chunktype field.

IDAT {
length: lengthOf(chunkdata) size 4;

chunktype: "IDAT";
chunkdata: size length;
crc: size 4;

}
IEND {

length: 0 size 4

...
}

⇒

IDAT {
length: size 4;
chunktype: "IDAT";

crc: size 4;
}
IEND {

length: terminatedBy 0 size 4
...

}

Fig. 4. Example of Remove Data Dependencies

3 Note that the IDAT structure no longer inherits from the Chunk structure; the
inheritance hierarchy has been flattened during normalization.
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sequence

s e

structures
s { header: 137, 80, 78, 71, 13, 10, 26, 10; }

e { footer: terminatedBy 0, 0, 0, 0, "IEND", 0xAE, 0x42, 0x60, 0x82; }

Fig. 5. Example of Reduce to Header/Footer

Reduce to Header-Footer Matching. The third and last model transfor-
mation reduces a format description to two patterns: one for the beginning and
one for the end of the file. This is the same strategy that is employed by the
Scalpel carver [17]. It requires file formats to have a clearly defined header
and footer, using only constants. As a result, a validator based on this descrip-
tion will hardly ever reject data since for every header some footer is very likely
to be found (assuming a large amount of files or fragments in the input data).
Fragmentation in the input data will lead almost certainly to false positives.
However, all recovered files are collected in a single linear pass over the input
data.

The transformation operates as follows. Let S be the largest sequence of non-
optional consecutive structures starting from the beginning of the sequence def-
inition of the file format. Let E be a similar list of structures, but now starting
backwards, from the end of the sequence definition. Now collapse both S and E
into single structures s and e by taking the largest sequence of constant fields
starting from the beginning and the end respectively, and concatenating consec-
utive field constants into single constants a and b. Then define the structures s
and e as s { header: a; } and e { footer: terminatedBy b; }. Finally, construct
a new file format with sequence s e. The resulting file format searches for the
constant header pattern a, and (if found) subsequently searches for the constant
footer pattern b.

Figure 5 shows the result of applying this transformation to the full PNG
description of Figure 3. Note that all consecutive constant fields in the IEND
structure have been merged into the single field footer to construct the largest
possible constant.

4 Evaluation

To evaluate the effect of the transformations we have applied them on three Der-
ric file format specifications, namely for JPEG, GIF and PNG. We have run the
resulting 3×4 = 12 carver configurations on a representative disk image of 1TB,
containing over a million recoverable files. We have then compared the difference
in runtime performance, precision and recall between the configurations.
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4.1 Development of Benchmark Disk Image

The largest publicly available disk image for exercising file carvers is 40GB in
size4. This, however, is not large enough to properly assess how an application
deals with scalability issues in practice. We have therefore developed our own
1TB test set based on data downloaded from Wikipedia. The size of Wikipedia
means we could get enough files to fill at least a significant part of the 1TB data
set we wanted to create. We used the latest available static dump of all images
on Wikipedia, which dates from 20085. Attempting to download all files from
that list resulted in around 50% errors due to missing files. The end result was a
usable set of over 1.2 million files with a total size of 357GB. An overview of how
the files are distributed over each type (JPEG, GIF and PNG) and their total
sizes is shown in the first column of Table 1.

These files were written into the test image file, spread out across the entire
1TB. Space between files (or fragments) was filled using 543GB of random data
and 100GB of only zeros. Although there is little known about the amount and
size of zero data blocks on hard drives, we believe 10% is a low estimate, which
means the test image is more challenging for file carvers (since zeros are relatively
easy to disqualify).

93% of the files have been written into the test image in contiguous blocks
and are therefore not fragmented. 3% has been split into two parts and the
remaining 4% has been divided into four equal size groups of 3, 4, 5–10 and 11–
20 fragments, corresponding to observations of fragmentation in the wild [10].
Splitting was done at random locations in the files, but always on a cluster
boundary of 4096 bytes, corresponding to the smallest common cluster size.

