
NLP, Philosophy, and Logic

Jan van Eijck
current affiliation: NIAS, Wassenaar

jve@cwi.nl

NLP Course, 11 December 2006

Abstract

In this tutorial, the meaning of natural language is analysed along the lines proposed by
Gottlob Frege and Richard Montague. In building meaning representations, we assume
that the meaning of a complex expression derives from the meanings of its components.
Typed logic is a convenient tool to make this process of composition explicit. Typed logic
allows for the building of semantic representations for formal languages and fragments of
natural language in a compositional way. The tutorial ends with the discussion of an example
fragment, implemented in the functional programming language Haskell Haskell Team; Jones
[2003].

A Philosophical Puzzle about Meaning

Example from Rohit Parikh Parikh [2006].

A Philosophical Puzzle about Meaning

Example from Rohit Parikh Parikh [2006].

• Suppose a thermostat is designed to turn on the heating when the

room temperature falls below 18◦C. Now 18◦C is also 50◦F.

A Philosophical Puzzle about Meaning

Example from Rohit Parikh Parikh [2006].

• Suppose a thermostat is designed to turn on the heating when the

room temperature falls below 18◦C. Now 18◦C is also 50◦F.

• Suppose the thermostat is taken to the US. Will it have to be told

that 18◦C is 50◦F? No, of course not. It will turn on the heat when

the room temperature falls below 50◦F.

A Philosophical Puzzle about Meaning

Example from Rohit Parikh Parikh [2006].

• Suppose a thermostat is designed to turn on the heating when the

room temperature falls below 18◦C. Now 18◦C is also 50◦F.

• Suppose the thermostat is taken to the US. Will it have to be told

that 18◦C is 50◦F? No, of course not. It will turn on the heat when

the room temperature falls below 50◦F.

• When listening to Nature, we use propositions rather than sentences.

When the temperature is 32◦F we feel cold, and when the temperature

is 0◦C we also feel cold.

A Philosophical Puzzle about Meaning

Example from Rohit Parikh Parikh [2006].

• Suppose a thermostat is designed to turn on the heating when the

room temperature falls below 18◦C. Now 18◦C is also 50◦F.

• Suppose the thermostat is taken to the US. Will it have to be told

that 18◦C is 50◦F? No, of course not. It will turn on the heat when

the room temperature falls below 50◦F.

• When listening to Nature, we use propositions rather than sentences.

When the temperature is 32◦F we feel cold, and when the temperature

is 0◦C we also feel cold.

• But depending on our mother tongue, we will utter different sentences.

A Philosophical Puzzle about Meaning (ctd)

A Philosophical Puzzle about Meaning (ctd)

• Now suppose we only have a thermometer, and we have instructed

a person with the following sentence: “Turn on the heat when the

temperature falls below 18◦C.” If the thermometer has a Fahrenheit

scale, will she turn on the heat if it shows 50◦F?

A Philosophical Puzzle about Meaning (ctd)

• Now suppose we only have a thermometer, and we have instructed

a person with the following sentence: “Turn on the heat when the

temperature falls below 18◦C.” If the thermometer has a Fahrenheit

scale, will she turn on the heat if it shows 50◦F?

• It looks like our beliefs involve both propositions (sets of possible

worlds) and sentences (in some natural or formal language).

A Philosophical Puzzle about Meaning (ctd)

• Now suppose we only have a thermometer, and we have instructed

a person with the following sentence: “Turn on the heat when the

temperature falls below 18◦C.” If the thermometer has a Fahrenheit

scale, will she turn on the heat if it shows 50◦F?

• It looks like our beliefs involve both propositions (sets of possible

worlds) and sentences (in some natural or formal language).

• How are sentences connected to propositions?

A Philosophical Puzzle about Meaning (ctd)

• Now suppose we only have a thermometer, and we have instructed

a person with the following sentence: “Turn on the heat when the

temperature falls below 18◦C.” If the thermometer has a Fahrenheit

scale, will she turn on the heat if it shows 50◦F?

• It looks like our beliefs involve both propositions (sets of possible

worlds) and sentences (in some natural or formal language).

• How are sentences connected to propositions?

• Meaning representations for natural language must involve propositions

and equivalence relations on sentences, and their interrelation.

A Philosophical Puzzle about Meaning (ctd)

• Now suppose we only have a thermometer, and we have instructed

a person with the following sentence: “Turn on the heat when the

temperature falls below 18◦C.” If the thermometer has a Fahrenheit

scale, will she turn on the heat if it shows 50◦F?

• It looks like our beliefs involve both propositions (sets of possible

worlds) and sentences (in some natural or formal language).

• How are sentences connected to propositions?

• Meaning representations for natural language must involve propositions

and equivalence relations on sentences, and their interrelation.

• Many different proposals for how this works . . .

A Philosophical Puzzle about Meaning (ctd)

• Now suppose we only have a thermometer, and we have instructed

a person with the following sentence: “Turn on the heat when the

temperature falls below 18◦C.” If the thermometer has a Fahrenheit

scale, will she turn on the heat if it shows 50◦F?

• It looks like our beliefs involve both propositions (sets of possible

worlds) and sentences (in some natural or formal language).

• How are sentences connected to propositions?

• Meaning representations for natural language must involve propositions

and equivalence relations on sentences, and their interrelation.

• Many different proposals for how this works . . .

• Fortunately, philosophical problems can be put ‘on hold’ . . .

The Use of Logic: Checking for Consistency

The Use of Logic: Checking for Consistency

• Consider the following set of sentences:

John likes all girls. Some girl likes everybody but John.

Mary likes only John. No boy except John likes every girl.

The Use of Logic: Checking for Consistency

• Consider the following set of sentences:

John likes all girls. Some girl likes everybody but John.

Mary likes only John. No boy except John likes every girl.

• How do we check whether this piece of text is consistent?

The Use of Logic: Checking for Consistency

• Consider the following set of sentences:

John likes all girls. Some girl likes everybody but John.

Mary likes only John. No boy except John likes every girl.

• How do we check whether this piece of text is consistent?

• One possibility: translate the sentences into predicate logic and

use an analyzer for predicate logic, e.g. Alloy MIT Software Design

Group; Jackson [2006].

First Order Analysis

abstract sig Person { like: set Person }

sig Boy extends Person {}

one sig John in Boy {}

sig Girl extends Person {}

one sig Mary in Girl {}

fact likesAndDislikes {

all x: Girl | x in like[John]

some x: Girl | all y: Person | y != John => y in like[x]

all x: Person | x in like[Mary] <=> x = John

no x: Boy - John | all y: Girl | y in like[x]

}

run {} for exactly 4 Person

Example Model

Boy

(John)

G irl0

like

Girl1

(M ary)

like

G irl2

($x)

likelike

like like

The Use of Logic: Checking for Consequence

The Use of Logic: Checking for Consequence

• Suppose we want to know whether it follows from the story that

there is only one boy.

The Use of Logic: Checking for Consequence

• Suppose we want to know whether it follows from the story that

there is only one boy.

• Again we can do a first order analysis.

The Use of Logic: Checking for Consequence

• Suppose we want to know whether it follows from the story that

there is only one boy.

• Again we can do a first order analysis.

