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Abstract
Effect handling is a way to structure and scope side-effects

which is gaining popularity as an alternative to monads in

purely functional programming languages. Languages with

support for effect handling allow the programmer to define

idioms for state, exception handling, asynchrony, backtrack-

ing, etc. from within the language. Functional programming

languages, however, prohibit certain patterns of modular-

ity well-known from object-oriented languages. In this pa-

per we introduce JEff, an object-oriented programming lan-

guage with native support for effect handling, to provide first

answers to the question what it would mean to integrate

object-oriented programming with effect handling. We illus-

trate how user-defined effects could benefit from interface

polymorphism, and present its runtime semantics and type

system.

CCS Concepts • Software and its engineering → Ob-
ject oriented languages; Control structures;

Keywords object-oriented languages, effect handling
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1 Introduction
Effect handlers [17, 18] are a programming language mecha-

nism to structure, scope, and compose side-effects in purely

functional languages. Languages that support effect handling

natively, such as Koka [14], Eff [4], Frank [15], allow side ef-

fects (state, IO, exceptions, coroutines, asynchrony, etc.) to be
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defined within the programming language, as libraries. Effect

handlers have been touted as a simpler and more compos-

able way of programming with effects than other techniques,

such as, for instance, monads. As a result, perhaps, existing

research on effect handling has mainly focused on functional

programming languages.

Functional programming languages, however, prohibit

certain patterns of modularity and reuse well-known in

object-oriented languages. Yet the huge success of object-

orientation in practice [1] seems to suggest these mecha-

nisms are valuable programming tools. This raises the ques-

tion: what would it mean to integrate effect handling with

object-oriented programming?

In this paper we present first steps towards answering

this question in the form of JEff, an object-oriented Java-

like language without side-effects or inheritance, but with

built-in support for programming with effect handlers. As a

simple example, consider the code snippet shown in Figure 1.

It defines an effect interface StdOut declaring a single effect

method print for printing to the console. The class MyStdOut

implements the interface and also marks itself as being a

Handler; we defer the details of implementing handlers to

Section 2. The StdOut interface is used in the hello method,

which declares it as a required effect using @. In its body it

calls the print method. Finally, the main method – which is

pure – installs a MyStdOut handler with the with-construct,

providing the printing capability to hello. Since MyStdOut

models the console as a list of strings, this, together with the

unit value, will be the result of main.

The example already highlights the most important aspect

of JEff, namely that the declaration of an effect is decoupled

interface StdOut { eff Unit print(String s) }

class MyStdOut<T>(List<String> o) implements

StdOut, Handler<Tuple<List<String>, T>, T> {...}

class Main() {

Unit hello()@StdOut = StdOut::print("Hello world!")

Tuple<List<String>, Unit> main() =

with (new MyStdOut<Unit>([])) { this.hello() }

}

Figure 1. Skeleton of a simple JEff program
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from its implementation by a handler through interfaces.

For instance, the StdOut interface can be implemented by

multiple handler classes like MyStdOut, but encapsulating

different internal representations. Nevertheless, the hello

method only refers to the effect interface, and hence can be

executed over any such implementation. JEff thus leverages

dynamic dispatch and interface-based encapsulation (two

of the corner-stones of object-oriented programming) for

defining effects.

The contributions of this paper can be summarized as

follows:

• We present JEff, the first object-oriented language with

native support for effect handling (Section 2).

• We illustrate how common effects like exception han-

dling (Section 2.2) and state (Section 2.3) are realized

in JEff, thus providing an object-oriented introduction

to effect handling, and how object-oriented effect han-

dling facilitates structuring interpreters and ad hoc

overloading of effects (Section 2.4).

• We present the formal semantics of a core language of

JEff, called Featherweight JEff (FJEff) (Section 3).

• We present the formal type system of FJEff and discuss

its soundness properties (Section 4).

The syntax and semantics of FJEff have been modeled

using Redex [13], an embedded domain-specific language

for mechanizing programming languages. The source code

of the models is available online
1
.

The paper is concluded with a discussion of open problems

and directions for further research. We hope that JEff can

contribute to a better understanding of effectful program-

ming in the context of object-oriented languages without

built-in notions of state, identity, or inheritance [7].

2 JEff: Programming with Objects and
Effects

2.1 Introduction
JEff is a Java-like language where custom effects can be de-

fined as effect interfaces. The implementation of these effects

is provided by handler classes. In this section we will explore

the main characteristics of JEff using some illustrative sce-

narios.

Like Java, JEff features both classes and interfaces. It has

multiple inheritance of interfaces, and it features both sub-

typing and parametric polymorphism (generics). To focus on

the core aspects of combining object-orientation with effect

handling, JEff does not feature implementation inheritance

for classes
2
. Furthermore, JEff is a side-effect free language:

there is no mutation, I/O, exceptions, etc. These effects are

to be provided by libraries of effect handlers that simulate

such effects. Programmers can design and implement their

1
https://github.com/cwi-swat/jeff-model

2
As a reference, in [2] authors report that the interaction between excep-

tions, a particular case of effects, and inheritance is non-trivial.

own custom effects, and provide new handlers for existing

ones.

Effect interfaces can be used to define the signature of the

effect methods, such as print in the introduction. Effect meth-

ods are implemented in handler classes which provide the

effect semantics. Effect methods can resume execution, trans-

ferring control back to the point where the effect method

was called, using the special context variable therewhich de-

notes a special object conforming to the predefined interface

Resume that defines a single method resume.

If an effect method does not resume, the suspended exe-

cution stack is ignored and execution proceeds at the point

where the handler was installed using the with-construct.

The with-construct thus acts as a delimiter of the dynamic

context in which effect invocations are handled. In order

to specify what to do with the value that is produced after

executing the body of the with-expression – in the manner of

a wrapper – handler classes must implement the predefined

Handler interface, whose single return method acts as the

required wrapper.

JEff features a type and effect system that assigns types

to expressions, methods, interfaces and classes. A method

whose body calls an unhandled operation needs to be anno-

tated with a type that declares the called effect method. The

client of that method must, therefore, provide at some point

a handler for that particular effect, similar to how checked

exception declarations propagate in Java.

We now illustrate effectful progamming in JEff using the

standard examples of exception handling and state.

