
Modular Interpreters with Implicit Context Propagation

Pablo Inostrozaa, Tijs van der Storma

aCentrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands

Abstract

Modular interpreters are a crucial first step towards component-based language devel-
opment: instead of writing language interpreters from scratch, they can be assembled
from reusable, semantic building blocks. Unfortunately, traditional language inter-
preters can be hard to extend because different language constructs may require differ-
ent interpreter signatures. For instance, arithmetic interpreters produce a value without
any context information, whereas binding constructs require an additional environment.

In this paper, we present a practical solution to this problem based on implicit
context propagation. By structuring denotational-style interpreters as Object Alge-
bras, base interpreters can be retro-actively lifted into new interpreters that have an
extended signature. The additional parameters are implicitly propagated behind the
scenes, through the evaluation of the base interpreter.

Interpreter lifting enables a flexible style of modular and extensible language de-
velopment. The technique works in mainstream object-oriented languages, does not
sacrifice type safety or separate compilation, and can be easily automated, for instance
using macros in Scala or dynamic proxies in Java. We illustrate implicit context prop-
agation using a modular definition of Featherweight Java and its extension to support
side-effects, and an extensible domain-specific language for state machines. We finally
investigate the performance overhead of lifting by running the DeltaBlue [13] bench-
mark program in Javascript on top of a modular implementation of LambdaJS [16],
and a dedicated micro-benchmark. The results show that lifting makes interpreters
roughly twice as slow because of additional call overhead. Further research is needed
to eliminate this performance penalty.

1. Introduction

Component-based language development promises a style of language engineering
where languages are constructed by assembling reusable building blocks instead of
writing them from scratch. This style is particularly attractive in the context of language-
oriented programming (LOP) [44], where the primary software development artifacts
are multiple domain-specific languages (DSLs). Having a library of components cap-
turing common language constructs, such as literals, data definitions, statements, ex-

Email addresses: pvaldera@cwi.nl (Pablo Inostroza), storm@cwi.nl (Tijs van der Storm)

Preprint submitted to Elsevier August 1, 2016

http://www.cwi.nl

pressions, declarations, etc., would make the construction of these DSLs much easier
and as a result has the potential to make LOP much more effective.

Object Algebras [35] are a design pattern that supports type-safe extensibility of
both abstract syntax and interpretations in mainstream, object-oriented (OO) languages.
Using Object Algebras, the abstract syntax of a language fragment is defined using a
generic factory interface. Operations are then defined by implementing these inter-
faces over concrete types representing the semantics. Adding new syntax corresponds
to modularly extending the generic interface, and any pre-existing operation. New op-
erations can be added by implementing the generic interface with a new concrete type.

Object Algebras can be seen as extensible denotational definitions: factory meth-
ods essentially map abstract syntax to semantic denotations (objects). Unfortunately,
the extensibility provided by Object Algebras breaks down if the types of denotations
are incompatible. For instance, an evaluation component for arithmetic expressions
might use a function type ()→ Val as semantic domain, whereas evaluation of binding
expressions requires an environment and, hence, might be expressed in terms of the
type Env→ Val. In this case, the components cannot be composed, even though they
are considered to represent the very same interpretation, namely evaluation.

In this paper we resolve such incompatibilities for Object Algebras defined over
function types using implicit context propagation. An algebra defined over a function
type T0 × ...×Tn →U is lifted to a new algebra over type T0 × ...×Ti × S×Ti+1 × ...×
Tn →U. The new interpreter implicitly propagates the additional context information
of type S through the base interpreter, which remains blissfully unaware. As a result,
language components do not need to standardize on a single type of denotation, antic-
ipating all possible kinds of context information. Instead, each semantic component
can be defined with minimal assumptions about its semantic context requirements.

We show that the technique is quite versatile in combination with host language
features such as method overriding, side effects and exception handling, and can be
naturally applied to interpretations other than dynamic semantics. Since the technique
is so simple, it is also easy to automatically generate liftings using a simple code gen-
erator or dynamic proxies [37]. Finally, two case studies concerning a simple DSL and
a simplified programming language illustrate the flexibility offered by implicit context
propagation in modularizing and extending languages.

The contributions of this paper can be summarized as follows:

• We present implicit context propagation as a solution to the problem of modu-
larly adding semantic context parameters to existing interpreters (Section 3).

• We show the versatility of the technique by elaborating on how implicit context
propagation is used with delayed evaluation, overriding, mutable context infor-
mation, exception handling, continuation-passing style, languages with multiple
syntactic categories, generic desugaring of language constructs and interpreta-
tions other than dynamic semantics (Section 4).

• We present a simple, annotation-based Scala macro to generate boilerplate lifting
code automatically and show how lifting can be implemented generically using
dynamic proxies in Java (Section 5).

2

• To illustrate the usefulness of implicit context propagation in a language-oriented
programming setting, we provide a case study of extending a simple language for
state machines with 3 new kinds of transitions (Section 6).

• The techniques are furthermore illustrated using an extremely modular imple-
mentation of Featherweight Java with state [24, 11]. This allows us to derive
127 hypothetical variants of the language, out of 7 given language fragments
(Section 7).

• Interpreter lifting introduces additional runtime overhead. We investigate this
overhead empirically by running the DeltaBlue [13] benchmark in Javascript on
top of a modular implementation of LambdaJS (λJS) [16]. The results show that
a single level of lifting makes interpreters roughly twice as slow. Executing a
dedicated loop-based micro-benchmark shows that additional call overhead is
the prime cause of the slow down (Section 8).

Implicit context propagation using Object Algebras has a number of desirable proper-
ties. First, it preserves the extensibility characteristics provided by Object Algebras,
without compromising type safety or separate compilation. Second, semantic compo-
nents can be written in direct style, as opposed to continuation-passing style or monadic
style, which makes the technique a good fit for mainstream OO languages. Finally, the
lifting technique does not require advanced type system features and can be directly
supported in mainstream OO languages with generics, like Java or C#.

This paper extends an earlier paper [25] with additional examples of implicit con-
text propagation in Sections 4.1 and 4.5, the implementation of lifting using dynamic
proxies (Section 5.2), a new case study (Section 6), an investigation of the performance
overhead of lifting (Section 8), and an expansion of the related work discussion in Sec-
tion 9.

2. Background

2.1. Problem Overview

Table 1 shows two attempts at extending a language consisting of literal expressions
with variables in a traditional OO style1. The first row contains the base language
implementation and the second row shows the extension. The columns represent two
styles characterized as “anticipation” and “duplication” respectively. In each column,
the top cell shows the “base” language, containing only literal expressions (Lit). The
bottom cell shows the attempt to add variable expressions to the implementation.

The first style (left column) captures the traditional OO extension where a new AST
class for variables (Var) is added. The extension is successful, since the base language

1All code examples are in Scala [34] (http://www.scala-lang.org). We extensively use Scala
traits, which are like interfaces that may also contain method implementations and fields. We also assume
an abstract base type for values Val and a sub-type for integer values IntVal; throughout our code examples
we occasionally elide some implicit conversions for readability.

3

http://www.scala-lang.org

Anticipate Duplicate

Base
Language

trait Exp { def eval(env: Env): Val }

class Lit(n: Int) extends Exp {
def eval(env: Env) = n

}

class Add(l: Exp, r: Exp)
extends Exp {

def eval(env: Env) =
l.eval(env) + r.eval(env)

}

trait Exp { def eval: Int }

class Lit(n: Int) extends Exp {
def eval = n

}

class Add(l: Exp, r: Exp)
extends Exp {

def eval = l.eval + r.eval
}

Extended
Language

class Var(x: String) extends Exp {
def eval(env: Env) = env(x)

}

trait Exp2 {
def eval(env: Env): Val

}

class Lit2(n: Int) extends Exp2 {
def eval(env: Env) = n

}

class Add2(l: Exp2, r: Exp2)
extends Exp2 {

def eval(env: Env)
= l.eval(env) + r.eval(env)

}

class Var(x: String) extends Exp2 {
def eval(env: Env) = env(x)

}

Table 1: Two attempts at adding variable expressions to a language of addition and
literal expressions. On the left, the Lit and Add classes anticipate the use of an environ-
ment, without actually using it. On the right, the semantics of Lit and Add need to be
duplicated.

4

anticipates the use of the environment. Unfortunately, the anticipated context param-
eter (env) is not used at all in the base language. Furthermore, anticipating additional
context parameters, such as stores, leads to more unnecessary pollution of the evalu-
ation interface in the base language. The main drawback of this style is that it breaks
open extensibility. At the moment of writing the base language implementation, the
number of context parameters is fixed, and no further extensions are possible without
a full rewrite.

The second style (right column) does not anticipate the use of an environment,
and the implementation of Lit is exactly as one would desire. No environment is used,
and so it is not referenced either. To allow the recursive evaluation of expressions in
the extension, however, the abstract interface Exp needs to be replaced to require an
environment-consuming eval. Consequently, the full logic of Lit evaluation needs to be
reimplemented in the extension as Lit2. If more context parameters are needed later, the
extended classes need to be reimplemented yet again. In fact, in this style, there is no
reuse whatsoever.

To summarize, the traditional OO style of writing an interpreter supports extension
of syntax (data variants), but only if the evaluation signatures are the same. As a result,
any context parameters that might be needed in future extensions have to be anticipated
in advance to realize modular extension. In the next section we reframe the example
language fragments in the Object Algebras [35] style, providing the essential ingredient
to solve the problem using implicit context propagation.

2.2. Object Algebras
Using Object Algebras the abstract syntax of a language is defined as a generic factory
interface. For instance, the base language abstract syntax of Table 1 is defined as the
following trait:

trait Arith[E] {
def add(l: E, r: E): E
def lit(n: Int): E

}

Because the trait Arith is generic, implementations of the interface must choose a
concrete semantic type of Arith expressions. In abstract algebra parlance, the factory
interface corresponds to an algebraic signature, the generic type E is a syntactic sort,
and implementations of the interface are algebras binding the generic sort to a concrete
carrier type. Carrier types can be any type supported by the host language (i.e. Scala),
but in this paper we only consider function types.

An evaluation algebra for the Arith language could be implemented as follows:
type Ev = () => Val

trait EvArith extends Arith[Ev] {
def add(l: Ev, r: Ev) = () => IntVal(l() + r())

def lit(n: Int) = () => IntVal(n)
}

The type alias Ev defines a carrier type consisting of nullary functions returning a
value of type Val. Terms over the algebra are constructed by invoking the methods of
the algebra:

5

def onePlusTwo[E](alg: Arith[E]): E = alg.add(alg.lit(1), alg.lit(2))

val eval = onePlusTwo(new EvArith {})
println(eval()) // => 3

The generic function onePlusTwo accepts an algebra of type Arith and constructs a term
over it. Invoking this function with the evaluation algebra EvArith gives an object of
type Ev which can be used to evaluate the expression add(lit(1), lit(2)).

Now let us extend Arith with variable expressions, as was attempted in Table 1. First
the abstract syntax is defined using a generic trait:

trait Var[E] { def vari(x: String): E }

The syntax for both fragments can be combined using trait inheritance:

trait ArithWithVar[E] extends Arith[E] with Var[E]

For evaluating variables, we can implement the interface over a carrier type EvE which
accepts an environment:

type EvE = Env => Val
trait EvVar extends Var[EvE] {
def vari(x: String) = env => env(x)

}

Unfortunately, this trait cannot be composed with EvArith because the carrier types
are different: EvArith is defined over Ev whereas EvVar is defined over EvE. In order
to compose the two syntactic interfaces, both carrier types have to be the same. In
this case, however, the evaluation semantics of the language fragments require differ-
ent context information, which prevents the components from being combined. We
actually observe the same problem as shown in Table 1!

Fortunately, Object Algebras also support modular extension with new operations.
This means that it is possible to modularly define a trait for a different interpretation of
the same syntax:

trait EvEArith extends Arith[EvE] {
...

}

This trait defines arithmetic expressions over the carrier type EvE instead of Ev. Inter-
nally this trait will delegate to the original EvArith which was defined over the type Ev.
In the next section we describe this pattern in more detail.

3. Implicit Context Propagation

We have seen how the incompatibility between Object Algebras defined over differ-
ent function types precludes extensibility. In this section we introduce implicit context
propagation as a technique to overcome this problem, by first extending the Arith lan-
guage to support variable binding, and then generalizing the pattern to support the
propagation of other kinds of the context information.