• Using Alloy, we can check for this consequence, as follows:

onlyJohn: check { all x: Boy | x = John } for 4 Person

The Use of Logic: Checking for Consequence

• Suppose we want to know whether it follows from the story that

there is only one boy.

• Again we can do a first order analysis.

• Using Alloy, we can check for this consequence, as follows:

onlyJohn: check { all x: Boy | x = John } for 4 Person

• And . . . , we get a counterexample.

The Use of Logic: Checking for Consequence

• Suppose we want to know whether it follows from the story that

there is only one boy.

• Again we can do a first order analysis.

• Using Alloy, we can check for this consequence, as follows:

onlyJohn: check { all x: Boy | x = John } for 4 Person

• And . . . , we get a counterexample.

• This shows that the text does not entail that there is only one boy.

CounterExample Model

Boy0

(John)
like

Boy1

($x)

like

G irl0

(M ary)

like

G irl1

($x’)

like

like

Translation for Meaning Representation: Rules of the Game

Translation for Meaning Representation: Rules of the Game

• An invitation to translate English sentences from an sample of

natural language given by some set of grammar rules into meaning

representations presupposes two things:

1. that you understand the meanings of the English sentences;

2. that you grasp the meanings of the expressions of the representation

language.

Translation for Meaning Representation: Rules of the Game

• An invitation to translate English sentences from an sample of

natural language given by some set of grammar rules into meaning

representations presupposes two things:

1. that you understand the meanings of the English sentences;

2. that you grasp the meanings of the expressions of the representation

language.

• Knowledge of the second kind can be made fully explicit; semantic

truth definitions for the representation languages do the job.

Translation for Meaning Representation: Rules of the Game

• An invitation to translate English sentences from an sample of

natural language given by some set of grammar rules into meaning

representations presupposes two things:

1. that you understand the meanings of the English sentences;

2. that you grasp the meanings of the expressions of the representation

language.

• Knowledge of the second kind can be made fully explicit; semantic

truth definitions for the representation languages do the job.

• Is it also possible to make knowledge of the meaning of a fragment

of natural language fully explicit?

Translation as Explication of Meaning

Translation as Explication of Meaning

• Does a translation procedure from natural language into some kind

of logical representation language count as an explication of the

concept of meaning for natural language?

Translation as Explication of Meaning

• Does a translation procedure from natural language into some kind

of logical representation language count as an explication of the

concept of meaning for natural language?

• The procedure should not presuppose knowledge of the meaning

of complete natural language sentences, but rather should specify

how sentence meanings are derived from the meanings of smaller

building blocks.

Translation as Explication of Meaning

• Does a translation procedure from natural language into some kind

of logical representation language count as an explication of the

concept of meaning for natural language?

• The procedure should not presuppose knowledge of the meaning

of complete natural language sentences, but rather should specify

how sentence meanings are derived from the meanings of smaller

building blocks.

• The meanings of complex expressions should be derivable in a

systematic fashion from the meanings of the smallest building blocks

occurring in those expressions.

Translation as Explication of Meaning

• Does a translation procedure from natural language into some kind

of logical representation language count as an explication of the

concept of meaning for natural language?

• The procedure should not presuppose knowledge of the meaning

of complete natural language sentences, but rather should specify

how sentence meanings are derived from the meanings of smaller

building blocks.

• The meanings of complex expressions should be derivable in a

systematic fashion from the meanings of the smallest building blocks

occurring in those expressions.

• The meaning of these smallest building blocks is taken as given.

Where the Mystery Is

Where the Mystery Is

• The real mystery of semantics lies in the way human beings grasp

the meanings of single words.

Where the Mystery Is

• The real mystery of semantics lies in the way human beings grasp

the meanings of single words.

• This mystery is not explained away by logical analysis.

Where the Mystery Is

• The real mystery of semantics lies in the way human beings grasp

the meanings of single words.

• This mystery is not explained away by logical analysis.

• Logic is a manifestation of the Power of Pure Intelligence rather

than an explication of it.

Where the Mystery Is

• The real mystery of semantics lies in the way human beings grasp

the meanings of single words.

• This mystery is not explained away by logical analysis.

• Logic is a manifestation of the Power of Pure Intelligence rather

than an explication of it.

• Logic gives us patterns and connections.

Where the Mystery Is

• The real mystery of semantics lies in the way human beings grasp

the meanings of single words.

• This mystery is not explained away by logical analysis.

• Logic is a manifestation of the Power of Pure Intelligence rather

than an explication of it.

• Logic gives us patterns and connections.

• Logic is simple. This simplicity comes at a price. It is achieved by

abstracting away from what is difficult.

The Principle of Compositionality

The Principle of Compositionality

• Formal semantics has little or nothing to say about the interpretation

of semantic atoms.

The Principle of Compositionality

• Formal semantics has little or nothing to say about the interpretation

of semantic atoms.

• It has rather a lot to say about the process of composing complex

meanings in a systematic way out of the meanings of components.

The Principle of Compositionality

• Formal semantics has little or nothing to say about the interpretation

of semantic atoms.

• It has rather a lot to say about the process of composing complex

meanings in a systematic way out of the meanings of components.

• The intuition that this is always possible can be stated somewhat

more precisely; it is called the Principle of Compositionality:

The meaning of an expression is a function of the meanings

of its immediate syntactic components plus their syntactic

mode of composition.

The Principle of Compositionality

• Formal semantics has little or nothing to say about the interpretation

of semantic atoms.

• It has rather a lot to say about the process of composing complex

meanings in a systematic way out of the meanings of components.

• The intuition that this is always possible can be stated somewhat

more precisely; it is called the Principle of Compositionality:

The meaning of an expression is a function of the meanings

of its immediate syntactic components plus their syntactic

mode of composition.

• The principle of compositionality is implicit in Gottlob Frege’s writings

on philosophy of language Frege [1892]; it has been made fully

explicit in Richard Montague’s approach to natural language semantics.

Misleading Form and Logical Form

‘I see nobody on the road,’ said

Alice. ‘I only wish I had such eyes,’

the King remarked in a fretful tone.

‘To be able to see Nobody! And at

that distance too!’

Lewis Carroll, Alice in Wonderland.

Misleading Form and Logical Form

‘I see nobody on the road,’ said

Alice. ‘I only wish I had such eyes,’

the King remarked in a fretful tone.

‘To be able to see Nobody! And at

that distance too!’

Lewis Carroll, Alice in Wonderland.

• From Alice walked on the road it follows that someone walked.

Misleading Form and Logical Form

‘I see nobody on the road,’ said

Alice. ‘I only wish I had such eyes,’

the King remarked in a fretful tone.

‘To be able to see Nobody! And at

that distance too!’

Lewis Carroll, Alice in Wonderland.

• From Alice walked on the road it follows that someone walked.

• From Nobody walked on the road it does not follow that someone

walked.

No Quantified Constituents

No Quantified Constituents

• The logical translation of Some king saw nobody on the road does

not reveal constituents corresponding to the quantified subject and

object noun phrases.

∃x(king x ∧ ¬∃y(person on the road y ∧ x saw y)).

No Quantified Constituents

• The logical translation of Some king saw nobody on the road does

not reveal constituents corresponding to the quantified subject and

object noun phrases.

