Pencil and Paper Exercises Week 2 — Solutions

- 1. Prove that a binary relation R is transitive iff $R \circ R \subseteq R$.
 - Answer:

 \Rightarrow : Assume R is a transitive binary relation on A.

To be proved: $R \circ R \subseteq R$.

Proof. Let $(x, y) \in R \circ R$. We must show that $(x, y) \in R$. From the definition of $\circ: \exists z \in A : (x, z) \in R, (z, y) \in R$. It follows from this and transitivity of R that $(x, y) \in R$.

- $\Leftarrow: \text{Assume } R \circ R \subseteq R.$
- To be proved: R is transitive.

Proof. Let $(x, y) \in R, (y, z) \in R$. Then $(x, z) \in R \circ R$. Since $R \circ R \subseteq R$, it follows from this that $(x, z) \in R$. Thus, R is transitive.

- 2. Give an example of a transitive binary relation R with the property that $R \circ R \neq R$. Answer: The simplest example is a relation consisting of a single pair, say $R = \{(1,2)\}$. This relation is transitive, but $R \circ R = \emptyset \neq R$.
- 3. Let R be a binary relation on a set A. Prove that $R \cup \{(x, x) \mid x \in A\}$ is the reflexive closure of R.

Answer: Let $I = \{(x, x) \mid x \in A\}$. It is clear that $R \cup I$ is reflexive, and that $R \subseteq R \cup I$.

To show that $R \cup I$ is the smallest relation with these two properties, suppose S is reflexive and $R \subseteq S$. Then by reflexivity of S, $I \subseteq S$. It follows that $R \cup I \subseteq S$.

4. Prove that $R \cup R^{\sim}$ is the symmetric closure of R.

Answer: Clearly, $R \cup R^{\tilde{}}$ is symmetric, and $R \subseteq R \cup R^{\tilde{}}$. Let S be any symmetric relation that includes R. By symmetry of S and by the fact that $R \subseteq S$ it follows that $R^{\tilde{}} \subseteq S$. Thus $R \cup R^{\tilde{}} \subseteq S$.

- 5. A partition P of a set A is a set of subsets of A with the following properties:
 - (a) every member of P is non-empty.
 - (b) every element of A belongs to some member of P.
 - (c) different members of P are disjoint.

If R is an equivalence relation on A and $a \in A$ then $|a|_R$, the R-class of a, is the set $\{b \in A \mid bRa\}$. Show that the set of R-classes

$$\{|a|_R \mid a \in A\}$$

of an equivalence relation R on A forms a partition of A.

Answer: We have to check the three properties of partitions.

Since R is a reflexive relation on A, we have that for each $a \in A$ it holds that $a \in |a|_R$. This takes care of (a) and (b).

Let $|a|_R$ and $|b|_R$ be two *R*-classes, and assume that they are not disjoint. Then we have $c \in |a|_R \cap |b|_R$.

This means that we have both aRc and bRc. Since R is symmetric, we have cRb, and by transitivity of R, aRb, and again by symmetry of R, bRa.

We can show now that $|a|_R = |b|_R$, as follows:

Assume $d \in |a|_R$. Then dRa. From this and aRb, by transitivity of R, dRb, i.e., $d \in |b|_R$. This shows: $|a|_R \subseteq |b|_R$.

Assume $d \in |b|_R$. Then *dRb*. From this and *bRa*, by transitivity of *R*, *dRa*, i.e., $d \in |a|_R$. This shows: $|b|_R \subseteq |a|_R$.

So if two *R*-classes $|a|_R$ and $|b|_R$ are not disjoint, then they are in fact equal. This takes care of (c).

6. Give the euclidean closure of the relation $\{(1, 2), (2, 3)\}$.

Answer: the relation $\{(1,2), (2,2), (2,3), (3,2), (3,3)\}.$

7. Show that for any relation R, the relation $R^{\check{}} \circ (R \cup R^{\check{}})^* \circ R$ is symmetric, transitive and euclidean.

