
Computational Semantics, Type Theory,
and Functional Programming

II — Dynamic Montague Grammar and its Shortcomings

Jan van Eijck

CWI and ILLC, Amsterdam, Uil-OTS, Utrecht

LOLA7 Tutorial, Pecs

August 2002

Summary

• Point of Departure: Dynamic Predicate Logic

• Extensions to Typed Logic

• Building a Montague Fragment from This

• States, Propositions, Transitions

• Implementation

• Chief Weakness

Point of Departure: DPL

Dynamic Predicate Logic or DPL [GS91] is our point of departure.

Assume a first order modelM = (D, I) and a set of variables V . States

for DPL are functions in DV .

Let M = (D, I) and let s ∈ DV .

Term interpretation:

[[c]]Ms = I(c) for constants c and [[v]]Ms = s(v) for variables v.

Define the relation

M |=s Pt1 · · · tn
by means of:

M |=s Pt1 · · · tn :⇔ 〈[[t1]]Ms , . . . , [[tn]]Ms 〉 ∈ I(P),

and the relation

M |=s t1
.
= t2

by means of:

M |=s t1
.
= t2 :⇔ [[t1]]

M
s = [[t2]]

M
s .

If x ∈ V , d ∈ D and s ∈ DV , use (x|d)s for the state s′ that differs

from s at most in the fact that x gets mapped to d.

The DPL interpretation of formulas can now be given as a map in

DV → P(DV).

DPL Semantics — Functional Version

[[∃x]](s) := {(x|d)s | d ∈ D}

[[Pt1 · · · tn]](s) :=

{
{s} if M |=s Pt1 · · · tn
∅ otherwise,

[[t1
.
= t2]](s) :=

{
{s} if M |=s t1

.
= t2

∅ otherwise,

[[¬ϕ]](s) :=

{
{s} if [[ϕ]](s) = ∅,
∅ otherwise,

[[ϕ;ψ]](s) :=
⋃
{[[ψ]](s′) | s′ ∈ [[ϕ]](s)}

Note that predicates, identities and negations are interpreted as tests:

if s is the input state they either return {s}, in case the test succeeds,

or ∅, in case the test fails.

The action of existential quantification is not a test.

Dynamic implication ϕ ⇒ ψ can be defined in terms of ¬ and ; by

means of ¬(ϕ;¬ψ). This is a test.

Universal quantification ∀xϕ is defined in terms of ∃,¬ and ; as ¬(∃x;¬ϕ).

This is a test.

DPL Semantics — Relational Version

M, s, s′ |= ∃x : ⇐⇒ there is a d ∈ D with s′ = (x|d)s.

M, s, s′ |= Pt1 · · · tn : ⇐⇒ s = s′ and M |=s Pt1 · · · tn

M, s, s′ |= t1
.
= t2 : ⇐⇒ s = s′ and M |=s t1

.
= t2

M, s, s′ |= ¬ϕ := s = s′ and there is no s′′ with M, s, s′′ |= ϕ

M, s, s′ |= ϕ;ψ := there is an s′′ with M, s, s′′ |= ϕ and M, s′′, s′ |= ψ.

States as Carriers of Anaphoric Information

The advantage of the propagation of variable states is that they carry

anaphoric information that can be used for the interpretation of subse-

quent discourse.

1 Some1 man loved some2 woman.

The DPL rendering of (1) is ∃u1;Mu1;∃u2;Wu2;Lu1u2.

This gets interpreted as the set of all maps u1 7→ e1, u2 7→ e2 that

satisfy the relation ‘love’ in the model under consideration.

The result of this is that the subsequent sentence (2) can now use this

discourse information to pick up the references:

2 He1 kissed her2.

Extensions to Typed Logic

Attempts to incorporate DPL stype dynamic semantics in mainstream

Montague style natural language semantics [Mon73] can be found in

[GS90, Chi92, Jan98, Mus95, Mus96, Mus94, Eij97, EK97, KKP96,

Kus00].

The type hierarchy employed has basic types for entities (e), truth

values(t), and markers (m). The states themselves can be viewed as

maps from markers to suitable referents, i.e., a state has type m→ e.

We abbreviate this as s.

