
Pencil and Paper Exercises Week 2 — Solutions

1. Prove that a binary relation R is transitive iff R ◦R ⊆ R.

Answer:
⇒: Assume R is a transitive binary relation on A.
To be proved: R ◦R ⊆ R.
Proof. Let (x, y) ∈ R ◦ R. We must show that (x, y) ∈ R. From the definition of
◦: ∃z ∈ A : (x, z) ∈ R, (z, y) ∈ R. It follows from this and transitivity of R that
(x, y) ∈ R.
⇐: Assume R ◦R ⊆ R.
To be proved: R is transitive.
Proof. Let (x, y) ∈ R, (y, z) ∈ R. Then (x, z) ∈ R ◦ R. Since R ◦ R ⊆ R, it follows
from this that (x, z) ∈ R. Thus, R is transitive.

2. Give an example of a transitive binary relation R with the property that R◦R 6= R.

Answer: The simplest example is a relation consisting of a single pair, say R =
{(1, 2)}. This relation is transitive, but R ◦R = ∅ 6= R.

3. Let R be a binary relation on a set A. Prove that R∪{(x, x) | x ∈ A} is the reflexive
closure of R.

Answer: Let I = {(x, x) | x ∈ A}. It is clear that R ∪ I is reflexive, and that
R ⊆ R ∪ I.
To show that R ∪ I is the smallest relation with these two properties, suppose S is
reflexive and R ⊆ S. Then by reflexivity of S, I ⊆ S. It follows that R ∪ I ⊆ S.

4. Prove that R ∪Rˇ is the symmetric closure of R.

Answer: Clearly, R ∪Rˇ is symmetric, and R ⊆ R ∪R .̌
Let S be any symmetric relation that includes R. By symmetry of S and by the
fact that R ⊆ S it follows that Rˇ⊆ S. Thus R ∪Rˇ⊆ S.

5. A partition P of a set A is a set of subsets of A with the following properties:

(a) every member of P is non-empty.

(b) every element of A belongs to some member of P .

(c) different members of P are disjoint.

If R is an equivalence relation on A and a ∈ A then |a|R, the R-class of a, is the set
{b ∈ A | bRa}. Show that the set of R-classes

{|a|R | a ∈ A}

of an equivalence relation R on A forms a partition of A.

Answer: We have to check the three properties of partitions.
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Since R is a reflexive relation on A, we have that for each a ∈ A it holds that
a ∈ |a|R. This takes care of (a) and (b).

Let |a|R and |b|R be two R-classes, and assume that they are not disjoint. Then we
have c ∈ |a|R ∩ |b|R.

This means that we have both aRc and bRc. Since R is symmetric, we have cRb,
and by transitivity of R, aRb, and again by symmetry of R, bRa.

We can show now that |a|R = |b|R, as follows:

Assume d ∈ |a|R. Then dRa. From this and aRb, by transitivity of R, dRb, i.e.,
d ∈ |b|R. This shows: |a|R ⊆ |b|R.

Assume d ∈ |b|R. Then dRb. From this and bRa, by transitivity of R, dRa, i.e.,
d ∈ |a|R. This shows: |b|R ⊆ |a|R.

So if two R-classes |a|R and |b|R are not disjoint, then they are in fact equal. This
takes care of (c).

6. Give the euclidean closure of the relation {(1, 2), (2, 3)}.
Answer: the relation {(1, 2), (2, 2), (2, 3), (3, 2), (3, 3)}.

7. Show that for any relation R, the relation Rˇ◦ (R∪R )̌∗ ◦R is symmetric, transitive
and euclidean.

Answer. Use E for Rˇ◦(R∪R )̌∗◦R. For symmetry of E, let (x, y) ∈ E. Then there
is some m ∈ N with (x, y) ∈ Rˇ◦ (R ∪R )̌m ◦R. So there are z, u with (x, z) ∈ R ,̌
(z, u) ∈ (R∪R )̌m, (u, y) ∈ R. But then (y, u) ∈ R ,̌ (u, z) ∈ (R∪R )̌m, (z, x) ∈ R.
It follows that (y, x) ∈ Rˇ◦ (R ∪R )̌m ◦R. and therefore (y, x) ∈ E.

For transitivity, assume (x, y) ∈ E, (y, z) ∈ E. Then there are m, k ∈ N with
(x, y) ∈ Rˇ ◦ (R ∪ R )̌m ◦ R. (y, z) ∈ Rˇ ◦ (R ∪ R )̌k ◦ R. It follows that (x, z) ∈
Rˇ◦ (R ∪R )̌m+k+2 ◦R, and therefore (x, z) ∈ E.

Euclideanness: any transitive and symmetric relation is euclidean.

8. Prove by induction that if R is an euclidean relation, then Rˇ◦ (R ∪R )̌∗ ◦R ⊆ R.

Answer. Basis: Rˇ◦R ⊆ R. This follows from the euclideanness of R.

Induction step. The induction hypothesis is that Rˇ◦ (R ∪R )̌n ◦R ⊆ R. We must
prove that Rˇ◦ (R ∪R )̌n+1 ◦R ⊆ R.

We are done if we can prove the following two facts: (i) Rˇ◦R ◦ (R∪R )̌n ◦R ⊆ R,
and (ii) Rˇ◦Rˇ◦ (R ∪R )̌n ◦R ⊆ R.