6

trait Binding[E] {
def lambda(x:Str, b:E): E
def vari(x:Str): E
def apply(e1:E, e2:E): E
def let(x:Str, e:E, b:E): E

}

type EvE = Env => Val
type Env = immutable.Map[Str,Val]

class Clos(x:Str,b:EvE,e:Env) extends Val {
def apply(v: Val): Val = b(e + (x -> v))

}

trait EvEBinding extends Binding[EvE] {
def lambda(x: Str, b: EvE)
= env => new Clos(x, b, env)

def vari(x: Str): EvE = env => env(x)

def apply(e1: EvE, e2: EvE)
= env => e1(env).apply(e2(env))

def let(x:Str, e:EvE, b:EvE)
= env => b(env + (x -> e(env)))

}

Figure 1: A language fragment with binding constructs

add(• , •) () => •()+•()

lit(1) lit(2) () => 1 () => 2

env => base.add(() => •(env), () => •(env))()

env => base.lit(1)() env => base.lit(2)()

() => •() + •()

() => 1 () => 2

Figure 2: The left column shows how the expression add(lit(1), lit(2)) is mapped to its denotation by
EvArith; the nodes in the tree are of type Ev (() => Val). On the right, the result of lifting the denota-
tion produced by EvArith to the type EvE (Env => Val) to propagate environments. The dotted arrows
indicate evaluation of Scala expressions; the solid arrows represent references.

3.1. Adding Environments to Arithmetic Expressions
The language fragment of expressions that require environments is shown in Figure 1.
The Binding language defines four constructs: lambda (functions), vari (variables), apply
(function application) and let (binding). The carrier type is EvE, a function from en-
vironments to values. To support lambdas, the Val domain is extended with closures
(Clos). The interpreter on the right evaluates lambdas to closures. Variables are looked
up in the environment. Function application expects that the first argument evaluates
to a closure and applies it to the value of the second argument. Finally, let evaluates its
third argument in the environment extended with a variable binding.

We now discuss the implementation of the environment-passing interpreter for the
Arith language using implicit context propagation. As described in Section 2, two Ob-
ject Algebra interpreters can be combined if they are defined over the same carrier type.
In this case, this means that EvArith needs to be lifted to an EvEArith which is defined
over the carrier type EvE, i.e., Env => Val:

trait EvEArith extends Arith[EvE] {
private val base = new EvArith {}

def add(l: EvE, r: EvE): EvE = env => base.add(() => l(env), () => r(env))()

7

def lit(n: Int): EvE = env => base.lit(n)()
}

Instead of reimplementing the semantics for the arithmetic operations, the code for
each variant delegates to the base field initialized with EvArith. The interpreter EvEArith
shows the actual propagation of the environment in the method for add. Invoking add
on the base algebra requires passing in arguments of type Ev. This is achieved with
the inline anonymous functions. Each of these closures calls the actual arguments of
type EvE (l and r). Since both these arguments expect an environment, we pass in the
original env that corresponds to the argument of the closure denoted by add.

In order to visualize lifting, Figure 2 shows the evaluation of add(lit(1), lit(2)) over
EvArith (left) and over the lifted algebra EvEArith. On the left the result is a tree of
closures of type Ev. The right shows how each closure is lifted to a closure of type
EvE. Note that each of the closures in the denotation on the left is also present in the
denotation on the right, but that they are connected via intermediate closures on the
right.

The two languages can now be combined as follows:
trait EvEArithBinding extends EvEArith with EvEBinding

The following client code shows how to create terms over this language:
def makeLambda[E](alg: Arith[E] with Binding[E]): E = {

import alg._
lambda("x", add(lit(1), vari("x")))

}

val term: EvE = makeLambda(new EvEArithBinding {})

The method makeLambda provides a generic way of creating the example term
lambda("x", add(lit(1), vari("x"))) over any algebra defining arithmetic and binding ex-
pressions. Invoking the method with an instance of the combined interpreter EvEArith-
Binding creates an object of type EvE.

3.2. Generating Implicit Context Propagation Code
The general pattern for generating context propagating code is shown in Figure 3. The
template is written in pseudo-Scala and defines a trait Alg(T ,U∗)⇒V , implementing the
language interface Alg over the function type (T, U*) => V. The asterisks indicate splic-
ing of formal parameters. For instance, U* capture zero or more type parameters in the
function signature (T, U*) => V. The same notation is used on ordinary formal parame-
ters, as shown in the closure returned by constructor method Ci .

As shown in Figure 3, the base algebra is instantiated with an algebra over function
type U* => V, which accepts one fewer parameter than the carrier type of Alg(T ,U∗)⇒V .
For each constructor, Ci , the lifting code follows the pattern as shown. For presentation
purposes, primitive arguments to Ci are omitted, and only arguments of the function
types are shown as f j , for j ∈ 1, ...,n.

This template concisely expresses the core mechanism of lifting. Notice, however,
that it assumes that the added parameter is prepended at the front of the base signature.
A realistic generation scheme would consider permutations of parameters. The macro-
based code generator discussed in Section 5 supports inserting the parameter anywhere
in the list.

8

trait Alg(T ,U∗)⇒V extends Alg[(T, U*) => V] {

val base = new AlgU∗⇒V {}

def Ci (f1: (T, U*) => V, ... , fn: (T, U*) => V):
(T, U*)=> V =

(t, u*) => base.Ci ((u1*) => f1(t, u1*), ..., (un*) => fn (t, un*))(u*)
· · ·

}

Figure 3: Template for generating lifted interpreters that propagate environment-like context parameters.

4. Working with Lifted Interpretations

The example languages we have discussed so far only considered expressions in a
purely functional framework. In this section, we discuss how implicit context prop-
agation can be used for introducing delayed evaluation, semantics overriding, muta-
ble parameters to model side-effects, exception handling for non-local control, lifting
of continuation-passing style interpreters, many-sorted languages, implementation by
desugaring, and interpretations other than dynamic semantics.

4.1. Delaying Evaluation

The interpreter for arithmetic expressions introduced in Section 2.2 is defined in terms
of the carrier type () => Val. Accordingly, the algebra produces closures that need to be
applied in order to obtain the final result. In this case, however, the denotations could
have simply had the type Val, as there is no need for delayed evaluation in this language
module.

In a certain sense using the carrier type () => Val for arithmetic expressions repre-
sents a form of anticipation: it is expected that arithmetic expressions will be used
together with expressions that do require delayed evaluation. For instance, defining
conditional expressions in an eager host language like Scala requires delayed evalu-
ation, otherwise both branches of the conditional are evaluated. This is clearly not
intended, especially in the presence of side effects.

It turns out, however, that lifting can be used to delay evaluation on top of an
algebra that computes results eagerly. Consider the following implementation of Arith
expressions:

trait ValArith extends Arith[Val] {
def add(l: Val, r: Val) = IntVal(l + r)
def lit(n: Int) = IntVal(n)

}

The carrier type is simply Val and expression evaluation is “immediate”: when
expressions are constructed over this algebra, they are actually immediately evaluated
without creating any intermediate closures. ValArith can now be lifted to produce thunks
instead of values, as follows:

9

trait DelayedValArith extends Arith[Ev] {
private val base = new ValArith {}

def add(l: Ev, r: Ev): Ev = () => base.add(l(), r())
def lit(n: Int): Ev = () => base.lit(n)

}

This version of arithmetic evaluation corresponds to the original EvArith introduced in
Section 2.2 and can be composed with, for instance, implementations of conditional ex-
pressions. Lifting was characterized as interleaving the construction of the expressions
on the base algebra with evaluating them. In this case, one can see that construction
and evaluation actually coincide.

4.2. Overriding Interpretations: Dynamic Scoping

The propagation of environments presented in Section 3 obeys lexical scoping rules for
all implicitly-propagated parameters. Some context information, however, should not
be lexically scoped, but dynamically scoped. Typical examples include the binding of
self or this in OO languages, dynamic contexts in context-oriented programming [23],
or simply dynamically scoped variables [20].

Consider the following language fragment for introducing dynamically scoped vari-
ables, similar to fluid-let in Scheme [19]:

trait DynLet[E] { def dynlet(x: String, v: E, b: E): E }

The construct dynlet binds a variable x to a value in both the lexical and dynamic
environment. The dynamic variable can then be referenced in the scope of dynlet using
the ordinary vari of the Binding fragment (cf. Figure 1).

As an example of the dynamically scoped propagation, consider the following ex-
ample term defined over the combination of Arith, Binding, and DynLet. The left column
shows the abstract syntax, the right column shows the same program in pseudo con-
crete syntax:

dynlet("x", lit(1),
let("f", lambda("_", add(vari("x"), lit(1))),
dynlet("x", lit(2),
let("z", dynlet("x", lit(3),

apply(vari("f"), lit(1))),
add(vari("z"), vari("x"))))))

dynlet x = 1 in
let f = λ _ . x + 1 in

dynlet x = 2 in
let z = (dynlet x = 3 in f(1)) in

z + x

This program dynamically binds x to 1, in the scope of the let which defines f as a lambda
dynamically referring to x. The value of x thus depends on the dynamic scope when
the closure f is applied to some argument. Nested within the let is another dynamic let
(dynlet) which overrides the value of x. The innermost let then defines a variable z with
the value of applying f to 1. This application is itself inside another dynamic let, yet
again redefining x. So the result of this application will be 4, as the innermost dynamic
scope defines x to be 3. In the body of the innermost normal let, however, the active
value of x is 2, so the final addition z + x evaluates to 6.

The implementation of dynlet is straightforward by using an extra parameter of type
Env representing the dynamic environment.

10

type EvEE = (Env, Env) => Val

trait EvEEDynLet extends DynLet[EvEE] {
def dynlet(x: String, v: EvEE, b: EvEE)
= (env, denv) => { val y = v(env, denv); b(env + (x -> y), denv + (x -> y)) }

}

Notice that since the static and the dynamic environment both have the same type,
the signature of the carrier type makes the interpretation order-dependent. We discuss
strategies for disambiguation in these scenarios when presenting automated lifting in
Section 5.

To combine the lexically scoped Binding fragment with the dynamically scoped
DynLet fragment, EvEBinding (cf. Figure 1) needs to be lifted so that it propagates the
dynamic environment. Implicit propagation can be used to obtain EvEEBinding. Unfor-
tunately, the dynamic environment is now inadvertently captured when lambda creates
the Clos object.

To work around this problem, the implementation of lambda and apply in EvEEBinding
should be overridden, to support the dynamic environment explicitly:

class DClos(x: String, b: EvEE, env: Env) extends Val {
def apply(denv: Env, v: Val): Val = b(env ++ denv + (x -> v) , denv) // denv shadows env

}

trait EvEEBindingDyn extends EvEEBinding {
override def lambda(x: Str, b: EvEE): EvEE = (env, denv) => new DClos(x, b, env)

override def apply(e1: EvEE, e2: EvEE): EvEE
= (env, denv) => e1(env, denv).apply(denv, e2(env, denv))

}

The closure class DClos differs from Clos only in the extra denv parameter to the apply
method. The supplied dynamic environment denv is added to the captured environment,
so that a dynamically scoped variable x (introduced by dynlet) will shadow a lexically
scoped variable x (if any).

Although the existing lambda and apply could not be reused, one could argue that
adding dynamically scoped variables to a language is not a proper extension which
preserves the semantics of all base constructs. In other words, adding dynamic scoping
literally changes the semantics of lambda and apply.

4.3. Mutable Parameters: Stores

The previous section showed how the lexical scoping of propagated parameters was
circumvented through overriding the semantics of certain language constructs. Another
example of context that should not be lexically scoped is a store for modeling side
effects. In this case, however, the parameter should also not obey stack discipline as
it did for the dynamic environment. Instead, we achieve this by propagating mutable
data structures. Consequently, all interpreter definitions will share the same store, even
when they are captured when closure objects are created.

Consider a language Storage which defines constructs for creating cells (create),
updating cells (update) and inspecting them (inspect):

11

trait Storage[E] {
def create(): E
def update(c: E, v: E): E
def inspect(c: E): E

}

The simplest approach to implement an interpreter for such expressions is to use
a mutable store as a parameter to the interpreter. For instance, the following type
declarations model the store as a mutable Map and the interpreter as a function from
stores to values:

type Sto = mutable.Map[Cell, Val]
type EvS = Sto => Val

The interpreter for Storage could then be defined as follows2:

trait EvSStorage extends Storage[EvS] {
def create() = st => ...
def update(c: EvS, v: EvS) = st => ...
def inspect(c: EvS) = st => ...

}

To compose the Arith language defined in Section 2.2 with Storage, the EvArith inter-
preter needs to be lifted in order to propagate the store. Since Sto is a mutable object,
side-effects will be observable even though the propagation follows the style of propa-
gating environments.

Unsurprisingly, perhaps, mutable data structures are an effective way of supporting
side-effecting language constructs. It is interesting to contemplate whether it is possible
instead to lift interpreters that thread an immutable store through the base evaluation
process, without depending on mutation. We have experimented with a scheme that
uses a private mutable variable, local to the traits containing the lifted methods.