2.2 Exception Handling
In JEff, an effect type is defined by declaring an effect inter-

face. For instance, the following effect interface (indicated

by the keyword eff on the effect method raise) defines the

effect of raising an exception:

interface Raise { eff Nothing raise(String s) }

The Raise effect interface declares the effect method raise,

as indicated by the eff keyword. This operation receives a

string as an argument and returns an object of type Nothing

(which represents the bottom type). In this case, the return

type signifies that the raise method will never return.

The following code illustrates how the raise effect is trig-

gered:

Int divide(Int x, Int y)@Raise =

if (y != 0) x/y else Raise::raise("Division by zero")

The method signature of divide reflects its required effects

in its signature through the Raise annotation. If the divisor is

equal to zero, the method divide throws the exception. The

syntax to call operations is the name of the type correspond-

ing to the effect interface followed by two colons, the name

of the operation, and the arguments.
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The code above shows how to trigger an effect, but not

how to handle it. In order to provide an interpretation to

the raise effect, a handler object must be installed using the

with-construct. This handler object must be an instance of a

class that implements the Raise interface. For instance, the

following expression installs a handler h to handle the effects

triggered by divide:

with (h) { divide(4, 0) }

The with-expression acts as a dynamic scoping construct

so that the raise invocation becomes a method call on the

handler object h.

Since all the effects invoked in the code within the context

of a with-construct are eventually handled, the body of the

with-construct evaluates to a value. Handlers may capture

this value and transform it before it is returned as the result of

the with-expression itself. This is realized by the requirement

that all handler objects must be instances of classes that

implement the predefined Handler interface:

Definition 2.1 (Handler).

interface Handler<Out, In> { Out return(In in) }

The Handler interface declares a single returnmethod that

captures the result of the with-construct when no more ef-

fects are triggered in its body. The two type parameters In

and Out capture the type of the body of the with-expression,

and the type of the with-expression itself, respectively.

There is nothing special about the Handler interface; it

simply functions as the interface between the with-construct

and its body and context, similar to how the Iterable inter-

face interacts with the for-construct in Java. Note however,

that the return method must be pure, since it has no effect

annotations.

Now let’s look at a potential implementation of a handler

for Raise. The following DefaultRaise class defines a handler

for the raise effect which simply returns a default value in

case of an exception. The default value is provided when the

class is instantiated through the x field. This default value

is used as the value of the with-expression in case its body

raises an exception.

class DefaultRaise<T>(T x)

implements Raise, Handler<T, T> {

T return(T t) = t

eff Nothing raise(String s) = this.x

}

Both type parameters of Handler coincide and correspond

to the type parameter T. This means that if an object of class

DefaultRaise is used as a handler in a with-expression, both

the handled body of the expression and the with-expression

should have the same type. The return method, in this case,

is the identity function. Hence, if the body does not raise an

exception, as in with (new DefaultRaise<Int>(-1)){ divide

(4, 2)}, the return method of the handler object will be

called with the value returned by the body. In this case the

value of the with-expression will therefore be 2.

Looking closely at the implementation of raise, however,

makes it clear that effect methods are special, since the type

of their body does not match the declared return type at all.

In fact, in this case, the return type is Nothing, whereas the

type of the body expression is T! The reason for this is that

the declared return type corresponds to the type of value

that will be sent back to the calling context upon resump-

tion using resume. The type of the body of an effect method

should always correspond to the Out type parameter of the

Handler interface. Since in this case, the raise method does

not resume, it simply returns a value of that type, the default

value.

The dividemethod only refers to the Raise effect interface,

so it can be run in the context of any number of handler

implementations of the Raise interface. For instance, here

is another implementation of the Raise interface, where the

result of a computation is wrapped in a Maybe (option) type:

class MaybeRaise<T>()

implements Raise, Handler<Maybe<T>, T> {

Maybe<T> return(T t) = new Some<T>(t)

eff Nothing raise(String s) = new None()

}

In MaybeRaise, the In type parameter corresponds to T but

the Out type parameter, that is, the one that corresponds to

the type of the with-expression, is Maybe<T>. In this case, the

returnmethod wraps the value resulting from the evaluation

of the with-body in a Some object. Dually, the raise method

produces the empty value new None(). Note again that the

None object will be the result of the with-expression.

We have seen that the Nothing return type of raise means

that the method will never “return”, in other words, that it

will never transfer control back to the point of invocation.

In the next section we illustrate the scenario in which effect

methods resume execution at the point where they were

called.

2.3 Resuming After Handling: State
When the raise effect is triggered in the body of a with-

expression, the normal flow of computation is aborted and

evaluation proceeds at the level of the with-expression. Most

effects, however, require resuming execution at the point

where the effect was invoked, after handling. JEff realizes

resumption through the special variable there. The there

object is implicitly brought in scope when an effect method

executes, just like this is available in all method executions.
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The type of there is defined by the Resume interface:

Definition 2.2 (Resume).

interface Resume<T, Out, In> {

Out resume(T x, Handler<Out, In> h)

}

The resume-method accepts two arguments. The first ar-

gument represents the value that is sent back to the calling

context as the result of the effect invocation. The second

argument represents the (possibly new) handler to install for

the remainder of the execution. The concrete types for the

type parameters are inferred from the context, but note that

the second argument always needs to be a Handler.

Figure 2 shows how the state effect can be defined in JEff.

The State effect interface defines two operations: get, to

retrieve the state, and put to update the state. The interface

is generic in what is stored, and it abstracts from how state

itself is represented.

The figure also shows the handler class TupleState, which

implements the State interface and the Handler interface.

Both get and put resume the computation using the there

object. The method get resumes execution with the current

state this.s, within the context of the current handler object

this. Alternatively, put resumes with the unit value (), and

installs a new handler by constructing a new TupleState ob-

ject with the updated state x. Note how the type of the first

argument to the resumemethod always corresponds to the de-

clared return type of the effect methods. Finally, TupleState

defines the return method from the Handler interface, wrap-

ping the current state this.s and result of the with-body x

in a tuple.

The State effect and the TupleState handler can be used

as follows:

Unit countDown()@State<Int> =

Int i = State<Int>::get();

if (i >= 0) {

State<Int>::put(i - 1);

this.countDown();

}

with (new TupleState<Int,Unit>(2)) {

this.countDown()

}

/ / evaluates to Tuple (0 , ( ) )

The method countDown requires the State effect over inte-

gers, as witnessed by the annotation. It simply decreases the

stored value until it is zero. This method can then be invoked

by bringing TupleState handler in scope using with.