∃x(king x ∧ ¬∃y(person on the road y ∧ x saw y)).

• In the logical translation, quantified expressions seemed to have

disappeared.

No Quantified Constituents

• The logical translation of Some king saw nobody on the road does

not reveal constituents corresponding to the quantified subject and

object noun phrases.

∃x(king x ∧ ¬∃y(person on the road y ∧ x saw y)).

• In the logical translation, quantified expressions seemed to have

disappeared.

• Frege remarks that a quantified expression like every unmarried man

or nobody does not give rise to a concept by itself (eine selbstandige

Vorstellung), but can only be interpreted in the context of the

translation of the whole sentence.

Lambda Notation; Type Theory

Lambda Notation; Type Theory

• According to Frege, the meaning of John arrived can be represented

by a function argument expression Aj where A denotes a function

and j an argument to that function.

Lambda Notation; Type Theory

• According to Frege, the meaning of John arrived can be represented

by a function argument expression Aj where A denotes a function

and j an argument to that function.

• Strictly speaking the expression A does not reveal that it is supposed

to combine with an individual term to form a formula (an expression

denoting a truth value).

Lambda Notation; Type Theory

• According to Frege, the meaning of John arrived can be represented

by a function argument expression Aj where A denotes a function

and j an argument to that function.

• Strictly speaking the expression A does not reveal that it is supposed

to combine with an individual term to form a formula (an expression

denoting a truth value).

• One way to make this explicit is by means of lambda notation. The

function expression of this example is then written as (λx.Ax). It

is also possible to be even more explicit, and write

λx.(Ax) :: e → t

to indicate the type of the expression, or even:

(λxe.Ae→tx)e→t.

The subscripts reveal the types.

Types

Types

• The set of types over e, t is given by the following BNF rule:

T1, T2 ::= e | t | (T1 → T2).

Types

• The set of types over e, t is given by the following BNF rule:

T1, T2 ::= e | t | (T1 → T2).

• The basic type e is the type of expressions denoting individual

objects (or entities). The basic type t is the type of formulas (of

expressions which denote truth values). Complex types are the

types of functions.

Types

• The set of types over e, t is given by the following BNF rule:

T1, T2 ::= e | t | (T1 → T2).

• The basic type e is the type of expressions denoting individual

objects (or entities). The basic type t is the type of formulas (of

expressions which denote truth values). Complex types are the

types of functions.

• For example, (e → t) or e → t (we assume that → is right-

associative, and leave out parentheses when this does not create

ambiguity) is the type of functions from entities to truth values.

Types

• The set of types over e, t is given by the following BNF rule:

T1, T2 ::= e | t | (T1 → T2).

• The basic type e is the type of expressions denoting individual

objects (or entities). The basic type t is the type of formulas (of

expressions which denote truth values). Complex types are the

types of functions.

• For example, (e → t) or e → t (we assume that → is right-

associative, and leave out parentheses when this does not create

ambiguity) is the type of functions from entities to truth values.

• In general: T1 → T2 is the type of expressions denoting functions

from denotations of T1 expressions to denotations of T2 expressions.

The Hierarchy of Typed Domains

The Hierarchy of Typed Domains

• The types e and t are given.

The Hierarchy of Typed Domains

• The types e and t are given.

• Individual objects or entities are objects taken from some domain

of discussion D, so e type expressions denote objects in D.

The Hierarchy of Typed Domains

• The types e and t are given.

• Individual objects or entities are objects taken from some domain

of discussion D, so e type expressions denote objects in D.

• The truth values are {0, 1}, so type t expression denotes values in

{0, 1}.

The Hierarchy of Typed Domains

• The types e and t are given.

• Individual objects or entities are objects taken from some domain

of discussion D, so e type expressions denote objects in D.

• The truth values are {0, 1}, so type t expression denotes values in

{0, 1}.

• For complex types we use recursion.

The Hierarchy of Typed Domains

• The types e and t are given.

• Individual objects or entities are objects taken from some domain

of discussion D, so e type expressions denote objects in D.

• The truth values are {0, 1}, so type t expression denotes values in

{0, 1}.

• For complex types we use recursion.

• This gives:

De = D, Dt = {0, 1}, DA→B = DB
DA.

Here DB
DA denotes the set of all functions from DA to DB.

Exercise 1 Let a set De = {a, b, c} be given. Draw a picture of an

element of De→t.

Characteristic Functions

A function with range {0, 1} is called a characteristic function, because

it characterizes a set (namely, the set of those things which get mapped

to 1). If T is some arbitrary type, then any member of DT→t is a

characteristic function.

Characteristic Functions

A function with range {0, 1} is called a characteristic function, because

it characterizes a set (namely, the set of those things which get mapped

to 1). If T is some arbitrary type, then any member of DT→t is a

characteristic function.

• The members of De→t, for instance, characterize subsets of the

domain of individuals De.

Characteristic Functions

A function with range {0, 1} is called a characteristic function, because

it characterizes a set (namely, the set of those things which get mapped

to 1). If T is some arbitrary type, then any member of DT→t is a

characteristic function.

• The members of De→t, for instance, characterize subsets of the

domain of individuals De.

• As another example, consider D(e→t)→t. According to the type

definition this is the domain of functions Dt
De→t, i.e., the functions

in {0, 1}De→t. These functions characterize sets of subsets of the

domain of individuals De.

Characteristic Functions

A function with range {0, 1} is called a characteristic function, because

it characterizes a set (namely, the set of those things which get mapped

to 1). If T is some arbitrary type, then any member of DT→t is a

characteristic function.

• The members of De→t, for instance, characterize subsets of the

domain of individuals De.

• As another example, consider D(e→t)→t. According to the type

definition this is the domain of functions Dt
De→t, i.e., the functions

in {0, 1}De→t. These functions characterize sets of subsets of the

domain of individuals De.

Exercise 2 Let a set De = {a, b, c} be given. Draw a picture of an

element of D(e→t)→t.

The Domain De→e→t

The Domain De→e→t

• As a next example, consider the domain De→e→t. This is shorthand

for De→(e→t). Assume for simplicity that De is the set {a, b, c}.
Then we have:

De→e→t = De→t
De = (DDe

t)D
e

= ({0, 1}{a,b,c}){a,b,c}.

The Domain De→e→t

• As a next example, consider the domain De→e→t. This is shorthand

for De→(e→t). Assume for simplicity that De is the set {a, b, c}.
Then we have:

De→e→t = De→t
De = (DDe

t)D
e

= ({0, 1}{a,b,c}){a,b,c}.

• A picture of a single element of De→e→t.

a 7→

 a 7→ 1

b 7→ 0

c 7→ 0


b 7→

 a 7→ 0

b 7→ 1

c 7→ 0


c 7→

 a 7→ 0

b 7→ 1

c 7→ 1



• A picture of a single element of De→e→t.

a 7→

 a 7→ 1

b 7→ 0

c 7→ 0


b 7→

 a 7→ 0

b 7→ 1

c 7→ 0


c 7→

 a 7→ 0

b 7→ 1

c 7→ 1


• The elements of De→e→t can in fact be regarded as functional

encodings of two-placed relations R on De.