The following example is a failed attempt at lifting EvArith to thread an immutable
store (represented by the type ISto). Since the store is immutable, the carrier type EvS2S
takes an ISto and produces a tuple containing the return value and the (possibly) updated
store.

type ISto = immutable.Map[Cell,Val]
type EvS2S = ISto => (Val, ISto)

trait EvS2SArith extends Arith[EvS2S] {
private val base = new EvArith {}
private var _st: ISto = _

def add(l: EvS2S, r: EvS2S)
= st => { _st = st;

(base.add(() => {val (v1, s1) = l(_st); _st = s1; v1},
() => {val (v2, s2) = r(_st); _st = s2; v2}

)(), _st)
}

...
}

2For brevity, we have elided the actual, straightforward implementation of the storage constructs.

12

class Fail extends Exception

trait Choice[E] {
def or(l: E, r: E): E
def fail: E

}

trait EvChoice extends Choice[Ev] {
def or(l: Ev, r: Ev): Ev
= () => try { l() } catch { case _:Fail => r() }

def fail(): Ev = () => throw new Fail
}

Figure 4: Implementing local backtracking with exception handling.

At every evaluation step, the private variable _st is synchronized with the currently
active store returned by sub expressions; since the current value of _st is also passed
to the subsequent evaluation of sub terms, side effects are effectively threaded through
the evaluation.

Unfortunately, this scheme breaks down when two different lifted traits have their
own private _st field. As a result, expressions only see the side-effects enacted by
expressions within the same lifting, but not the side-effects which originate from other
lifted traits. It would be possible to share this “current store” using an ambient, global
variable, allowing different traits (lifted or not) to synchronize on the same store. Such
a global variable, however, compromises the modularity of the components and would
complicate the code generation considerably, especially in the presence of multiple
store-like context parameters.

Since simulating mutable context information by threading immutable data breaks
modularity and modularity is key to our approach, we instead depend on the support
for mutable data structures in the host language in order to represent side-effects in the
object language.

4.4. Exception Handling: Backtracking

Many non-local control-flow language features can be simulated using exception han-
dling. A simple example is shown in Figure 4, which contains the definition of a
language fragment for (local) backtracking. The or construct first tries to evaluate its
left argument l, and if that fails (i.e., the exception Fail is thrown), it evaluates the right
argument r instead. Note that EvChoice does not require any context information and is
simply defined over the carrier type Ev.

If EvChoice is lifted to EvEChoice to implicitly propagate environments, the excep-
tion handling still provides a faithful model of backtracking, because the environments
are simply captured in the closures l and r. In other words, upon backtracking – when
the Fail exception is caught – the original environment is passed to r.

trait EvEChoice extends Choice[EvE] {
private val base = new EvChoice {}

def or(l: EvE, r: EvE): EvE = env => base.or(() => l(env), () => r(env))()

def fail() = env => base.fail()()
}

For instance, evaluating the following term using this algebra, results in the correct
answer (1):

13

type EvK = (Val => Unit) => Unit

trait EvKArith extends Arith[EvK] {
def add(l: EvK, r: EvK): EvK = k => l(v1 => r(v2 => k(IntVal(v1+v2))))
def lit(n: Int): EvK = k => k(IntVal(n))

}

Figure 5: CPS evaluator for arithmetic expressions.

let("x", lit(1), or(let("x", lit(2), fail()), vari("x")))

Notice, however, that we face a limitation if we want to compose backtracking with
mutable context, e.g., the store. Since the store inherits the mutable semantics from the
host language, it is not trivial to customize the interaction with the backtracking be-
havior. For instance, in order to support transaction-reversing choice we might naively
assume that we just need to lift EvChoice to EvSChoice (an interpreter that accepts the
store). Unfortunately, the resulting interpreter has the wrong semantics. It does not
rollback the transactions upon failure, because the captured stores are mutated at the
level of the host language. An alternative is to override the semantics of the Choice
interpreter in order to keep track of mutable stores at each choice point (like dynamic
let required overriding lambda and apply). This leads to a contrived implementation
that works around the limitations of the host language semantics. Moreover, in the case
there are interactions with more mutable parameters, all of them must be considered,
leading to more overriding. In summary, lifting does not automatically handle the inter-
action between non-local control flow extensions and extensions that require mutable
parameters.

4.5. Continuation-Passing style

In the introduction, we argue that one of the benefits of our approach to language mod-
ularity is that the semantic components can be written in direct style (as opposed to
continuation-passing style or monadic style). However, some language features might
in fact require a different formulation of interpreters. For instance, not all non-local
control flow features are conveniently expressed using exception handling. One case
in point is Scheme’s call-with-current-continuation (callcc) [1], which allows arbitrary
capturing of the “remainder of a computation” (the continuation). We show that inter-
preter lifting can still be applied if all interpreters are coded in continuation-passing
style (CPS) [39].

Consider, for instance, CPS evaluators for the Arith language shown in Figure 5.
The carrier type EvK is defined as a function from a continuation (a function consum-
ing a value) to the unit type (Unit in Scala). CPS interpreters never return a value, but
always call the given continuation to continue evaluation. For instance, add is defined
by a call to the l argument, passing a new continuation, which, when called, invokes
the r argument with yet another continuation. If that continuation is invoked, the orig-
inal continuation k is invoked with the result of the addition. The key aspect of CPS
interpreters is that all forms of sequencing are made completely explicit in terms of
function composition.

14

Assuming that we want to propagate an environment through the evaluation of
EvKArith evaluator in order to combine it with binding expression, then the propagating
strategy is the same as the one we have already observed:

trait EvEKArith extends Arith[EvEK] {
private val base = new EvKArith {}

def add(l: EvEK, r: EvEK): EvEK = (e, k) => base.add(k_ => l(e, k_), k_ => r(e, k_))(k)
def lit(n: Int): EvEK = (e, k) => base.lit(n)(k)

}

The base add function receives functions of type EvK which call the original l and r
propagating the environment e.

Note that the current continuation (k) acts just like any other context parameter.
It is therefore tempting to think that lifting could be used to convert a direct style
interpreter into a CPS interpreter. Unfortunately, direct style interpreters depend on the
host language for their evaluation strategy. As a result, it is impossible to recover the
implicit sequencing going on in base interpreters and make it explicit using CPS.

4.6. Many-sorted Languages: If-Statements

Up till now, the language components only have had a single syntactic category, or
sort, namely expressions. In this section we discuss the propagation in the presence of
multiple syntactic categories, such as expressions and statements.

In the context of Object Algebras, syntactic sorts correspond to type parameters
of the factory interfaces. For instance, the following trait defines a language fragment
containing if-then statements:

trait If[E, S] { def ifThen(c: E, b: S): S }

The ifThen construct defines a statement, represented by S, and it contains an ex-
pression E as a condition.

The interpreter for ifThen makes minimal assumptions about the kinds of expres-
sions and statements it will be composed with. Therefore, E is instantiated to Ev
(() => Val; see above), and S is instantiated to the type Ex:

type Ex = () => Unit

trait EvIf extends If[Ev, Ex] {
def ifThen(c: Ev, b: Ex): Ex = () => if (c()) b()

}

The type Ex takes no parameters, and produces no result (Unit). The ifThen construct
simply evaluates the condition c and if the result is true, executes the body b.

A first extension could be the combination with statements that require the store,
like assignments. Statements that require the store are defined over the type ExS =

Sto => Unit. As a result, EvIf needs to be lifted to map type Ex to ExS. Since the only
argument of ifThen that has type Ex is the body b, lifting is only applied there. In the
current language, expressions do not have side-effects, so they do not require the store,
and consequently do not require lifting:

type ExS = Sto => Unit

15

trait ExSIf extends If[Ev, ExS] {
private val base = new EvIf {};

def ifThen(c: Ev, b: ExS) = st => base.ifThen(c, () => b(st))()
}

Note that the argument c is passed directly to base.ifThen.
An alternative extension is to add expressions which require an environment. In

Section 3.1 such expressions were defined over the type EvE = Env => Value. In this
case, EvIf needs to be lifted so that ifThen can be constructed with expressions requiring
the environment. In other words, c: Ev needs to be lifted to c: EvE. However, since an
actual environment is needed to invoke a function of type EvE, the result sort Ex also
needs to be lifted to accept an environment:

type ExE = Env => Unit

trait EvEIf extends If[EvE, ExE] {
private val base = new EvIf {}

def ifThen(c: EvE, b: ExE) = env => base.ifThen(() => c(env), () => b(env))
}

In this lifting code, the invocation of c requires an environment, and thus the closure
returned by ifThen needs to be of type ExE to accept the environment and pass it to c.

The context parameters propagate outwards according to the recursive structure of
the language. At the top level, the signature defining the semantics of a combination of
language fragments will accept the union of all parameters needed by all the constructs
that it could transitively contain.

4.7. Desugaring: Let
Desugaring is a common technique to eliminate syntactic constructs (“syntactic sugar”)
by rewriting them to more basic language constructs. As a result, the implementation of
certain operations (like compilation or interpretation) becomes simpler because there
are fewer cases to consider.

Desugaring in Object Algebras is realized by directly calling another factory method
in the algebra. Note that methods in traits in Scala do not have to be abstract. As a re-
sult, desugarings can be generically implemented directly in the factory interface. The
same, generic desugaring can be reused in any concrete Object Algebra implementing
the syntactic interface.

As an example, recall the Binding language of Figure 1. It defines a let constructor
which was implemented directly in the right column of Figure 1. Instead, let can be
desugared to a combination of lambda and apply:

trait Let[E] extends Binding[E] {
def let(x:Str, e:E, b:E) = apply(lambda(x, b), e)

}

This trait generically rewrites let constructs to applications of lambdas, binding the
variable x in the body b of the let. Since the desugaring is generic, it can be reused
for multiple interpreters, including the ones resulting from lifting. If EvEBinding (Fig-
ure 1) is lifted to propagate the store, for instance, the desugaring would automatically
produce lifted lambda and apply denotations.

16

type EvES = (Env, Sto) => Val

trait EvESBinding extends Binding[EvES] {
... // store propagation code

}

trait EvESBindingWithLet extends EvESBinding with Let[EvES]

Generic desugarings combined with traits (or mixins) provide a very flexible way
to define language constructs irrespective of the actual interpretation of the constructs
themselves. Keeping such desugared language constructs in separate traits also makes
them optional, so that may remain unexpanded (such as for pretty printing).

4.8. Multiple Interpretations: Pretty Printing
Object Algebras support the modular extension of both syntax and operations. Thus,
implicit propagation can be applied to interpretations of a language other than dynamic
semantics. Examples include type checking, other forms of static analysis, and pretty
printing.

Consider the example of pretty printing. Here is a pretty printer for Arith expres-
sions, PPArith, defined over the carrier type PP (() => String):

type PP = () => Str // "Pretty Print"

trait PPArith extends Arith[PP] {
def add(l: PP, r: PP) = () => l() + " + " + r()

def lit(n: Int) = () => n.toString
}

Pretty printing of arithmetic expressions does not involve the notion of indentation.
However, to pretty print the ifThen construct of Section 4.6 we would like to indent
the body expression. This is realized with a context parameter i that tracks the current
indentation level:

type PPI = Int => Str

trait PPIIf extends If[PPI,PPI] {
def ifThen(c: PPI, b: PPI) = i => "if " + c(0) + "\n" + " " * i + b(i + 2)

}

Both modules can be combined after lifting PPArith to propagate the parameter rep-
resenting the current indentation:

trait PPIArith extends Arith[PPI] {
private val base = new PPArith {}

def add(l: PPI, r: PPI) = i => base.add(() => l(i), () => r(i))()
def lit(n: Int) = i => base.lit(n)()

}

5. Automating Lifting

We have introduced implicit context propagation and illustrated how the liftings work
in diverse scenarios. Although the liftings can be written by hand, they represent a

17

significant amount of error-prone boilerplate code. We first introduce a Scala macro-
based code generator for single-sorted algebras, which generates the lifting code auto-
matically. Second, we describe how dynamic proxies in Java can be used to perform
lifting at runtime.

5.1. Lift using a Scala Macro

The code generator is invoked by annotating an empty trait. In the compiled code, the
code generator fills in the required lifting methods for this annotated trait. Here is an
example showing how to lift the EvArith interpreter to propagate the environment and
the store:

@lift[Arith[_], ()=> Val, EvArith, (Env, Sto) => Val]
trait EvESArith

The @lift annotation receives four type parameters: the trait that corresponds to the
generic Object Algebra interface representing the language’s syntax (Arith), the carrier
type of the base implementation (()=>Val), the trait that provides the base level imple-
mentation (EvArith), and finally, the target carrier type ((Env,Sto)=>Val).

The annotated trait produces an implementation for the lifted trait that extends the
factory interface instantiating the type parameter to the extended carrier type. The
compiled code will contain the lifted methods that delegate to the specified base imple-
mentation. Note that the code generation does not break independent compilation or
type safety: the generator only inspects the interfaces of the types that are specified in
the annotation without needing access to the source code where these types are defined.

