## Pencil and Paper Exercises Week 2 - Solutions

1. Prove that a binary relation $R$ is transitive iff $R \circ R \subseteq R$.

Answer:
$\Rightarrow$ : Assume $R$ is a transitive binary relation on $A$.
To be proved: $R \circ R \subseteq R$.
Proof. Let $(x, y) \in R \circ R$. We must show that $(x, y) \in R$. From the definition of $\circ: \exists z \in A:(x, z) \in R,(z, y) \in R$. It follows from this and transitivity of $R$ that $(x, y) \in R$.
$\Leftarrow$ : Assume $R \circ R \subseteq R$.
To be proved: $R$ is transitive.
Proof. Let $(x, y) \in R,(y, z) \in R$. Then $(x, z) \in R \circ R$. Since $R \circ R \subseteq R$, it follows from this that $(x, z) \in R$. Thus, $R$ is transitive.
2. Give an example of a transitive binary relation $R$ with the property that $R \circ R \neq R$.

Answer: The simplest example is a relation consisting of a single pair, say $R=$ $\{(1,2)\}$. This relation is transitive, but $R \circ R=\emptyset \neq R$.
3. Let $R$ be a binary relation on a set $A$. Prove that $R \cup\{(x, x) \mid x \in A\}$ is the reflexive closure of $R$.
Answer: Let $I=\{(x, x) \mid x \in A\}$. It is clear that $R \cup I$ is reflexive, and that $R \subseteq R \cup I$.
To show that $R \cup I$ is the smallest relation with these two properties, suppose $S$ is reflexive and $R \subseteq S$. Then by reflexivity of $S, I \subseteq S$. It follows that $R \cup I \subseteq S$.
4. Prove that $R \cup R^{\wedge}$ is the symmetric closure of $R$.

Answer: Clearly, $R \cup R^{\ulcorner }$is symmetric, and $R \subseteq R \cup R^{\ulcorner }$.
Let $S$ be any symmetric relation that includes $R$. By symmetry of $S$ and by the fact that $R \subseteq S$ it follows that $R^{\wedge} \subseteq S$. Thus $R \cup R^{\wedge} \subseteq S$.
5. A partition $P$ of a set $A$ is a set of subsets of $A$ with the following properties:
(a) every member of $P$ is non-empty.
(b) every element of $A$ belongs to some member of $P$.
(c) different members of $P$ are disjoint.

If $R$ is an equivalence relation on $A$ and $a \in A$ then $|a|_{R}$, the $R$-class of $a$, is the set $\{b \in A \mid b R a\}$. Show that the set of $R$-classes

$$
\left\{|a|_{R} \mid a \in A\right\}
$$

of an equivalence relation $R$ on $A$ forms a partition of $A$.
Answer: We have to check the three properties of partitions.

Since $R$ is a reflexive relation on $A$, we have that for each $a \in A$ it holds that $a \in|a|_{R}$. This takes care of (a) and (b).
Let $|a|_{R}$ and $|b|_{R}$ be two $R$-classes, and assume that they are not disjoint. Then we have $c \in|a|_{R} \cap|b|_{R}$.
This means that we have both $a R c$ and $b R c$. Since $R$ is symmetric, we have $c R b$, and by transitivity of $R, a R b$, and again by symmetry of $R, b R a$.
We can show now that $|a|_{R}=|b|_{R}$, as follows:
Assume $d \in|a|_{R}$. Then $d R a$. From this and $a R b$, by transitivity of $R$, $d R b$, i.e., $d \in|b|_{R}$. This shows: $|a|_{R} \subseteq|b|_{R}$.
Assume $d \in|b|_{R}$. Then $d R b$. From this and $b R a$, by transitivity of $R, d R a$, i.e., $d \in|a|_{R}$. This shows: $|b|_{R} \subseteq|a|_{R}$.
So if two $R$-classes $|a|_{R}$ and $|b|_{R}$ are not disjoint, then they are in fact equal. This takes care of (c).
6. Give the euclidean closure of the relation $\{(1,2),(2,3)\}$.

