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Abstract

This document describes solutions in Rascal to three language
workbench challenges, based on the questionnaire language
QL: code in prose, computed properties, and language exten-
sion.

1. Introduction

Rascal is a language and environment for metaprogramming.
One of the main application scenarios is as a textual language
workbench for defining new programming languages or
domain-specific languages 1,749, [11}[12]]. In this short paper,
we present a brief description of Rascal, and then describe
solutions to three language workbench challenges, based on
the questionnaire language QL [3]]: code in prose, computed
properties, and (independent) language extension [4]].

The code for all three challenges can be found online here:
https://github.com/cwi-swat/demoqles,

2. Rascal

Rascal is a functional programming language designed for
the metaprogramming domain. Being a functional language,
it features immutable data structures, algebraic data types,
comprehensions, pattern matching and higher-order functions.
Regarding Rascal’s specific metaprogramming capabilities, it
features concrete syntax trees and source locations as native
data types, a visit statement for structure-shy traversal, prim-
itives for relational analysis (e.g. transitive closure, image,
etc.), and sophisticated string interpolation for code genera-
tion.

To showcase metaprogramming in Rascal, we present a
simple definition of a tiny DSL for state machines, inspired by
Martin Fowler’s gothic security example [3], which compiles
the state machines into Java cod

First, we need to define the syntax of the State Machine
language:

extend lang::std::Layout;
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extend lang::std::1d;

start syntax Machine = machine: State+ states;
syntax State = @Foldable state: "state" |d name Trans* out;
syntax Trans = trans: Id event ":" Id to;

Besides extending the definitions of layout and identifiers
from the standard library, we define concrete syntax types
for machines, states and transitions using Rascal’s built-in
grammar formalism. These productions also defined types of
values (concrete syntax trees).

To generate Java code from a state machine we use con-
crete syntax matching and string interpolation. This compile
function is specified using the following three cases:

str compile(Machine m) =

"while (true) {
> event = input.next();
> switch (current) {
’ <for (q <« m.states) {>
’ <compile(q)>
> <>
>}
b } " ;

str compile((State) ‘state <Id name> <Transx ts>') =
" case \"<name>\":
’ <for (t « ts) {>
’ <compile(t)>
> <}>
’ break;";

str compile((Trans) ‘<Id event> : <Id to>') =
"if (event.equals(\"<event>\"))
’ current = \"<to>\";";

Note how concrete syntax pattern matching support pat-
tern matching using the actual syntax of the defined language
to destructure incoming syntax trees. This oversimplified
example shows how Rascal’s dedicated metaprogramming
features aid in developing DSLs.

The Rascal IDE is implemented as an Eclipse plugin, and
provides extension hooks into Eclipse to programmatically
register IDE services for your own language. For example, in
order to get syntax highlighting and syntactic error reporting
for our State Machine language, we simply register the
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Figure 1. Rascal-based State Machines IDE

language to the IDE, by indicating how a given source string
is to be parsed into a Machine. Notice that the parse function,
provided by the standard library, is parameterized in the
syntactic types of a grammar (in this case Machine).

registerLanguage("STM", "stm", start[Machine](str s, loc ) {
return parse(#start[Machine], s, |);

Ok

IDE services based on analysis and transformation are real-
ized by registering contributions. For instance, one may want
to trigger the compilation to Java whenever a state machine
file is saved. This can be achieved using the “builder” contri-
bution. In this case, the builder simply calls the previously
defined compile function and saves the result to a file:

registerContributions("STM", {

builder(set[Message] (start[Machine] s) {
writeFile(pt@\loc[extension = "java"].top, compile(s));
return {};

}
ok
Figure[I|shows the generated state machine IDE in action,
featuring syntax highlighting and syntaxc error reporting.
The following sections are dedicated to explain how have
we addressed three of the challenges proposed in [4].