The @lift annotation is implemented as a Scala macro annotation [3]. Macro an-
notations are definition-transforming macros that can be used to generate boilerplate
code at definition level. Figure 6 shows the implementation of the @lift macro anno-
tation. The class extending StaticAnnotation defines a macro annotation and defines a
method macroTransform that contains the logic of the compile-time transformation. The
companion object contains the impl method referenced by macroTransform. This method
receives as arguments a collection of annottees that represents all the definitions in the
scope of the annotation. First, the four annotation arguments are extracted as trees
and then type checked in order to obtain their types. Then, an intermediate represen-
tation is created from these types using a custom InternalImporter. The annottees are
then pattern-matched in order to get the trait’s name. The crucial step is calling the
liftTraitTo method on the representation of the trait that corresponds to the algebra inter-
face (instance of the class Trait, not shown). This method receives the name of the trait
being transformed, the source carrier type, the trait corresponding to the base algebra
implementation, and the target carrier type, and performs all the necessary transforma-
tions in order to return the representation of the lifted trait. This resulting trait is then
serialized, concluding the transformation process.

The code generator does not simply prepend a new parameter at the front of the
parameter list (as in the template of Figure 3), but performs the necessary permuta-
tions to appropriately lift the base signature to the target. This permutation logic is
encoded in the already mentioned method liftTraitTo. This is important for components
that need to be “mutually lifted”. Consider a component which is lifted from Sto=>Val
to (Env,Sto)=>Val. To combine this component with a component of type Env=>Val, the

18

class lift[ALG, FROM, BASEALG, TO] extends StaticAnnotation{
def macroTransform(annottees: Any*) = macro lift.impl

}

object lift{

def impl(c: whitebox.Context)(annottees: c.Expr[Any]*) = {
import c.universe._

// Get the annotation arguments as trees
val (algAST: Tree, srcFunAST: Tree, baseAlgAST: Tree, tgtFunAST: Tree)
= c.macroApplication match{
case q"new lift[$a, $from, $baseA, $to].macroTransform($_)" =>
(a, from, baseA, to)

case _ =>
c.abort(c.enclosingPosition, "Invalid type parameters")

}

// Get the types of the annotation arguments
val (algType: Type, srcType: Type, baseImplType: Type, tgtType: Type)
= Checker.typeCheck(c)(algAST, srcFunAST, baseAlgAST, tgtFunAST)

// Create importer that allows to create intermediate representations of traits and
// function types based on the annotation arguments
val (alg: Trait, srcFun: FunType, baseImpl: Trait, tgtFun: FunType)\newline
= InternalImporter.importTypes(c)(algType, srcType, baseImplType, tgtType)}

// At least one annottee must be a trait
annottees.map(_.tree) match {
case (q"$mods trait $name") ::Nil => {

// This is the code that triggers the lifting on the intermediate representations
val lifted: Trait = alg.liftTraitTo(name.decoded, srcFun, tgtFun, "base"+alg.name)

// Serialize the lifted trait and return it as the result of the transformation
val result: Expr[Any] = Render.serialize(c)(mods, lifted, alg, baseImpl, srcFun)
result

}
case _ => c.abort(c.enclosingPosition, "Invalid annottee")

}
}

}

Figure 6: The lift macro annotation for lifting Object Algebra at compile time

19

interface ExpAlg<E> {
E lit(int n);
E add(E l, E r);

}

@FunctionalInterface
interface IEval {

int eval();
}

interface EvalExp extends ExpAlg<IEval> {
default IEval lit(int n) {

return () -> n;
}

default IEval add(IEval l, IEval r) {
return () -> l.eval() + r.eval();

}
}

Figure 7: Arithmetic expression evaluation using Java 8 functional interfaces and default methods

latter should be lifted to (Env,Sto)=>Val as well, but in this case, the parameter is added
at the end.

The current version of @lift does not disambiguate parameters with the same type.
It is always possible to create artificial wrapping types to distinguish between two con-
text objects of the same type. It is, however, also conceivable to implement this by
requiring the user to provide the disambiguation information in the annotation. This is
an opportunity for future work.

5.2. Dynamic Lifting in Java

The Scala macro approach generates method implementations for a trait introduced by
the programmer. Java does not have macro facility that supports a similar style of code
generation. One would think the Java annotation processing framework [38] could be
used for this, but, unfortunately, annotation processing only allows the generation of
new classes or types, but not filling in the implementations of existing (abstract) classes
or interfaces. As a result, client code becomes dependent on generated types which, in
turn introduces temporal dependencies within the build cycle of the code.

Fortunately, it is also possible to perform lifting dynamically using the concept
of dynamic proxies [37]. Since Java 8, function types are represented using functional
interfaces: interfaces with a single method that acts as the “apply” method of functions.
Dynamic proxies can be used to provide a generic implementation of such interfaces.
Thus, instead of generating methods that encode the lifting of an interpreter, the context
parameters are implicitly propagated at runtime.

Figure 7 shows a simple expression evaluator in Object Algebra style using Java
8 functional interfaces and interface default methods. Note how the closure notation
automatically creates objects that are instances of the IEval interface.

Of course, another language fragment could require additional context parameters,
which are not reflected in the type IEval. For instance, denotations requiring a environ-
ment could be represented by the following interface:

@FunctionalInterface
interface IEvalEnv {

int eval(Env env);
}

20

interface EvalExpEnv extends ExpAlg<IEvalEnv> {
static final ExpAlg<IEval> base = new EvalExp() {};

default IEvalEnv lit(int n) {
return lift(env -> base.lit(n));

}

default IEvalEnv add(IEvalEnv l, IEvalEnv r) {
return lift(env -> base.add(lower(l, env), lower(r, env)));

}

static IEvalEnv lift(Function<Env, IEval> f) {
return (IEvalEnv) Proxy.newProxyInstance(IEvalEnv.class.getClassLoader(),

new Class<?>[] { IEvalEnv.class }, (p, m, as) -> f.apply((Env) as[0]).eval());
}

static IEval lower(IEvalEnv e, Env env) {
return (IEval) Proxy.newProxyInstance(IEval.class.getClassLoader(),

new Class<?>[] { IEval.class }, (p, m, as) -> e.eval(env));
}

}

Figure 8: Manually lifting arithmetic expression evaluation in Java to propagate environments

We need an implementation of ExpAlg over the carrier type IEvalEnv. Figure 8 shows a
slightly contrived implementation of expression evaluation with dynamic environment
propagation using dynamic proxies. If this code would be implemented by hand there
would be no need for dynamic proxies: the implementation would simply follow the
pattern of the manual Scala lifting in Section 3.1. However, the example illustrates how
dynamic proxies can be used to simulate functions in Java.

The lifting is realized using the helper methods lift and lower. Both methods return
proxies created using java.lang.reflect.Proxy::newProxyInstance. This method takes a class
loader, an array of interfaces the proxy is supposed to export, and an instance of the
java.lang.reflect.InvocationHandler interface to handle method requests on the proxy. Since
InvocationHandler is a functional interface in Java 8, one can directly provide closures as
invocation handlers. The returned object will behave as an instance of all the provided
interface types, but all method invocations will be routed to the invocation handler.

The lift method takes a function from the extra parameter (Env) to IEval and uses it
to create proxy objects of type IEvalEnv. The returned proxy object provides the extra
argument (as[0]) to the closure f to obtain an IEval object and then calls eval() on it. The
lower function has the inverse effect of lift: it turns objects of a “larger” type (e.g.,
IEvalEnv) into objects of a smaller type (e.g., IEval), again using proxies.

The closure f provided to lift abstracts over how to turn a base interpreter into the
lifted type given the extra parameter which should be propagated. For instance, in
the case of add, the provided function to lift calls the base.add constructor with lowered
versions of l and r. Lowering is realized by the helper method lower, which turns IEvalEnv
objects into IEval objects. Whenever eval is called on such an IEval, it delegates back to
the original IEvalEnv providing the extra parameter env that was captured when lower
was invoked.

21

The interface EvalExpEnv can be composed with other interfaces over the same car-
rier type, similar in style to Scala trait inheritance. However, the propagation code is
specific for two carrier types (i.e. IEval and IEvalEnv). This problem is solved by in-
troducing yet another level of dynamic proxies, this time at the level of the algebras
themselves.

Since signatures of Object Algebras are represented by Java interfaces, dynamic
proxies can also be used to simulate Object Algebras themselves. The following lifter
method creates such “lifting” algebras automatically:

static <F, S, T> F lifter(Class<F> ialg, Class<S> source, Class<T> target, F base) {
return (F) Proxy.newProxyInstance(ialg.getClassLoader(), new Class<?>[] {ialg},

new Lifter<>(source, target, base));
}

Intuitively, this method turns an Object Algebra of type F<S> into an algebra of type
F<T>, assuming that both S and T are functional interfaces, where the single method in
T has one extra parameter. Method invocations on the resulting algebra of type F<T> are
handled by the invocation handler Lifter which will create proxy objects delegating to
the base algebra (of type F<S>) and propagating the extra parameter behind the scenes.

The Lifter class is shown in Figure 9. The entry point of the Lifter class is always an
invocation of a factory method (e.g., add, lit, etc.) which will be handled by the invoke
method from Java’s InvocationHandler interface. The invoke method receives the current
proxy object, the called method and the method’s arguments (kids). It immediately
returns the result of calling lift which produces the desired target type T.

The lift method follows the same pattern as the lift method of Figure 8. The main
difference is that the argument f now accepts both a method object representing the
method supporting the extra parameter in addition to the extra argument itself. Whereas
the closure provided to lift in Figure 8 directly called the appropriate factory method, in
this case the base interpreter is created using reflection, and the arguments are lowered
using a loop in lowerKids: for every constructor argument in kids that is an instance of the
target type T, a proxy is created in the lower method. This proxy will call the method
extEval on the original T object (kid), extending the list of arguments with the extra
argument originally received in the closure provided to lift; the extend helper method
creates a copy of args with the extra object appended to it.

After the evaluator object is obtained from the f closure in lift, the corresponding
method in type S is looked up using reflection on source. We simply look for a method
with the same name, but with one fewer parameter, and then invoke it on the base
evaluator ignoring the extra parameter. Finally, this eval method is invoked on the base
evaluator object, ignoring the last element of the extended argument array (extArgs).

Using the lifter method any Object Algebra F<S> defined over a functional interface
interface S { U m(C1 c1, ..., Cn cn); } can now be converted to an algebra F<T> defined in
terms of interface T { U m(C1 c1, ..., Cn cn , Cn+1 cn+1); }. The extra parameter cn+1 will be
dynamically propagated.

Implicit context propagation using dynamic proxies operates at the level of runtime
objects, whereas the Scala macro operated at the trait level. In other words: the result
of lifter is a runtime object, not a trait or class. As a result, it is not possible anymore
to compose language fragments using trait/interface inheritance. Once again, dynamic
proxies can be used to mitigate the problem.

22

class Lifter<S, T, F> implements InvocationHandler {
private final Class<S> source;
private final Class<T> target;
private final F base;

Lifter(Class<S> s, Class<T> t, F base) {
this.source = s;
this.target = t;
this.base = base;

}

public T invoke(Object proxy, Method constructor, Object[] kids) {
return lift((extEval, extra) -> (S)constructor.invoke(base, lowerKids(extEval, kids, extra)));

}

private T lift(BiFunction<Method, Object, S> f) {
return proxy(target, (p, extEval, extArgs) -> {

S evaluator = f.apply(extEval, extArgs[extArgs.length - 1]);

// Get the method in S corresponding to extEval in T
Method eval = source.getMethod(extEval.getName(),

Arrays.copyOf(extEval.getParameterTypes(), extArgs.length - 1));

// Invoke it on the base interpreter ignoring the extra parameter.
return eval.invoke(evaluator, Arrays.copyOf(extArgs, extArgs.length - 1));

});
}

private S lower(Method extEval, T kid, Object extra) {
return proxy(source, (p, eval, args) -> extEval.invoke(kid, extend(args, extra)));

}

private Object[] lowerKids(Method eval, Object[] kids, Object extra) {
Object lowered[] = Arrays.copyOf(kids, kids.length);
for (int i = 0; i < kids.length; i++)

if (target.isInstance(kids[i]))
lowered[i] = lower(eval, (T)kids[i], extra) ;

return lowered;
}

}

Figure 9: The Lifter class for lifting Object Algebra using dynamic proxies

23

The following code defines a union combinator which multiplexes method invoca-
tions from a single Object Algebra interface between actual implementations of subsets
of the interface (see [36, 15] for similar incarnations of this idea):

static <T> T union(Class<T> ialg, Object ...algs) {
return (T) Proxy.newProxyInstance(ialg.getClassLoader(), new Class<?>[] { ialg },

(x, m, args) -> {
for (Object alg: algs)

try { return m.invoke(alg, args); } catch (Exception e) { continue; }
throw new UnsupportedOperationException("no such method"); });

}

Let’s assume we have two language fragments, the simple arithmetic expressions and a
language for binding constructs. At the interface level these fragments can be combined
using interface extension:

interface ExpBindAlg<E> extends ExpAlg<E>, BindAlg<E> { }

The dynamically lifted version of EvalExp can now be combined with an implementa-
tion of the binding fragment (say, EvalBind):

ExpAlg<IEvalEnv> evalExp = lifter(ExpAlg.class, IEval.class, IEvalEnv.class, new EvalExp() {});
BindAlg<IEvalEnv> evalBind = new EvalBind() {};
ExpBindAlg<IEvalEnv> evalExpBind = union(ExpBindAlg.class, evalExp, evalBind);

The algebra evalExpBind can now be used to create expressions just like any ordinary
algebra.

