
Haskell Programming With Tests, and Some Alloy

Jan van Eijck

jve@cwi.nl

Master SE, 2010



Abstract

How to write a program in Haskell, and how to use the Haskell testing tools . . .
QuickCheck is a tool written in the functional programming language Haskell that al-

lows testing of specifications by means of randomly generated tests. QuickCheck is part of
the standard Haskell library. Re-implementations of QuickCheck exist for many languages,
including Ruby and Scheme.

SmallCheck is a similar tool, different from QuickCheck in that it tests properties for
all finitely many values of a datatype up to some given depth, with progressive increase of
depth.

Haskell is a research language: many of the testing tools that were first developed for
Haskell later find their way to other languages.

These slides discuss QuickCheck (two versions), SmallCheck, and some work in progress.
We end with some examples of Alloy specifications.



How to Write a Haskell Program

http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_

program

http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program
http://www.haskell.org/haskellwiki/How_to_write_a_Haskell_program


Influence of QuickCheck
http://www.sigplan.org/award-icfp.htm

SIGPLAN Most Influential ICFP Paper Award 2010 (for 2000): Quickcheck:

a lightweight tool for random testing of Haskell programs, Koen Claessen

and John Hughes

“This paper presented a very simple but powerful system for testing

Haskell programs that has had significant impact on the practice of de-

bugging programs in Haskell. The paper describes a clever way to use

type classes and monads to automatically generate random test data.

QuickCheck has since become an extremely popular Haskell library that

is widely used by programmers, and has been incorporated into many

undergraduate courses in Haskell. The techniques described in the pa-

per have spawned a significant body of follow-on work in test case

generation. They have also been adapted to other languages, leading

to their commercialisation for Erlang and C.”

http://www.sigplan.org/award-icfp.htm


QuickCheck: Background

See the QuickCheck webpage at http://www.cs.chalmers.se/~rjmh/

QuickCheck/.

From this page:

QuickCheck is a tool for testing Haskell programs automatically. The

programmer provides a specification of the program, in the form of

properties which functions should satisfy, and QuickCheck then tests

that the properties hold in a large number of randomly generated cases.

Specifications are expressed in Haskell, using combinators defined in the

QuickCheck library.

QuickCheck provides combinators to define properties, observe the dis-

tribution of test data, and define test data generators.

QuickCheck has excellent documentation on the Haskell homepage, for

http://www.cs.chalmers.se/~rjmh/QuickCheck/
http://www.cs.chalmers.se/~rjmh/QuickCheck/


it is a standard Haskell library. See

http://haskell.org/haskellwiki/Introduction_to_QuickCheck

From this: “QuickCheck is effectively an embedded domain specific

language for testing Haskell code.”

More information on the QuickCheck website http://www.cs.chalmers.

se/~rjmh/QuickCheck/ and in the papers Claessen and Hughes [2000]

Claessen and Hughes [2003] (see link on website). An online manual

is at http://www.cs.chalmers.se/~rjmh/QuickCheck/manual.

html.

http://haskell.org/haskellwiki/Introduction_to_QuickCheck
http://www.cs.chalmers.se/~rjmh/QuickCheck/
http://www.cs.chalmers.se/~rjmh/QuickCheck/
http://www.cs.chalmers.se/~rjmh/QuickCheck/manual.html
http://www.cs.chalmers.se/~rjmh/QuickCheck/manual.html


A Simple Example

A simple example of a property definition is

prop_RevRev xs = reverse (reverse xs) == xs

where types = xs::[Int]

To check the property, we load this definition in to hugs and then invoke

Main> quickCheck prop_RevRev

OK, passed 100 tests.



When a property fails, QuickCheck displays a counter-example. For

example, if we define

prop_RevId xs = reverse xs == xs

where types = xs::[Int]

then checking it results in

Main> quickCheck prop_RevId

Falsifiable, after 1 tests:

[-3,15]



Chapter on Testing in Real World Haskell

http://book.realworldhaskell.org/read/testing-and-quality-assurance.

html

http://book.realworldhaskell.org/read/testing-and-quality-assurance.html
http://book.realworldhaskell.org/read/testing-and-quality-assurance.html


Simplification of CounterExamples

QuickCheck 2 computes minimal counterexamples.

Method: simplify a counterexample and check if the test still fails.

A counterexample is minimal if it fails the test but all its simplifications

succeed.

See Hughes [2007].



SmallCheck

http://www.cs.york.ac.uk/fp/smallcheck/

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/

smallcheck

Based on the ‘small domain hypothesis’ that is also the chief article of

faith behind Alloy.

See Runciman et al. [2008]

http://www.cs.york.ac.uk/fp/smallcheck/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/smallcheck
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/smallcheck


Irulan (work in progress)

http://www.doc.ic.ac.uk/~tora/irulan/

Draft paper: http://www.doc.ic.ac.uk/~tora/irulan/draft.

pdf

http://www.doc.ic.ac.uk/~tora/irulan/
http://www.doc.ic.ac.uk/~tora/irulan/draft.pdf
http://www.doc.ic.ac.uk/~tora/irulan/draft.pdf


Contract Checking for Haskell

Xu et al.



And a bit of Alloy . . .

• Alloy for automated logical reasoning

• Alloy specifications of algorithms

• On your to do list:

– Look through the example code in these slides,

– make sure you understand what is happening.



Checking the Consistency and the Consequences of a Story

Consider the following story:

John likes all girls. Some girl likes everybody but John. Mary

likes only John. No boy except John likes every girl.

1. Use Alloy to check whether this is a consistent story.

2. Use Alloy to check whether it follows from the above that John is

the only boy.