Note again that countDown is independent from any imple-

mentation of state, and only depends on the effect interface

State, in the same way that the divide method was only

dependent on the effect interface Raise, and not on any par-

ticular implementation. Decoupling the interface of effect

interface State<T> {

eff T get()

eff Unit put(T x)

}

class TupleState<T,U>(T s)

implements State<T>, Handler<Tuple<T,U>,U> {

eff T get() = there.resume(this.s, this)

eff Unit put(T x) = there.resume((), new TupleState(x))

Tuple<T,U> return(U x) = new Tuple<T,U>(this.s, x)

}

Figure 2. The State effect interface and a handler implemen-

tation TupleState using tuples

operations from handler operations allows client code to be

independent of concrete handlers.

For instance, consider the following handler for state,

which maintains a history of updates:

class LogState<T, U>(List<T> log)

implements State<T>, Handler<Tuple<List<T>, U>,U>> {

eff T get() = there.resume(this.log.last(), this)

eff Unit put(T x) =

there.resume((), new LogState<T,U>(log.append(x)));

Tuple<List<T>, U> return(U x) =

new Tuple<List<T>, U>(this.log, x)

}

Note that the State interface is still implemented over type

parameter T, but the handler itself now uses List<T> as its

representation to save the history of values that have been

assigned to the state. Calling countDown in the context of a

LogState handler, as in with (new LogState<Int, Unit>(2)){

countDown()}, will evaluate to the value Tuple([2, 1, 0],()).

2.4 Structuring Effectful Interpreters
One of the benefits of object-oriented programming is open

extensibility of data types [6]. Given an interface defining

a data type, (third-party) programmers can add new repre-

sentation variants to the type without changing (or even

recompiling) existing code. One use case where this is valu-

able is extensible AST-based interpreters.

Figure 3 shows the definition of an Exp data type with

five classes realizing different kinds of expressions. The Exp

interface defines a single eval method, annotated with Store

and Env (environment) effect types
3
. Each concrete class im-

plements the Exp interface4.

The eval method in Lit does not use any effect, since it

simply returns the field v. The Var class, however, requires

Env reader effect to lookup bindings for variables. The classes

3
Example implementations of Env and Store can be found in Appendix D.

4
The effect annotations in the implementation classes specify only the ef-

fects that are actually used in their body. This is valid due to JEff’s definition

of overriding.
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interface Exp {

Val eval()@Store,Env

}

class Lit(Val v) implements Exp {

Val eval() = this.v

}

class Var(String x) implements Exp {

Val eval()@Env = Env::get().lookup(this.x)

}

class Deref(Exp cell) implements Exp {

Val eval()@Store = Store::get(cell.eval())

}

class Assign(Exp loc, Exp val) implements Exp {

Val eval()@Store =

Store::put(this.loc.eval(), this.val.eval())

}

class Let(String x, Exp v, Exp b) implements Exp {

Val eval()@Env =

with (Env::get().extend(x, v.eval())){

b.eval()

}

}

Figure 3. Modular interpreters

Deref and Assign use the Store effect (similar to State of Fig-

ure 2) to realize cell dereferencing and assignment, respec-

tively. Finally, the Let class models a lexically scoped binding

construct, by first obtaining the current environment, ex-

tending it with a binding for x, and providing it as context

for the evaluation of the body b.

Even though the Exp interface fixes the effect privileges

of all interpreters, the effect handling mechanism of JEff

makes it unnecessary to accept and propagate stores and

environments explicitly, which would be needed in, e.g., Java,

even when they are not used. Note also that the set of effect

privileges on eval must be recursively closed, since eval

methods might call effectful methods on dependencies. In

this example all dependencies receiving method calls (i.e.,

cell, loc, val, v, and b) are Exp objects themselves, so this is

trivially satisfied.

The AST classes of Figure 3 could then be used with the

following run method:

Tuple<Store<Val>,Val> run(Exp<Val> exp) =

with (new Store<Val>()) {

with (new Env<Val>()) { exp.eval() }

}

run(

new Let<Val>("x", new Cell(0),

new Assign<Val>(

new Var<Val>("x"),

new Lit<Val>(new Num(42)))))

/ / evaluates to
/ / Tuple ( Store (0 , Map( Cell (0) −> Num(42) ) ) , Num(42))

The run method receives an expression and evaluates exp

in the context of a fresh store and environment. The result

will be a tuple of the store and the result. Note that run is pure,

since all effects of eval are handled. Note further that Store

and Env act both as handlers for their respective effects as

well as data containers for cell-value and name-value pairs

respectively; it is perfectly fine for JEff effect handlers to

have ordinary methods as well.

Although the effect signature of eval is not extensible it-

self, it is still possible to extend the code of Figure 3 with new

AST classes, without changing any of the existing classes,

and without having to modify run. Achieving the same at

the level of effects remains an open research question (see,

e.g., [9], for a discussion and non-effectful solution).

2.5 Ad Hoc Overloading of Effects
A key feature offered by JEff’s effect system is that dispatch

of an effect invocation happens through both subtype poly-

morphism and parametric polymorphism (generics). This

means that multiple handlers for the same effect interface

can be in scope for a fragment of code, and, more importantly,

they can be distinguished as well, since the effect invoking

code explicitly qualifies the invoked effect.

This unique feature of JEff is illustrated in Figure 4. The

ToStr effect allows some value of type X to be converted to

a string. Without going into details of implementing han-

dlers for this effect, the figure shows three specializations

of this effect: two sub-interfaces (IntToStr and IntToHex) –

representing different ways of converting an integer to a

string –, and a specialization for converting booleans to

string (BoolToStr).

Figure 4 also shows two methods invoking ToStr effects.

The method main1, requires abstract ToStr effects, instanti-

ated for both Int and Bool; it returns the concatenation of

converting both method parameters to string. So the same

effect interface is required to be in scope, instantiated over

different argument types.