5.3. Discussion
We have presented two approaches to automate lifting: Scala macros and Java dy-

namic proxies. As the macro transformation is a compile-time mechanism, all the type
information is available when generating the code for the lifted algebras, and thus all
the generated code is type safe. On the other hand, in the case of the dynamic proxies,
the lifting is realized at runtime and requires casts in order to make the proxied object
conform to the lifted interfaces. All the code at the points where explicit casting oc-
cur (e.g., the cast that returns a proxied lifted object from the lifter method) is unsafe.
Having said that, this unsafety is limited to code that is provided by the framework as
a reusable mechanism for dynamic lifting. Provided that the framework is correctly
implemented, the end user is not affected by it.

6. Case study 1: Extending a DSL for State Machines

In this section we present a case study, based on an extensible DSL for state machines,
inspired by the example DSL introduced in [12]. The exploration of this DSL is moti-
vated by the following considerations.

First, state machines emphasize the DSL perspective: state machines are differ-
ent from expression-oriented or even statement-oriented programming languages. The
contexts involved are not just environments or stores, but may contain arbitrary inter-
faces to some unspecified outside world.

Second, whereas the examples of Section 4 are mostly single sorted expression
languages, state machines are inherently many sorted, since such a language typically

24

trait Stm[M, S, T] {
def machine(name: String, states: Seq[S]): M
def state(name: String, transitions: Seq[T]): S
def transition(event: String, target: String): T

}

Figure 10: The abstract syntax of the state machine language

involves at least the syntactic categories of state machines, states and transitions. Thus,
this case study illustrates more clearly that adding context parameters to nested AST
types requires lifting surrounding AST types, similar to how statement interpreters
required lifting in Section 4.6.

Third, the state machine example strongly illustrates that implicit context propaga-
tion can be seen as a form of “scrapping your boilerplate” [28]. In a sense, implicit
context propagation supports the creation of structure shy [32] language extensions:
adding language features deep down within the syntactic structure does not require to
change the definitions of the semantics of surrounding, context unaware node types.
Similar concerns were addressed, for instance, by implicit parameters (as described
in [30]): many cases in the definition of a recursive function do not use the context
information, but some leaves of the recursion need the information.

Finally, instead of building upon the assumption that a language is constructed
by assembling the smallest possible building blocks, the state machine case study is
presented from the perspective of language extension. Given an existing definition
of a state machine language, we will extend it with three new types of transitions:
conditional transitions, transitions with token output, and conditional transitions with
token output.

6.1. State Machines

A state machine consists of a list of named state definitions. Each state contains a list
of outgoing transitions. A transition fires on an event (a string) and transitions to a
target state (identified by name). The abstract syntax of the state machine language is
shown in Figure 10.

An interpreter for the base language is shown in Figure 11. The carrier type EvM
captures functions from the current state and event to the next state, if any. A machine
simply finds the first state with a firing transition. A transition may fire if it is defined
in the state we are in (st), and if the event ev matches the event in the transition. If a
transition fires, the target state is returned.

As an example, consider a simple state machine controlling the opening and closing
of doors:

def doors[M, S, T](alg: Stm[M, S, T]): M =
alg.machine("doors", Seq(

alg.state("closed", Seq(alg.transition("open", "opened"))),
alg.state("opened", Seq(alg.transition("close", "closed")))))

This state machine can be used as follows:

25

type EvM = (String, String) => Option[String]

trait EvalStm extends Stm[EvM, EvM, EvM] {
override def machine(name: String, states: Seq[EvM]): EvM
= (st, ev) => states.map(_(st, ev)).find(_.isDefined).flatten

override def state(name: String, transitions: Seq[EvM]): EvM
= (st, ev) => if (name == st) transitions.map(_(st, ev)).find(_.isDefined).flatten else None

override def transition(event: String, target: String): EvM
= (st, ev) => Option(if (ev == event) target else null)

}

Figure 11: A simple interpreter for state machines. The carrier type EvM captures functions from current
state and event to next state (if any).

trait TokenTrans[T] {
def transition(event: String, target: String, tokens: Set[String]): T

}

trait CondTrans[E, T] {
def transition(cond: E, event: String, target: String): T

}

trait CondTokenTrans[E, T] {
def transition(cond: E, event: String, target: String, tokens: Set[String]): T

}

Figure 12: Three language extensions defining the abstract syntax transitions with token output, transitions
with conditions, and transitions with both token output and conditions.

val stm = doors(new EvalStm {})
val Some(st1) = stm("closed", "open")
println(st1);
val Some(st2) = stm(st1, "close")
println(st2);

Executing the code will print out:

opened
closed

6.2. Modular Extension of State Machines
The abstract syntax of the three state machine extensions is shown in Figure 12. Each
extension is defined in its own trait. TokenTrans defines transitions that output a set
of tokens. CondTrans defines conditional transitions, introducing an additional E sort
representing expressions. Finally, CondTokenTrans, combines both extensions to support
conditional transitions with token output.

Transitions with Token Output. The definition of transitions with token output is as
follows:

26

type EvTT = (String, String, Writer) => Option[String]

trait EvalTokenTrans extends TokenTrans[EvTT] {
def transition(event: String, target: String, tokens: Set[String]): EvTT
= (st, ev, w) => if (ev == event) {

tokens.foreach(t => w.append(t + "\n")); Some(target)
}
else None

}

The type EvTT describes that transitions with token output require another context pa-
rameter, in this case a Writer object that the output tokens will be written to. The transition
method then returns a function that outputs the given tokens whenever the transition
fires.

To combine this language extension with the base interpreter of state machines
shown in Figure 11, the latter has to be lifted to propagate the Writer parameter. The
lifted version of EvalStm has the following structure:

trait LiftEvalStm extends Stm[EvTT, EvTT, EvTT] {
private val base = new EvalStm {}

def machine(name: String, states: Seq[EvTT]): EvTT
= (st, ev, w) => base.machine(...)

def state(name: String, transitions: Seq[EvTT]): EvTT
= (st, ev, w) => base.state(...)

def transition(event: String, target: String): EvTT
= (st, ev, w) => base.transition(...)

}

Note that all three type parameters of Stm (M, S, T) are bound to the extended signature
EvTT since the writer object needs to be provided from the top in order to be propagated
down to the level of transitions.

Given the syntax traits Stm and TokenTrans, state machines may now contain transi-
tions that declare tokens that will be output upon firing:

def doorsTokens[M, S, T](alg: Stm[M, S, T] with TokenTrans[T]): M =
alg.machine("doors", Seq(

alg.state("closed", Seq(alg.transition("open", "opened", Set("TK1OP", "TK2OP")))),
alg.state("opened", Seq(alg.transition("close", "closed", Set("TK1CL", "TK2CL"))))))

To execute such extended state machines, the interpreters LiftEvalStm and EvalTokenTrans
need to be combined:

val stm = doorsTokens(new LiftEvalStm with EvalTokenTrans {})
val w = new StringWriter()
val Some(st1) = stm("closed", "open", w)
...

Printing out the contents of the writer object w will contain the tokens as sequentially
output by the new kind of transitions.

Conditional Transitions. The extension with conditional transitions follows a similar
pattern as the extension with transitions outputting tokens. In this case, however, the

27

extension introduces a new syntactic category for expressions. As a result, this ex-
tension also requires a separate language fragment defining the syntax and semantics
of expressions. We assume this language is defined in its own trait Cond and that its
interpreter EvalCond is defined over the type EvE = Env => Boolean. As a result, the prop-
agated context parameter is the environment used to evaluate a transition’s condition.

The semantics of conditional transitions are then defined as follows:
type EvET = (Env, String, String) => Option[String]

trait EvalCondTrans extends CondTrans[EvE, EvET] {
override def transition(cond: EvE, event: String, target: String): EvET
= (env, st, ev) => Option(if (ev == event && cond(env)) target else null)

}

Creating state machines with conditional transitions is now defined over the algebra
interfaces Stm, Cond and CondTrans. Executing such state machines combines the lifted
base interpreter to propagate the environment, with EvalCond and EvalCondTrans.

Conditional Transitions with Token Output. The final extension combines both con-
ditions and token output in transitions. Although this extension can be considered in
isolation, it makes intuitively more sense to allow this kind of transition to coexist with
the two extensions described above. As a result, adding conditional transitions with
token output requires two-level lifting of the base interpreter. In other words, one of
the lifted interpreters for the previous extensions is lifted once again to propagate the
additional context (i.e. writer object or environment).

Additionally, to combine this extension with the previous extensions, both inter-
preters EvalTokenTrans and EvalCondTrans need to be lifted. EvalTokenTrans needs to prop-
agate the environment, and EvalCondTrans needs to propagate the writer object. Note
however, that the interpreter for conditions (EvalCond) does not require lifting.

The only code that remains to be written is the interpreter for the new kind of
transitions itself:

type EvETT = (Env, String, String, Writer) => Option[String]

trait EvalCondTokenTrans extends CondTokenTrans[EvE, EvETT] {
override def transition(cond: EvE, event: String, target: String, tokens: Set[String]): EvETT
= (env, st, ev, w) => if (ev == event && cond(env)) {

tokens.foreach(t =>w.append(t + "\n"))
Some(target)

}
else None

}

Note that this definition duplicates the logic of ordinary transitions, conditional tran-
sitions and transitions with token output. This may seem unfortunate, but understand-
able: the new kind of transition represents feature interaction between transition firing,
condition evaluation and token output, which can never be automatically derived from
the given interpreters.

Summary. To summarize, given the manually written language modules EvalStm, EvalTokenTrans,
EvalCondTrans and EvalCondTokensTrans and an additional module defining conditional
expressions (EvalCond), we can derive the following 7 language variants:

28

Stm

Cond

CondTokensTrans

TokenTrans

EvalStm

EvalCondEvalCondTrans

EvalTokenTrans

CondTrans

EvalStm
+Writer

EvalStm
+Env

EvalCondTokenTrans

EvalStm
+Writer+Env

EvalCondTrans
+Writer

EvalTokenTrans
+Env

1

3

7

2

Figure 13: Modular extension of a state machine DSL with conditions and/or token output. Rectangles define
syntactic constructs. Rounded rectangles are interpreters; dotted borders indicate lifted interpreters. Solid
arrows represent trait inheritance and dashed arrows represent delegation inherent in lifting. Each circle
represent an executable composition of modules.

1. Stm

2. Stm with CondTrans

3. Stm with TokenTrans

4. Stm with CondTokenTrans

5. Stm with TokenTrans with CondTokenTrans

6. Stm with CondTrans with CondTokenTrans

7. Stm with CondTrans with TokenTrans with CondTokenTrans

Compositions 1, 2, 3, and 7 make the most sense and are depicted graphically in Fig-
ure 13. Each solid rectangle defines a syntactic trait, the semantics of which is imple-
mented in the rounded rectangles (interpreters); the solid arrows represent trait inher-
itance or extension. The dashed rounded rectangles represent liftings of interpreters,
and the dashed arrows represent delegation to the base language. The circles represent
compositions of language fragments.

7. Case Study 2: Modularizing Featherweight Java

To examine how implicit context propagation helps in modularizing a programming
language implementation, we present a second case study using Featherweight Java
(FJ) [24]. The case study consists of a modular interpreter for FJ and its extension to a
variant that supports state (SFJ), inspired by [11].

The case study addresses two questions:

29

Syntax Signature

FJ Field access e.f CT=>Obj
Object creation new C(e,...) ()=>Obj
Casting (C) e CT=>Obj
Variables x (Obj,Env)=>Obj
Method call e.m(e,...) (Obj,CT,Env)=>Obj

SFJ Sequencing e ; e ()=>Obj
Field assignment e.f = e (CT,Sto)=>Obj
Object creation new C(e,...) (CT, Sto)=>Obj
Variables x (Obj,CT,Env,Sto)=>Obj

Table 2: Signatures per (S)FJ language construct

• What is the flexibility that implicit context propagation provides to support the
definition of languages by assembling language fragments?