Table 1. Results per configuration for all three file formats

Format Configu- Running True False Precision Recall
ration time positives positives

JPEG Base 742m 882,511 0 100.0% 94.9%
input data: NoCA 295m 860,022 22,007 97.5% 92.4%

total files: 930,424 NoDD 231m 837,382 46,561 94.7% 90.0%
total size: 327GB Header 231m 837,382 46,561 94.7% 90.0%

GIF Base 320m 34,078 0 100.0% 93.2%
input data: NoCA 267m 33,210 702 97.9% 90.8%

total files: 36,576 NoDD 231m 32,912 2,780 92.2% 90.0%
total size: 3GB Header 231m 32,912 2,780 92.2% 90.0%

PNG Base 691m 222,660 0 100.0% 94.2%
input data: NoCA 280m 219,001 8,073 96.4% 92.6%

total files: 236,457 NoDD 231m 212,911 13,905 93.9% 90.0%
total size: 27GB Header 231m 211,790 14,577 93.6% 89.6%

4 http://digitalcorpora.org/corpora/disk-images
5 http://static.wikipedia.org/downloads/2008-06/en/images.lst

http://digitalcorpora.org/corpora/disk-images
http://static.wikipedia.org/downloads/2008-06/en/images.lst
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Fig. 6. Effect of each carver configuration on runtime performance

4.2 Execution of the Benchmark

The 12 carver configurations have been run on a 3.4GHz Intel Core i7-2600 with
8GB of RAM and an attached 2TB 10.000RPM SATA harddrive. The operating
system used was Ubuntu Linux 11.04, with Oracle’s JDK 1.6.0 update 13. The
results of each run are shown in Table 1. For each file type and configuration it
shows the wall clock running time in minutes in the third column. The fourth
and fifth column of each table display the number of true and false positives
respectively. True positive means a file has been recovered that was actually
present in the disk image. False positive means that the file carver recovered a
file erroneously, for instance, by combining a file header with the wrong footer.
The last two columns give precision and recall percentages. An overview of the
effect on runtime performance is shown graphically in Figure 6.

4.3 Analysis of Results

The fastest two configurations, NoDD and Header, require the same amount of
time to complete for each format. The 231m corresponds to the time required
to read through a terabyte of data on the hardware used, indicating that when
using the NoDD and Header configurations, the application is bound by the read
performance of the underlying platform. In other words, reading all data in a
single linear pass would take the same amount of time.

Additionally, on JPEG and GIF, both the NoDD and Header configurations
return exactly the same results, indicating that the final transformation does not
impact the quality of the results or runtime performance. However, on PNG the
situation is different: the NoDD configuration returns a little more true positives
and fewer false positives.

This difference can be traced to the fact that the descriptions for JPEG and
GIF both have a large variable block in the middle that is effectively eliminated
by the remove data dependencies transformation, while the PNG description
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does have a fixed structure at a variable location between the first and final
structure (the IDAT structure). This causes the PNG NoDD configuration to be
more discriminating than the Header configuration. The result is slightly higher
precision and recall.

For all three formats, the Base configuration returns no false positives, reach-
ing 100% precision. The Base descriptions are complete, which leads to validation
of all the contents of a candidate match. Since all three formats are compressed,
even a single missing or misplaced fragment will lead to errors during validation
and be rejected by the validator.

Another point of interest is the running time of the Base configuration. For
JPEG and PNG, this is both at least twice the time required to run the NoCA
configuration and at least three times the amount of time required to run the
NoDD and Header configurations. Two factors contribute to this. The first factor
is the relatively expensive operations by the validators. An example of this is
CRC calculation. Although an optimized implementation is used, due to frag-
mentation, the CRC is sometimes calculated over large blocks that end up not
being matches.

The second factor is the effect of fragment reordering in Excavator. When-
ever a validator rejects a candidate match, an additional check is performed to
determine whether a possible footer of the same file format is relatively close to
the error location. If this is the case, the clusters between the error location and
the matching footer are partially reordered and removed, running the valida-
tor on each combination to determine possible hits. To prevent a combinatorial
explosion, reordering is only enabled when the distance between error location
and footer is smaller than 2MB. Consequently, it is triggered by the most precise
validators. In the more permissive validators the gap size is either too large or
it is entirely undetected (and leads to a false positive in the results).

5 Discussion

Effects on Analysis Time. It can be argued that, although more permissive
validators will run faster, in practice, they may end up requiring more of the
investigator’s time, because there are more false positives to inspect. This time
could also be spent running the analysis using a higher precision validator. De-
pending on the legal case, however, it might be more valuable to have results
more quickly: even with more false positives, a crucial piece of evidence could
be found earlier.

With our current results we believe the transformed validators are a useful al-
ternative to the most precise validators, since the loss of precision and recall (8%
and 5% respectively) is relatively small compared to the gain in performance (be-
tween 40% and 320%). For example, for PNG, the fastest carver returns 211,790
true positives and 14,577 false positives but it requires only 1/3rd of the running
time of the most precise carver.