Answer: the relation $\{(1,2),(2,2),(2,3),(3,2),(3,3)\}$.
7. Show that for any relation $R$, the relation $R^{\wedge} \circ\left(R \cup R^{\curvearrowleft}\right)^{*} \circ R$ is symmetric, transitive and euclidean.
Answer. Use $E$ for $R^{\wedge} \circ\left(R \cup R^{\wedge}\right)^{*} \circ R$. For symmetry of $E$, let $(x, y) \in E$. Then there is some $m \in \mathbb{N}$ with $(x, y) \in R^{\vee} \circ\left(R \cup R^{\curlyvee}\right)^{m} \circ R$. So there are $z, u$ with $(x, z) \in R^{\curlyvee}$, $(z, u) \in\left(R \cup R^{`}\right)^{m},(u, y) \in R$. But then $(y, u) \in R^{\ulcorner },(u, z) \in\left(R \cup R^{`}\right)^{m},(z, x) \in R$. It follows that $(y, x) \in R^{\wedge} \circ\left(R \cup R^{\wedge}\right)^{m} \circ R$. and therefore $(y, x) \in E$.
For transitivity, assume $(x, y) \in E,(y, z) \in E$. Then there are $m, k \in \mathbb{N}$ with $(x, y) \in R^{\wedge} \circ\left(R \cup R^{\wedge}\right)^{m} \circ R .(y, z) \in R^{\wedge} \circ\left(R \cup R^{\wedge}\right)^{k} \circ R$. It follows that $(x, z) \in$ $R^{\wedge} \circ\left(R \cup R^{\vee}\right)^{m+k+2} \circ R$, and therefore $(x, z) \in E$.
Euclideanness: any transitive and symmetric relation is euclidean.
8. Prove by induction that if $R$ is an euclidean relation, then $R^{\wedge} \circ\left(R \cup R^{\wedge}\right)^{*} \circ R \subseteq R$. Answer. Basis: $R^{\wedge} \circ R \subseteq R$. This follows from the euclideanness of $R$.
Induction step. The induction hypothesis is that $R^{\wedge} \circ\left(R \cup R^{\wedge}\right)^{n} \circ R \subseteq R$. We must prove that $R^{\wedge} \circ\left(R \cup R^{\wedge}\right)^{n+1} \circ R \subseteq R$.
We are done if we can prove the following two facts: (i) $R^{\curvearrowleft} \circ R \circ\left(R \cup R^{\wedge}\right)^{n} \circ R \subseteq R$, and (ii) $R^{\ulcorner } \circ R^{\ulcorner } \circ\left(R \cup R^{\curvearrowleft}\right)^{n} \circ R \subseteq R$.
(i) Assume $(x, y) \in R^{\wedge} \circ R \circ\left(R \cup R^{\wedge}\right)^{n} \circ R$. Then there is a $z$ with $(x, z) \in R^{\wedge} \circ R$ and $(z, y) \in\left(R \cup R^{\vee}\right)^{n} \circ R$.
By the fact that $R^{\wedge} \circ R$ is symmetric, $(z, x) \in R^{\wedge} \circ R$. From this and euclideanness of $R,(z, x) \in R$, and therefore $(x, z) \in R^{\curlyvee}$. Combining this with $(z, y) \in\left(R \cup R^{\curlyvee}\right)^{n} \circ R$
we get that $(x, y) \in R^{\wedge} \circ\left(R \cup R^{\vee}\right)^{n} \circ R$, from which it follows by the induction hypothesis that $(x, y) \in R$.
(ii) Assume $(x, y) \in R^{\wedge} \circ R^{\curvearrowleft} \circ\left(R \cup R^{\ulcorner }\right)^{n} \circ R$. Then there is a $z$ with $(x, z) \in R^{\curvearrowleft}$ and $(z, y) \in R^{\curvearrowleft} \circ\left(R \cup R^{\imath}\right)^{n} \circ R$. From the first of these, $(z, x) \in R$. From the second of these, by induction hypothesis, $(z, y) \in R$. From $(z, x) \in R$ and $(z, y) \in R$ by euclideanness of $R,(x, y) \in R$.
9. Prove that

$$
R \cup\left(R^{\check{ } \circ} \circ\left(R \cup R^{\check{ }}\right)^{*} \circ R\right)
$$

is the euclidean closure of $R$.
Answer: Let $E$ be the relation $R \cup\left(R^{\wedge} \circ\left(R \cup R^{\vee}\right)^{*} \circ R\right)$. Clearly, $R \subseteq E$.
We show that $E$ is euclidean. Let $(x, y) \in E,(x, z) \in E$. Then there are three cases to consider.

