
Computational Semantics, Type Theory,
and Functional Programming

III — Context Semantics

Jan van Eijck

CWI and ILLC, Amsterdam, Uil-OTS, Utrecht

LOLA7 Tutorial, Pecs

August 2002

Summary

• Incremental Dynamics

• Context and Context Extension

• DRT, Incremental Dynamics and Type Theory

• Incremental Montague Grammar

• Updating Salience Relations in a Context

• Pronoun Reference Resolution

Point of Departure: Incremental Dynamics

Destructive assignment is the main weakness of Dynamic Predicate

Logic (DPL, [GS91], but see also [Bar87]) as a basis for a composi-

tional semantics of natural language: in DPL, the semantic effect of a

quantifier action ∃x is that the previous value of x gets lost forever.

In this lecture we replace DPL by an incremental logic for NL semantics

— call it ID for Incremental Dynamics [Eij01] — and build a type

theoretic version of a compositional incremental semantics for NL. This

context semantics for NL is without the destructive assignment flaw.

ID can be viewed as the one-variable version of sequence semantics for

dynamic predicate logic proposed in [Ver93].

Contexts and Context Extension

Assume a first order model M = (D, I). We will use contexts c ∈ D∗,

and replace variables by indices into contexts. The set of terms of the

language is N. We use |c| for the length of context c.

Given a model M = (D, I) and a context c = c[0] · · · c[n− 1], where

n = |c| (the length of the context), we interpret terms of the language

by means of [[i]]c = c[i].

A snag is that [[i]]c is undefined for i ≥ |c|; we will therefore have to

ensure that indices are only evaluated in appropriate contexts. ↑ will

be used for ‘undefined’.

If c ∈ Dn and d ∈ D we use ĉ d for the context c′ ∈ Dn+1 that is the

result of appending d at the end of c.

Semantics of ID

The ID interpretation of formulas can now be given as a map in

D∗ ↪→ P(D∗)

(a partial function, because of the possibility of undefinedness).

Quantification and Atomic Test

[[∃]](c) := {ĉ d | d ∈ D}

[[Pi1 · · · in]](c) :=


↑ if ∃j(1 ≤ j ≤ n and [[ij]]c = ↑)
{c} if M |=c Pi1 · · · in
∅ if M =| cPi1 · · · in

[[i1
.
= i2]](c) :=


↑ if [[i1]]c = ↑ or [[i1]]c = ↑
{c} if M |=c i1

.
= i2

∅ if M =| ci1
.
= i2

Negation

[[¬ϕ]](c) :=


↑ if [[ϕ]](c) = ↑
{c} if [[ϕ]](c) = ∅
∅ otherwise

Sequential Composition

[[ϕ;ψ]](c) :=


↑ if [[ϕ]](c) = ↑

or ∃c′ ∈ [[ϕ]](c) with [[ψ]](c′) = ↑⋃
{[[ψ]](c′) | c′ ∈ [[ϕ]](c)} otherwise.

This definition hinges on the fact that all contexts in [[ϕ]](c) have the

same length.

Implication and Universal Quantification

Dynamic implication ϕ ⇒ ψ is defined in terms of ¬ and ; by means

of ¬(ϕ;¬ψ).

Universal quantification ∀ϕ is defined in terms of ∃,¬ and ; as ¬(∃;¬ϕ),

or alternatively as ∃ ⇒ ϕ.

NPs Without Indices

One advantage of the use of contexts is that indefinite NPs do not have

to carry index information anymore.

Some man loved some woman.

The ID rendering: ∃;Mi;∃;W (i + 1);Li(i + 1).

Here i denotes the length of the input context.

On the empty input context, this gets interpreted as the set of all

contexts [e0, e1] that satisfy the relation ‘love’ in the model under con-

sideration.

The result of this is that the subsequent sentence

He0 kissed her1

can now use this contextual discourse information to pick up the refer-

ences.

Extension to Typed Logic

The polymorphic type of a context is [e].

An index into a context [c0, . . . , cn−1] is a natural number

j ∈ {0, . . . , n− 1}.

Using the Von Neumann definition of natural numbers

n = {0, . . . , n− 1},

we can say that an index for a context c is a number j with j ∈ |c|.
We will use ι for the type of an index into a context.

This relies on meta-context to make clear what the current constraints

on context and indexing into context are.

In types such as ι→ [e], we will tacitly assume that the index fits the

size of the context.