3. Code in prose

We showcase how to embed code in prose by adding expres-
sions within comments in QL programs. Figure [2|shows that
variables x and y are referenced in the comment (enclosed in
curly braces), as well as the expression x + y and x && y. Since
the latter is not type-correct, the Rascal IDE indicates the cor-
responding error. Moreover, since the name analyzer analyzes
the expressions within the comment, they are hyperlinked to
navigate to their definition.

s

Assumptions Our implementation of the “code in prose’
challenge is based on two key techniques.

First, Rascal’s parsing engine is based on scannerless pars-
ing [[14], which means that there is no distinction between
tokenization and parsing. Thus, it is possible to define com-
ments using ordinary context-free syntax rules, allowing the
inclusion of “ordinary” syntactic symbols, such as expres-
sions.

[ addition.dql &3

1 form addition {

2 "Enter number 1:"

3 x: integer
"Enter number 2:"

5 y: integer

0o *

0 - s in {x && v}
18 [Expression should have boolean
11 | type

12

13 "The sum is:
14}

15

" sum: integer = x 4+ y

Figure 2. Code in prose in the QL IDE

layout MyLayout = Comment | Whitespace
lexical Whitespace = [\u0009—\u000D \u0020 \u0085] ;
syntax Comment = CStart CommentChars CEnd;

syntax CStart = @category="Comment" "/*";
syntax CEnd = Q@category="Comment" "*/";

syntax CommentChar
= Qcategory="Comment" ![+{}\ \n\t]
| @category="Comment" [«] |>> [/]
| u{n EXpl’ expr u}n;

Figure 3. Simplified grammar for embedding expressions in
comments.

Second, parsing a program using a grammar defined in
Rascal produces concrete syntax trees, which include all tex-
tual information from the source code, including whitepsace,
keywords, and comments. This information is thus available
throughout all kinds of analyses and transformations.

Implementation Figure |3|shows a slightly simplified def-
inition of layout of QL. The layout keyword captures the
syntax that is allowed in between syntactic elements. In this
case it consists of comments or whitespace. Comments in the
QL grammar are defined as the non-terminal Comment, using
the keyword syntax, which introduces a context-free symbol.
This means that layout is allowed in between elements. The
actual interpolation is defined in the last production of the
CommentChar non-terminal.

The Rascal IDE framework derives syntax highlighting
styles from grammar annotations. For instance, the annotation
@category="Comment" is used to highlight comments as shown
in Figure[3] Note however, that the expression interpolation
is not annotated to obtain default hightlighting of embedded
expressions.

To obtain error marking and jump-to-definition hyperlinks
the name analyzer and the type checker traverse comments
and simply analyze and check the embedded expressions.



Variants Our solution only shows “singe-hole” interpola-
tion of expression inside comments. It is also possible to
imagine structured interpolation, where parts of the interpo-
lated expression can be interleaved with free form prose. A
well-known example of this is conditional and loop interpo-
lation in template languages. In terms of the grammar such
interpolations can be easily expressed; however, the semantic
analysis of such fragments would require some more effort,
since it requires custom patterns not available in the “pure”
host language.

Usability Impact on usability is minor. What will be consid-
ered as prose will behave just like ordinary code. The main
limitation is that users will have to type delimiters — such
as the curly braces in our embedding example — to mark the
transition out of the comment into an expression, and vice
versa.

Impact In order to embed expressions in prose, the only
artifact that needs to be changed is the grammar. If the com-
ments had already been defined as syntax non-terminals, then
the non-terminal representing the code embedding simply
has to be added as a valid component of a comment, includ-
ing changes to reject (unescaped) delimiters from the main
comment text. All components that have to analyze the em-
beddings will have to be modified to explicitly traverse into
the comments.

Composability The layout nodes (which typically contain
comments) in Rascal’s concrete syntax trees are normally
ignored. For instance, concrete syntax patterns are matched
modulo layout. This means that embedding code in comments
has no effect on existing code, except if one likes to process
the expressions embedded in comments themselves, for
instance to analyze them. All other operations, however,
remain oblivious to the embedded fragments.

Limitations The technique requires delimiters to disam-
biguate code from prose.