This can either be built into the type system from the start (see [Eij97])

or enforced by means of axioms (a kind of meaning postulates for proper

state behaviour; see [Mus95, Mus94]).

Various set-ups of the encoding of DPL to type theory are possible.

In the most straightforward approach, the meaning of a formula is no

longer a truth value, but a state transition, i.e., the interpretations of

formulas have type s→ s→ t.

Following [Eij97], we will take (u|x) as a primitive operation of type

s→ s that resets the value of u to x.

Thus, (u|x)a denotes the state a′ that differs from state a at most in

the fact that the value in a′ for marker u is (the interpretation of) x.

Then the translation of an indefinite noun phrase a man becomes some-

thing like:

3 λPλaλa′.∃x(man x ∧ Pui (ui|x)a a′).

Here P is a variable of type m → s → s → t and a, a′ are variables

of type s, so the translation (3) has type (m → s → s → t) → s →
s→ t.

State Transitions

Note that s → s → t is the type of a (characteristic function of)

a binary relation on states, or, as we will call it, the type of a state

transition.

In (the present version of) dynamic semantics, VPs are interpreted as

maps from markers to state transitions.

Translation (3) introduces an anaphoric index i; as long as ui does not

get reset, any reference to ui will pick up the link to the indefinite man

that was introduced into the discourse.

Encodings of Dynamic Operations in Typed Logic

Assume ϕ and ψ have the type of state transitions, i.e., type s→ s→
t, and that a, a′, a′′ have type s.

∃∃ui := λaa′.∃x((ui|x)a = a′)

¬¬ϕ := λaa′.(a = a′ ∧ ¬∃a′′ϕaa′′)

ϕ ; ψ := λaa′.∃a′′(ϕaa′′ ∧ ψa′′a′)

ϕ⇒ ψ := ¬¬(ϕ ; ¬¬ψ)

It is also useful to define an operation ! : (s→ t) → t to indicate that

the state set s → t is not empty. Thus, ! serves as an indication of

success. Assume p to be an expression of type s→ t, the definition of

! is:

!p := ∃a.(pa).

Note that ¬¬ can now be defined in terms of !, as

¬¬ϕ := λaa′.(a = a′ ∧ ¬!ϕa)

Lifting Lexical Meanings to the Discourse Level

We have to assume that the lexical meanings of CNs, VPs are given

as one-placed predicates (type e→ t) and those of TVs as two-placed

predicates (type e→ e→ t).

It makes sense to define blow-up operations for lifting one-placed and

two-placed predicates to the dynamic level. Assume A to be an expres-

sion of type e → t, and B an expression of type e → e → t); we use

r, r′ as variables of type m, a, a′ as variables of type s = m→ e, and

we employ postfix notation for the lifting operations:

A◦ := λrλaλa′(a = a′ ∧ A(ar))

B• := λrλr′λaλa′(a = a′ ∧B(ar)(ar′))

The encodings of the DPL operations in typed logic and the blow-

up operations for one- and two-placed predicates are employed in the

semantic specification of the fragment. The semantic specifications

employ variables P,Q of type m→ s→ s→ t, variables u, u′ of type

m, and variables a, a′ of type s.

S ::= NP VP X ::= (X1X2)

S ::= if S S X ::= X2 ⇒ X3

NP ::= Maryn X ::= λPaa′.(Punaa
′)

NP ::= Billn X ::= λPaa′.(Punaa
′)

NP ::= PROn X ::= λPaa′.(Punaa
′)

NP ::= DET CN X ::= (X1X2)

NP ::= DET RCN X ::= (X1X2)

DET ::= everyn

X ::= λPQ.(∃∃un ; Pun) ⇒ Qun

DET ::= somen

X ::= λPQ.∃∃un ; Pun ; Qun

DET ::= non

X ::= λPQ.¬¬(∃∃un ; Pun ; Qun)

DET ::= then

X ::= λPQ.