Crime Scene Investigation With Alloy

Story about witnesses, their assertions, and meta-information about

how many of them are truthful.

From this the consistent scenarios can be generated with Alloy . . . How?



Reasoning about Repetition: Finding Celebrities

Let us assume that a celebrity (within a certain circle of people) is

characterized by the following two properties:

• everybody knows the celebrity,

• the celebrity does not know anyone else.

(Whether the celebrity knows him- or herself does not matter.)

Here is the problem we are going to solve. In a company of about one

thousand people there is a celebrity. The task is to spot this person by

repeatedly asking the question ‘do you know that person?’



Naive solution

Pick a candidate-celebrity X, and ask for each of the others whether X

knows them. If X happens to know anyone, we go on with the next

candidate. If it turns out that X knows noone, we have found our

celebrity.

If you are out of luck the first candidate knows of the 999 others precisely

the last one, and you need to pose 999 questions to rule her out.

Similarly, for the second candidate it might take at worst 998 questions

to rule him out, and so on. Thus, this worst-case scenario will take

999 + 998 + 997 + · · · + 1 = (500 ∗ 1001)− 1000 = 499500

questions (almost a half million).



Better Solution

Given any two people x and y there are two outcomes for the question

whether x knows y:

• x knows y then x is not the celebrity.

• x does not know y then y is not the celebrity.

The following procedure uses this.



Algorithm for Finding Celebrities

Start with the list of all people in the domain. Since it is given that the

domain contains a celebrity, the list is not empty.

• While the list has more than one member,

– take the first two elements x, y from the list;

– if x knows y then remove x from the list;

otherwise, remove y from the list

The celebrity is the single person that remains on the list.



Finding the Celebrity: Alloy Specification

module myexamples/famous

open util/ordering[State] as so

sig Person { know: set Person }

one sig Famous in Person {}

fact lonelyAtTheTop {

all x: Person - Famous | x !in Famous.know

all x: Person - Famous | x in know.Famous

}



sig State { mark: set Person }

// at initialisation everybody is marked

pred init { let fs = so/first | fs.mark=Person }

pred extend [pre, post: State] {

some x: pre.mark, y: pre.mark - x |

y in x.know => post.mark = pre.mark - x

else post.mark = pre.mark - y

}

fact createStates {

init

all s: State - so/last |

let s’ = so/next[s] | extend[s,s’]

}



assert finalMarkFamous {

let final = so/last | final.mark = Famous

}

run {} for 10

check finalMarkFamous for 5



Matchmaking

An internet dating program should match candidates looking for a date,

in accordance with a list of criteria.

Make this informal specification more precise, and implement it in Ruby

or Haskell.

Instead, we are going to work out the specification in Alloy. Here are

the criteria.



• Compatible sexual preferences (match gay men with gay men, het-

erosexual men with heterosexual women (and vice versa), and les-

bian women with lesbian women,

• Age difference in male/female matches no more than ten years if

the male is older, no more than five years if the female is older. For

cases of m/m and f/f matches: age differences no more than five

years.

• Similar level of education (distinguish three levels).

• Similar preferences (or at least reasonable overlap in preferences),

with preferences ranging over the following list: (i) Concerts and

Museums, (ii) Going out, (iii) Sports, (iv) Conversation, (v) Travel.



module myexamples/matchmaking

open util/relation as rel

open util/ordering[Age] as order

abstract sig Person {

age: Age,

edu: Edu,

i: set Interest,

match: set Person

}

abstract sig Male extends Person {}

abstract sig Female extends Person {}

sig Straight, Gay in Person {}



fact { Person - Straight = Gay }

fact { some Gay }

sig Age {}

abstract sig Edu {}

one sig Basic, Middle, Higher extends Edu {}

abstract sig Interest {}

one sig Concerts, GoingOut, Sports, Conversation, Travel

extends Interest {}

fact matchConstraints {

irreflexive[match]

symmetric[match]

all x,y: Person | y in match[x] => edu[x] = edu[y]



all x,y: Person | y in match[x]

and x in Male and y in Female

=> x+y in Straight

all x,y: Male | y in match[x] => x+y in Gay

all x,y: Female | y in match[x] => x+y in Gay

all x,y: Person | y in match[x] =>

age[x] = age[y]

or age[x].prev = age[y]

or age[y].prev = age[x]

or (x in Male

and y in Female

and

age[x].prev.prev = age[y])

all x,y: Person | y in match[x]

=> i[x] = i[y] or #(i[x] & i[y]) > 2



}

run { total[match,Person]}

for exactly 10 Person, exactly 5 Age



References

Koen Claessen and John Hughes. QuickCheck: A lightweight tool for

random testing of Haskell programs,. In Proc. of International Con-

ference on Functional Programming (ICFP), ACM SIGPLAN, 2000.

Koen Claessen and John Hughes. Specification based testing with

QuickCheck. In The Fun of Programming, Cornerstones of Com-

puting, pages 17–40. Palgrave, 2003.

John Hughes. Quickcheck testing for fun and profit. In Michael Hanus,

editor, Practical Aspects of Declarative Languages; 9th International

Symposium, PADL 2007, Nice, France, volume 4353 of Lecture Notes

in Computer Science, pages 1–32. Springer, 2007.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. SmallCheck

and lazy SmallCheck: automatic exhaustive testing for small values.



In Haskell ’08: Proceedings of the first ACM SIGPLAN symposium

on Haskell, pages 37–48, New York, NY, USA, 2008. ACM.

Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Static contract

checking for Haskell.