• A picture of a single element of De→e→t.

a 7→

 a 7→ 1

b 7→ 0

c 7→ 0


b 7→

 a 7→ 0

b 7→ 1

c 7→ 0


c 7→

 a 7→ 0

b 7→ 1

c 7→ 1


• The elements of De→e→t can in fact be regarded as functional

encodings of two-placed relations R on De.

• A function in De→e→t maps every element d of De to (the characteristic

function of) the set of those elements of De to which d has the

R-relation, i.e., to the set {x ∈ De | (d, x) ∈ R}.

The Domain Dt→t

The Domain Dt→t

• As another example, note that Dt→t has precisely four members,

namely:

identity negation constant 1 constant 0

1 7→ 1 1 7→ 0 1 7→ 1 0 7→ 0

0 7→ 0 0 7→ 1 0 7→ 1 0 7→ 0

The Domain Dt→t→t

The Domain Dt→t→t

• The elements of Dt→t→t are functions from the set of truth values

to the functions in Dt→t, i.e., to the set of four functions pictured

above.

The Domain Dt→t→t

• The elements of Dt→t→t are functions from the set of truth values

to the functions in Dt→t, i.e., to the set of four functions pictured

above.

• Here is an example, the function which maps 1 to the constant 1

function, and 0 to the identity:

1 7→
(

1 7→ 1

0 7→ 1

)
0 7→

(
1 7→ 1

0 7→ 0

)

The Domain Dt→t→t

• The elements of Dt→t→t are functions from the set of truth values

to the functions in Dt→t, i.e., to the set of four functions pictured

above.

• Here is an example, the function which maps 1 to the constant 1

function, and 0 to the identity:

1 7→
(

1 7→ 1

0 7→ 1

)
0 7→

(
1 7→ 1

0 7→ 0

)
• Note that we can view this as a ‘two step’ version of the semantic

operation of taking a disjunction.

• If the truth value of its first argument is 1, then the disjunction

becomes true, and the truth value of the second argument does

not matter (hence the constant 1 function).

• If the truth value of its first argument is 1, then the disjunction

becomes true, and the truth value of the second argument does

not matter (hence the constant 1 function).

• If the truth value of the first argument is 0, then the truth value of

the disjunction as a whole is determined by the truth value of the

second argument (hence the identity function).

• If the truth value of its first argument is 1, then the disjunction

becomes true, and the truth value of the second argument does

not matter (hence the constant 1 function).

• If the truth value of the first argument is 0, then the truth value of

the disjunction as a whole is determined by the truth value of the

second argument (hence the identity function).

Exercise 3 Specify the conjunction function in Dt→t→t.

Abstraction and Application

Abstraction and Application

• Now that we know in principle what the type domains DT look like,

for every type T in the type hierarchy, it should be clear that the

process of abstraction (creating new functions) brings one higher

up in the hierarchy, while the operation of application (applying a

function to an argument) brings one down in the hierarchy.

Abstraction and Application

• Now that we know in principle what the type domains DT look like,

for every type T in the type hierarchy, it should be clear that the

process of abstraction (creating new functions) brings one higher

up in the hierarchy, while the operation of application (applying a

function to an argument) brings one down in the hierarchy.

• If Px is an expression of type t and x is of type e, then (λx.Px)

is an expression of type e → t. In fact, (λx.Px) is nothing but

a more explicit notation for the so-called set abstraction notation

{x | Px}.

Abstraction and Application

• Now that we know in principle what the type domains DT look like,

for every type T in the type hierarchy, it should be clear that the

process of abstraction (creating new functions) brings one higher

up in the hierarchy, while the operation of application (applying a

function to an argument) brings one down in the hierarchy.

• If Px is an expression of type t and x is of type e, then (λx.Px)

is an expression of type e → t. In fact, (λx.Px) is nothing but

a more explicit notation for the so-called set abstraction notation

{x | Px}.

• If P is an expression of type e → t and x is of type e, then (Px)

denotes the application of P to x; it is an expression of type t.

Abstraction and Application

• Now that we know in principle what the type domains DT look like,

for every type T in the type hierarchy, it should be clear that the

process of abstraction (creating new functions) brings one higher

up in the hierarchy, while the operation of application (applying a

function to an argument) brings one down in the hierarchy.

• If Px is an expression of type t and x is of type e, then (λx.Px)

is an expression of type e → t. In fact, (λx.Px) is nothing but

a more explicit notation for the so-called set abstraction notation

{x | Px}.

• If P is an expression of type e → t and x is of type e, then (Px)

denotes the application of P to x; it is an expression of type t.

• Compositional functional viewpoint: write everything as function

application.

Example

The natural language sentence Jan admires the Dalai Lama will get

represented as ((Aj)d), where j is an argument of the functional expression

A, and d in turn is an argument of the functional expression (Aj).

Example

The natural language sentence Jan admires the Dalai Lama will get

represented as ((Aj)d), where j is an argument of the functional expression

A, and d in turn is an argument of the functional expression (Aj).

• A is an expression of type e → e → t, and j and d are both of

type e.

Example

The natural language sentence Jan admires the Dalai Lama will get

represented as ((Aj)d), where j is an argument of the functional expression

A, and d in turn is an argument of the functional expression (Aj).

• A is an expression of type e → e → t, and j and d are both of

type e.

• The property of admiring the Dalai Lama is expressed by (λx.((Ax)d))

Example

The natural language sentence Jan admires the Dalai Lama will get

represented as ((Aj)d), where j is an argument of the functional expression

A, and d in turn is an argument of the functional expression (Aj).

• A is an expression of type e → e → t, and j and d are both of

type e.

• The property of admiring the Dalai Lama is expressed by (λx.((Ax)d))

• the property of being admired by Jan is expressed by (λx.((Aj)x)).

Example

The natural language sentence Jan admires the Dalai Lama will get

represented as ((Aj)d), where j is an argument of the functional expression

A, and d in turn is an argument of the functional expression (Aj).

• A is an expression of type e → e → t, and j and d are both of

type e.

• The property of admiring the Dalai Lama is expressed by (λx.((Ax)d))

• the property of being admired by Jan is expressed by (λx.((Aj)x)).

• The property of admiring oneself is expressed by (λx.((Ax)x)).

Example

The natural language sentence Jan admires the Dalai Lama will get

represented as ((Aj)d), where j is an argument of the functional expression

A, and d in turn is an argument of the functional expression (Aj).

• A is an expression of type e → e → t, and j and d are both of

type e.

• The property of admiring the Dalai Lama is expressed by (λx.((Ax)d))

• the property of being admired by Jan is expressed by (λx.((Aj)x)).

• The property of admiring oneself is expressed by (λx.((Ax)x)).

• The property of being a property of Jan is given by λX.(Xj).

Example

The natural language sentence Jan admires the Dalai Lama will get

represented as ((Aj)d), where j is an argument of the functional expression

A, and d in turn is an argument of the functional expression (Aj).

• A is an expression of type e → e → t, and j and d are both of

type e.

• The property of admiring the Dalai Lama is expressed by (λx.((Ax)d))

• the property of being admired by Jan is expressed by (λx.((Aj)x)).

• The property of admiring oneself is expressed by (λx.((Ax)x)).

• The property of being a property of Jan is given by λX.(Xj).

• The property of being a relation between Jan and the Dalai Lama

is given by λY.((Y j)d).

