Pencil and Paper Exercises Week 2 — Solutions

1.

Prove that a binary relation R is transitive iff Ro R C R.

Answer:

=-: Assume R is a transitive binary relation on A.

To be proved: Ro R C R.

Proof. Let (z,y) € Ro R. We must show that (z,y) € R. From the definition of
oo dz € A: (x,2) € R,(z,y) € R. It follows from this and transitivity of R that
(z,y) € R.

«: Assume Ro R C R.

To be proved: R is transitive.

Proof. Let (z,y) € R, (y,z) € R. Then (x,z) € Ro R. Since Ro R C R, it follows
from this that (x,z) € R. Thus, R is transitive.

. Give an example of a transitive binary relation R with the property that Ro R # R.

Answer: The simplest example is a relation consisting of a single pair, say R =
{(1,2)}. This relation is transitive, but Ro R = () # R.

Let R be a binary relation on a set A. Prove that RU{(x,x) | z € A} is the reflexive
closure of R.

Answer: Let I = {(z,z) | © € A}. It is clear that R U I is reflexive, and that
RCRUI

To show that R U I is the smallest relation with these two properties, suppose S is
reflexive and R C S. Then by reflexivity of S, I C S. It follows that RU I C S.

Prove that R U R™ is the symmetric closure of R.

Answer: Clearly, RU R is symmetric, and R C RU R".
Let S be any symmetric relation that includes R. By symmetry of S and by the
fact that R C S it follows that R*C S. Thus RUR C S.

. A partition P of a set A is a set of subsets of A with the following properties:

(a) every member of P is non-empty.
(b) every element of A belongs to some member of P.

(c) different members of P are disjoint.

If R is an equivalence relation on A and a € A then |a|g, the R-class of a, is the set
{b€ A|bRa}. Show that the set of R-classes

{lalg [a € A}

of an equivalence relation R on A forms a partition of A.

Answer: We have to check the three properties of partitions.



Since R is a reflexive relation on A, we have that for each a € A it holds that
a € |a|g. This takes care of (a) and (b).

Let |a|g and |b|g be two R-classes, and assume that they are not disjoint. Then we
have ¢ € |a|r N |bg.

This means that we have both aRc and bRc. Since R is symmetric, we have cRb,
and by transitivity of R, aRb, and again by symmetry of R, bRa.

We can show now that |a|g = |b|g, as follows:

Assume d € |a|g. Then dRa. From this and aRb, by transitivity of R, dRb, i.e.,
d € |b|g. This shows: |a|g C |b|g.

Assume d € |b|g. Then dRb. From this and bRa, by transitivity of R, dRa, i.e.,
d € |a|g. This shows: |b|g C |a|g.

So if two R-classes |a|r and |b|g are not disjoint, then they are in fact equal. This
takes care of (c).

. Give the euclidean closure of the relation {(1,2),(2,3)}.

Answer: the relation {(1,2),(2,2),(2,3),(3,2),(3,3)}.

. Show that for any relation R, the relation R o (RUR")* o R is symmetric, transitive
and euclidean.

Answer. Use E for R o(RUR")*o R. For symmetry of F, let (x,y) € E. Then there
is some m € N with (z,y) € R o (RUR")"™ o R. So there are z,u with (z,2) € R,
(z,u) € (RUR)™, (u,y) € R. But then (y,u) € R", (u,z) € (RUR)™, (z,2) € R.
It follows that (y,z) € R o (RUR")™ o R. and therefore (y,z) € E.

For transitivity, assume (x,y) € E, (y,z) € E. Then there are m,k € N with
(r,9) € Ro(RUR)™oR. (y,2) € R o(RUR)*oR. It follows that (z,2) €
R o (RUR)™**20 R and therefore (z,z) € E.

Fuclideanness: any transitive and symmetric relation is euclidean.

. Prove by induction that if R is an euclidean relation, then R" o (RUR")* o R C R.
Answer. Basis: R” o R C R. This follows from the euclideanness of R.

Induction step. The induction hypothesis is that R" o (RUR")" o R C R. We must
prove that R o (RUR" )" o R C R.

We are done if we can prove the following two facts: (i) R o Ro(RUR)"o R C R,
and (ii) RoR o(RUR)"o RC R.