• How much boilerplate code is avoided by implicit context propagation?

In this section, these questions are answered by analyzing the number of hypothetical
languages that can be defined from the combination of SFJ fragments, and by counting
the possible liftings.

7.1. Definition of FJ and SFJ

FJ was introduced as a minimal model of a Java-like language, small enough to admit
a complete formal semantics. In FJ, there are no side-effects and all values are objects;
it supports object creation, variables, method invocation, field accessing and casting.
To study how to extend a language to a variant that requires more context information,
we introduce SFJ, which also features field updating and sequencing.

We have modularly implemented FJ and its extension to SFJ defining one language
module per alternative in the abstract grammar. Each language construct is represented
as a single Object Algebra interface to allow for maximum flexibility. As a conse-
quence, the semantics of each construct is defined in its own trait assuming only the
minimal context information necessary for the evaluation of that particular construct.

A complete definition of SFJ requires four kinds of context information:

• An Obj that represents the object being currently evaluated (i.e., this). In FJ, the
Obj simply contains the object’s class name and the list of arguments that are
bound to its fields.

• The class table CT which contains the classes defined in an FJ program. The
classes contain the meta information about objects, in particular, how the order-
ing of constructor arguments maps to the object’s field names.

• The environment Env which maps variables to Objs.

• The store Sto modeling the heap (just needed in the case of SFJ).

30

As shown in Table 2, six different signatures are used to implement nine constructs.
For presentation purposes, we solely focus on the expression constructs:

• Object creation does not require any context information.

• Field access and casting only require the class table to locate fields in objects by
offset.

• Variables require the current object to evaluate the special variable this, and the
environment to lookup other variables.

• Method calls require the class table to find the appropriate method to call; the
current object is needed to (re)bind the special variable this and the environment
is needed to bind formal parameters to actual values.

• Sequencing does not depend on any context parameters.

• Field assignment uses the class table to locate fields and the store to modify the
object.

Notice too that the cases for object creation and variable referencing had to be
redefined in SFJ over the signatures(CT,Sto) => Obj and (Obj,CT,Env,Sto) => Obj in order to
allocate storage for the newly created object and inspecting the referenced object in the
store, respectively. In particular, variable referencing needs all the context parameters
as it needs to “reconstruct” the object structure by inspecting the store and finding the
information about the order of arguments in the class table.

For implementing FJ, four of the base interpreters (for variables, field access, object
creation and casting) are lifted to the function type (Obj,CT,Env) => Obj. Combining
these lifted interpreters results in an implementation of basic FJ.

In order to obtain a full implementation of SFJ, the FJ interpreters need to be lifted
to also propagate the store and the stateful fragments need to be lifted to propagate
the environment, class table and current object, where needed. The result is a set
of interpreters defined over the “largest” signature (Obj,CT,Env,Sto) => Obj. We have
implemented the lifting using the @lift macro annotation discussed in Section 5.1. The
relevant code is shown in Figure 14.

7.2. Analyzing Hypothetical Subsets of SFJ
The previous subsection detailed how the implementation of a complete language, in
this case FJ and SFJ, can be constructed from assembling language fragments. Here
we discuss hypothetical subsets of such languages. Even though these subsets might
not (and probably will not) be meaningful in any practical sense, they illustrate the
flexibility that implicit context propagation promote.

Table 3 shows how many interpreters can be derived per interpreter signature us-
ing implicit context propagation. The second column lists the number of given base
interpreters over a specific signature. The third column indicates the number of lifting
opportunities. Finally, the last column shows the total number of possible interpreters,
including the base interpreters. Note that the next-to-last row shows two base inter-
preters because the interpreter for object construction needed to be rewritten to allocate
storage.

31

@lift[Field[_], CT => Obj, EvCT2ObjField, (Obj, CT, Env, Sto) => Obj]
trait EvSlfCtESt2ObjField

@lift[New[_], (CT, Sto) => Obj, EvCtSt2ObjNew, (Obj, CT, Env, Sto) => Obj]
trait EvSlfCtESt2ObjNew

@lift[Cast[_], CT => Obj, EvCt2ObjCast, (Obj, CT, Env, Sto) => Obj]
trait EvSlfCtESt2ObjCast

@lift[Call[_], (Obj, CT, Env) => Obj, EvSlfCtEnv2ObjCall, (Obj, CT, Env, Sto) => Obj]
trait EvSlfCtESt2ObjCall

@lift[Seq[_], () => Obj, Ev2ObjSeq, (Obj, CT, Env, Sto) => Obj]
trait EvSlfCtESt2ObjSeq

@lift[SetField[_], (CT, Sto) => Obj, EvCtSt2ObjSetField, (Obj, CT, Env, Sto) => Obj]
trait EvSlfCtESt2ObjSetField

Figure 14: Automatic lifting of SFJ language components using the @lift macro annotation

Signature Base Liftings Derived Total

CT=>Obj 2 O/E/S 14 16
(Obj,Env)=>Obj 1 C/S 3 4
(Obj,CT,Env)=>Obj 1 S 1 2
()=>Obj 2 C/O/E/S 30 32
(CT,Sto)=>Obj 2 O/E 6 8
(Obj,CT,Env,Sto)=>Obj 1 0 1

63

Table 3: Number of Base interpreters per signature, possible Liftings (C = CT, O = Obj,
E = Env, S = Sto), number of possible Derived interpreters and Total number of possible
interpreters.

Lifting opportunities are described using a shorthand indicating which types of
parameters could be added to the signatures using implicit context propagation (C =
CT, O = Obj, E = Env, S = Sto). For instance, the string “O/E/S” in the first row means
that an interpreter over CT=>Obj can be lifted to any of the following 7 signatures:

(Obj,CT)=>Obj, (Env,CT)=>Obj, (Sto,CT)=>Obj,
(Obj,CT, Env)=>Obj, (Obj,CT, Sto)=>Obj,
(Env,CT,Sto)=>Obj, (Obj,Env,CT,Sto)=>Obj

The number of possible lifted interpreters given n base interpreters can be computed
using the following formula n× (2k − 1), where k represents the number of possibly
added context parameters. Since there are n = 2 base interpreters in the first row for
which k = 3, 7 opportunities apply to each of them, and thus the total number of deriv-
able interpreters is 14.

32

Summing the last column in Table 3 gives an overall total of 63 possible inter-
preters, of which only 9 are written by hand. The other 54 can be derived automati-
cally using implicit context propagation. Thus, our technique eliminates considerable
amount of boilerplate when deriving new variants of languages from base language
components.

The 63 interpreters include 7 over the “largest” signature (Obj,CT,Env,Sto) => Obj for
each of the 7 language constructs. These 7 fragments allow 27−1 = 127 combinations
representing hypothetical subsets of SFJ (excluding the empty language). The inter-
preter for full SFJ is just one of these 127 variants. This gives an idea of the flexibility
that implicit context propagation provides in defining multiple language variants from
assembling the different language modules.

8. Performance Overhead of Lifting

A lifted interpreter exhibits more runtime overhead than its equivalent non-lifted ver-
sion. This is because the lifting works creating new closures at runtime to adapt the
signatures of the arguments and adds additional call overhead to go from one closure
to the other.

8.1. Benchmarking Realistic Code: Executing the DeltaBlue Benchmark

In order to have an idea of the impact of lifting, we performed an experiment using the
DeltaBlue benchmark [13]. DeltaBlue represents an incremental constraint solver and
is used to benchmark programming languages. DeltaBlue was originally developed in
Smalltalk; in our experiment we use the Javascript version3. To execute the benchmark
we developed a modular interpreter of λJS, based on the semantics described in [16].

Using the desugaring framework published at [17] the DeltaBlue Javascript code
was desugared to λJS and input to our interpreter. To assess the performance impact
of lifting we ran the benchmark using two interpreters: one that employed lifting, and
one that propagated the context parameters explicitly, i.e., written in the “anticipation
style” discussed earlier.

The interpreter that propagates all the context information explicitly represents our
baseline, as we consider it to be a straightforward implementation that follows the
interpreter pattern [14] (except it uses closures as AST objects).

In order to make the comparison as fair as possible regarding to the impact of lifting,
both interpreters were modularized in logically-related units representing sublanguages
of λJS, namely: Binding, Control, Mutability, Core, and Exceptions. This means that
both styles of interpreters have the same trait inheritance structure.

In the case of the lifted interpreter, each module is defined using carrier signatures
that consider only the needed context. For the non-lifted interpreter, however, every
module is defined over the maximal signature, anticipating all required context infor-
mation even though not all of it is required in each and every module. For instance, the
Control module does not need any context because it only deals with syntactic forms

3See https://github.com/xxgreg/deltablue

33

https://github.com/xxgreg/deltablue

Component Expression Carrier Type

Binding Env => Val
Control () => Val
Core Sto => Val
Exceptions Env => Val
Mutable Sto => Val

Table 4: Signatures of expression carrier types for the base components of the λJS
implementation that depends on lifting

that represent control flow. While the lifted interpreter’s carrier type ()->Val reflects
this, the non-lifted version is defined over the largest signature: the signature with both
environment and store as context parameters ((Sto, Env)->Val).

Table 4 shows the signatures of the carrier type that corresponds to expressions, in
the base components of the λJS implementation that depends on lifting. Since there
is no single module defined over the largest signature, all modules have to be lifted
to either propagate the store or to propagate the environment, or both. As a result,
all modules exhibit some level of lifting, and thus all nodes created by the desugared
DeltaBlue program will be affected by the performance overhead of lifting.

The benchmarks were executed on a MacBook Pro with OS X Yosemite (version
10.10.3) and 8 GB RAM, running on an Intel Core i5 CPU (2.7 GHz). We use Oracle’s
JVM (JDK 8u51), executed in server mode. The DeltaBlue benchmark can be run
for a variable number of constraint solving iterations. We executed the program for an
increasing number of iterations from 5 to 30 in steps of 5, taking 15 time measurements
per number of iterations using Java System.nanoTime().

Figure 15 shows a box plot of the execution times. For each number of iterations,
we show the execution time for the non-lifted interpreter (white fill) and the lifted
interpreter (gray fill). Calculating the difference in slowdown relative to the size, we
observe that the slowdown is in the range of 63% and 81% with a median of 77.87%.
We conjecture that the slowdown is due to the allocation of new closures at runtime
and additional call overhead between the lifted closure and base closures. To zoom
in on these effects, we now describe a micro-benchmark that partially confirms this
hypothesis.

8.2. Micro-benchmark: Executing Lifted Interpreters in a Loop

To isolate the effect of lifting we created a micro-benchmark based on a simple expres-
sion language, containing literals, addition and a sum construct. The sum construct
receives an integer n and an argument expression and sums the evaluated arthis progu-
ment n times in a loop. For n ∈ [0...1,000,000] with step size 10,000 the benchmark
executes the expression sum(n, add(lit(1), lit(2))). We report the average running time mea-
sured using System.nanoTime() over 100 executions per n.

The benchmark is executed for three versions of the expression interpreter: one
without lifting (explicitly propagating an environment), one that is lifted to implicitly
propagate and environment, and an optimized lifted interpreter that we discuss below.

34

 0

 20

 40

 60

 80

 100

 120

 140

5 10 15 20 25 30

R
u
n
n
in

g
 t
im

e
 (

s
)

#Deltablue iterations

No lifting
With lifting

Figure 15: Runtime of the lifted interpreter compared to the baseline interpreter.

The benchmark results are shown in Figure 16. It is immediately clear from Fig-
ure 16 that lifting does incur significant overhead. The non-lifted interpreter is about
twice as fast as the lifted versions, and gets even faster as soon as the JIT compiler
kicks in (around 540,000). This is because the non-lifted interpreter involves one call
per expression evaluation, whereas the lifted interpreters always involve two.

The “fast” lifting results show a small improvement over vanilla lifting. The op-
timization in fast lifting is based on moving the creation of new closures outside of
dynamic expression evaluation, and using side-effects to bind the propagated parame-
ter. As a result, all additional closures are created once and for all when the expression
itself is created. For instance, the optimized lifting of the addition construct is defined
as follows:

def add(l: EvE, r: EvE): EvE = {
var env: Env = null
val lw = () => l(env)
val rw = () => r(env)
val add = base.add(lw, rw);
e => { env = e; add() }

}

Instead of creating the lowered argument closures lw and rw within the body of the
returned closure, they are hoisted to the level of add itself. Similarly, the call to base.add
is also hoisted, avoiding additional runtime overhead. To ensure that the environment
is propagated correctly, the returned closure assigns the received environment e to the

35

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 200000 400000 600000 800000 1x10
6

R
u
n
n
in

g
 t
im

e
 (

s
)

Loop bound

No lifting
Vanilla lifting
"Fast" lifting

Figure 16: Executing sum(n, add(lit(1), lit(2))) without lifting, with vanilla lifting, and with “fast” lifting.

mutable variable env.
The results of the micro-benchmark confirm the observed slowdown in the DeltaBlue

benchmark. However, the primary cause seems to be additional call overhead, and not
the allocation of closures, since that accounts for only a small part of the slowdown.
Further research is needed to investigate ways of optimizing lifting interpreters.