Example

The natural language sentence Jan admires the Dalai Lama will get

represented as ((Aj)d), where j is an argument of the functional expression

A, and d in turn is an argument of the functional expression (Aj).

• A is an expression of type e → e → t, and j and d are both of

type e.

• The property of admiring the Dalai Lama is expressed by (λx.((Ax)d))

• the property of being admired by Jan is expressed by (λx.((Aj)x)).

• The property of admiring oneself is expressed by (λx.((Ax)x)).

• The property of being a property of Jan is given by λX.(Xj).

• The property of being a relation between Jan and the Dalai Lama

is given by λY.((Y j)d).

• If X in λX.(Xj) is of type e → t, then the expression λX.(Xj)

has type (e → t) → t.

• If X in λX.(Xj) is of type e → t, then the expression λX.(Xj)

has type (e → t) → t.

• Y in λY.((Y j)d) should have type e → e → t, so expression

λY.((Y j)d) itself has type (e → e → t) → t.

Type Logic as Solution to the Misleading Form Problem

Type Logic as Solution to the Misleading Form Problem

• Natural language constituents correspond to typed expressions that

combine with one another as functions and arguments.

Type Logic as Solution to the Misleading Form Problem

• Natural language constituents correspond to typed expressions that

combine with one another as functions and arguments.

• After full reduction of the results, quantified expressions and other

constituents may have been contextually eliminated, but this elimination

is a result of the reduction process, not of the supposed misleading

form of the original natural language sentence.

Type Logic as Solution to the Misleading Form Problem

• Natural language constituents correspond to typed expressions that

combine with one another as functions and arguments.

• After full reduction of the results, quantified expressions and other

constituents may have been contextually eliminated, but this elimination

is a result of the reduction process, not of the supposed misleading

form of the original natural language sentence.

• While fully reduced logical translations of natural language sentences

may be misleading in some sense, the fully unreduced original

expressions are not.

Type Logic as Solution to the Misleading Form Problem

• Natural language constituents correspond to typed expressions that

combine with one another as functions and arguments.

• After full reduction of the results, quantified expressions and other

constituents may have been contextually eliminated, but this elimination

is a result of the reduction process, not of the supposed misleading

form of the original natural language sentence.

• While fully reduced logical translations of natural language sentences

may be misleading in some sense, the fully unreduced original

expressions are not.

• Consider the logic of the combination of subjects and predicates. In

the simplest cases (John walked) one could say that the predicate

takes the subject as an argument, but this does not work for

quantified subjects (nobody walked).

Type Logic as Solution to the Misleading Form Problem

• Natural language constituents correspond to typed expressions that

combine with one another as functions and arguments.

• After full reduction of the results, quantified expressions and other

constituents may have been contextually eliminated, but this elimination

is a result of the reduction process, not of the supposed misleading

form of the original natural language sentence.

• While fully reduced logical translations of natural language sentences

may be misleading in some sense, the fully unreduced original

expressions are not.

• Consider the logic of the combination of subjects and predicates. In

the simplest cases (John walked) one could say that the predicate

takes the subject as an argument, but this does not work for

quantified subjects (nobody walked).

• The subject always takes the predicate as its argument. To make

this work for simple subjects we logically raising their status from

argument to function.

• The subject always takes the predicate as its argument. To make

this work for simple subjects we logically raising their status from

argument to function.

• We translate John not as the constant j, but as the expression

(λP.(Pj)). This expression denotes a function from properties to

truth values, so it can take a predicate translation as its argument.

• The subject always takes the predicate as its argument. To make

this work for simple subjects we logically raising their status from

argument to function.

• We translate John not as the constant j, but as the expression

(λP.(Pj)). This expression denotes a function from properties to

truth values, so it can take a predicate translation as its argument.

• The translation of nobody is of the same type:

(λP.¬∃x((person x) ∧ (Px))).

• The subject always takes the predicate as its argument. To make

this work for simple subjects we logically raising their status from

argument to function.

• We translate John not as the constant j, but as the expression

(λP.(Pj)). This expression denotes a function from properties to

truth values, so it can take a predicate translation as its argument.

• The translation of nobody is of the same type:

(λP.¬∃x((person x) ∧ (Px))).

• Before reduction, the translations of John walked and nobody walked

look very similar. These similarities disappear only after both

translations have been reduced to their simplest forms.

Meaning in Natural Language

Meaning in Natural Language

• Every syntax rule has a semantic counterpart to specify how the

meaning representation of the whole is built from the meaning

representations of the components.

Meaning in Natural Language

• Every syntax rule has a semantic counterpart to specify how the

meaning representation of the whole is built from the meaning

representations of the components.

• X is always used for the meaning of the whole.

Meaning in Natural Language

• Every syntax rule has a semantic counterpart to specify how the

meaning representation of the whole is built from the meaning

representations of the components.

• X is always used for the meaning of the whole.

• Xn refers to the meaning representation of the n-th daughther.

S −→ NP VP X −→ (X1X2)

NP −→ Mary X −→ (λP.(Pm))

NP −→ Bill X −→ (λP.(Pb))

NP −→ DET CN X −→ (X1X2)

NP −→ DET RCN X −→ (X1X2)

DET −→ every X −→ (λP.(λQ.∀x((Px) ⇒ (Qx))))

DET −→ some X −→ (λP.(λQ.∃x((Px) ∧ (Qx))))

DET −→ no X −→ (λP.(λQ.∀x((Px) ⇒ ¬(Qx))))

DET −→ the X −→ (λP.(λQ.∃x(∀y((Py) ↔ x = y) ∧ (Qx))))

CN −→ man X −→ (λx.(Mx))

CN −→ woman X −→ (λx.(Wx))

CN −→ boy X −→ (λx.(Bx))

RCN −→ CN that VP X −→ (λx.((X1 x) ∧ (X3 x))

RCN −→ CN that NP TV X −→ (λx.((X1 x) ∧ (X3(λy.((X4 x)y)))))

VP −→ laughed X −→ (λx.(Lx))

VP −→ smiled X −→ (λx.(Sx))

VP −→ TV NP X −→ (λx.(X2 (λy.((X1 x)y))))

TV −→ loved X −→ L

TV −→ respected X −→ R

Consider the sentence Bill loved Mary:

[S[NPBill][V P [TV loved][NPMary]]]

According to the rules above, this gets assigned the following meaning:

((λP.(Pb))(λx.(λP.(Pm))(λy.Lxy)))

Reducing this gives:

β−→ ((λP.(Pb))(λx.((λy.Lxy)m)))

β−→ ((λP.(Pb))(λx.(Lxm)))
β−→ (λx.Lxm)b

β−→ Lbm

Exercise 4 Give the compositional translation for ‘Bill loved some

woman’, and reduce it to normal form.

Datastructures for Syntax

Datastructures for Syntax

• It is straightforward to give an implementation of compositional

semantics of natural language if we use a programming language

that is itself based on type theory.

Datastructures for Syntax

• It is straightforward to give an implementation of compositional

semantics of natural language if we use a programming language

that is itself based on type theory.

• First we define the data structures for the predicates, the variables,

and the formulas, with data declarations for the various syntactic

categories.

Datastructures for Syntax

• It is straightforward to give an implementation of compositional

semantics of natural language if we use a programming language

that is itself based on type theory.