(i) Assume (x, y) ∈ Rˇ ◦ R ◦ (R ∪ R )̌n ◦ R. Then there is a z with (x, z) ∈ Rˇ ◦ R
and (z, y) ∈ (R ∪R )̌n ◦R.

By the fact that Rˇ◦R is symmetric, (z, x) ∈ Rˇ◦R. From this and euclideanness of
R, (z, x) ∈ R, and therefore (x, z) ∈ R .̌ Combining this with (z, y) ∈ (R∪R )̌n ◦R
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we get that (x, y) ∈ Rˇ ◦ (R ∪ R )̌n ◦ R, from which it follows by the induction
hypothesis that (x, y) ∈ R.

(ii) Assume (x, y) ∈ Rˇ◦Rˇ◦ (R ∪R )̌n ◦R. Then there is a z with (x, z) ∈ Rˇ and
(z, y) ∈ Rˇ ◦ (R ∪ R )̌n ◦ R. From the first of these, (z, x) ∈ R. From the second
of these, by induction hypothesis, (z, y) ∈ R. From (z, x) ∈ R and (z, y) ∈ R by
euclideanness of R, (x, y) ∈ R.

9. Prove that
R ∪ (Rˇ◦ (R ∪R )̌∗ ◦R)

is the euclidean closure of R.

Answer: Let E be the relation R ∪ (Rˇ◦ (R ∪R )̌∗ ◦R). Clearly, R ⊆ E.

We show that E is euclidean. Let (x, y) ∈ E, (x, z) ∈ E. Then there are three cases
to consider.

Case 1. (x, y) ∈ R, (x, z) ∈ R. Then (y, z) ∈ Rˇ ◦ R. Since Rˇ ◦ R ⊆ E, it follows
that (y, z) ∈ E.

Case 2. (x, y) ∈ R, (x, z) ∈ Rˇ◦ (R ∪R )̌m ◦R, for some m ∈ N.

From the givens,
(y, z) ∈ Rˇ◦Rˇ◦ (R ∪R )̌m ◦R.

It follows that (y, z) ∈ Rˇ◦ (R ∪R )̌m+1 ◦R, and therefore (y, z) ∈ E.

Case 3. (x, y) ∈ Rˇ ◦ (R ∪ R )̌∗ ◦ R, (x, z) ∈ Rˇ ◦ (R ∪ R )̌∗ ◦ R. Now we get
from the euclideanness of Rˇ ◦ (R ∪ R )̌∗ ◦ R (proved in a previous exercise) that
(y, z) ∈ Rˇ◦ (R ∪R )̌∗ ◦R, and therefore (y, z) ∈ E.

Finally, we have to prove that E is the smallest relation with the required properties.

Let S be an arbitrary euclidean relation that includes R. We must show that E ⊆ S.

Since S is euclidean, we know from the previous exercise that Sˇ◦ (S∪S )̌∗ ◦S ⊆ S.

Since R ⊆ S we also have

Rˇ◦ (R ∪R )̌∗ ◦R ⊆ Sˇ◦ (S ∪ S )̌∗ ◦ S ⊆ S.

From this, together with R ⊆ S, it follows that E ⊆ S.

10. Prove that lfp (λS.S ∪ (S ◦S)) R is the transitive closure of R. (lfp f c is the least
fixpoint of the operation f , starting from c.)

Answer. Let f = λS.S ∪ (S ◦ S), and let T = lfp f R.

Then f is monotone, i.e., for all arguments X, X ⊆ f(X). In particular, R ⊆
f(R) ⊆ . . . ⊆ T . This shows that R ⊆ T .

We show that T is transitive. Since T is a fixpoint, T = f(T ), i.e., T = T ∪ (T ◦T ).
In other words, T ◦ T ⊆ T . It follows from this that T is transitive by the result of
the first exercise.
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Finally, we show that T is the smallest transitive relation that includes R. Let S be
an arbitrary transitive relation with R ⊆ S. From transitivity of S it follows that
S ◦ S ⊆ S. Therefore, S = f(S), i.e., S is a fixpoint. Since T is the least fixpoint it
follows that T ⊆ S.

11. Prove that lfp (λS.S ∪ (Sˇ◦ S)) R is the euclidean closure of R.

Answer: similar to the reasoning in the previous exercise. Let f = λS.S ∪ (Sˇ◦ S),
and let E = lfp f R.

Then f is monotone, i.e., for all arguments X, X ⊆ f(X). In particular, R ⊆
f(R) ⊆ . . . ⊆ E. This shows that R ⊆ E.

We show that E is euclidean. Since E is a fixpoint, E = f(E), i.e., E = E∪(Eˇ◦E).
In other words, Eˇ◦E ⊆ E. It follows from this that E is euclidean by an argument
given in the course slides.

Finally, we show that E is the smallest euclidean relation that includes R. Let S be
an arbitrary euclidean relation with R ⊆ S. From euclideanness of S it follows that
Sˇ◦ S ⊆ S. Therefore, S = f(S), i.e., S is a fixpoint. Since E is the least fixpoint
it follows that E ⊆ S.

12. Give an example of a formula φ and a Kripke model M , with the following properties:
(i) M |= φ, and (ii) M | φ 6|= φ. In other words, public announcement of φ has the
effect that φ becomes false.

Answer. The simplest example is a model where p is true but agent a does not know
that. Then publicly announcing ‘p is true, but you don’t know it’ will result in a
situation where what gets announced is falsified by the announcement itself. The
formula for this is p ∧ ¬Kap.

4