Assuming we have handler implementations AnIntToStr,

and ABoolToStr, the main1 method can be invoked as follows:
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interface ToStr<X> {

eff String toString(X x);

}

interface IntToStr extends ToStr<Int> { }

interface IntToHex extends ToStr<Int> { }

interface BoolToStr extends ToStr<Bool> { }

/ / same effect , different type parameter
String main1(Int n, Bool b)@ToStr<Int>, ToStr<Bool>

= ToStr<Int>::toString(n) + " "

+ ToStr<Bool>::toString(b)

/ / same effect , same type parameter
String main2(Int n)@IntToStr, IntToHex

= IntToStr::toString(n) + ": "

+ IntToHex::toString(n)

Figure 4. ToStr effects

with (new AnIntToStr<String>())) {

with (new ABoolToStr<String>()) {

this.main1(42, true)

}

} / / ⇒ "42 true "

The invocation toString(n) will dispatch to AnIntToStr, be-

cause AnIntToStr is a subtype of ToString<Int>. Similarly,

toString(b) will dispatch to ABoolToStr, because ABoolToStr

is a subtype of ToString<Bool>. Note, however, that main1

only refers to ToString, so still benefits from subtype poly-

morphism. For instance, a handler implementation of IntToHex

could also be installed to adapt the behavior of main1 from

the outside.

The three interfaces of Figure 4 allow us to go even one

step further, and distinguish between different handlers over

the same effect interface and argument type(s). This is illus-

trated in method main2.

In this case, the method prints out a single number us-

ing different presentations, the default one (IntToStr), and

another one, in this case IntToHex. Again, assuming two han-

dler implementations of these respective interfaces, allows

main2 to be invoked as follows:

with (new AnIntToStr<String>()) {

with (new AnIntToHex<String>()) {

this.main2(42)

}

} / / ⇒ "42 : 2A"

Again, the combination of subtyping and generic type in-

stantiation provide additional flexibility in effectful program-

ming.

3 Dynamic Semantics
In this section we present the semantics of Featherweight

JEff (FJEff), a core calculus focusing on JEff’s more distinctive

semantic characteristics.

3.1 Syntax

T, S, U, V, W ::= X | N

N, P, Q ::= C<T>

L ::= classC<X ◁ N> ( T f ) ◁ N {M }

| interfaceC<X ◁ N> ◁ N {H }

Ξ ::= N
H ::= [ eff ]<X ◁ N > T m(T x )@ Ξ
M ::= H=e

e, d ::= x | e.f | e.<T>m(e) | newN (e )

| N ::<T>m(e) | with (e) { e }
v, w ::= new N (v) | new Resume {resume(x, x) = e }

Figure 5. FJEff syntax

The grammar of FJEff is shown in Figure 5. Metavariables

B,C andD range over class and interface names; f andд over
field names;m over method names; X and Y over type vari-

ables; and finally x andy over variables, including the special

variables this and there. Comma-separated sequences are

represented by overlined symbols, for exampleM represents

a sequence of method declarations. Consecutive sequences

represent sequencing tuples of elements as in C f for field

declarations.

Types can be either type variables X or non-variable types

N. A type definition L can be either a class or an interface

definition. Class definitions consist of the class’s name, an

optional list of bounded type parametersX ◁N , followed by a

possibly empty list of fields, an optional list of implemented

interfaces (preceded by ◁), and finally a list of methods.

An interface declaration follows the same structure, but

does not feature fields and may only contain method headers.

An effect set Ξ is a list of non-variable types where order is

irrelevant. Method headers H may be marked as being an

effect method using the keyword eff and consist further of

the return type T, the method name m, the list of formal pa-

rametersC x , and an optional sequence of effect annotations

Ξ. Method definitions M consists of a header and a body

expression e.

Expressions e can be a variable, field reference, method

invocation, object instantiation, effect method invocation,

or a with-expression. The first four are standard. An effect

method call consists of the type of an interface or class that

defines the effect method, followed by two colons and then

the name of the method and the arguments. The handling

expression with contains two sub-expressions. The first one

corresponds to the (handler) object that will handle (some of)

the effects that will be be triggered during execution of the
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E ::= [] | E.f | E.<T >m(e. . .) | v .<T >m(v. . .E e. . .) | newN (v. . .E e. . .) | N ::<T >m(v. . .E e. . .)

| with (E ) { e } | with (v) { E }

XN ::= [] | XN .f | XN .<T >m(e. . .) | v .<T >m(v. . .XN e. . .) | newN (v. . .XN e. . .) | N ::<T >m(v. . .XN e. . .)

| with (XN ) { e } | with (newQ(v. . .)) {XN } when • ⊢ Q ̸<: N

Figure 6. Evaluation contexts for reduction semantics

fields(N )=T f
newN (v ).fi −→ vi

r_field

mbody (m<V >, N ) = x .e

newN (v ).<V >m(w ) −→ [newN (v )/this, w/x]e
r_invk

new Resume {resume(xv, xh ) = e }.resume(v1, v2 ) −→ [v1/xv, v2/xh]e
r_resume

with (newN (v )) {v } −→ newN (v ).return(v)
r_return

• ⊢ Q<:N mbody (m<V >, Q)=x .e vk = new Resume {resume(xv, xh ) =with (xh ) { XN [xv] } }

with (newQ(v )) { XN [N ::m<V > (w )] } −→ [newQ(v )/this, vk/there, w/x]e
r_eff_invk

Figure 7. Reduction rules

body. Finally, objects v , w correspond to a fully-evaluated

instantiation expressions with new, or resumption object con-

taining a definition of the resume method as defined by the

Resume interface (see Definition 2.2).

There is an assumed fixed class table CT representing a

mapping from class and interface names to their declarations.

The class table needs to satisfy some sanity conditions in the

spirit of [8]. We do not elaborate on these conditions since

they are standard and not central to our discussion.

3.2 Reduction Semantics
We present the operational semantics of FJEff using Felleisen-

style evaluation contexts [23]. We use two evaluation con-

texts, E and XN , shown in Figure 6.

The E context is the usual context for call-by-value eval-

uation, while the XN context is used for the context that a

handler delimits. It follows the same structure as E except

that it matches with-expressions so that the body XN does

not contain with-expressions which handle effect N . In other

words, it captures the nearest enclosing with-expression that

is able to handle effect N . The side-condition ensures this by

disallowing Q to be a subtype of N .

Figure 7 shows the evaluation rules of FJEff. The semantics

uses two auxiliary lookup functions fields (tomap field names

to field indices) and mbody (to obtain the body of a method);

their definition is included in Appendix A.

Rule r_field defines field lookup. It maps a field name to

its position in the sequence of values in an object using the

fields lookup function. Rule r_invk defines the semantics

for ordinary method invocation by obtaining the body of the

methodm using the mbody lookup function. The expression

then reduces to the method body e with substitutions applied
for this and the formal parameters x . The rule r_resume
is similar to r_invk but works on synthesized resumption

objects.