(i) Assume (z,y) € R o Ro (RU R")" o R. Then there is a z with (z,2) € R o R
and (z,y) € (RUR")" o R.

By the fact that R™o R is symmetric, (z,2) € R o R. From this and euclideanness of
R, (z,x) € R, and therefore (z,z) € R". Combining this with (z,y) € (RUR")"o R
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we get that (z,y) € R"o (RU R")" o R, from which it follows by the induction
hypothesis that (x,y) € R.

(ii) Assume (x,y) € R"o R"o (RUR")"o R. Then there is a z with (x,z) € R™ and
(z,y) € R"o(RUR)" o R. From the first of these, (z,2) € R. From the second
of these, by induction hypothesis, (z,y) € R. From (z,z2) € R and (z,y) € R by
euclideanness of R, (x,y) € R.

Prove that
RU(R o(RUR)*oR)
is the euclidean closure of R.
Answer: Let E be the relation RU (R o (RUR")*o R). Clearly, R C E.

We show that £ is euclidean. Let (z,y) € E, (z,2) € E. Then there are three cases
to consider.

Case 1. (z,y) € R, (z,2) € R. Then (y,z) € R" o R. Since R" o R C FE, it follows
that (y,z2) € E.

Case 2. (7,y) € R, (z,2) € R" o (RUR)™ o R, for some m € N.

From the givens,
(y,2) e RRoR o(RUR)™o R.

It follows that (y,z) € R o (RU R")™"! o R, and therefore (y, 2) € F.

Case 3. (z,y) € Ro(RUR)*oR, (z,2) € RRo(RUR)* o R. Now we get
from the euclideanness of R o (RU R")* o R (proved in a previous exercise) that
(y,z) € R o (RUR")*o R, and therefore (y,z) € E.

Finally, we have to prove that E is the smallest relation with the required properties.
Let S be an arbitrary euclidean relation that includes R. We must show that £ C S.
Since S is euclidean, we know from the previous exercise that S" o (SUS™)*oS C S.

Since R C S we also have
R o(RUR)"oRC S o(SUS) oS CS.
From this, together with R C S, it follows that £ C S.
Prove that Ifp (AS.SU(S0S)) R is the transitive closure of R. (Ifp f ¢ is the least
fixpoint of the operation f, starting from c.)

Answer. Let f =AS.SU(SoS), and let T =1fp f R.

Then f is monotone, i.e., for all arguments X, X C f(X). In particular, R C
f(R) C ... CT. This shows that R C T.

We show that 7" is transitive. Since 7' is a fixpoint, T'= f(7T),i.e., T =TU(ToT).
In other words, T o T C T. It follows from this that T is transitive by the result of
the first exercise.
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Finally, we show that T" is the smallest transitive relation that includes R. Let S be
an arbitrary transitive relation with R C S. From transitivity of S it follows that
S oS C S. Therefore, S = f(9), i.e., S is a fixpoint. Since T" is the least fixpoint it
follows that 7" C S.

Prove that Ifp (AS.S U (S7 0 5)) R is the euclidean closure of R.

Answer: similar to the reasoning in the previous exercise. Let f = AS.SU (S 0 5),
and let £ =1fp f R.

Then f is monotone, i.e., for all arguments X, X C f(X). In particular, R C
f(R) C ... C E. This shows that R C F.

We show that E is euclidean. Since E is a fixpoint, £ = f(F), i.e., E = FEU(E oFE).
In other words, E”o E' C FE. It follows from this that E is euclidean by an argument
given in the course slides.

Finally, we show that E is the smallest euclidean relation that includes R. Let S be
an arbitrary euclidean relation with R C S. From euclideanness of S it follows that
S70S C S. Therefore, S = f(9), i.e., S is a fixpoint. Since F is the least fixpoint
it follows that £ C S.

Give an example of a formula ¢ and a Kripke model M, with the following properties:
(i) M |= ¢, and (i) M | ¢ = ¢. In other words, public announcement of ¢ has the
effect that ¢ becomes false.

Answer. The simplest example is a model where p is true but agent a does not know
that. Then publicly announcing ‘p is true, but you don’t know it” will result in a
situation where what gets announced is falsified by the announcement itself. The
formula for this is p A = Kp.