9. Related Work and Discussion

In this section we discuss related work and then provide a qualitative assessment of
implicit context propagation as a technique.

9.1. Related Work
We discuss the related work in three categories: modular interpreters, component-based
language development, and, finally, other techniques to implicitly propagate context.

9.1.1. Modular Interpreters
In this section, we present other approaches to modular interpreters. We first elaborate
on the concept of monad transformers since this technique is the most well-known
approach for defining modular interpreters. We then discuss some limitations of the
original presentation of monad transformers and existing work that addresses them.
Finally, we review other functional programming approaches to modular interpreters.

36

Monad transformers. The use of monads to structure interpreters is a well-known de-
sign pattern in functional programming. Monads, as a general interface for sequencing,
allow idioms such as environments, stores, errors, and continuations to be automati-
cally propagated. However, monads themselves do not allow these different effects to
be combined. Liang et al. [31] consolidated much of the earlier work (e.g., [41, 10])
on how monad transformers (MT) can be used to solve this problem. The complete
presentation of modular interpreters in their work exposes a monadic interpretation
function whose signature is interp :: Term -> InterpM Value. This interpreter is extensi-
ble because all three components – the term type, the value type and the monad – can be
composed from individual components. Both the term and the value types can be mod-
ularly defined and later extended/composed using extensible unions, while the monad
InterpM can be defined using monad transformers.

To illustrate modular interpreters in monadic style, the left column of Table 5 shows
the Arith, Binding and Storage languages introduced in Section 4 in Haskell. For refer-
ence, the Object Algebra implementations are shown in the right column. The monadic
interpreters are defined as instances of the type class InterpC, where the interp operation
is defined. The code fragments assume that extensible unions are used to combine the
syntactic data types of each language module and the resulting Value data type used in
InterpM Value. As a result, the algebraic data types in Table 5 recurse on the open type
Term. For instance, the Arith and Binding modules can be combined using the Either type
constructor and a newtype definition of Term to “tie the knot”:

type ArithBinding = Either Arith (Either Binding ())
newtype Term = Term ArithBinding

The extensible Value is defined similarly, and requires auxiliary functions for inject-
ing values into and projecting values out of the value domain. The functions returnInj
and bindPrj are helper functions representing the monadic return and bind functions per-
forming injection and projection. For instance, the Arith language injects integers into
the value domain. Similarly, Binding and Storage require closures and locations to be
part of the domain, respectively. Here, however, we focus on the modular effects part
of the presentation.

The key observation about Table 5 is that the interp functions return monadic values
in the type InterpM, but each module imposes different constraints on the actual defin-
tion of this type. For instance, the Arith module does not make any assumptions on
InterpM except that it is a monad. The Binding module, however, requires that the monad
supports the functions rdEnv and inEnv in order to obtain the current environment and
evaluate an expression in a particular environment, respectively. Finally, the Storage
language requires allocating, inspecting and updating locations.

To support both environments and a store for side effects, InterpM should be defined
as a stack of monad transformers, each of which allows lifting the operations from
one kind of monad into another one. For example, the following definition of InterpM
suffices for the composition of the Arith, Binding and State interpreters (notice that at the
bottom of the stack we have the identity monad Id):

type InterpM = EnvT Env (StateT Store Id)

Given a composition of the syntactic data types representing Arith, Binding and
Storage the interpreters can be composed where “effect oblivious” code propagates the

37

Monad transformers in Haskell Implicit context propagation in Scala

data Arith
= Lit Int
| Add Term Term

instance InterpC Arith where
interp (Add l r) = interp l ‘bindPrj‘ \i

-> interp r ‘bindPrj‘ \j
-> returnInj ((i+j)::Int)

interp (Lit n) = returnInj n

type Ev = () => Val

trait EvArith extends Arith[Ev] {
def add(l: Ev, r: Ev) = () => IntVal(l() + r())

def lit(n: Int) = () => IntVal(n)
}

data Binding
= Lambda Name Term
| Vari Name
| Apply Term Term

instance InterpC Binding where
interp (Lambda x b) = rdEnv >>= \env

-> returnInj $ Clos x b env
interp (Vari x) = rdEnv >>= \env

-> case lookupEnv x env of
Just v -> v

interp (Apply e1 e2) = interp e1 ‘bindPrj‘ \f ->
case f of
Clos x e env ->

inEnv
(extendEnv (x, interp e2) env)
(interp e)

trait EvEBinding extends Binding[EvE] {
def lambda(x: Str, b: EvE)
= env => new Clos(x, b, env)

def vari(x: Str): EvE = env => env(x)

def apply(e1: EvE, e2: EvE)
= env => e1(env).apply(e2(env))

}

data Storage
= Create
| Update Term Term
| Inspect Term

instance InterpC Storage where
interp (Create) = do loc <- allocLoc

updateLoc (loc, returnInj (0::Int))
returnInj loc

interp (Update c v) = interp c ‘bindPrj‘ \loc
-> interp v >>= \val
-> updateLoc (loc, return val) >>

return val
interp (Inspect c) = interp c ‘bindPrj‘ lookupLoc

trait EvMStorage extends Storage[EvS] {
def create()
= st => { val c = new Cell(st.size + 1)

st += c -> IntVal(0); c }

def update(c: EvS, v: EvS)
= st => { val c1: Cell = c(st)

val v1 = v(st)
st += c1 -> v1; c1 }

def inspect(c: EvS)
= st => { val c1: Cell = c(st); st(c1) }

}

Table 5: Arithmetic, Binding and Storage language building blocks implemented in
Haskell with monad transformers (on the left) and in Scala using Object Algebras (on
the right).

38

Monad transformers [31] This work

Syntactic modularity Extensible unions Trait composition
Value extensibility Extensible unions (with inj/prj) Subtyping (with casts)
Context propagation Monad transformers Implicit propagation
Interpreter style Monadic Direct
Part of signature Return type Formal parameters
Purely functional Yes No
Type safe Yes Yes
Separate compilation No Yes
Effect interaction Explicit Implicit
Scope of interaction Global, fixed Locally overridable
Compositional propagation No Yes

Table 6: Comparing characteristics of modular interpreters using monad transformers
vs. implicit context propagation

environment and store as defined in the monad transformers EnvT and StateT.
Note that the definition of InterpM is a global definition for all interpreter modules,

which defines the set of effects and their composition once and for all. This means
that the ordering of the effects and their interaction is defined and fixated at this point;
it is not possible to change the interaction on a per module basis. Furthermore, any
change to the InterpM type definition requires re-typechecking each module. As such,
this formulation does not support separate compilation. It is also impossible to reuse a
composition of interpreters as a black box component in further compositions.

Monad transformers are defined in a pair-wise fashion. This means that if there
are feature interactions between two monads, they have to be explicitly resolved. With
implicit context propagation, however, the interactions between effects are implicit, as
they depend on the behavior of the context objects in the host language. Note how-
ever, that inadvertent feature interactions can always be explicitly resolved in our case
by overriding lifted interpretations. An example of this is preventing capture of the
dynamic environment as discussed in Section 4.2. Nevertheless, when the interactions
are more complex (e.g., when the host language does not natively support the effects
being modeled), the overriding code can be quite involved (cf. Section 4.4).

As a summary, Table 6 provides a qualitative appraisal of using monad transformers
vs. implicit context propagation as presented in this paper, in terms of a number of meta
level characteristics. The table shows that both approaches have different strengths and
weaknesses. The most apparent feature of monad transformers is that they represent
a purely functional approach to modular interpreters; no side-effects are needed. Im-
plicit context propagation, on the other hand, emphasizes extensibility and simplicity,
at the cost, perhaps, of sacrificing purity and explicitness. In particular, implicit context
propagation supports compositional propagation: a lifted interpreter can be lifted yet
again, to propagate additional context. The lifting operation is oblivious as to whether
the interpreter to be lifted is a base interpreter or has been lifted earlier. This is a crucial
aspect for incremental, modular development of languages.

39

Extensible syntax and multiple interpretations. Monad transformers in their original
presentation do not feature separate compilation. Although we can define the lan-
guage components in a modular fashion, at the moment of composition all the type
synonyms (e.g. the type InterpM) who are referred by each module, must be resolved
and therefore, the compilation is monolithic. Similarly, syntax definitions are not truly
extensible either: adding data types to the extensible union requires recompilation of
the existing interpreter code. To overcome these problems, Duponcheel [9] extended
the work of [31] by representing the abstract syntax of a language as algebras, and
interpreters as catamorphisms over such algebras to cater for extensible syntax. Addi-
tionally, this style support extensible operations as well, similar to the Object Algebra
style employed in this paper.

Other approaches to modular interpreters. A different approach to extensible inter-
preters was pioneered by Cartwright and Felleisen [4]. They present extended direct
semantics, allowing orthogonal extensions to base denotational definitions. In this
framework, the interpreters execute in the context of a global authority which takes
care of executing effects. A continuation is passed to the authority to continue eval-
uation after the effect has been handled. In extended direct semantics, the semantic
functionM has a fixed signature Exp→ Env→ C where C is an extensible domain of
computations. The fixed signature of M allows definitions of language fragments to
be combined.

Kiselyov et al. [27] generalized the approach of [4], allowed the administration
functions to be modularized as well, and embedded the framework in Haskell using
open unions for extensible syntax, and free monads for extensible interpreters. This
approach to define modular interpreters excels at the definition of imperative embedded
languages, where the monad sequencing operator is reused for the sequencing operators
of the embedded language.

9.1.2. Component-Based Language Development
The vision of building up libraries of reusable language components to construct lan-
guages by assembling components is not new. An important part of the Language De-
velopment Laboratory (LDL) [21] consisted of a library of language constructs defined
using recursive function definitions. Heering and Klint considered a library of reusable
semantic components as a crucial element of Language Design Assistants [22]. Our
work can be seen as a practical step in this direction. Instead of using custom specifi-
cation formalisms, our semantic components are defined using ordinary programming
languages, and hence, are also directly executable.

More recently, Cleenewerck investigated reflective approaches to component-based
development [6, 7]. In particular, he investigated the different kinds of interfaces of var-
ious language aspects and how they interact. Implicit context propagation can be seen
as a mechanism to address one such kind of feature interaction, namely the different
context requirements of interpreters.

Directly related to our work is Mosses’ work on component-based semantics [5].
Languages are defined by mapping abstract syntax to fundamental constructs (funcons),
which in turn are defined using I-MSOS [33], an improved, modular variant of Struc-
tural Operational Semantics (SOS) which also employs implicit context propagation.

40

The modular interpreters of this paper can be seen as the denotational, executable ana-
log of I-MSOS modules. In fact, our implicit context propagation technique was di-
rectly inspired by the propagation strategies of I-MSOS.

Finally, first steps to apply Object Algebras to the implementation of extensible
languages have been reported in [15]. In particular, this introduced Naked Object Al-
gebras (NOA), a practical technique to deal with the concrete syntax of a language
using Java annotations. We consider the integration of NOA to the modular interpreter
framework of this paper as future work. In particular, we want to investigate designs to
support multiple concrete syntaxes for an abstract semantic component.

9.1.3. Implicit Propagation
Implicit propagation has been researched in many forms and manifestations. The most
related treatment of implicit propagation is given by Lewis et al. [30], who describe im-
plicit parameters in statically typed, functional languages. A difference to our approach
is that implicit parameters cannot be retro-actively added to a function: a top-level eval-
uation function would still need to declare the extra context information, even though
its value is propagated implicitly.

Another way of achieving implicit propagation in functional languages is using
extensible records [29]. Functions consuming records may declare only the fields of
interest. However, if such a function is called with records containing additional fields,
they will be propagated implicitly.

Implicit propagation bears similarity to dynamic scoping, as for instance, found in
CommonLisp or Emacs Lisp. Dynamic scoping is a powerful mechanism to extend or
modify the behavior of existing code [20]. For instance, it can be used to implement
aspects [8] or context-oriented programming [23].

Another area where implicit propagation has found application is in language engi-
neering tools. For instance, [43] introduced scoped dynamic rewrite rules to propagate
down dynamically scoped context information during a program transformation pro-
cess. Similarly, the automatic generation of copy rules in attribute grammars is used to
propagate attributes without explicitly referring to them [26].

Finally, the implicit propagation conventions applied in the context of I-MSOS [33],
have been implemented in DynSem, a DSL for specifying dynamic semantics [42]. In
both I-MSOS and DynSem, propagation is made explicit by transforming semantic
specifications.