There are two cases for with-expressions. The first one,

r_return, deals with the case in which the body expression

has been fully evaluated to a value. In that case the expression

reduces to a return invocation expression on the handler

object.

The second rule r_eff_invk applies when with-bodies

contain remaining effect method invocations, and thus im-

plements effect dispatch. The context XN ensures that the Q
object is the directly enclosing handler servicing the effect

N . The effect methodm is looked up in theQ object, and the

with-expression is reduced to its body e with substitutions

applied for this, there, and the formal parameters x .
The special variable there is substituted for a resumption

object vk whose resume method installs the handler xh and

continues execution of context XN with xv plugged in as the

result of the effect method. As a consequence, the value of an

effect method invocation at the call site will be xv whenever

the effect method resumes.

Compared to other calculi for effects and handlers that

are of functional nature, e.g. [14, 15], FJEff’s rule for effect

dispatch is special in that the syntax for the invocation in-

cludes an effect qualifier N that enables effect selection using

subtyping and parametric polymorphism, as it has been dis-

cussed in the ToStr example of Section 2.5. In r_eff_invk, it

is clear that the handler Q that is selected among those in

the runtime stack, is the one that is a subtype of the type

specified by qualifier N . The ToStr example illustrates the
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∆ = X<:N , Y<:P Ξm ; ∆ ; x :T , this:C<X> ⊢ e0 : S ∆ ⊢ S<:T

<Y ◁P>T m (T x ) @Ξm OK IN C<X ◁N >

<Y ◁P>T m (T x ) @Ξm = e0 OK IN C<X ◁N >
t_meth_reg

• ⊢ C<X> <: Handler<Tout, Tin> ∆ = X<:N , Y<:P

Ξm ; ∆ ; x :T , this:C<X>, there:Resume<T , Tout, Tin> ⊢ e0 : S ∆ ⊢ S<:Tout

eff <Y ◁P>T m (T x ) @Ξm OK IN C<X ◁N >

eff <Y ◁P>T m (T x ) @Ξm = e0 OK IN C<X ◁N >
t_meth_eff

Figure 8. Method typing rules

Ξ;∆; Γ ⊢ x : Γ(x )
t_var

Ξ;∆; Γ ⊢ e0 : T0 fields(bound∆ (T0)) = T f
Ξ;∆; Γ ⊢ e0 .fi : Ti

t_field

∆ ⊢ N ok fields(N ) = T f Ξ;∆; Γ ⊢ e : S ∆ ⊢ S<:T
Ξ;∆; Γ ⊢ newN (e ) : N

t_new

Ξ;∆; Γ ⊢ e0 : T0 mtype(m, bound∆ (T0)) = <Y ◁ P>U→U@Ξm ∆ ⊢ Ξ ⪯ Ξm

∆ ⊢ V ok ∆ ⊢ V <:[V /Y ]P Ξ;∆; Γ ⊢ e : S ∆ ⊢ S<:[V /Y ]U

Ξ;∆; Γ ⊢ e0 .m<V > (e ) : [V /Y ]U
t_invk

mtype(m, N ) = eff <Y ◁ P>U→U@Ξm ∆ ⊢ Ξ ⪯ Ξm ∆ ⊢ Ξ ⪯ N

∆ ⊢ V ok ∆ ⊢ V <:[V /Y ]P Ξ;∆; Γ ⊢ e : S ∆ ⊢ S<:[V /Y ]U

Ξ;∆; Γ ⊢ N ::m<V > (e ) : [V /Y ]U
t_eff_invk

Ξ;∆; Γ ⊢ e0 : T0 mtype(return, bound∆ (T0)) = Uin→Uout bound∆ (T0), Ξ;∆; Γ ⊢ e1 : T1

∆ ⊢ bound∆ (T0) <: Handler<Uout, Uin> ∆ ⊢ T1<:Uin

Ξ;∆; Γ ⊢ with (e0) { e1 } : Uout

t_with

Figure 9. Expression typing

consequences of this language design and the opportunities

that become available in terms of new patterns for structur-

ing effectful code, unavailable in functional languages with

effects.

4 Type System
4.1 Introduction
JEff is a statically typed language with a nominal type system,

where both classes and interfaces introduce types, arranged

in a subtype lattice. In this sectionwe present the type system

of the simplified core language FJEff. The type system of FJEff

is mostly standard, except that it ensures that JEff methods

are effect-safe: whenever an effect is triggered it is either

handled using a syntactically enclosing with-construct, or

the enclosing method is annotated with a type defining the

effect.

The type system further makes use of the Handler and

Resume interfaces for checking effect method declarations,

and the with-construct itself. Below we describe the type

rules for method definitions and expressions
5
. The rules are

similar to the typing rules used in Featherweight Generic

Java [8] and employ auxiliary definitions for subtyping, well-

formedness and overriding, included in Appendix B.

4.2 Method Typing
Figure 8 shows the two typing rules for method definitions in

classes. The rule t_meth_reg checks the validity of ordinary,

non-effect method declarations. The body of the method e0

is type checked in context of the effect set Ξm , the type

variable environment ∆ (derived from the type parameters

of the method and class), and an initial type environment

defining the type of this. The set Ξm can be seen as the set

of effect privileges available in the body of m. A method

declaration is then valid if its header is valid and the type of

e0 is a subtype of the declared return type T .
The second rule defines the type correctness of effect meth-

ods in a similar fashion. The first difference, however, is that,

5
Definitions for header, class and interface typing can be found in Appen-

dix C.
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in this case,C needs to implement the Handler interface. Sec-

ond, the initial type environment also defines the type of the

there variable in terms of the Resume interface. Finally, since

the return type of an effect method corresponds to the type

of the value used in resumptions, in this case the derived

type of e0 (S) must be a subtype of Tout , the return type of

the return method defined by C .

4.3 Expression Typing
The rules for expression typing are shown in Figure 9. Here

we highlight the most salient differences with respect to

those used in Featherweight Generic Java. First of all, there

are two different rules for checking method invocation: t_in-

vk for regular method invocation and t_eff_invk for effect

method invocation. These rules enforce that regular methods

can only be called using normal method invocation syntax,

and effect methods only via effect call syntax by requiring

that the method type returned by the mbody metafunction

has the right effect annotation. Next to the type variable en-

vironment and the type environment, expressions are typed

in the context of an effect privilege set Ξ, as introduced by

the method typing rules shown in Figure 8.