• First we define the data structures for the predicates, the variables,

and the formulas, with data declarations for the various syntactic

categories.

• The text in the square boxes below is the actual program code.

module CM where

import MOTT

import EPLIH

import Domain

import Model
import List

data Sent = Sent NP VP

deriving (Eq,Show)

data NP = Ann | Mary | Bill | Johnny | NP1 DET CN

| NP2 DET RCN

deriving (Eq,Show)

data DET = Every | Some | No | The | Most

| Atleast Int

deriving (Eq,Show)

data CN = Man | Woman | Boy | Person | Thing | House

deriving (Eq,Show)

data RCN = CN1 CN VP | CN2 CN NP TV

deriving (Eq,Show)

data VP = Laughed | Smiled | VP1 TV NP

deriving (Eq,Show)

data TV = Loved | Respected | Hated | Owned

deriving (Eq,Show)

The suffix deriving (Eq,Show) in the data type declarations is the

Haskell way to ensure that equality is defined for these data types, and

that they can be displayed on the screen.

Semantic Interpretation: Sentences

Next, we define for every syntactic category an interpretation function

of the appropriate type, using Entity for e and Bool for t. The

interpretation of sentences has type Bool, so the interpretation function

intS gets type Sent -> Bool. Since there is only one rewrite rule for

S, the interpretation function intS consists of only one equation:

intSent :: Sent -> Bool

intSent (Sent np vp) = (intNP np) (intVP vp)

Semantic Interpretation: NPs

Semantic Interpretation: NPs

• The interpretation function intNP consists of four equations, one

for every rewrite rule for NP in the grammar fragment.

Semantic Interpretation: NPs

• The interpretation function intNP consists of four equations, one

for every rewrite rule for NP in the grammar fragment.

• The function has type NP -> (Entity -> Bool) -> Bool.

Semantic Interpretation: NPs

• The interpretation function intNP consists of four equations, one

for every rewrite rule for NP in the grammar fragment.

• The function has type NP -> (Entity -> Bool) -> Bool.

• Here Entity -> Bool is the Haskell counterpart to e → t, which

is the type of the VP interpretation that the NP combines with to

form a sentence.

intNP :: NP -> (Entity -> Bool) -> Bool

intNP Ann = \ p -> p ann

intNP Mary = \ p -> p mary

intNP Bill = \ p -> p bill

intNP Johnny = \ p -> p johnny

intNP (NP1 det cn) = (intDET det) (intCN cn)

intNP (NP2 det rcn) = (intDET det) (intRCN rcn)

Note the close connection between \ p -> p mary and λP.(Pm)

that we get by employing the Haskell counterpart to λ.

Semantic Interpretation: VPs

For the interpretation of verb phrases we invoke the information encoded

in our first order model.

intVP :: VP -> Entity -> Bool

intVP Laughed = laugh

intVP Smiled = smile

The interpretation of complex VPs is a bit more involved. We have to

find a way to make reference to the property of ‘standing into the TV

relation to the subject of the sentence’. We do this in the same way as

in the type logic specification of the semantic clause for [TV NP]VP.

intVP (VP1 tv np) =

\ subj -> intNP np (\ obj -> intTV tv (subj,obj))

Note that subj refers to the sentence subject and obj to the sentence

direct object.

Semantic Interpretation: TVs

The interpretation of transitive verbs discloses another bit of information

about the world. Again, we invoke the information about the world

encoded in our first order model.

intTV :: TV -> (Entity,Entity) -> Bool

intTV Loved = love

intTV Respected = respect

intTV Hated = hate

intTV Owned = own

Semantic Interpretation: Common Nouns

The interpreation of CNs is similar to that of VPs.

intCN :: CN -> Entity -> Bool

intCN Man = man

intCN Boy = boy

intCN Woman = woman

intCN Person = person

intCN Thing = thing

intCN House = house

Semantic Interpretation: Determiners

The most involved part of the implementation: the definition of the

determiner interpretations. First the type. The interpretation of a DET

needs two properties (type Entity -> Bool): one for the CN and one

for the VP, to yield the type of an S interpretation, i.e., Bool.

intDET :: DET -> (Entity -> Bool)

-> (Entity -> Bool) -> Bool

The interpretation of Some just checks whether the two properties

corresponding to CN and VP have anything in common. This is what

this check looks like in Haskell:

intDET Some p q = any q (filter p entities)

Semantic Interpretation: Determiners

The most involved part of the implementation: the definition of the

determiner interpretations. First the type. The interpretation of a DET

needs two properties (type Entity -> Bool): one for the CN and one

for the VP, to yield the type of an S interpretation, i.e., Bool.

intDET :: DET -> (Entity -> Bool)

-> (Entity -> Bool) -> Bool

The interpretation of Some just checks whether the two properties

corresponding to CN and VP have anything in common. This is what

this check looks like in Haskell:

intDET Some p q = any q (filter p entities)

• Here filter p entities gives the list of all members of entities

that satisfy property p.

• Here filter p entities gives the list of all members of entities

that satisfy property p.

• entities gives the domain of entities in the form of a list.

• Here filter p entities gives the list of all members of entities

that satisfy property p.

• entities gives the domain of entities in the form of a list.

• any is a function taking a property and a list that returns True if

the sublist of elements satisfying the property is non-empty, False

otherwise.

• Here filter p entities gives the list of all members of entities

that satisfy property p.

• entities gives the domain of entities in the form of a list.

• any is a function taking a property and a list that returns True if

the sublist of elements satisfying the property is non-empty, False

otherwise.

• Thus, any q list checks whether any element of the list satisfies

property q.

The interpretation of Every checks whether the CN property is included

in the VP property:

intDET Every p q = all q (filter p entities)

The interpretation of Every checks whether the CN property is included

in the VP property:

intDET Every p q = all q (filter p entities)

• Here filter p entities gives the list of all members of entities

that satisfy property p.

The interpretation of Every checks whether the CN property is included

in the VP property:

intDET Every p q = all q (filter p entities)

• Here filter p entities gives the list of all members of entities

that satisfy property p.

• all q list checks whether every member of list satisfies property

q.

The interpretation of The consists of two parts:

1. a check that the CN property is unique, i.e., that it is true of

precisely one entity in the domain,

2. a check that the CN and the VP property have an element in

common, in other words, the Some check on the two properties.

intDET The p q = singleton plist && q (head plist)

where

plist = filter p entities

singleton [x] = True

singleton _ = False

The interpretation of No is just the negation of the interpretation of

Some:

intDET No p q = not (intDET Some p q)

The interpretation of Most compares the length of the list of entities

satisfying both arguments (the restrictor argument and the body argument)

with the length of the list of entities satisfying only the restrictor

argument.

intDET Most p q =

length pqlist > length (plist \\ qlist)

where

plist = filter p entities

qlist = filter q entities

pqlist = filter q plist

The interpretation of Most compares the length of the list of entities

satisfying both arguments (the restrictor argument and the body argument)

with the length of the list of entities satisfying only the restrictor

argument.

intDET Most p q =

length pqlist > length (plist \\ qlist)

where

plist = filter p entities

qlist = filter q entities

pqlist = filter q plist

Exercise 5 Implement the interpretation function for (Atleast n).