λaa′.a = a′ ∧ ∃x∀y(!(∃∃un ; Pun (un|y)a) ↔ x = y) ;

∃∃un ; Pun ; Qun

CN ::= man X ::= M ◦

CN ::= woman X ::= W ◦

CN ::= boy X ::= B◦

RCN ::= CN that VP X ::= λu.((X1 u) ; (X3 u))

RCN ::= CN that NP TV X ::= λu.((X1 u) ; (X3(λu
′.((X4 u

′)u))))

VP ::= laughed X ::= L◦

VP ::= smiled X ::= S◦

VP ::= TV NP X ::= λu.(X2 ; λu′.((X1 u
′)u))

TV ::= loved X ::= L′•

TV ::= respected X ::= R•

Comparison with Classical Montague Grammar

The types of the dynamic meanings are systematically related to the

types of the earlier static meanings by a replacement of truth values

(type t) by transitions (type s → s → t), and of entities (type e) by

markers (type m).

The translation of the proper names assumes that every name is linked

to an anchored marker (a marker that is never updated).

Implementation – Basic Types

module LOLA2 where

import Domain

import Model

Apart from Booleans and Entities, we need basic types for (reference)

markers. Reference markers are the dynamic variables that carry dis-

course information. For convenience, we also declare a type for indices,

and a map from indices to markers.

data Marker = U0 | U1 | U2 | U3 | U4

| U5 | U6 | U7 | U8 | U9

deriving (Eq,Bounded,Enum,Show)

type Idx = Int

i2m :: Idx -> Marker

i2m i | i < 0 || i > fromEnum (maxBound::Marker)

= error "idx out of range"

| otherwise

= toEnum i

States, Propositions

The type of states is Marker -> Entity.

For purposes of implementation, we will represent maps from markers

to entities as lists of marker/entity pairs.

type State = [(Marker,Entity)]

Propositions are collections of states. We will represent propositions as

lists of states:

type Prop = [State]

Transitions

Transitions are mappings from states to propositions, i.e., their type is

State -> Prop.

type Trans = State -> Prop

Applying a state to a marker

Next, we need a function for application of a state to a marker. An

error message is generated if the marker is not in the domain.

apply :: State -> Marker -> Entity

apply [] m = error (show m ++ " not in domain")

apply ((m,e):xs) m’ | m == m’ = e

| otherwise = apply xs m’

Updates

Updating a reference marker by mapping it to a new entity in a state

(the implementation of the operation (u|x)):

update :: Marker -> Entity -> State -> State

update m e s = replace m e s where

replace _ _ [] = error "undefined"

replace m e ((m’,e’):xs)

| m == m’ = (m,e):xs

| otherwise = (m’,e’):(replace m e xs)

Dynamic Negation

Dynamic negation is a test on a state s that succeeds of the negated

formula fails in that state, and succeeds otherwise.

neg :: Trans -> Trans

neg = \ phi s -> if (phi s == []) then [s] else []

Dynamic Conjunction

Dynamic conjunction applies the first conjunct to the initial state, next

applies the second conjuncts to all intermediate results, and finally col-

lects all end results.

conj :: Trans -> Trans -> Trans

conj = \ phi psi s ->

concat [psi s’ | s’ <- (phi s)]

Dynamic Quantification

Dynamic existential quantification is defined in terms of update, mak-

ing use of the fact that the domain of entities is bounded.

exists :: Marker -> Trans

exists = \ m s ->

[update m x s | x <- entities]

The universal quantifier is defined in terms of dynamic existential quan-

tification, dynamic conjunction and dynamic negation.

forall :: Marker -> Trans -> Trans

forall = \ m phi ->

neg ((exists m) ‘conj‘ (neg phi))

Dynamic Implication

Dynamic implication is defined in terms of dynamic conjunction and

dynamic negation.

impl :: Trans -> Trans -> Trans

impl = \ phi psi -> neg (phi ‘conj‘ (neg psi))

Anchors for Proper Names

To get a reasonable treatment of proper names, we assume that some

of the discourse markers are anchored to entities:

anchored :: Marker -> Entity -> Bool

anchored U6 A = True

anchored U7 M = True

anchored U8 B = True

anchored U9 J = True

anchored _ _ = False

Syntax of the Fragment

The datatype declarations for syntax are almost as for classical Mon-

tague grammar. The main difference is that all noun phrases now carry

index information. The index on proper names and pronouns is directly

attached to the name or pronoun; the index information on a complex

NP is attached to the determiner.