Thus, ι→ [e] is really a type scheme rather than a type, although the

type polymorphism remains hidden from view.

Since ι → [e] generalizes over the size of the context, it is shorthand

for the types 0 → [e]0, 1 → [e]1, 2 → [e]2, and so on.

Indefinite Noun Phrases

The translation of an indefinite noun phrase a man:

λPλcλc′.∃x(man x ∧ Pi(ĉ x)c′) where i = |c|.
Here P is a variable of type ι→ [e] → [e] → t, while c, c′ are variables

of type [e] (variables ranging over contexts).

The P variable marks the slot for the VP interpretation. |c| gives the

length of the input context, i.e., the position of the next available slot.

The translation has type (ι→ [e] → [e]) → [e] → [e] → t.

Note that if i = |c| then (ĉ x)[i] = x.

The translation of ‘a man’ does not introduce an anaphoric index, as

in DPL based dynamic semantics for NL (see previous lecture).

An anaphoric index i is picked up from the input context. Also, the

context is not reset but incremented: context update is not destructive.

Module Declaration

First we declare a module, and import the standard List module, plus

the modules with domain and model information:

module LOLA3 where

import List

import Domain

import Model

Contexts, Propositions, Transitions

For our Haskell implementation, we start out from basic types for

booleans and entities. Contexts get represented as lists of entities.

Propositions are lists of contexts. Transitions are maps from contexts

to propositions. Indices are integers.

type Context = [Entity]

type Prop = [Context]

type Trans = Context -> Prop

type Idx = Int

Index Lookup and Context Extension

lookupIdx is the implementation of c[i].

lookupIdx :: Context -> Idx -> Entity

lookupIdx [] i = error "undefined ctxt element"

lookupIdx (x:xs) 0 = x

lookupIdx (x:xs) i = lookupIdx xs (i-1)

extend is the implementation of ĉ x. extend replaces the destructive

update from the previous lecture.

extend :: Context -> Entity -> Context

extend = \ c e -> c ++ [e]

To give an incremental version of the fragments from the previous lec-

tures, we define the appropriate dynamic operations in typed logic.

Assume ϕ and ψ have the type of context transitions, i.e., type [e] →
[e] → t, and that c, c′, c′′ have type [e].

Note that ˆ is an operation of type [e] → e→ [e].

Incremental quantification

∃∃ := λcc′.∃x(ĉ x = c′)

exists :: Trans

exists = \ c -> [extend c x | x <- entities]

Incremental negation

¬¬ϕ := λcc′.(c = c′ ∧ ¬∃c′′ϕcc′′)

neg :: Trans -> Trans

neg = \ phi c -> if phi c == [] then [c] else []

Incremental conjunction

ϕ ; ψ := λcc′.∃c′′(ϕcc′′ ∧ ψc′′c′)

conj :: Trans -> Trans -> Trans

conj = \ phi psi c ->

concat [psi c’ | c’ <- (phi c)]

Incremental implication

ϕ⇒ ψ := ¬¬(ϕ ; ¬¬ψ)

impl :: Trans -> Trans -> Trans

impl = \ phi psi -> neg (phi ‘conj‘ (neg psi))

Universal Quantification

∀∀ϕ := ¬¬(∃∃ ; ¬¬ϕ)

forall :: Trans -> Trans

forall = \ phi -> neg (exists ‘conj‘ (neg phi))

Predicate Lifting

We have to assume that the lexical meanings of CNs, VPs are given

as one place predicates (type e → t) and those of TVs as two place

predicates (type e → e → t). We therefore define blow-up operations

for lifting one-placed and two-placed predicates to the dynamic level.

Assume A to be an expression of type e → t, and B an expression

of type e → e → t; we use c, c′ as variables of type [e], and j, j′

as variables of type ι, and we employ postfix notation for the lifting

operations:

A◦ := λjcc′.(c = c′ ∧ Ac[j])
B• := λjj′cc′.(c = c′ ∧Bc[j]c[j′])

Discourse blow-up of one-placed predicates:

blowupPred :: (Entity -> Bool) -> Idx -> Trans

blowupPred = \ pred i c ->

if pred (lookupIdx c i)

then [c] else []

Discourse blow-up for two-placed predicates.

blowupPred2 ::

((Entity,Entity) -> Bool) -> Idx -> Idx -> Trans

blowupPred2 = \ pred i1 i2 c ->

if pred (lookupIdx c i2, lookupIdx c i1)

then [c] else []