Semantic Interpretation: Relativised Common Nouns

The interpretation of relativised common nouns of the form That CN

VP checks whether an entity has both the CN and the VP property:

intRCN :: RCN -> Entity -> Bool

intRCN (CN1 cn vp) =

\ e -> ((intCN cn e) && (intVP vp e))

The interpretation of relativised common nouns of the form That CN

NP TV checks whether an entity has both the CN property as the

property of being the object of NP TV.

intRCN (CN2 cn np tv) =

\ e -> ((intCN cn e) &&

(intNP np

(\ subj -> (intTV tv (subj,e)))))

Examples

example1 = intSent (Sent (NP1 The Boy) Smiled)

example2 = intSent (Sent (NP1 The Boy) Laughed)

example3 = intSent (Sent (NP1 Some Man) Laughed)

example4 = intSent (Sent (NP1 No Man) Laughed)

example5 = intSent

(Sent (NP1 Some Man)(VP1 Loved (NP1 Some Woman)))

example6 = intSent

(Sent (NP2 No (CN1 Man (VP1 Loved Mary))) Laughed)

CM> example1

True

CM> example2

False

CM> example3

False

CM> example4

True

CM> example5

True

CM> example6

True

It is a bit awkward that we have to provide the datastructures of

syntax ourselves. The process of constructing syntax datastructures

from strings of words is called parsing; this topic will be taken up in

various other tutorials.

Translation into Logical Form

Translation into Logical Form

• One of the insights of Montague grammar is that the presence of a

level of logical form is superfluous for model theoretic interpretation.

Translation into Logical Form

• One of the insights of Montague grammar is that the presence of a

level of logical form is superfluous for model theoretic interpretation.

• In Montague [1973] and Montague [1974b] a typed language of

logical formulas is used as a stepping stone on the way to semantic

specification, but in Montague [1974a] the meaning of of a fragment

of English is specified without a detour through logical form.

Translation into Logical Form

• One of the insights of Montague grammar is that the presence of a

level of logical form is superfluous for model theoretic interpretation.

• In Montague [1973] and Montague [1974b] a typed language of

logical formulas is used as a stepping stone on the way to semantic

specification, but in Montague [1974a] the meaning of of a fragment

of English is specified without a detour through logical form.

• The set-up above is along the lines of Montague [1974a].

Translation into Logical Form

• One of the insights of Montague grammar is that the presence of a

level of logical form is superfluous for model theoretic interpretation.

• In Montague [1973] and Montague [1974b] a typed language of

logical formulas is used as a stepping stone on the way to semantic

specification, but in Montague [1974a] the meaning of of a fragment

of English is specified without a detour through logical form.

• The set-up above is along the lines of Montague [1974a].

• We will now demonstrate how translation into logical form can

be implemented. We model our logical form language after the

language of predicate logic. In particular, we use data types for

Var and Term.

Translation into Logical Form

• One of the insights of Montague grammar is that the presence of a

level of logical form is superfluous for model theoretic interpretation.

• In Montague [1973] and Montague [1974b] a typed language of

logical formulas is used as a stepping stone on the way to semantic

specification, but in Montague [1974a] the meaning of of a fragment

of English is specified without a detour through logical form.

• The set-up above is along the lines of Montague [1974a].

• We will now demonstrate how translation into logical form can

be implemented. We model our logical form language after the

language of predicate logic. In particular, we use data types for

Var and Term.

• Advantage of generating LFs: can also be used for consistency

clecking.

Here is a data type for generalized quantifiers.

data GQ = ALL | SOME | THE | NO | MOST | ATLEAST Int
deriving (Show,Eq,Ord)

In fact, the only difference between logical forms and formulas of predicate

logic is the presence of generalized quantifiers.

data LF = Atom1 Name [Term]

| Eq1 Term Term

| Neg1 LF

| Impl1 LF LF

| Equi1 LF LF

| Conj1 [LF]

| Disj1 [LF]

| Quant GQ Var LF LF

deriving (Eq,Ord)

NOTE: Term is defined elsewhere as

data Term = Vari Var

| Struct String [Term] deriving (Eq,Ord)

A show function for logical forms:

instance Show LF where
show (Atom1 id []) = id

show (Atom1 id ts) = id ++ concat [show ts]

show (Eq1 t1 t2) = show t1 ++ "==" ++ show t2

show (Neg1 form) = ’~’: (show form)

show (Impl1 f1 f2) =

"(" ++ show f1 ++ "==>" ++ show f2 ++ ")"

show (Equi1 f1 f2) =

"(" ++ show f1 ++ "<=>" ++ show f2 ++ ")"

show (Conj1 []) = "true"

show (Conj1 fs) = "conj" ++ concat [show fs]

show (Disj1 []) = "false"

show (Disj1 fs) = "disj" ++ concat [show fs]

show (Quant gq var f1 f2) =

show gq ++ " " ++ show var ++

" (" ++ show f1 ++ "," ++ show f2 ++ ")"

Translation to LF: Sentences

The process of translating to logical form is a very easy variation on

the interpretation process for syntactic structures. Instead of the type

Bool, for interpretation in a model, we take LF, for a logical form of

type t, and instead of the type Entity for entities in the model, take

Var, for variables that are supposed to get mapped to entities.

In the basic cases, we translate proper names into constant terms and

lexical CNs, VPs, TVs into atomic formulas.

lfSent :: Sent -> LF

lfSent (Sent np vp) = (lfNP np) (lfVP vp)

Translation to LF: Noun Phrases

lfNP :: NP -> (Term -> LF) -> LF

lfNP Ann = \ p -> p (Struct "Ann" [])

lfNP Mary = \ p -> p (Struct "Mary" [])

lfNP Bill = \ p -> p (Struct "Bill" [])

lfNP Johnny = \ p -> p (Struct "Johnny" [])

lfNP (NP1 det cn) = (lfDET det) (lfCN cn)

lfNP (NP2 det rcn) = (lfDET det) (lfRCN rcn)

Translation to LF: VPs

lfVP :: VP -> Term -> LF

lfVP Laughed = \ t -> Atom1 "laugh" [t]

lfVP Smiled = \ t -> Atom1 "smile" [t]

lfVP (VP1 tv np) =

\ subj -> lfNP np (\ obj -> lfTV tv (subj,obj))

Translation to LF: TVs

lfTV :: TV -> (Term,Term) -> LF

lfTV Loved =

\ (t1,t2) -> Atom1 "love" [t1,t2]

lfTV Respected =

\ (t1,t2) -> Atom1 "respect" [t1,t2]

lfTV Hated =

\ (t1,t2) -> Atom1 "hate" [t1,t2]

lfTV Owned =

\ (t1,t2) -> Atom1 "own" [t1,t2]

Translation to LF: CNs

lfCN :: CN -> Term -> LF

lfCN Man = \ t -> Atom1 "man" [t]

lfCN Boy = \ t -> Atom1 "boy" [t]

lfCN Woman = \ t -> Atom1 "woman" [t]

lfCN Person = \ t -> Atom1 "person" [t]

lfCN Thing = \ t -> Atom1 "thing" [t]

lfCN House = \ t -> Atom1 "house" [t]

Translation to LF: Determiners

The type of the logical form translation of determiners indicates that the

translation takes a determiner phrase and two arguments for objects of

type Term -> LF (logical forms with term holes in them), and produces

a logical form.

lfDET :: DET -> (Term -> LF) -> (Term -> LF) -> LF

The translation of determiners should be done with some care. It

involves the construction of a logical form where a variable gets bound.