data S = S NP VP | If S S | Txt S S

deriving (Eq,Show)

data NP = Ann Idx | Mary Idx | Bill Idx

| Johnny Idx | PRO Idx

| NP1 DET CN | NP2 DET RCN

deriving (Eq,Show)

data DET = Every Idx | Some Idx | No Idx | The Idx
deriving (Eq,Show)

data CN = Man | Woman | Boy | Person | Thing | House

deriving (Eq,Show)

data RCN = CN1 CN VP | CN2 CN NP TV

deriving (Eq,Show)

data VP = Laughed | Smiled | VP TV NP

deriving (Eq,Show)

data TV = Loved | Respected | Hated | Owned

deriving (Eq,Show)

Lexical Meaning

We intend to use the information from the first order model in module

Model. Thus, we assume that lexical VPs and CNs have a lexical

meaning of type Entity -> Bool, which is subsequently blown up to

a suitable discourse type. Similarly for two-placed predicates.

Mapping one-place predicates to functions from markers to transitions

(or: discourse predicates) is done by:

blowupPred :: (Entity -> Bool) -> Marker -> Trans

blowupPred pred m s | pred (apply s m) = [s]

| otherwise = []

Discourse blow-up for two-place predicates.

blowupPred2 :: (Entity -> Entity -> Bool) ->

Marker -> Marker -> Trans

blowupPred2 pred m1 m2 s

| pred (apply s m1) (apply s m2) = [s]

| otherwise = []

Dynamic Interpretation

The interpretation of sentences now produces transitions (type Trans)

rather than booleans:

intS :: S -> Trans

intS (S np vp) = (intNP np) (intVP vp)

intS (If s1 s2) = (intS s1) ‘impl‘ (intS s2)

intS (Txt s1 s2) = (intS s1) ‘conj‘ (intS s2)

In fact, we can get at the types of all the translation instructions by

systematically replacing Bool by Trans, and Entity by Marker.

Interpretation of proper names: the code checks whether the proper

names employ a suitably anchored marker, and generates an error mes-

sage in case they are not.

intNP :: NP -> (Marker -> Trans) -> Trans

intNP (Ann i) p | anchored (i2m i) A = p (i2m i)

| otherwise = error "wrong anchor"

intNP (Mary i) p | anchored (i2m i) M = p (i2m i)

| otherwise = error "wrong anchor"

intNP (Bill i) p | anchored (i2m i) B = p (i2m i)

| otherwise = error "wrong anchor"

intNP (Johnny i) p | anchored (i2m i) J = p (i2m i)

| otherwise = error "wrong anchor"

Interpretation of pronouns: use the anchor indicated by the index:

intNP (PRO i) p = p (i2m i)

Interpretation of complex NPs: use the appropriate recursion.

intNP (NP1 det cn) p = (intDET det) (intCN cn) p

intNP (NP2 det rcn) p = (intDET det) (intRCN rcn) p

Interpretation of lexical VPs uses the dynamic blow-up from the lexical

meanings.

intVP :: VP -> Marker -> Trans

intVP Laughed subj = blowupPred laugh subj

intVP Smiled subj = blowupPred smile subj

Complex VPs:

intVP (VP tv np) subj = intNP np phi

where phi obj = intTV tv obj subj

Interpretation of TVs uses discourse blow-up of two-place predicates.

intTV :: TV -> Marker -> Marker -> Trans

intTV tv = blowupPred2 (lexTV tv)

where lexTV Loved = (flip . curry) love

lexTV Respected = (flip . curry) respect

lexTV Hated = (flip . curry) hate

lexTV Owned = (flip . curry) own

Interpretation of CNs uses discourse blow-up of one-place predicates.

intCN :: CN -> Marker -> Trans

intCN Man = blowupPred man

intCN Boy = blowupPred boy

intCN Woman = blowupPred woman

intCN Person = blowupPred person

intCN Thing = blowupPred thing

intCN House = blowupPred house

Code for checking that a discourse predicate is unique.

unique :: Marker -> Trans -> Trans

unique m phi s | singleton xs = [s]

| otherwise = []

where singleton [x] = True

singleton _ = False

xs = [x | x <- entities,

success (update m x s) phi]

success s psi = phi s /= []

Discourse type of determiners: combine two discourse predicates into

a transition.