For instance, the rule for ordinary method invocation

t_invk checks that the declared effects of m (Ξm) are in-

cluded in the privilege set Ξ using the condition ∆ ⊢ Ξ ⪯ Ξm .

The rule for effect invocation t_eff_invk performs the same

check, but additionally enforces that the requested effect

C is also in the privilege set Ξ. Dually, the rule for with-

expressions (t_with) extends the privilege set for e1 with

the type of e0 (T0).

The relation ⪯ defines a preorder between two sets of

types, and intuitively extends subtyping over sets of types.

It is defined by first defining ⪯ :

∆ ⊢ Ξ ⪯ T ≡ ∃T ′ ∈ Ξ : ∆ ⊢ T ′ <: T (1)

(A type in Ξ handles type T )

The full relation is then obtained as follows:

∆ ⊢ Ξ1 ⪯ Ξ2 ≡ ∀T ∈ Ξ2 : ∆ ⊢ Ξ1 ⪯ T (2)

(Ξ1 handles all types in Ξ2 )

This relation is used in determining whether a privilege

set is powerful enough to handle all effects requested by a

certain expression. The relation is further used in checking

the validity of method implementations, where the effect

annotations of method definitions in a class may be less

demanding according to ⪯ than the declared annotations in

a declaring interface. In plain language this means that the

effect payload of a method, i.e. the effects it might invoke,

may be less thanwhat is declared. Note in particular that pure

method implementations (i.e. without any effects) conform

to well-typed interface method declarations with arbitrary

sets of effect annotations, because Ξ ⪯ •.

4.4 Soundness
Soundness is often stated as “well-typed programs cannot

go wrong”. We sketch the proof of soundness using progress

and preservation.

For progress, we make a distinction by considering that

expressions in normal form are not only values but also

expressions XN [N ::m<V>(e )] whose next evaluation step

requires the handling of an operation call. By pairing the

latter with a constraint to a set of effect privileges Ξ, we have
a new class of expressions that we do not consider stuck.

Definition 4.1 (Normal Form). An expression e is in normal

form with respect to Ξ if either (a) is a value v , or (b) is an
expression of the form XN [N ::m<V>(e )] such that • ⊢ Ξ ⪯
N .

Definition 4.2 (Non-stuckness). An expression e is non-

stuck with respect to Ξ if either (a) is in normal form with

respect to Ξ, or (b) there is an e ′, such that e → e ′.

Lemma 4.3 (Progress). If Ξ; •; • ⊢ e : T , then e is non-stuck
with respect to Ξ.

Proof sketch. By induction on the structure of type deriva-

tions, with a case analysis on the last rule used. The inter-

esting case is t_with, in particular when e corresponds to
with (new Q(v)){e1}. By rule t_with, we have Q,Ξ; •; • ⊢

e1 : T1 for some T1. Then, by induction hypothesis, e1 is

non-stuck, thus, it is either (a) a redex, in which case e pro-
gresses; (b) a value, in which case rule r_return applies; or

(c) of the form XN [N ::m<V>(e )], such that • ⊢ Q,Ξ ⪯ N ,

in which case, by the definition of ⪯ (cf. Section 4.3), either:

(c.1) Q <: N , which implies that rule r_eff_invk applies;

or (c.2) Q ̸<: N , which implies that Ξ ⪯ N ; and because

of this together with the fact that no reduction rules apply,

e fits in the definition of a context XN , being of the form

XN [N ::m<V>(e )], and thus, is in normal form with respect

to Ξ (therefore non-stuck with respect to Ξ).

Lemma 4.4 (Preservation). If Ξ;∆; Γ ⊢ e : T and e → e ′,
then Ξ;∆; Γ ⊢ e ′ : T ′ for some T ′ such that ∆ ⊢ T ′ <: T .

Proof sketch. By induction over the reduction rules. A num-

ber of necessary lemmas are needed, such as that (1) term and

(2) type substitution preserve typing, that (3) subtyping pre-

serves method typing, and that (4) method bodies conform

to declared return types. Their proofs are similar to those

found in [8]. The replacement lemma (5) states that if there

is a deduction D ending in Γ ⊢ C[e] : T , whereC is a context;

and there is a sub-deduction D ′ ending in Γ′ ⊢ e : T ′, and
Γ ⊢ e ′ : T ′, then Γ ⊢ C[e ′] : T (proof is similar to replacement

in [23]).

The interesting cases are rules r_eff_invk, r_return

and r_resume. The crucial facts for r_eff_invk are:

(a) We know by t_with that XN [N ::m<V>(v )] has type
T1 for someT1.We also know trivially thatN ::m<V>(v )
has type S for some S . By letting variable xv have
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type S and plugging xv inside context XN [] in place of

the effect method call, we obtain expression XN [xv ],

which by (5) retains type T1. By letting xh have type

T0 for some T0<:Handler<Uout ,Uin>, we know that

expression with(xh){XN [xv ]} in the body of the built-

in resumption object has typeUout and thus resump-

tion object vk conforms by construction to interface

Resume<S,Uout ,Uin>, as required by the specification

of resumption objects.

(b) By premise • ⊢ Q <: N and (3) together with (4),

we know that the expression implementing an effect

method call N ::m<V>(v ) is to be found in the corre-

sponding methodm in handler class Q .

Rule r_resume relies on the fact that resumption objects

are not expressible and are only introduced via substitution

of there in r_eff_invk. From (a), we know that the resump-

tion object is well-typed to Resume<S,Uout ,Uin> for some S ,
Uin and Uout , and then the argument continues as the one

for standard method invocation.

In case of r_return, since N<: Handler<Uout ,Uin> for

some Uout and Uin , and Handler defines return to have the

typeUin → Uout , both the with expression and the result of

invoking return have the same type.

5 Discussion & Related Work
5.1 Objects for Effect
According to Cook the essence of objects is encapsulation

and dynamic dispatch [7]. These are precisely the aspects

that we have leveraged in JEff for supporting effectful pro-

gramming. This can be seen from the fact that, apart from

the with-construct, all other parts of effect handlers are real-

ized by calling methods, all of them defined in interfaces or

classes.