9.2. Discussion

Although most of the code in this paper, as well as the code of the case studies, is
written in Scala, it is easy to port implicit context propagation to other languages.
For instance, Java 8 introduces default methods in interfaces, which can be used for
trait-like multiple inheritance. These interfaces were used in the discussion of using
dynamic proxies for automating lifting in Section 5.2. Without a trait-like composition
mechanism, the technique can still be of use, except that extensibility would be strictly
linear. This loses some of the appeal for constructing a library of reusable semantic
building blocks, but still enjoys the benefits of type safety and modular extension.

41

As we could conclude from the analysis of existing work on modular interpreters,
the main strength of implicit context propagation is its simplicity. For context infor-
mation other than read-only, environment-like parameters, we depend on the available
mechanisms of the host language. For instance, read-write effects (stores) are modeled
using mutable data structures (cf. Section 4.3). Other effects, such as error propa-
gation, local backtracking (Section 4.4), non-local control flow (break, continue, return,
etc.), and gotos and coroutines [2] can be simulated using the host language’s excep-
tion handling mechanism. Support for concurrency or message passing can be directly
implemented using the host language’s support for threads or actors (cf. [18]).

A limitation of implicit context propagation is that certain complex feature inter-
actions may occur when simulating propagation patterns that are not native to the host
language (such as transaction-reversing choice). There is always the option to override
semantic definitions to resolve the interaction manually, but this can be quite involved.
Semantic feature interactions are more explicitly addressed in the work on monad trans-
formers or effect handlers.

Another drawback of implicit context propagation is that, even though the boiler-
plate code can be automatically generated, the user still has to explicitly specify which
liftings are needed and compose the fragments herself. Instead of using the annotations,
it would be convenient if one could simply extend a trait over the right signature and
have the actual implementation completely inferred. For instance, instead of writing
the @lift annotation described in Section 5, one would like to simply write:

trait Combined extends EvEBinding with Arith[EvE]

The system would then find implementations of Arith[_] to automatically define the re-
quired lifting methods right into the Combined trait. If multiple candidates exist, it
would be an error. This is similar to how Scala implicit parameters are resolved [34].
We consider this as a possible direction for future work.

Another open challenge is the disambiguation of parameters with the same type
when automating lifting. For instance, in the case of the Dynamic Scoping example
(Section 4.2), one wants to explicitly indicate on the lifted carrier type (Env, Env) => Val
which Env corresponds to the dynamic environment, and which one to the static one.
In our current implementation, there is no way to specify this either with the macro
approach or with dynamic proxies. When there are two parameters with the same
type, the behavior of the @lift is currently undefined. In order to work around this,
additional metadata (e.g., via annotations) should be provided in order to guide the
disambiguation of same-type parameters and produce the right lifting.

10. Conclusion

Component-based language engineering would bring the benefits of reuse to the con-
struction of software languages. Instead of building languages from scratch, they can
be composed from reusable building blocks. In this work we have presented a design
for modular interpreters that support a high level of reuse and extensibility. Modular in-
terpreters are structured as Object Algebras, which support modular, type safe addition
of new syntax as well as new interpretations. Different language constructs, however,
may have different context information requirements (such as environments, stores,

42

etc.), for the same semantic interpretation (evaluation, type checking, pretty printing,
etc.).

We have presented implicit context propagation as a technique to eliminate this
incompatibility by automatically lifting interpretations requiring n context parameters
to interpretations accepting n+ 1 context parameters. The additional parameter is im-
plicitly propagated, through the interpretation that is unaware of it. As a result, future
context information does not need to be anticipated in language components, and op-
portunities for reuse are increased.

Implicit context propagation is simple to implement, does not require advanced
type system features, fully respects separate compilation, and works in mainstream OO
languages like Java. We have shown how the pattern operates in the context of over-
riding, mutable context information, exception handling, continuation-passing style,
languages with multiple syntactic categories, generic desugaring and interpretations
other than dynamic semantics. Furthermore, the code required for lifting can be au-
tomatically generated using a simple annotation-based code generator or lifting can
be generically performed at runtime using dynamic proxies. We have illustrated the
usefulness of implicit context propagation in an extensible implementation of a simple
DSL for state machines. Our modular implementation of Featherweight Java with state
shows that the pattern enables an extreme form of modularity, bringing the vision of a
library of reusable language components one step closer.

Since lifting is based on creating intermediate closures, lifted interpreters can be
significantly slower than directly implemented base interpreters. Running the well-
known DeltaBlue benchmark on top of a modular interpreter for LambdaJS shows that
lifting makes interpreters almost twice as slow. Further research is required to explore
techniques to eliminate the additional call overhead during evaluation. One possible
direction would be light-weight modular staging (LMS) [40] in Scala, although this
approach would compromise separate compilation of base interpreters.

Other directions for further research include the integration of concrete syntax
(cf. [15]), and the application of implicit context propagation in the area of DSL en-
gineering. We expect that DSL interpreters require a much richer and diverse set of
context parameters, apart from the standard environment and store idioms. Finally, we
will investigate the design of a library of reusable interpreter components as a practical,
mainstream analog of the library of fundamental constructs of [5].

References

[1] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams IV, D. P. Fried-
man, E. Kohlbecker, G. L. Steele Jr, D. H. Bartley, R. Halstead, et al. Revised5

report on the algorithmic language Scheme. Higher-order and symbolic compu-
tation, 11(1):7–105, 1998.

[2] L. Allison. Direct semantics and exceptions define jumps and coroutines. Infor-
mation Processing Letters, 31(6):327–330, 1989.

[3] E. Burmako. Scala macros: Let our powers combine!: On how rich syntax and
static types work with metaprogramming. In SCALA, pages 3:1–3:10. ACM,
2013.

43

[4] R. Cartwright and M. Felleisen. Extensible denotational language specifications.
In Theoretical Aspects of Computer Software, pages 244–272. Springer, 1994.

[5] M. Churchill, P. D. Mosses, N. Sculthorpe, and P. Torrini. Reusable components
of semantic specifications. In Transactions on Aspect-Oriented Software Devel-
opment XII, pages 132–179. Springer, 2015.

[6] T. Cleenewerck. Component-based DSL development. In GPCE, pages 245–264.
Springer, 2003.

[7] T. Cleenewerck. Modularizing Language Constructs: A Reflective Approach.
PhD thesis, Vrije Universteit Brussel, 2007.

[8] P. Costanza. Dynamically scoped functions as the essence of AOP. ACM SIG-
PLAN Notices, 38(8):29–36, 2003.

[9] L. Duponcheel. Using catamorphisms, subtypes and monad transformers for writ-
ing modular functional interpreters. 1995.

[10] D. Espinosa. Semantic Lego. PhD thesis, Columbia University, 1995.

[11] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In POPL,
pages 171–183. ACM, 1998.

[12] M. Fowler. Domain-specific languages. Pearson Education, 2010.

[13] B. N. Freeman-Benson and J. Maloney. The DeltaBlue algorithm: An incre-
mental constraint hierarchy solver. In Computers and Communications, 1989.
Conference Proceedings., Eighth Annual International Phoenix Conference on,
pages 538–542. IEEE, 1989.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Pearson Education, 1994.

[15] M. Gouseti, C. Peters, and T. v. d. Storm. Extensible language implementation
with Object Algebras (short paper). In GPCE, 2014.

[16] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of Javascript. In Pro-
ceedings of the 24th European Conference on Object-oriented Programming,
ECOOP’10, pages 126–150, Berlin, Heidelberg, 2010. Springer-Verlag.

[17] A. Guha, C. Saftoiu, and S. Krishnamurthi. LambdaJS code repository. Online,
2015. https://github.com/brownplt/LambdaJS.

[18] P. Haller and M. Odersky. Scala Actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2-3):202–220, 2009.

[19] L. T. Hansen. Syntax for dynamic scoping, 2000. SRFI-15.

[20] D. R. Hanson and T. A. Proebsting. Dynamic variables. ACM SIGPLAN Notices,
36(5):264–273, 2001.

44

https://github.com/brownplt/LambdaJS

[21] J. Harm, R. Lämmel, and G. Riedewald. The language development laboratory
(LDL). In Selected papers from the 8th Nordic Workshop on Programming Theory
(NWPT’96), pages 77–86, 1997.

[22] J. Heering and P. Klint. Semantics of programming languages: A tool-oriented
approach. SIGPLAN Notices, 35(3):39–48, 2000.

[23] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented programming.
Journal of Object Technology, 7(3), 2008.

[24] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calcu-
lus for Java and GJ. In OOPSLA, pages 132–146. ACM, 1999.

[25] P. Inostroza and T. v. d. Storm. Modular interpreters for the masses: Implicit
context propagation using Object Algebras. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Generative Programming: Concepts and
Experiences, GPCE 2015, pages 171–180. ACM, 2015.

[26] U. Kastens. The GAG-system: A tool for compiler construction. 1984.

[27] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: an alternative to monad
transformers. ACM SIGPLAN Notices, 48(12):59–70, 2013.

[28] R. Lammel and S. P. Jones. Scrap your boilerplate: A practical design pattern for
generic programming. In TLDI’03, 2003.

[29] D. Leijen. Extensible records with scoped labels. Trends in Functional Program-
ming, 5:297–312, 2005.

[30] J. R. Lewis, J. Launchbury, E. Meijer, and M. B. Shields. Implicit parameters:
Dynamic scoping with static types. In POPL, pages 108–118. ACM, 2000.

[31] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In POPL, pages 333–343. ACM, 1995.

[32] K. J. Lieberherr. Adaptive Object Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing, 1996.

[33] P. D. Mosses and M. J. New. Implicit propagation in structural operational se-
mantics. Electronic Notes in Theoretical Computer Science, 229(4):49–66, 2009.

[34] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, and M. Zenger. The Scala language specification v.211,
2014.

[35] B. C. d. S. Oliveira and W. R. Cook. Extensibility for the masses: practical
extensibility with Object Algebras. In ECOOP, pages 2–27. Springer, 2012.

[36] B. C. d. S. Oliveira, T. Van Der Storm, A. Loh, and W. R. Cook. Feature-oriented
programming with Object Algebras. In ECOOP’13, pages 27–51. Springer, 2013.

45

[37] Oracle. Dynamic proxy classes. Online, 2015. https://docs.oracle.
com/javase/8/docs/technotes/guides/reflection/proxy.
html.

[38] Oracle. Java annotation processor. Online, 2015. https://docs.oracle.
com/javase/8/docs/api/javax/annotation/processing/
Processor.html.

[39] J. C. Reynolds. The discoveries of continuations. Lisp and symbolic computation,
6(3-4):233–247, 1993.

[40] T. Rompf and M. Odersky. Lightweight modular staging: A pragmatic approach
to runtime code generation and compiled DSLs. In Proceedings of the Ninth In-
ternational Conference on Generative Programming and Component Engineer-
ing (GPCE’10), pages 127–136. ACM, 2010.

[41] G. L. Steele Jr. Building interpreters by composing monads. In POPL’94, pages
472–492. ACM, 1994.

[42] V. Vergu, P. Neron, and E. Visser. DynSem: A DSL for dynamic semantics
specification. In RTA, LIPICS, 2015.

[43] E. Visser. Scoped dynamic rewrite rules. Electronic Notes in Theoretical Com-
puter Science, 59(4):375–396, 2001.

[44] M. P. Ward. Language-oriented programming. Software-Concepts and Tools,
15(4):147–161, 1994.

46

https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/proxy.html
https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/proxy.html
https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/proxy.html
https://docs.oracle.com/javase/8/docs/api/javax/annotation/processing/Processor.html
https://docs.oracle.com/javase/8/docs/api/javax/annotation/processing/Processor.html
https://docs.oracle.com/javase/8/docs/api/javax/annotation/processing/Processor.html

	Introduction
	Background
	Problem Overview
	Object Algebras

	Implicit Context Propagation
	Adding Environments to Arithmetic Expressions
	Generating Implicit Context Propagation Code

	Working with Lifted Interpretations
	Delaying Evaluation
	Overriding Interpretations: Dynamic Scoping
	Mutable Parameters: Stores
	Exception Handling: Backtracking
	Continuation-Passing style
	Many-sorted Languages: If-Statements
	Desugaring: Let
	Multiple Interpretations: Pretty Printing

	Automating Lifting
	Lift using a Scala Macro
	Dynamic Lifting in Java
	Discussion

	Case study 1: Extending a DSL for State Machines
	State Machines
	Modular Extension of State Machines

	Case Study 2: Modularizing Featherweight Java
	Definition of FJ and SFJ
	Analyzing Hypothetical Subsets of SFJ

	Performance Overhead of Lifting
	Benchmarking Realistic Code: Executing the DeltaBlue Benchmark
	Micro-benchmark: Executing Lifted Interpreters in a Loop

	Related Work and Discussion
	Related Work
	Modular Interpreters
	Component-Based Language Development
	Implicit Propagation

	Discussion

	Conclusion