intDET :: DET ->

(Marker -> Trans) -> (Marker -> Trans) -> Trans

Interpretation of determiners in terms of the dynamic operators defined

above.

intDET (Some i) phi psi =

exists m ‘conj‘ (phi m) ‘conj‘ (psi m)

where m = i2m i

intDET (Every i) phi psi =

(exists m ‘conj‘ (phi m)) ‘impl‘ (psi m)

where m = i2m i

intDET (No i) phi psi =

neg (exists m ‘conj‘ (phi m) ‘conj‘ (psi m))
where m = i2m i

intDET (The i) phi psi =

(unique m (phi m)) ‘conj‘

(exists m) ‘conj‘ (phi m) ‘conj‘ (psi m)

where m = i2m i

Interpretation of relativised common nouns: straightforward generalisa-

tion of the treatment in classical Montague grammar:

intRCN :: RCN -> Marker -> Trans

intRCN (CN1 cn vp) m =

conj (intCN cn m) (intVP vp m)

intRCN (CN2 cn np tv) m =

conj (intCN cn m) (intNP np (intTV tv m))

Testing It Out

We need a suitable start state. Note that this start states respects the

anchoring information for the proper names.

startstate :: State

startstate =

[(U0,A),(U1,B),(U2,C),(U3,D),(U4,E),

(U5,F),(U6,A),(U7,M),(U8,B),(U9,J)]

Evaluation starts out from the initial state and produces a list of states.

An empty output state set indicates that the sentence is false, a non-

empty output state set indicates that the sentence is true. The output

states encode the anaphoric discourse information that is available for

subsequent discourse.

eval :: S -> Prop
eval s = intS s startstate

LOLA2> eval (S (Johnny 10) Smiled)

Program error: idx out of range

LOLA2> eval (S (Johnny 8) Smiled)

Program error: wrong anchor

LOLA2> eval (S (Johnny 9) Smiled)

[]

LOLA2> eval (S (Mary 7) Smiled)

[[(U0,A),(U1,B),(U2,C),(U3,D),(U4,E),

(U5,F),(U6,A),(U7,M),(U8,B),(U9,J)]]

test4 = eval

(S (NP1 (The 1) Boy)

(VP Loved (NP1 (Some 2) Woman)))

LOLA2> test4

[[(U0,A),(U1,B),(U2,M),(U3,D),(U4,E),

(U5,F),(U6,A),(U7,M),(U8,B),(U9,J)]]

test5 = eval

(S (NP1 (Some 1) Man)

(VP Loved (NP1 (Some 2) Woman)))

LOLA2> test5

[[(U0,A),(U1,B),(U2,M),(U3,D),(U4,E),

(U5,F),(U6,A),(U7,M),(U8,B),(U9,J)],

[(U0,A),(U1,J),(U2,M),(U3,D),(U4,E),

(U5,F),(U6,A),(U7,M),(U8,B),(U9,J)]]

test6 = eval

(S (NP1 (Some 1) Man)

(VP Respected (NP1 (Some 2) Woman)))

LOLA2> test6

[[(U0,A),(U1,B),(U2,A),..],

[(U0,A),(U1,B),(U2,C),..],

[(U0,A),(U1,B),(U2,M),..],

[(U0,A),(U1,D),(U2,A),..],

[(U0,A),(U1,D),(U2,C),..],

[(U0,A),(U1,D),(U2,M),..],

[(U0,A),(U1,J),(U2,A),..],

[(U0,A),(U1,J),(U2,C),..],

[(U0,A),(U1,J),(U2,M),..]]

test7 = eval

(S (NP1 (The 1) Man)

(VP Loved (NP1 (Some 2) Woman)))

LOLA2> test7

[]

test8 = eval

(S (NP1 (Some 1) Man)

(VP Loved (NP1 (Some 2) Woman)))

LOLA2> test8

[[(U0,A),(U1,B),(U2,M),(U3,D),(U4,E),

(U5,F),(U6,A),(U7,M),(U8,B),(U9,J)],

[(U0,A),(U1,J),(U2,M),(U3,D),(U4,E),

(U5,F),(U6,A),(U7,M),(U8,B),(U9,J)]]

test9 = eval

(Txt (S (NP1 (Some 1) Man)