Uses and Examples Rascal itself features string templates,
which contains arbitrary expression interpolation, as well as
conditional and loop interpolation. These string templates are
implemented in a similar style.

Effort The effort of implementing code in comments for
QL consisted of refactoring the comment grammar along
the lines of Figure 3] and adapting name analysis and type-
checking. Together this took roughly 30 minutes.

4. Computed Properties

QL features ordinary questions and computed questions. In
this challenge we enrich QL with the possibility for the user to
provide inputs to questions, right from within a QL program.
The IDE will then evaluate the questionnaire and insert the
result of computed questions in the source text.

Figure || shows a simple questionnaire for computing
the average of two numbers. The first two questions are

form Average {

"First:" x: integer [10]

"Second:" y: integer [2]

"Average:" avg: integer = (x + y) / 2 [6]
}

Figure 4. Computed properties in QL: the result value of the
last, computed question is inserted by the IDE, based on the
input values provided by the user for x and y.

annotated with two input literal values (10 and 2), within
square brackets. The evaluator will consider these values
to be the actual, “run time” values of those questions. The
computed property, in this case, is the literal annotation of
the last question (6). This one is not provided by the user, but
inserted by the QL IDE, after evaluating the questionnaire.

Assumptions Concrete syntax trees. Although not essential,
it makes patching the text editor contents much more reliable;
and AST based approach would require more advanced origin
tracking or “diff” technology (see, e.g., [2]).

Implementation The computed properties (values in this
case) are represented as ordinary syntax, so the grammar of
QL needs to be changed. The following excerpt from the
Rascal QL grammar shows how input values (for ordinary
questions), and output values (the actual computed properties)
for computed questions are represented:

syntax Question
= question: Label Var ":" Type Value?
| computed: Label Var ":" Type "=" Expr Value?;

syntax Value = "[" Const "]";

The user can now “enter” values in the questionnaire by
providing a value in the source text of a QL program. After
every such change the questionnaire will be evaluated and
analyzed for changes in the value of computed questions. If
there are changes they are reflected in the Value positions of
computed questions in the editor.

e Evaluation proceeds in three steps: 1) create the initial
environement, mapping all questions to default values;
2) updating the environment with user supplied values;
3) constructing the final environment by evaluating com-
puted questions in a fixed point computation.

e Patch generation takes the form and the final environ-
ment, and for each computed question compares the value
in the form (if any) to the corresponding value in the envi-
ronment. If it is different, it adds a textual update operation
to the resulting patch.

The evaluation component is standard, and completely
modular from this particular challenge; it can be generally
reused as an interpreter of QL expressions.
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Figure 5. Showing computed properties as part of the outline
view

Patch generation creates a patch structure which is defined
by the following Rascal type: Irel[loc, str]. This type represents
lists of tuples with a source location (loc) and a string. The
source location captures exact positions inside some resource
(e.g., a source file); it includes offset, length, line and column
information). The concrete syntax trees used in Rascal are
annotated by the same kind of source locations. When the
patch generation algorithm determines it needs to “patch” a
computed value in the source tree, it uses these locations to
determine the exact substring of the source file that needs to
be changed. A patch tuple can thus be read as “change this
source location to that string”.

After the patch has been generated, the IDE will use it to
modify the contents of the editor accordingly. To achieve this,
the code realizing the above is invoked from the “liveUpdater”
editor contribution. Slightly simplified, this is achieved with
the following Rascal code:

registerContributions("Demogles", {
liveUpdater(Irel[loc,str] (start[Form] pt) {
return patch(f, evalForm(f));

b,
i

Whenever there’s a change to the editor contents, the closure
passed to the “liveUpdater” value is invoked, returning the
(possibly empty) patch to the editor framework.

Variants Our current implementation is based on modifying
the source text directly. Different approaches could use other
existing IDE affordances to show the computed properties.
For instance, it would be quite easy to show it as “info”
markers, hover documentation, or in the outline. In fact, our
implementation shows the actual values of the questions in a
separate section of the outline (Figure [5).