Answer. Use E for $R^{\check{}} \circ (R \cup R^{\check{}})^* \circ R$. For symmetry of E, let $(x, y) \in E$. Then there is some $m \in \mathbb{N}$ with $(x, y) \in R^{\check{}} \circ (R \cup R^{\check{}})^m \circ R$. So there are z, u with $(x, z) \in R^{\check{}}$, $(z, u) \in (R \cup R^{\check{}})^m$, $(u, y) \in R$. But then $(y, u) \in R^{\check{}}$, $(u, z) \in (R \cup R^{\check{}})^m$, $(z, x) \in R$. It follows that $(y, x) \in R^{\check{}} \circ (R \cup R^{\check{}})^m \circ R$. and therefore $(y, x) \in E$.

For transitivity, assume $(x, y) \in E$, $(y, z) \in E$. Then there are $m, k \in \mathbb{N}$ with $(x, y) \in R^{\check{}} \circ (R \cup R^{\check{}})^m \circ R$. $(y, z) \in R^{\check{}} \circ (R \cup R^{\check{}})^k \circ R$. It follows that $(x, z) \in R^{\check{}} \circ (R \cup R^{\check{}})^{m+k+2} \circ R$, and therefore $(x, z) \in E$.

Euclideanness: any transitive and symmetric relation is euclidean.

8. Prove by induction that if R is an euclidean relation, then $R^{\check{}} \circ (R \cup R^{\check{}})^* \circ R \subseteq R$.

Answer. Basis: $R \circ R \subseteq R$. This follows from the euclideanness of R.

Induction step. The induction hypothesis is that $R^{\check{}} \circ (R \cup R^{\check{}})^n \circ R \subseteq R$. We must prove that $R^{\check{}} \circ (R \cup R^{\check{}})^{n+1} \circ R \subseteq R$.

We are done if we can prove the following two facts: (i) $R^{\check{}} \circ R \circ (R \cup R^{\check{}})^n \circ R \subseteq R$, and (ii) $R^{\check{}} \circ R^{\check{}} \circ (R \cup R^{\check{}})^n \circ R \subseteq R$.

(i) Assume $(x, y) \in R^{\check{}} \circ R \circ (R \cup R^{\check{}})^n \circ R$. Then there is a z with $(x, z) \in R^{\check{}} \circ R$ and $(z, y) \in (R \cup R^{\check{}})^n \circ R$.

By the fact that $R^{\check{}} \circ R$ is symmetric, $(z, x) \in R^{\check{}} \circ R$. From this and euclideanness of $R, (z, x) \in R$, and therefore $(x, z) \in R^{\check{}}$. Combining this with $(z, y) \in (R \cup R^{\check{}})^n \circ R$

we get that $(x, y) \in R^{\check{}} \circ (R \cup R^{\check{}})^n \circ R$, from which it follows by the induction hypothesis that $(x, y) \in R$.

(ii) Assume $(x, y) \in R^{\check{}} \circ R^{\check{}} \circ (R \cup R^{\check{}})^n \circ R$. Then there is a z with $(x, z) \in R^{\check{}}$ and $(z, y) \in R^{\check{}} \circ (R \cup R^{\check{}})^n \circ R$. From the first of these, $(z, x) \in R$. From the second of these, by induction hypothesis, $(z, y) \in R$. From $(z, x) \in R$ and $(z, y) \in R$ by euclideanness of R, $(x, y) \in R$.

9. Prove that

$$R \cup (R^{\check{}} \circ (R \cup R^{\check{}})^* \circ R)$$

is the euclidean closure of R.

Answer: Let E be the relation $R \cup (R^{\check{}} \circ (R \cup R^{\check{}})^* \circ R)$. Clearly, $R \subseteq E$.

We show that E is euclidean. Let $(x, y) \in E$, $(x, z) \in E$. Then there are three cases to consider.

Case 1. $(x, y) \in R, (x, z) \in R$. Then $(y, z) \in R^{\sim} \circ R$. Since $R^{\sim} \circ R \subseteq E$, it follows that $(y, z) \in E$.

Case 2. $(x, y) \in R, (x, z) \in R^* \circ (R \cup R^*)^m \circ R$, for some $m \in \mathbb{N}$.