Effect operations are defined as methods with ordinary

type signatures, but with bodies typed according to the

Handler interface. Effect resumption is method invocation

on the special there object, which is typed by the ordinary

Resume interface. The with-construct brings Handler objects

into dynamic scope, and when its syntactic body has eval-

uated to a value, the result is passed through the ordinary

return method as required by Handler. Both the Resume and

Handler interfaces are not special, but simply part of JEff’s

standard library. Like Java’s Closeable and Iterable, they

merely provide the interface between certain language fea-

tures (in JEff’s case with and there) and the objects defined

by the programmer.

5.2 Effect Polymorphism
Effect polymorphism refers to the ability of code to oper-

ate on objects with varying effect surfaces, where the ac-

tual effectfulness of code derives from dependencies such as

method parameters or fields. In JEff, all method declarations

– both in interfaces and classes – need to be annotated with

concrete effect types for unhandled effects. As a result, JEff

does not support effect polymorphism.

Consider the two interfaces below, Function and List:

interface Function<T,U> {

U apply(T t) / / pure
}

interface List<T> {

<U> List<U> map(Function<T,U> f) / / pure
}

Both the apply method in Function, and map in List have

no effect annotations. As a result, implementations of these

methods are required to be pure. Another consequence is

that the argument to map must be pure as well, and hence

map is effect monomorphic: it only applies pure functions

to the list. Since it is not possible to abstract over the effect

signature of a (set of) method(s), different maps are needed

for Functions with different effect payloads.

A similar effect can be observed in the modular inter-

preters presented in Section 2.4. Although new Exps can be

defined in a modular fashion, the allowed effects of the eval

method are determined and fixed in the Exp interface. With

a mechanism for effect polymorphism, this could potentially

be made more flexible, where the eval in Exp would be poly-

morphic, and each implementationwould carry its own effect

signature.

Supporting effect polymorphic methods in a language like

JEff is challenging. Existing languages like Frank [15] and

Koka [14] support effect polymorphic functions but have

significantly different type systems than JEff. For instance,

Koka’s row polymorphism allows the effect payload of a

function to be left partially open; unification is then used to

add rows to the types during type inference. It is however

unclear how to port this kind of inference to object-oriented

languages.

A possible middle-ground solution is presented by Toro

and Tanter [20] in the form of a gradual polymorphic effect

system for Scala. By giving up some static guarantees about

the effectfulness of code, the use of higher-order functions

like map can be mademore flexible. In this case both apply and

mapwould be annotated with the special @unknown annotation

(denoted as ¿ in [3]), which signifies that there is no static

information about the effects of map. Implementations of

such methods can provide the missing information with

concrete annotations. The type system can then derive more

specific effect payloads at concrete call sites; if it cannot,

then dynamic checks ensure that the effect will be handled

correctly.

5.3 Propagation of Annotations
JEff’s effect propagationmechanism is similar to Java’s check-

ed exceptions and, as such, suffers from the same problems.

Programmers need to annotate each method with its allowed
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effects which is verbose and makes code less flexible. An

interface method declares a number of effects but the cor-

responding method in a class implementing this interface

might require a new effect. In that case the annotations of

the parent interface should be modified to incorporate the

new effect, and consequently, all classes implementing it.

The lack of flexibility of checked annotations has been ad-

dressed in the work on anchored exceptions, where method

call dependencies are taken into account when propagating

exceptions in throws-clauses [21]. Based on this work and in

the context of Scala, Ritz proposes Lightweight Polymorphic

Effects (LPE) [19] as an attempt to generalize the annotation-

based style of checked exceptions to a wider range of effects.

LPE allows programmers to annotate effectful Scala code

with effect annotations, where effects are defined using a

customizable effect lattice, inspired by [16]. We consider

incorporating a similar mechanism to JEff as future work.

5.4 Related Work
Algebraic effects [17, 18] are a mechanism to represent ef-

fects in functional languages. An effect defines the signature

of a set of operations. The actual semantics of an effect is

provided by handlers, dynamically scoped constructs that

implement the behavior for each operation.

In JEff, effect interfaces are analogous to effect signatures,

while handler classes correspond to their implementation.

The handler abstraction is further discussed in [10], where

a formal definition together with library-based implemen-

tations in several languages is presented. This work also

introduces the distinction between deep and shallow han-

dlers. Deep handlers automatically wrap the continuation

within the current handler. Shallow handlers assume no han-

dling by default, and therefore require the programmer to

install a new handler manually if so desired. JEff is closer in

spirit to the latter, since we require a handler object as the

second argument to there.resume.

Besides the handler libraries presented in [10], there are

several other library-based encoding of effects and han-

dlers [5, 11, 12, 24]. Compared to library-based encodings,

the built-in effects in JEff have the following advantages:

• Reducing the boilerplate caused by the accidental com-

plexity of the effects embedding.

• Having a clearer computation model of the interaction

between object-oriented concepts and effects. For in-

stance, the Effekt library [5] encodes algebraic effects

using sophisticated Scala features, such as implicit

function types. In JEff, the interactions are clear and

rely on a limited number of concepts captured by the

FJEff calculus.

• Opening the door to domain-specific compiler opti-

mizations taking into account the native representa-

tion of effects. For example, in [14], Leijen shows an

efficient compilation of effect handling using a type-

directed selective CPS translation.

Besides the library-based approaches, we have discussed a

number of functional languages that provide native support

for handlers and effects, using however different mechanisms

for effect propagation.

Koka [14], for example, features an effect inference system

that requires minimal annotations from users by relying on

the polymorphic row types discussed in the previous section.

Frank [15], on the other hand, treats function application

as a special case of a more generic mechanism of operators

that act as interpreters of effects. Rather than accumulating

effects outwards via type inferencing as in Koka, effects are

propagated inwards using an ambient ability, similar to the

privilege sets Ξ used in JEff.

6 Conclusion
Effect handlers are a technique to define, scope and mod-

ularize side-effects in programming languages that do not

support them natively. While originally introduced and ex-

plored in the context of (purely) functional programming lan-

guages, it is an open question how effect handling could be

supported first-class in an object-oriented programming lan-

guage. In this paper we presented first steps towards answer-

ing this question, in the form of JEff, a purely object-oriented

language with built-in support for effectful programming.

Effects are defined using effect methods which obey special

typing rules and have access to the current continuation

for resuming computation. Handler objects are brought into

dynamic scope using the with-construct; effects that are not

handled need to be declared at the method level, similar to

Java’s throws-clause.