At the same time, the fastest validators do not make the original valida-
tors obsolete, considering that, after the fastest validator has finished, the most
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precise JPEG validator is able to recover 45,129 true positives in the extra 510
minutes.

An alternative approach is to use the more precise validators for only a short
period of time and use their intermediate results when time runs out. While this
is possible, there is a chance that the more precise validator will spend a lot of
time near the beginning of the disk image recovering a fragmented file, while the
fastest validator (which does not reject anything) will skip over it and return all
the relatively simple matches directly.

Another alternative approach is to use one of the fastest validators and run
the most precise validator on the results to remove false positives. This may help
all carver configurations achieve 100% precision.

Other File Formats. Our experiment takes three popular image file formats
and shows how the described model transformations affect runtime performance
and precision of the generated validators from their descriptions. A question is
whether this approach works as well on other file formats. There is a strong
indication that they will perform similarly, considering that most forensically
interesting file formats tend to either be multimedia, document or container files.
All three of these types of files often have features comparable to the image file
types we used: extensive metadata, compressed contents and well-defined headers
and footers. Examples of forensically interesting file types that are structured
similarly are AVI and MPEG for multimedia, XLS and PDF for documents, and
ZIP and RAR for containers. In future work we will apply Excavator and the
model transformations on Derric descriptions of these file formats.

6 Related Work

Transformation for optimization is as old as the theory of compiler construc-
tion [2]. Moreover, transformation is considered to be one of the cornerstones of
model-driven engineering [18,4] and generative programming [9]. In both areas
the objective is to specify the essential variability of an application domain at
high levels of abstraction, and then generating the low-level code automatically.
The commonality of an application domain is captured by such transformations.
We have applied this well-known pattern in the context of digital forensics.

Domain-specific analysis, verification, optimization, parallelization and trans-
formation (AVOPT) are well-known reasons for DSL development [14]. In partic-
ular, for optimization, the explicit representation of high-level domain concepts
can be used by a compiler in order to generate code that is more efficient. Such
optimizations are very hard to obtain in the context of ordinary, hand-written
programs, since the high-level domain concepts are lost in low-level code. In this
paper we have shown how to use domain concepts of Derric (content analysis,
data dependencies and header/footer) in order to obtain faster file carvers.

In [7] the authors present a model and strategy for transforming source code
in order to reduce the energy consumption of a program. It includes an explicit
cost model of both the transformations and the object program. Our transfor-
mations themselves are very inexpensive, and the cost model for file carving is
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based solely on the most expensive operations at runtime. Another instance of
applying model transformation for optimization is presented in [6]. The authors
apply a number of successive transformations on BIP (Behavior, Interaction,
Priorities) models to obtain a single monolithic, efficient program. The Derric
model transformations operate in the same way in that they remove overhead
elements from the input model. What makes our transformations different from
such approaches, however, is that the transformations are not (strictly) seman-
tics preserving, as they discard information. As such the transformations can be
considered approximations, in a similar way that context-free grammars can be
approximated by regular expressions [15].

Our software toolExcavator represents the state-of-the-art in digital forensics
data recovery, implementing fragmented file recovery [10,8] and a stream-based
processing model [11]. Furthermore, our model-driven approach distinguishes
itself by allowing high-level specification of elaborate data structures not imple-
mented in popular file carvers. By comparison, PhotoRec [12] requires hand-
written format validators and Scalpel [17] employs regular expressions for
format validation.

7 Conclusion

Modifiability, runtime performance and scalability are the major challenges in
digital forensics software construction. Moreover, forensic investigations are often
constrained by very strict deadlines. As a result digital forensics software is often
modified on a case-by-case basis. This just-in-time “carver hacking” is error prone
and time consuming.

In previous work we have introduced a model-driven approach to digital foren-
sics software development, Derric, which improves performance and modifia-
bility by generating efficient code from high-level file format descriptions. In
this paper we introduced three source-to-source model transformations on Der-
ric descriptions in order to make the trade-off between precision and runtime
performance configurable. This allows investigators to choose performance over
precision if time constraints should require so, or the other way around,—without
having to change any code.

The effect of the model transformations is evaluated on a 1TB disk image
containing over a million recoverable files, specifically constructed to resemble a
realistic file carving scenario. Our results show that performance gains up to a
factor of three can be achieved. This comes at a loss of up to 8% in precision
and 5% in recall.
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