Each of these approaches is easier to implement than the
syntax-based approach we have demonstrated, since they do
not require syntax extension and patch generation. Neverthe-
less, such variants have different usability characteristics and
reduced flexibility.

For instance, the outline is a separate view, creating
distance between the actual values and the code. Hover
documentation only appears on-demand. And info markers
instantly show up in the editor as squiglies and gutter markers,

but to see the contents of the message one still has to hover
over the marker.

Regarding flexibility, the syntax-based approach can show
any kind of information, structured or not, as long as it is
possible to design a suitable syntax. Hover documentation,
information markers or outlines are much more limited in that
they typically support only string-based values, or untyped
tree structures.

In the described challenge we have only shown how live
values are shown as part of the text, but not the visibility of
questions as follows from the conditional logic in question-
naires. We have, however, built an extension which changes
the syntax of conditional blocks to trigger a different (sub-
dued) highlighting. This shows how the source code itself
communicates which questions are visible or not given a
particular assignment of values to questions.

Usability  As to usability, the experience is exactly as before,
except that some parts of the source code are automatically
computed and provided by the user. There is no change to
how the editor behaves: copy-paste still works, everything
can be edited, saved etc.

However, whenever a computed property is modified by
the user, the change will be immediately overridden. Note
that this is semantically perfectly fine, however, it may
be experienced as an awkward glitch in the experience. A
possible extension to avoid this, would be to integrate live
updating with support for (non-)editable regions, which we
have experimented with in earlier research [6].

Usability furthermore depends on how “nice” the com-
puted properties are in the source code. For instance, to avoid
requiring the user to constantly reformat the computed prop-
erties, the patch generation algorithm may need to carefully
take into account indentation and whitespace. Given that our
implementation is based on concrete syntax trees in the first
place, all information is available to achieve the right layout,
but it may be cumbersome for the developer.

Impact Existing constructs now exist in different variants
(e.g., questions with input annotations, and without), so
components that perform case-based analysis on the syntax
tree need to be extended in order skip or deal with these
extended variants. In our case, for instance, name resolution
simply ignores the additional Value, but still needs to analyze
questions with values attached. Alternatively, the type checker
does not simply ignore the input annoations, but actually type
checks it.

The final change is to hook up the patch generation to
the live updating extension point of the IDE. The other
components (expression evaluation, patch generation) are
modular additions.

Note that the impact on existing language components
is mainly due to having to define explicit syntax for the
input and output values. In more elaborate languages (e.g.,
programming languages), it would be possible to use existing
syntax for this [[13]. For instance, in a language with syntax



function calls, an invocation of “special” functions could
conventionally be used to specify inputs and outputs. In such
cases, modifying existing components could be avoided.

Composability Apart from the required syntax extension,
no other components or language features are affected by
this feature. Evaluating the form, and producing the patch are
simply two additional interpretations of the source progam.
Existing components like the compiler will just process
ordinary source code.

Note that for this challenge we did not opt for a fully
modular implementation. However, as we hope to show in
Section [5} Rascal’s module system is powerful enough to
allow both syntax and interpretations (name resolution, type
checking etc.) to be modularly extended to support the new
value annotations.

Limitations Our solution is fully text-based, so the limits
on the presentation of computed questions are defined by
what can be represented as text and parsed using Rascal’s
grammar formalism.

Since Rascal’s grammar formalism is backed by gener-
alized parsing, language extensions can be modularized. A
limitation is that as a consequence, there’s also the risk of cre-
ating an ambiguous grammar. The language developer thus
needs to be careful that computed properties do not introduce
ambiguities.

Uses and Examples Rascal itself features experimental
scrapbook pages: source editors that can be used as an
interactive canvas for experimenting with Rascal. Whenever a
statement is entered, the output of its evaluation is represented
as part of the source code. In a sense, this represents a
read-eval-print-loop (REPL), fully within source code. The
computed properties are the outputs (values, standard output,
or errors) of the entered commands.

CellDown is an experimental spreadsheet language de-
signed by the second author, which shows views of a spread-
sheet where all formulas are evaluated as part of the Cell-
Down source text itself. This time the computed properties
are complete spreadsheets. As of now, this is still unpublished
work.