Anchors for Proper Names

The anchors for proper names are extracted from an initial context.

anchor :: Entity -> Context -> Idx

anchor = \ e c -> anchr e c 0 where

anchr e [] i =

error (show e ++ " not anchored in ctxt")

anchr e (x:xs) i | e == x = i

| otherwise = anchr e xs (i+1)

Datatypes for Syntax

No index information on NPs, except for pronouns. Otherwise, virtually

the same as the datatype declaration of the previous lecture.

data S = S NP VP | If S S | Txt S S

deriving (Eq,Show)

data NP = Ann | Mary | Bill | Johnny

| PRO Idx | He | She | It

| NP1 DET CN | NP2 DET RCN

deriving (Eq,Show)

data DET = Every | Some | No | The

deriving (Eq,Show)

data CN = Man | Woman | Boy | Person

| Thing | House | Cat | Mouse

deriving (Eq,Show)

data RCN = CN1 CN VP | CN2 CN NP TV

deriving (Eq,Show)

data VP = Laughed | Smiled

| VP1 TV NP | VP2 TV REFL

deriving (Eq,Show)

data REFL = Self deriving (Eq,Show)

data TV = Loved | Respected | Hated | Owned

deriving (Eq,Show)

Arity Reduction

Interpretation of VPs consisting of a TV with a reflexive pronoun uses

the relation reducer self.

self :: (a -> a -> b) -> a -> b

self = \ p x -> p x x

Note the polymorphism of this definition. We will use the arity reducer

on relations in type

Idx -> Idx -> Trans

rather than

Entity -> Entity -> Bool.

Dynamic Interpretation

The interpretation of sentences, in type S -> Trans:

intS :: S -> Trans

intS (S np vp) = (intNP np) (intVP vp)

intS (If s1 s2) = (intS s1) ‘impl‘ (intS s2)

intS (Txt s1 s2) = (intS s1) ‘conj‘ (intS s2)

Interpretations of proper names and pronouns.

intNP :: NP -> (Idx -> Trans) -> Trans

intNP Mary = \ p c -> p (anchor mary c) c

intNP Ann = \ p c -> p (anchor ann c) c

intNP Bill = \ p c -> p (anchor bill c) c

intNP Johnny = \ p c -> p (anchor johnny c) c

intNP (PRO i) = \ p -> p i

Interpretation of complex NPs as expected:

intNP (NP1 det cn) = (intDET det) (intCN cn)

intNP (NP2 det rcn) = (intDET det) (intRCN rcn)

Interpretation of (VP1 TV NP) as expected.

Interpretation of (VP2 TV REFL) uses the relation reducer self.

Interpretation of lexical VPs uses discourse blow-up from the lexical

meanings.

intVP :: VP -> Idx -> Trans

intVP (VP1 tv np) =

\ subj -> intNP np (\ obj -> intTV tv obj subj)

intVP (VP2 tv _) = self (intTV tv)

intVP Laughed = blowupPred laugh

intVP Smiled = blowupPred smile

Interpretation of TVs uses discourse blow-up of two-placed predicates.

intTV :: TV -> Idx -> Idx -> Trans

intTV Loved = blowupPred2 love

intTV Respected = blowupPred2 respect

intTV Hated = blowupPred2 hate

intTV Owned = blowupPred2 own

Interpretation of CNs uses discourse blow-up of one-placed predicates.

intCN :: CN -> Idx -> Trans

intCN Man = blowupPred man

intCN Boy = blowupPred boy

intCN Woman = blowupPred woman

intCN Person = blowupPred person

intCN Thing = blowupPred thing

intCN House = blowupPred house

intCN Cat = blowupPred cat

intCN Mouse = blowupPred mouse

Code for checking that a discourse predicate is unique.

singleton :: [a] -> Bool

singleton [x] = True

singleton _ = False

unique :: Trans -> Trans

unique phi c | singleton xs = [c]

| otherwise = []

where xs = [x | x <- entities,

phi (extend c x) /= []]

Discourse type of determiners: combine two context predicates into a

transition.

intDET :: DET ->

(Idx -> Trans) -> (Idx -> Trans) -> Trans

Interpretation of determiners in terms of dynamic quantification exists,

dynamic negation neg, dynamic conjunction conj, and dynamic unique-

ness check unique. The difference with the treatment in the previous

lecture is that the indices are now derived from the input context.