We have shown how common effects, like exception han-

dling and state, can be defined within JEff, and how effects

can be used to structure extensible interpreters. Furthermore

the ToStr example illustrated how the type qualifier of ef-

fect invocations enable ad hoc overloading of effects. The

semantics of JEff are formalized based on a core subset, FJEff,

including a type system that ensures that all effects are prop-

erly handled or propagated. Finally, we provided intuitions

that show that the type system is sound with respect to the

semantics.

As directions for further work, we consider mechanizing

the soundness proof, implementing the language, and ex-

tending JEff with support for (implementation) inheritance.

In particular, support for super-calls would allow program-

mers to customize effect handlers. The biggest open question,

however, is how to reconcile the open-world assumptions

of object-orientation with effect handling. Modular extensi-

bility of both data types and operations has been solved by

solutions to the expression problem [22]; the next question is

how to realize the same at the level of effects. JEff represents

the first steps towards better understanding this question

from the perspective of object-oriented programming.
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A Auxiliary Definitions

Field lookup:

classC<X ◁N > (S f ) ◁ P {. . .}

fields(C<T >) = [T /X ]S f
f_class

Method type lookup:

classC<X ◁N > (S f ) ◁ P {M } [eff] <Y ◁Q>U m (U x )@Ξm=e ∈ M

mtype (m, C<T >) = [eff] [T /X ](<Y ◁Q>U→U@Ξm )
mt_class

Method body lookup:

classC<X ◁N > (S f ) ◁ P {M } [eff] <Y ◁Q>U m (U x )@Ξm=e ∈ M

mbody (m<V >, C<T >) = x .[T /X , V /Y ]e
mb_class

B Subtyping and Type Well-formedness Rules

Bound of type:
bound∆ (X ) = ∆X bound∆ (N ) = N

Subtyping:

∆ ⊢ T <:T
s_refl

∆ ⊢ X <:∆(X )
s_var

∆ ⊢ S <:T ∆ ⊢ T <:U
∆ ⊢ S <:U

s_trans

classC<X ◁N > (. . .) ◁ P {. . .} Q ∈ P

∆ ⊢ C<T > <: [T /X ]Q
s_class_m

interfaceC<X ◁N > ◁ P {. . .} Q ∈ P

∆ ⊢ C<T > <: [T /X ]Q
s_iface

Well-formed types:

∆ ⊢ Object ok

wf_object
X ∈ dom (∆)

∆ ⊢ X ok

wf_var

classC<X ◁N > (. . .) ◁ P {. . .} ∆ ⊢ T ok ∆ ⊢ T <:[T /X ]N

∆ ⊢ C<T > ok

wf_class

interfaceC<X ◁N > ◁ P {. . .} ∆ ⊢ T ok ∆ ⊢ T <:[T /X ]N

∆ ⊢ C<T > ok

wf_iface

Predefined interfaces:

interface Object { }

interface Handler<Out, In> { Out return(In in) }

interface Resume<T, Out, In> { Out resume(T x, Handler<Out, In> h) }

Valid method overriding:

mtype (m, N ) = <Z ◁Q>U→U0 @Ξ0 implies P, T = [Y /Z ](Q, U ) and T0 = [Y /Z ]U0

and Y<:P ⊢ [Y /Z ]Ξ0 ⪯ Ξ

override(m, N , <Y ◁P>T→T0 @Ξ)
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C Header, Class and Interface Typing

Method header typing:

classC<X ◁N > (. . .) ◁ Q1. . .Qn {. . .} X<:N , Y<:P ⊢ T , T , P, Ξm ok

override(m, Q1, <Y ◁P>T→T@Ξm ) . . . override(m, Qn, <Y ◁P>T→T@Ξm )

[eff] <Y ◁P>T m (T x )@Ξm OK IN C<X ◁N >
t_header_class

interfaceC<X ◁N > ◁ Q1. . .Qn {. . .} X<:N , Y<:P ⊢ T , T , P, Ξm ok

override(m, Q1, <Y ◁P>T→T@Ξm ) . . . override(m, Qn, <Y ◁P>T→T@Ξm )

[eff] <Y ◁P>T m (T x )@Ξm OK IN C<X ◁N >
t_header_iface

Class and interface typing:

X<:N ⊢ N , T , P ok M OK IN C<X ◁N >

classC<X ◁N > (T f ) ◁ P {M }
t_class

X<:N ⊢ N , P, ok H OK IN C<X ◁N >

interfaceC<X ◁N > ◁ P {H }
t_iface

D Env and Store
The following code provides implementations of the Env and

Store types referred to in Section 2.4. Both Env and Store use

an immutable Map class. Note how both Env and Store use

the DefaultRaise handler of Section 2.2 to deal with missing

keys. To make client code less unwieldy, JEff features default

values for fields as notational short-hand; since object con-

struction is always pure in JEff, the only allowed expressions

as default values are object constructor calls with new or lit-

erals. Notice too that both the Env and the Store classes are

a data structure and a handler at the same time. In particu-

lar, they represent a domain-specific type of handler, that in

this case is suitable for the "interpretation of expressions"

domain. Because of this, we have fixed the incoming type

of the handler to Val, which brings as consequence that any

with-expression installing these handlers will enclose a Val-

producing expression.

class Map<T, U>() {

U get(T t)@Raise = ...

Map<T, U> put(T t, U u) = ...

}

class Env(Map<String,Val> map = new Map<String,Val>())

implements Handler<Val, Val> {

eff Env get() = there.resume(this, this)

Val return(Val v) = v

Val lookup(String x)

= with (new DefaultRaise<Val>(new Nil())) {

this.map.get(x)

}

Env extend(String x, Val v)

= new Env(this.map.put(x, v))

}

class Store(Int id = 0,

Map<Val,Val> map = new Map<Val,Val>())

implements Handler<Tuple<Store, Val>, Val> {

eff Val get(Val c)

= there.resume(

with (new DefaultRaise<Val>(new Nil())) {

this.map.get(c)

},

this)

eff Val put(Val c, Val v)

= there.resume(v,

new Store(this.id, this.map.put(c, v)))

eff Val alloc() = {

Cell c = new Cell(this.id);

there.resume(c,

new Store(this.id + 1,

this.map.put(c, new Nil())))

}

Tuple<Store, Val> return(Val v)

= new Tuple<Store,Val>(this, v)

}
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