The implementation shown here represents an example of
“Live literals™ [13], where the source code of a program is
used as input and output of dynamic information. A similar
mechanism was used to implement live tests, spreadsheets,
and probes [10] in Javascript.

Effort The current implementation was realized in about
3 hours, consisting of modifying the syntax to include input
and output syntax, modifying the outliner, implementing the
expression evaluation and patch generation. Together, the
latter two components take up 134 SLOC.

5. Language extension

In this challenge we extend QL with a conditional unless
construct, without changing existing code.

Assumptions Rascal’s module system supports extensible
syntax and extensible operations. We assume that the opera-
tions are defined using pattern-based dispatch [1]]. This means
that each syntactic case distinction made in an operation cor-
respond to a single Rascal function definition, dispatching on
that syntactic construct using pattern matching. Such func-
tions can be extended by simply adding additional definitions
dispatching on the new constructs.

Furthermore, we don’t desugar unless to if(not(..)). While
this would provide for a straightforward, modular implemen-
tation, it would present a problem for operations which need
access to concrete representation of the source code (e.g.,
to generate good errors, formatting, the patch generation of
Section[4] etc.).

Implementation The first component is the extension of
the grammar:

module lang::demogqles::unless::Unless
extend lang::demogles::ql::QL;

syntax Question = "unless" " (" Expr expr ")" Question;

This module adds the alternative for unless to the Question
non-terminal.

As an example of extending an operation, this is the code
for extending the type checker:

module lang::demoqles::unless::Check
import lang::demogles::unless::Unless;
extend lang::demoqles::ql::Check;

set[Message]
tc((Question)‘unless (<Expr ¢>) <Question q>', Info i)
= tcCond(c, i) + tc(q, i);

The extended Check module defines the functions tc and
tcCond. The former is extended here to add type checking
of the unless construct. The definition simply calls the tcCond
function to type check the condition and recursively calls tc
to type check the body. The compiler (which produces HTML
and Javascript code) is extended in a similar fashion, as is the
patch generation code for controlling the question visibility.

With these extensions, the entry points for the parser,
type checker etc. are the new modules. In fact we now have
modularly defined a new language, which includes the old
one. This means that the IDE services need to be wired again,
using the extended language components. This is similar to
writing a new “main” method, and does not compromise the
modularity of the language extension.

Variants Extensions like unless are quite simple, affecting
only the grammar, type checker, patch generation and com-
piler. More interesting language additions involve extending
name resolution, outlining and others. As long as these com-
ponents are defined using case-based analysis, the operations
can be extended.

If, on the other hand, a new language feature also requires
extensions to internal data structures (symbol tables etc.),



a modular implementation would be more complicated. A
similar complication arises when language components de-
pend on each other, for instance when name analysis and
type checking are interleaved, this requires mutually open
recursive definitions, since both components will have to be
extended, and both components need to “see” each others
extensions as well as their own.

Usability There is no effect on usability of the editor. The
only restriction now is that the extended language needs to
have a different name and file extension.

Impact No code had to be changed; the unless implementa-
tion is realized by strictly adding new code, with only minor
duplication in the “main” wiring of the IDE services.

Composability Our implementation of unless involves a
modular extension to the computed properties challenge de-
scribed in Section[d] Furthermore, the extend feature of Ras-
cal’s module system is not limited to linear extension. Modu-
larly combining unless with another independent extension is
possible.

Limitations Currently, there can be no dependencies be-
tween two operations through import, if both operations need
to be extended. For instance, if the type checker imports
and invokes name resolution, and both are extended with
new cases, then the extended type checker will only see the
non-extended name resolution. This is an area of ongoing
work.

Uses and Examples The pattern to modularly extend QL
with unless has been used in the implementation of Oberon-
0, a small, imperative programming language for use in
compiler construction courses [/

Effort The unless implementation was developed in approx-
imately 1 hour. The implementation consists of 22 SLOC,
with an additional 66 SLOC for top-level wiring.
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