Case 1. $(x, y) \in R,(x, z) \in R$. Then $(y, z) \in R^{r} \circ R$. Since $R^{r} \circ R \subseteq E$, it follows that $(y, z) \in E$.
Case 2. $(x, y) \in R,(x, z) \in R^{\wedge} \circ\left(R \cup R^{\vee}\right)^{m} \circ R$, for some $m \in \mathbb{N}$.
From the givens,

$$
(y, z) \in R^{\wedge} \circ R^{\wedge} \circ\left(R \cup R^{\wedge}\right)^{m} \circ R .
$$

It follows that $(y, z) \in R^{\curvearrowleft} \circ\left(R \cup R^{\vee}\right)^{m+1} \circ R$, and therefore $(y, z) \in E$.
Case 3. $(x, y) \in R^{\wedge} \circ\left(R \cup R^{\wedge}\right)^{*} \circ R,(x, z) \in R^{\wedge} \circ\left(R \cup R^{\wedge}\right)^{*} \circ R$. Now we get from the euclideanness of $R^{\wedge} \circ\left(R \cup R^{\curlyvee}\right)^{*} \circ R$ (proved in a previous exercise) that $(y, z) \in R^{\ulcorner } \circ\left(R \cup R^{\ulcorner }\right)^{*} \circ R$, and therefore $(y, z) \in E$.
Finally, we have to prove that $E$ is the smallest relation with the required properties.
Let $S$ be an arbitrary euclidean relation that includes $R$. We must show that $E \subseteq S$.
Since $S$ is euclidean, we know from the previous exercise that $S^{\wedge} \circ\left(S \cup S^{\wedge}\right)^{*} \circ S \subseteq S$.
Since $R \subseteq S$ we also have

$$
R^{\curvearrowleft} \circ\left(R \cup R^{\curvearrowleft}\right)^{*} \circ R \subseteq S^{\wedge} \circ\left(S \cup S^{\curvearrowleft}\right)^{*} \circ S \subseteq S
$$

From this, together with $R \subseteq S$, it follows that $E \subseteq S$.
10. Prove that lfp $(\lambda S . S \cup(S \circ S)) R$ is the transitive closure of $R$. (lfp $f c$ is the least fixpoint of the operation $f$, starting from $c$.)

Answer. Let $f=\lambda S . S \cup(S \circ S)$, and let $T=\operatorname{lfp} f R$.
Then $f$ is monotone, i.e., for all arguments $X, X \subseteq f(X)$. In particular, $R \subseteq$ $f(R) \subseteq \ldots \subseteq T$. This shows that $R \subseteq T$.

We show that $T$ is transitive. Since $T$ is a fixpoint, $T=f(T)$, i.e., $T=T \cup(T \circ T)$. In other words, $T \circ T \subseteq T$. It follows from this that $T$ is transitive by the result of the first exercise.

Finally, we show that $T$ is the smallest transitive relation that includes $R$. Let $S$ be an arbitrary transitive relation with $R \subseteq S$. From transitivity of $S$ it follows that $S \circ S \subseteq S$. Therefore, $S=f(S)$, i.e., $S$ is a fixpoint. Since $T$ is the least fixpoint it follows that $T \subseteq S$.
11. Prove that $\mathbf{l f p}\left(\lambda S . S \cup\left(S^{\sim} \circ S\right)\right) R$ is the euclidean closure of $R$.

Answer: similar to the reasoning in the previous exercise. Let $f=\lambda S . S \cup\left(S^{\wedge} \circ S\right)$, and let $E=\operatorname{lfp} f R$.
Then $f$ is monotone, i.e., for all arguments $X, X \subseteq f(X)$. In particular, $R \subseteq$ $f(R) \subseteq \ldots \subseteq E$. This shows that $R \subseteq E$.
We show that $E$ is euclidean. Since $E$ is a fixpoint, $E=f(E)$, i.e., $E=E \cup\left(E^{\circ} \circ E\right)$. In other words, $E^{\wedge} \circ E \subseteq E$. It follows from this that $E$ is euclidean by an argument given in the course slides.
Finally, we show that $E$ is the smallest euclidean relation that includes $R$. Let $S$ be an arbitrary euclidean relation with $R \subseteq S$. From euclideanness of $S$ it follows that $S \curvearrowleft S \subseteq S$. Therefore, $S=f(S)$, i.e., $S$ is a fixpoint. Since $E$ is the least fixpoint it follows that $E \subseteq S$.
12. Give an example of a formula $\phi$ and a Kripke model $M$, with the following properties: (i) $M \models \phi$, and (ii) $M \mid \phi \not \models \phi$. In other words, public announcement of $\phi$ has the effect that $\phi$ becomes false.

Answer. The simplest example is a model where $p$ is true but agent $a$ does not know that. Then publicly announcing ' $p$ is true, but you don't know it' will result in a situation where what gets announced is falsified by the announcement itself. The formula for this is $p \wedge \neg K_{a} p$.