To ensure proper binding, we have to make sure that the newly introduced

variable will not get accidentally bound by a quantifier already present

in the logical form. For this, we first list the (free) variables in logical

forms.

varsInLf :: LF -> [Var]
varsInLf (Atom1 _ ts) = varsInTerms ts

varsInLf (Eq1 t1 t2) = varsInTerms [t1,t2]

varsInLf (Neg1 form) = varsInLf form

varsInLf (Impl1 f1 f2) = varsInLfs [f1,f2]

varsInLf (Equi1 f1 f2) = varsInLfs [f1,f2]

varsInLf (Conj1 fs) = varsInLfs fs

varsInLf (Disj1 fs) = varsInLfs fs

varsInLf (Quant gq var f1 f2) =

varsInLfs [f1,f2] \\ [var]

varsInLfs :: [LF] -> [Var]

varsInLfs = nub . concat . map varsInLf

We need the list of variable indices of a list of logical forms in order

to compute a fresh variable index. All variables will get introduced

by means of this mechanism, so if we start out with variables of the

form Var "x" [0], and only introduce new variables of the form

Var "x" [i], we can assume that all variables occurring in our logical

form will have the shape Var "x" [i] for some integer i.

freshvar :: [LF] -> Var

freshvar lfs = (Var "x" [i+1])

where

i = foldr max 0 (xindices (varsInLfs lfs))

xindices = map (\ (Var "x" [j]) -> j)

The definition uses foldr for defining the maximum of a list of integers.

The term zero is defined elsewhere as a constant. Use this term as a

dummy to provisionally fill in the term slot in formulas with term holes

in them.

lfDET Some p q =

Quant SOME v (p (Vari v)) (q (Vari v))

where v = freshvar [p zero,q zero]

lfDET Every p q =

Quant ALL v (p (Vari v)) (q (Vari v))

where v = freshvar [p zero,q zero]

lfDET No p q =

Quant NO v (p (Vari v)) (q (Vari v))

where v = freshvar [p zero,q zero]

lfDET The p q =

Quant THE v (p (Vari v)) (q (Vari v))

where v = freshvar [p zero,q zero]
lfDET Most p q =

Quant MOST v (p (Vari v)) (q (Vari v))

where v = freshvar [p zero,q zero]

Exercise 6 Implement the translation function for (Atleast n).

Translation to LF: Relativized CNs

Use Conj1 to conjoin the logical form for a common noun and the

logical form for a relative clause into a logical form for a complex

common noun.

lfRCN :: RCN -> Term -> LF

lfRCN (CN1 cn vp) =

\ t -> Conj1 [lfCN cn t, lfVP vp t]

lfRCN (CN2 cn np tv) =

\ t -> Conj1 [lfCN cn t,

lfNP np (\ subj -> lfTV tv (subj,t))]

Examples

lf1 = lfSent

(Sent (NP1 Some Man)

(VP1 Loved (NP1 Some Woman)))

lf2 = lfSent

(Sent (NP2 No (CN1 Man (VP1 Loved Mary))) Laughed)

CM> lf1

SOME x1 (man[x1],SOME x2 (woman[x2],love[x1,x2]))

CM> lf2

NO x1 (conj[man[x1],love[x1,Mary]],laugh[x1])

Exercise 7 Implement an evaluation function for logical forms in appropriate

models.

Conclusions, References

Conclusions, References

• Typed functional languages are natural choice for semantics of

natural language.

Conclusions, References

• Typed functional languages are natural choice for semantics of

natural language.

• Implementing Montague grammar in Haskell is a breeze.

Conclusions, References

• Typed functional languages are natural choice for semantics of

natural language.

• Implementing Montague grammar in Haskell is a breeze.

• For more on Haskell see Doets and van Eijck [2004]

Conclusions, References

• Typed functional languages are natural choice for semantics of

natural language.

• Implementing Montague grammar in Haskell is a breeze.

• For more on Haskell see Doets and van Eijck [2004]

• This talk partly based on: Eijck [2000]

Conclusions, References

• Typed functional languages are natural choice for semantics of

natural language.

• Implementing Montague grammar in Haskell is a breeze.

• For more on Haskell see Doets and van Eijck [2004]

• This talk partly based on: Eijck [2000]

• Further info on Computational Semantics with Type Theory: Eijck

[2004] http://www.cwi.nl/∼jve/cs

http://www.cwi.nl/~jve/cs

Conclusions, References

• Typed functional languages are natural choice for semantics of

natural language.

• Implementing Montague grammar in Haskell is a breeze.

• For more on Haskell see Doets and van Eijck [2004]

• This talk partly based on: Eijck [2000]

• Further info on Computational Semantics with Type Theory: Eijck

[2004] http://www.cwi.nl/∼jve/cs

• Up-to-date overview of dynamic semantics for natural language,

with links to computer science: Eijck and Stokhof [2006].

http://www.cwi.nl/~jve/cs

References

K. Doets and J. van Eijck. The Haskell Road to Logic, Maths and

Programming, volume 4 of Texts in Computing. King’s College

Publications, London, 2004.

J. van Eijck and M. Stokhof. The gamut of dymamic logics. In D.M.

Gabbay and J. Woods, editors, The Handbook of the History of Logic,

volume 7 — Logic and the Modalities in the Twentieth Century, pages

499–600. Elsevier, 2006.

Jan van Eijck. Tutorial on the composition of meaning. Lecture Note,

Uil-OTS, November 2000.

Jan van Eijck. Computational semantics with type theory. Book

manuscript, CWI Amsterdam, 2004.

G. Frege. Ueber sinn und bedeutung. Translated as ‘On Sense

and Reference’ in Geach and Black (eds.), Translations from the

Philosophical Writings of Gottlob Frege, Blackwell, Oxford (1952),

1892.

The Haskell Team. The Haskell homepage. http://www.haskell.

org.

Daniel Jackson. Software Abstractions; Logic, Language and Analysis.

MIT Press, 2006.

S. Peyton Jones, editor. Haskell 98 Language and Libraries; The Revised

Report. Cambridge University Press, 2003.

MIT Software Design Group. The Alloy Analyzer. http://alloy.

mit.edu.

R. Montague. The proper treatment of quantification in ordinary

English. In J. Hintikka, editor, Approaches to Natural Language,

pages 221–242. Reidel, 1973.

http://www.haskell.org
http://www.haskell.org
http://alloy.mit.edu
http://alloy.mit.edu

R. Montague. English as a formal language. In R.H. Thomason, editor,

Formal Philosophy; Selected Papers of Richard Montague, pages 188–

221. Yale University Press, New Haven and London, 1974.

R. Montague. Universal grammar. In R.H. Thomason, editor, Formal

Philosophy; Selected Papers of Richard Montague, pages 222–246.

Yale University Press, New Haven and London, 1974.

Rohit Parikh. Sentences, propositions, and beliefs. City University of

New York, May 2006.