(VP Loved (NP1 (Some 2) Woman)))

(S (PRO 1) (VP Respected (PRO 2))))

LOLA2> test9

[[(U0,A),(U1,B),(U2,M),(U3,D),(U4,E),

(U5,F),(U6,A),(U7,M),(U8,B),(U9,J)],

[(U0,A),(U1,J),(U2,M),(U3,D),(U4,E),

(U5,F),(U6,A),(U7,M),(U8,B),(U9,J)]]

test10 = eval

(If (S (NP1 (Some 1) Man)

(VP Loved (NP1 (Some 2) Woman)))

(S (PRO 1) (VP Respected (PRO 2))))

LOLA2> test10

[[(U0,A),(U1,B),(U2,C),(U3,D),(U4,E),

(U5,F),(U6,A),(U7,M),(U8,B),(U9,J)]]

test11 = eval

(Txt (S (NP1 (Some 1) Man)

(VP Respected (NP1 (Some 2) Woman)))

(S (PRO 1) (VP Loved (PRO 2))))

LOLA2> test11

[[(U0,A),(U1,B),(U2,M),(U3,D),(U4,E),

(U5,F),(U6,A),(U7,M),(U8,B),(U9,J)],

[(U0,A),(U1,J),(U2,M),(U3,D),(U4,E),

(U5,F),(U6,A),(U7,M),(U8,B),(U9,J)]]

test12 = eval

(If (S (NP1 (Some 1) Man)

(VP Respected (NP1 (Some 2) Woman)))

(S (PRO 1) (VP Loved (PRO 2))))

LOLA2> test12

[]

Chief Weakness

The chief weakness of DPL-based NL semantics is the need to supply

indices for all noun phrases in advance.

Moreover, re-use of an index destroys access to the previous value of

the corresponding marker.

This is a reflection of the fact that DPL has destructive assignment:

quantification over u replaces the previous contents of register u by

something new, and the old value gets lost forever.

References

[Chi92] G. Chierchia. Anaphora and dynamic binding. Linguistics and

Philosophy, 15(2):111–183, 1992.

[Eij97] J. van Eijck. Typed logics with states. Logic Journal of the

IGPL, 5(5):623–645, 1997.

[EK97] J. van Eijck and H. Kamp. Representing discourse in context.

In J. van Benthem and A. ter Meulen, editors, Handbook of

Logic and Language, pages 179–237. Elsevier, Amsterdam,

1997.

[GS90] J. Groenendijk and M. Stokhof. Dynamic Montague Gram-

mar. In L. Kalman and L. Polos, editors, Papers from the

Second Symposium on Logic and Language, pages 3–48.

Akademiai Kiadoo, Budapest, 1990.

[GS91] J. Groenendijk and M. Stokhof. Dynamic predicate logic.

Linguistics and Philosophy, 14:39–100, 1991.

[Jan98] Martin Jansche. Dynamic Montague Grammar lite. Dept of

Linguistics, Ohio State University, November 1998.

[KKP96] M. Kohlhase, S. Kuschert, and M. Pinkal. A type-theoretic

semantics for λ-DRT. In P. Dekker and M. Stokhof, editors,

Proceedings of the Tenth Amsterdam Colloquium, Amster-

dam, 1996. ILLC.

[Kus00] S. Kuschert. Dynamic Meaning and Accommodation. PhD

thesis, Universität des Saarlandes, 2000. Thesis defended in

1999.

[Mon73] R. Montague. The proper treatment of quantification in ordi-

nary English. In J. Hintikka e.a., editor, Approaches to Natural

Language, pages 221–242. Reidel, 1973.

[Mus94] R. Muskens. A compositional discourse representation the-

ory. In P. Dekker and M. Stokhof, editors, Proceedings 9th

Amsterdam Colloquium, pages 467–486. ILLC, Amsterdam,

1994.

[Mus95] R. Muskens. Tense and the logic of change. In U. Egli et al.,

editor, Lexical Knowledge in the Organization of Language,

pages 147–183. W. Benjamins, 1995.

[Mus96] R. Muskens. Combining Montague Semantics and Discourse

Representation. Linguistics and Philosophy, 19:143–186,

1996.