intDET Some = \ phi psi c ->

let i = length c in

(exists ‘conj‘ (phi i) ‘conj‘ (psi i)) c

intDET Every = \ phi psi c ->

let i = length c in

neg (exists ‘conj‘ (phi i) ‘conj‘
(neg (psi i))) c

intDET No = \ phi psi c ->

let i = length c in

neg (exists ‘conj‘ (phi i) ‘conj‘ (psi i)) c

intDET The = \ phi psi c ->

let i = length c in

((unique (phi i)) ‘conj‘

exists ‘conj‘ (phi i) ‘conj‘ (psi i)) c

Interpretation of relativised common nouns as expected:

intRCN :: RCN -> Idx -> Trans

intRCN (CN1 cn vp) =

\ i -> conj (intCN cn i) (intVP vp i)

intRCN (CN2 cn np tv) =

\ i -> conj (intCN cn i)

(intNP np (intTV tv i))

Trying It Out

The initial context from which evaluation can start is given by context:

context :: Context

context = [A,M,B,J]

Evaluation takes place by interpreting a sentence or piece of text in a

context:

eval :: S -> Prop

eval = \ s -> intS s context

LOLA3> eval (S Johnny Smiled)

[]

LOLA3> eval (S Bill Laughed)

[[A,M,B,J]]

LOLA3> eval (S (NP1 The Boy) Laughed)

[[A,M,B,J,J]]

LOLA3> eval (S (NP1 Some Man) (VP1 Loved (NP1 Some Woman)))

[[A,M,B,J,B,A],[A,M,B,J,B,M]]

LOLA3> eval (S (NP1 Some Woman) (VP1 Loved (NP1 Some Man)))

[[A,M,B,J,A,B],[A,M,B,J,A,J],[A,M,B,J,C,B],

[A,M,B,J,C,J],[A,M,B,J,M,B],[A,M,B,J,M,J]]

ex1 =

(S (NP1 Some Woman) (VP1 Loved (NP1 Some Man)))

‘Txt‘ (S (PRO 6) (VP1 Loved (PRO 5)))

ex2 =

(S (NP1 Some Woman) (VP1 Loved (NP1 Some Man)))

‘Txt‘ (S (PRO 5) (VP1 Loved (PRO 4)))

LOLA3> eval ex1

Program error: undefined ctxt element

LOLA3> eval ex2

[[A,M,B,J,A,B],[A,M,B,J,M,B]]

ex3 =

S Johnny (VP1 Respected

(NP2 Some (CN1 Man (VP1 Loved (NP1 Some Woman)))))

LOLA3> eval ex3

[[A,M,B,J,B,A],[A,M,B,J,B,M]]

ex4 =

Txt (S (NP1 Some Man) (VP1 Loved (NP1 Some Woman)))

(S (PRO 4) (VP1 Respected (PRO 5)))

LOLA3> eval ex4

[[A,M,B,J,B,A],[A,M,B,J,B,M]]

ex5 = S (NP1 Every Man) (VP2 Respected Self)

ex6 = S (NP1 Some Man) (VP2 Respected Self)

LOLA3> eval ex5

[[A,M,B,J]]

LOLA3> eval ex6

[[A,M,B,J,B],[A,M,B,J,D],[A,M,B,J,J]]

Updating Salience Relations in a Context

Pronoun resolution should resolve pronouns to the most salient referent

in context, modulo additional constraints such as gender agreement.

To handle salience, we need contexts with slightly more structure, so

that context elements can be permuted without danger of losing track

of them.

Contexts as lists of elements under a permutation are conveniently rep-

resented as lists of index/element pairs.

Details of this are worked out in my invited lecture . . .

References

[Bar87] J. Barwise. Noun phrases, generalized quantifiers and anaphora.

In P. Gärdenfors, editor, Generalized Quantifiers: linguistic and

logical approaches, pages 1–30. Reidel, Dordrecht, 1987.

[Eij01] J. van Eijck. Incremental dynamics. Journal of Logic, Language

and Information, 10:319–351, 2001.

[GS91] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Lin-

guistics and Philosophy, 14:39–100, 1991.

[Rei83] T. Reinhart. Anaphora and Semantic Interpretation. Croom

Helm, London, 1983.

[Ver93] C.F.M. Vermeulen. Sequence semantics for dynamic predicate

logic. Journal of Logic, Language, and Information, 2:217–254,

1993.