From the givens,

$$(y,z) \in R^{\check{}} \circ R^{\check{}} \circ (R \cup R^{\check{}})^m \circ R.$$

It follows that $(y, z) \in R^{\sim} \circ (R \cup R^{\sim})^{m+1} \circ R$, and therefore $(y, z) \in E$.

Case 3. $(x, y) \in R^{\check{}} \circ (R \cup R^{\check{}})^* \circ R, (x, z) \in R^{\check{}} \circ (R \cup R^{\check{}})^* \circ R$. Now we get from the euclideanness of $R^{\check{}} \circ (R \cup R^{\check{}})^* \circ R$ (proved in a previous exercise) that $(y, z) \in R^{\check{}} \circ (R \cup R^{\check{}})^* \circ R$, and therefore $(y, z) \in E$.

Finally, we have to prove that E is the smallest relation with the required properties. Let S be an arbitrary euclidean relation that includes R. We must show that $E \subseteq S$. Since S is euclidean, we know from the previous exercise that $S^{\sim} \circ (S \cup S^{\sim})^* \circ S \subseteq S$. Since $R \subseteq S$ we also have

$$R^{\tilde{}} \circ (R \cup R^{\tilde{}})^* \circ R \subseteq S^{\tilde{}} \circ (S \cup S^{\tilde{}})^* \circ S \subseteq S.$$

From this, together with $R \subseteq S$, it follows that $E \subseteq S$.

10. Prove that **lfp** $(\lambda S.S \cup (S \circ S))$ *R* is the transitive closure of *R*. (**lfp** *f c* is the least fixpoint of the operation *f*, starting from *c*.)

Answer. Let $f = \lambda S.S \cup (S \circ S)$, and let $T = \mathbf{lfp} f R$.

Then f is monotone, i.e., for all arguments $X, X \subseteq f(X)$. In particular, $R \subseteq f(R) \subseteq \ldots \subseteq T$. This shows that $R \subseteq T$.

We show that T is transitive. Since T is a fixpoint, T = f(T), i.e., $T = T \cup (T \circ T)$. In other words, $T \circ T \subseteq T$. It follows from this that T is transitive by the result of the first exercise. Finally, we show that T is the smallest transitive relation that includes R. Let S be an arbitrary transitive relation with $R \subseteq S$. From transitivity of S it follows that $S \circ S \subseteq S$. Therefore, S = f(S), i.e., S is a fixpoint. Since T is the least fixpoint it follows that $T \subseteq S$.

11. Prove that **lfp** $(\lambda S.S \cup (S^{\sim} \circ S))$ R is the euclidean closure of R.

Answer: similar to the reasoning in the previous exercise. Let $f = \lambda S.S \cup (S^{\sim} \circ S)$, and let $E = \mathbf{lfp} f R$.

Then f is monotone, i.e., for all arguments $X, X \subseteq f(X)$. In particular, $R \subseteq f(R) \subseteq \ldots \subseteq E$. This shows that $R \subseteq E$.

We show that E is euclidean. Since E is a fixpoint, E = f(E), i.e., $E = E \cup (E^{\circ} \circ E)$. In other words, $E^{\circ} \circ E \subseteq E$. It follows from this that E is euclidean by an argument given in the course slides.

Finally, we show that E is the smallest euclidean relation that includes R. Let S be an arbitrary euclidean relation with $R \subseteq S$. From euclideanness of S it follows that $S \circ S \subseteq S$. Therefore, S = f(S), i.e., S is a fixpoint. Since E is the least fixpoint it follows that $E \subseteq S$.

12. Give an example of a formula ϕ and a Kripke model M, with the following properties: (i) $M \models \phi$, and (ii) $M \mid \phi \not\models \phi$. In other words, public announcement of ϕ has the effect that ϕ becomes false.

Answer. The simplest example is a model where p is true but agent a does not know that. Then publicly announcing 'p is true, but you don't know it' will result in a situation where what gets announced is falsified by the announcement itself. The formula for this is $p \wedge \neg K_a p$.